1
|
Mohammed A, Atkin SL, Brennan E. Dysregulation of microRNA (miRNA) Due to Phthalate/Phthalate Metabolite Exposure and Associated Health Effects: A Narrative Review. J Xenobiot 2025; 15:72. [PMID: 40407536 PMCID: PMC12101272 DOI: 10.3390/jox15030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025] Open
Abstract
Phthalates, a group of synthetic non-persistent organic chemicals commonly used as solvents and plasticisers, have been associated with a range of detrimental health effects. These endocrine disrupting chemicals (ECDs) may exert their effects through epigenetic changes such as altered microRNA (miRNA) expression. miRNAs are short non-coding endogenous RNA transcripts that are preferentially expressed in various tissues and cell types and can circulate in body fluids, thereby regulating gene expression and acting as mediators for intercellular communication. As miRNAs mostly target protein-coding transcripts, they are involved in nearly all networks that regulate developmental and pathological processes. In this review, we provide an overview of human, in vivo and in vitro studies assessing altered miRNA expression due to phthalate exposure and their biological effects. Importantly, this study suggests that the mechanism of phthalate action may in part be mediated by epigenetic changes, affecting a large number of different proteins. This is indicative that alterations in miRNA expression induced by phthalate exposure are then implicated in a wide range of health conditions, including reproductive dysfunction, oncogenesis, metabolic disorders, and neurodevelopmental outcomes. Exposure to phthalates and their metabolites predominantly results in the upregulation of miRNAs. Dysregulation of miR-34a, miR-15b, miR-141, miR-184, miR-19a, miR-125, and miR-let-7 were observed across several studies. More research involving human participants combined with mechanistic studies integrating mRNA target analysis would be beneficial in understanding the downstream effects of phthalate exposure on gene expression and grasping the broader biological implications.
Collapse
Affiliation(s)
- Aamer Mohammed
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Stephen L. Atkin
- School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| |
Collapse
|
2
|
Ji K, Wang P, Li Y, Ma Q, Su X. Ti 3C 2T x/Au NPs/PPy ternary heterostructure-based intra-capacitive self-powered sensor for DEHP detection. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137311. [PMID: 39864196 DOI: 10.1016/j.jhazmat.2025.137311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Phthalate esters, particularly di(2-ethylhexyl) phthalate (DEHP), are widely used plasticizers found in various consumer products, posing significant environmental and health risks due to their endocrine-disrupting effects. In this study, a novel enzyme-free intra-capacitive biofuel cell self-powered sensor (ICBFC-SPS) was developed. The ICBFC-SPS integrated a ternary heterostructure-based capacitive anode and a cathode with a sensing interface into a single-chamber electrolytic cell. The ternary heterostructure based on Ti3C2Tx MXene with ultra-small Au NPs and polypyrrole (PPy) NPs was prepared to provide the efficient glucose oxidation and robust electron production. Furthermore, the charge storage capacity was significantly enhanced through a synergistic combination of the double-layer capacitor mechanism of Ti3C2Tx and the pseudocapacitive behavior of PPy. Additionally, the intercalation of PPy NPs expanded the interlayer spacing, promoting electrolyte ion diffusion and charge transfer. The ICBFC-SPS demonstrated exceptional sensitivity with a linear detection range from 0.05 to 100000 ng/L and a detection limit of 9.51 pg/L for the sensitive and selective detection of DEHP in complex environmental and biological samples. The ICBFC-SPS addresses the limitations of traditional methods by providing a self-powered, highly sensitive, and portable platform for rapid, on-site DEHP detection. This work underscores the potential of self-powered sensors as transformative tools for real-time environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Kaixiang Ji
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yameng Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Zhan Y, Shi J. Application of bioinformatics techniques to discovery of mechanisms by which plasticizers promote acute myelogenous leukemia. Drug Chem Toxicol 2025:1-10. [PMID: 40286278 DOI: 10.1080/01480545.2025.2496324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/03/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
This study aims to elucidate the potential roles of commonly used plasticizers, including Diethyl Phthalate (DEP), Dimethyl Phthalate (DMP), and Dioctyl Phthalate (DOP), in the pathogenesis of Acute Myeloid Leukemia (AML). The focus is to highlight the complex interactions between these environmental chemicals and key molecular pathways involved in tumorigenesis. We employed network toxicology and molecular docking techniques to analyze the interactions between plasticizers and key proteins associated with AML. Utilizing databases such as The Cancer Genome Atlas (TCGA), we divided selected key genes from AML bone marrow samples into two groups based on gene expression and compared their survival analyses. Enrichment analysis was conducted to identify the biological pathways associated with these genes. The enrichment analysis underscored the association between the plasticizer-targeted genes and essential pathways in AML development, indicating a broad impact of plasticizers on various cancers, including hematologic malignancies. Subsequent expression analysis using TCGA data for AML demonstrated that these genes have significant statistical relevance to the survival in AML, confirming their critical roles in tumor biology. This study provides evidence that exposure to plasticizers could influence the pathogenesis of AML through interactions with key proteins and signaling pathways. By utilizing network pharmacology and protein interaction analysis, our findings emphasize the potential risks associated with plasticizers. These results highlight the necessity for further epidemiological and clinical research to fully understand the impact of plasticizer exposure on AML risk, thereby informing future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Yi Zhan
- The Ward II of Pediatric, Jinhua Maternal & Child Health Care Hosptial, Jinhua, People's Republic of China
| | - Jiandong Shi
- Department of Hematology, Yuyao People's Hospital of Zhejiang Province, Ningbo, People's Republic of China
| |
Collapse
|
4
|
Zhang J, Xie Y, Chen J, Song L. Monocarboxyoctyl phthalate is associated with platelet count: evidence from a large cross-sectional study. Front Public Health 2025; 13:1559808. [PMID: 40352847 PMCID: PMC12061924 DOI: 10.3389/fpubh.2025.1559808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Phthalates are environmental pollutants that are harmful to human health. However, the impact of phthalate on platelet count remains unclear. This study aimed to examine the correlation between five phthalate metabolites in urine and platelet count, as well as the impact of phthalate metabolite exposure on platelet count in adults. Methods This cross-sectional study included 11,409 non-pregnant participants aged >20 years using data available from the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018. Weighted logistic regression, restricted cubic spline (RCS) modeling, and weighted quantile sum (WQS) were employed to investigate the effects of mono-(carboxyisononyl) phthalate (MCNP), mono-(carboxyoctyl) phthalate (MCOP), mono-(3-carboxypropyl) phthalate (MCPP), mono-isobutyl phthalate (MiBP) and mono-isononyl phthalate (MNP) on platelet count. Results Logistic regression analysis suggested that MCOP [odds ratio (OR) (95% confidence interval CI) = 0.009 (0.002-0.036)] was significantly associated with the platelet count. Subgroup analysis showed negative correlations between MCOP and platelet count across all age and sex groups, and MCNP [OR (95% CI) = 0.083(0.013-0.552)] displayed a negative association with platelet count in females. MCOP had a nonlinear relationship with the platelet count in the RCS model. WQS also revealed that MCOP was related to platelet count. Conclusion Higher urinary MCOP level was associated with lower platelet count. Further investigation is necessary to substantiate these findings, considering the shortcomings of the NHANES study.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Hematology, People's Hospital of Rizhao, Rizhao, China
| | - Yuhan Xie
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinqiu Chen
- Department of Hematology, People's Hospital of Rizhao, Rizhao, China
| | - Lei Song
- Department of Hematology, People's Hospital of Rizhao, Rizhao, China
| |
Collapse
|
5
|
Gorini F, Tonacci A, Sanmartin C, Venturi F. Phthalates and Non-Phthalate Plasticizers and Thyroid Dysfunction: Current Evidence and Novel Strategies to Reduce Their Spread in Food Industry and Environment. TOXICS 2025; 13:222. [PMID: 40137549 PMCID: PMC11945544 DOI: 10.3390/toxics13030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Thyroid hormones (THs) play a crucial role in various biological functions, including metabolism, cell growth, and nervous system development, and any alteration involving the structure of the thyroid gland and TH secretion may result in thyroid disease. Growing evidence suggests that phthalate plasticizers, which are commonly used in a wide range of products (e.g., food packaging materials, children's toys, cosmetics, medical devices), can impact thyroid function, primarily affecting serum levels of THs and TH-related gene expression. Like phthalate compounds, recently introduced alternative plasticizers can leach from their source material into the environment, particularly into foods, although so far only a very limited number of studies have investigated their thyroid toxicity. This review aimed at summarizing the current knowledge on the role of phthalate and non-phthalate plasticizers in thyroid dysfunction and disease, describing the major biological mechanisms underlying this relationship. We will also focus on the food industry as one of the main players for the massive spread of such compounds in the human body, in turn conveyed by edible compounds. Given the increasing worldwide use of plasticizers and the essential role of THs in humans, novel strategies should be envisaged to reduce this burden on the thyroid and, in general, on human health.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| |
Collapse
|
6
|
Liu L, Li X, Hao X, Xu Z, Wang Q, Ren C, Li M, Liu X. Endocrine disruptors and bladder function: the role of phthalates in overactive bladder. Front Public Health 2024; 12:1493794. [PMID: 39722714 PMCID: PMC11668814 DOI: 10.3389/fpubh.2024.1493794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background Phthalates, widely used as plasticizers, are pervasive environmental contaminants and endocrine disruptors. Their potential role in overactive bladder (OAB) pathogenesis is underexplored, necessitating further investigation into their impact on OAB using large-scale epidemiological data. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2011 to 2018. A weighted multivariable logistic regression model was employed to examine the relationship between urinary phthalate concentrations and OAB. Subgroup analyses were conducted to explore differences in associations across various subgroups. Restricted cubic spline (RCS) analysis was used to investigate the potential non-linear relationship between urinary phthalate concentrations and OAB. Additionally, Bayesian Kernel Machine Regression (BKMR) analysis was performed to explore the overall effects and interactions of phthalate mixtures. Results In the multivariable logistic regression model fully adjusted for confounding variables, higher concentrations of MBzP and MiBP were associated with an increased risk of OAB, particularly in the highest tertiles (MBzP: OR = 1.401, 95% CI: 1.108-1.771; MiBP: OR = 1.050, 95% CI: 1.045-1.056). Subgroup analysis found that subgroup characteristics did not have a significant moderating effect on the association between phthalates and OAB. RCS analysis revealed a linear relationship between both MBzP and MiBP and OAB. BKMR analysis confirmed a positive overall effect of phthalate mixtures on OAB risk, with MBzP identified as the major contributing factor. Conclusion In our study cohort, a positive correlation between urinary phthalate concentrations and OAB was observed, necessitating further research to validate and refine this conclusion.
Collapse
|
7
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
8
|
Liu S, Li J, Wang W, Zhang Y, Li S, Li T, Jiang J, Zhao F. Prenatal exposure to dibutyl phthalate contributes to erectile dysfunction in offspring male rats by activating the RhoA/ROCK signalling pathway. Toxicology 2024; 508:153925. [PMID: 39151608 DOI: 10.1016/j.tox.2024.153925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Prenatal exposure to dibutyl phthalate (DBP) has been reported to cause erectile dysfunction (ED) in adult offspring rats. However, its underlying mechanisms are not fully understood. Previously, we found that DBP activates the RhoA/ROCK pathway in the male reproductive system. This study investigated how prenatal exposure to DBP activates the RhoA/ROCK signalling pathway, leading to ED in male rat offspring. Pregnant rats were stratified into DBP-exposed and NC groups, with the exposed group receiving 750 milligrams per kilogram per day (mg/kg/day) of DBP through gavage from days 14-18 of gestation. DBP exposure activated the RhoA/ROCK pathway in the penile corpus cavernosum (CC) of descendants, causing smooth muscle cell contraction, fibrosis, and apoptosis, all of which contribute to ED. In vitro experiments confirmed that DBP induces apoptosis and RhoA/ROCK pathway activation in CC smooth muscle cells. Treatment of DBP-exposed offspring with the ROCK inhibitor Y-27632 for 8 weeks significantly improved smooth muscle cell condition, erectile function, and reduced fibrosis. Thus, prenatal DBP exposure induces ED in offspring through RhoA/ROCK pathway activation, and the ROCK inhibitor Y-27632 shows potential as an effective treatment for DBP-induced ED.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jianying Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yijun Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shufeng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
9
|
Singh I, Kanade GS, Kumar AR. Levels, distribution, and health risk assessment of phthalic acid esters in urban surface soils of Nagpur city, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1084. [PMID: 39432121 DOI: 10.1007/s10661-024-13281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Surface soil samples from residential, commercial, and industrial areas of Nagpur city, India, were collected to study the levels, distribution, and impact of land use patterns on phthalic acid ester (PAEs) contamination. The Σ6PAEs concentrations in soils from residential, commercial, and industrial areas ranged between 6,493 to 13,195 µg/kg, 707 to 18,446 µg/kg, and 1,882 to 5,004 µg/kg with medians of 10,399, 6,199, and 3,401 µg/kg, respectively. Bis-2-ethylhexyl phthalate (DEHP) and dimethyl phthalate (DMP) were the dominant PAEs in the urban soils. The concentrations of DEHP and DMP were significantly greater than those in Ontario's soil quality guidelines. Among the PAEs, benzyl-butyl phthalate (BzBP) was found at relatively high concentrations (1,238 and 9,171 µg/kg) at two locations (i.e., S1 and S15). The chronic toxic risk (CTR) of PAEs was below the threshold, although the risk to children through ingestion and dermal exposure routes was greater than that to adults. The CR due to BzBP and DEHP were below the threshold level; however, the CR due to DMP was > 1 × 10-6 in residential areas. The cumulative CR of the six PAEs for adults (1.33-1.41 × 10-5) and children (8.08-8.89 × 10-6) surpassed the threshold level. This study revealed that PAEs in urban soils pose a risk to public health and require immediate risk reduction strategies.
Collapse
Affiliation(s)
- Ishan Singh
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Rashatrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, 440033, Maharashtra, India
| | - Gajanan Sitaramji Kanade
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Stockholm Convention Regional Centre (SCRC India), Nehru Marg, Nagpur, 440020, Maharashtra, India.
- Rashatrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, 440033, Maharashtra, India.
| |
Collapse
|
10
|
He N, Zhang J, Liu M, Yin L. Elucidating the mechanism of plasticizers inducing breast cancer through network toxicology and molecular docking analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116866. [PMID: 39178760 DOI: 10.1016/j.ecoenv.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE The objective of this study was to elucidate the molecular mechanisms underlying the potential contribution of commonly utilized plasticizers, including Diethyl phthalate (DEP), Dimethyl phthalate (DMP), and Dioctyl phthalate (DOP), to the pathogenesis of breast cancer. This study aimed to highlight the complex interactions between these environmental chemicals and key molecular pathways implicated in tumorigenesis. METHODS We employed network toxicology and molecular docking techniques to analyze the interactions between plasticizers and key proteins implicated in breast cancer. Utilizing databases such as the TCGA, we performed an expression analysis of selected key genes in breast cancer tissue compared to normal controls. Enrichment analysis was conducted to identify the biological pathways associated with these genes. RESULTS Enrichment analysis highlighted the association of these plasticizer-targeted genes with pathways integral to adenocarcinoma development, suggesting a broad impact of plasticizers on hormone-dependent and other forms of cancers. Subsequent expression analysis using data from the TCGA breast cancer database indicated significant upregulation or downregulation of these genes in breast cancer tissues compared to normal controls, confirming their pivotal roles in tumor biology. Furthermore, the molecular docking analysis revealed that plasticizers, including DEP, DMP, and DOP, exhibit specific binding interactions with key proteins such as MAPK1, AKT1, SRC, ESR1, and ALB, which are crucial in the regulation of breast cancer pathogenesis. CONCLUSION The study provides evidence that exposure to plasticizers may influence breast cancer pathogenesis through interactions with critical proteins and signaling pathways. By employing network pharmacology, protein interactions, and molecular docking, our findings highlight the potential risks posed by plasticizers. These results underscore the need for further epidemiological and clinical research to fully understand the implications of plasticizer exposure on breast cancer risk, thus informing future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Na He
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jing Zhang
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Mingyu Liu
- School of stomatology, Hainan Medical university, Haikou, Hainan 571199, China
| | - Li Yin
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
11
|
Al-Saleh I, Elkhatib R, Alghamdi R, Alrushud N, Alnuwaysir H, Alnemer M, Aldhalaan H, Shoukri M. Phthalate exposure during pregnancy and its association with thyroid hormones: A prospective cohort study. Int J Hyg Environ Health 2024; 261:114421. [PMID: 39002474 DOI: 10.1016/j.ijheh.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Phthalate esters (PAEs) possess endocrine-disrupting properties. Studies in humans have indicated that in utero phthalate exposure affects maternal thyroid hormones, which are essential for fetal growth and development. However, these studies also reported inconsistent results on the relationship between phthalates and thyroid hormones. This prospective cohort study aimed to assess phthalate exposure across the three trimesters of pregnancy and its association with thyroid hormone levels. From 2019 to 2022, we recruited 672 pregnant women, and two urine samples and one blood sample were collected from each participant during the pregnancy. We examined the urine samples from 663, 335, and 294 women in the first, second, and third trimester, respectively, for the following seven phthalate metabolites: monoethyl phthalate (MEP) from diethyl phthalate (DEP); mono-n-butyl phthalate (MnBP) and mono-iso-butyl phthalate (MiBP) from dibutyl phthalate (DBP); monobenzyl phthalate (MBzP) from butyl benzyl phthalate; and three di(2-ethylhexyl) phthalate (DEHP) metabolites, mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP). Additionally, we examined the levels of free thyroxine (FT4), thyroid-stimulating hormone (TSH), and total triiodothyronine (TT3) in the serum samples of the following participants: 596, 627, and 576 in the first trimester; 292, 293, and 282 in the second trimester; and 250, 250, and 248 in the third trimester, respectively. Other than MBzP, which was detected in 25%-33% of the samples, other metabolites were detectable in >86% of urine samples, indicating widespread exposure to DEP, DBP, and DEHP. The detected phthalate exposure levels in our cohort were significantly higher than those reported in other countries. Metabolite levels varied across the trimesters, implying changes in exposure and metabolism throughout pregnancy. The observed variability in urinary concentrations of phthalate metabolites, which ranged from poor to moderate, underscores the importance of taking multiple measurements during pregnancy for precise exposure assessment. Using a linear mixed model, we analyzed the effects of repeated phthalate exposure on thyroid hormone levels while adjusting for potential confounders. We observed significant linear trends in FT4, TSH, and, to a lesser extent, TT3 across quartiles of specific phthalate metabolites. Comparing the highest to the lowest quartiles, we found a significant increase in FT4 levels, ranging from 2 to 3.7%, associated with MEP; MECPP; MEHHP; and the sum of seven metabolites (∑7PAE), three DEHP metabolites (∑3DEHP), two DBP metabolites (∑DBP), and both low molecular weight (∑LMW) and high molecular weight metabolites. Increased TSH levels (5%-16%) were observed for all phthalate metabolites (except MEHHP) and their molar sums, including ∑7PAE. For TT3, a significant increase was observed with MEP (2.2%) and a decrease was observed with ∑DBP (-2.7%). A higher TSH/FT4 ratio was observed with the highest quartiles (third or fourth) of several phthalate metabolites: MEP (8.8%), MiBP (8.7%), MnBP (22.2%), ∑7PAE (15.3%), ∑DBP (16.4%), and ∑LMW (18.6%). These hormonal alterations, most notably in the second and third trimesters, suggest that phthalate exposure may impact fetal growth and development by affecting maternal thyroid function.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Reem Alghamdi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Nujud Alrushud
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hissah Alnuwaysir
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Maha Alnemer
- Obstetrics and Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Center for Autism Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Shoukri
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
12
|
Lim HJ, Song H, Son A. Multi-target aptamer assay for endocrine-disrupting phthalic acid ester panel screening in plastic leachates. CHEMOSPHERE 2024; 359:142366. [PMID: 38768782 DOI: 10.1016/j.chemosphere.2024.142366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
A multi-target aptamer assay was developed as a phthalic acid ester (PAE) panel to screen selected PAEs in plastic leachate samples. The panel comprises 13 PAEs (PAE-13), namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, di-n-hexyl phthalate, diisobutyl phthalate, diisononyl phthalate, diisodecyl phthalate, mono-2-ethylhexyl phthalate, di-2-ethylhexyl phthalate, diphenyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and phthalic acid. Herein, we proposed an aptamer assay using a newly truncated aptamer (20-mer) and the 7-aminoactinomycin D fluorophore, which selectively binds to guanine in single-stranded DNA, resulting in increased fluorescence intensity. The assay is highly selective for PAE-13 clusters. The selectivity of the assay was evaluated using 13 different PAEs and mixtures depending on the side chain structure. The quantitative detection of PAEs was demonstrated by adopting mixed PAE-13 simulants and achieved a limit of detection of ∼1.4 pg/mL. The repeatability and reproducibility of the assay were also evaluated by presenting acceptable coefficients of variation (%CV less than 10% and 15%, respectively). The performance of the assay was demonstrated by analyzing the plastic leachate samples, and the positive correlation (correlation coefficient, r = 0.985) was confirmed by comparing them with the total sum of individual PAE peak areas obtained by gas chromatography mass spectrometry analysis.
Collapse
Affiliation(s)
- Hyun Jeong Lim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyerin Song
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
13
|
Wang L, Feng C, Chen Y, Meng Q, Li J, Liu Y, Zhang W, Li Z, Qu J, Zhang Y. Study on the mechanism and degradation behavior of Encifer adhaerens DNM-S1 capturing dimethyl phthalate. CHEMOSPHERE 2024; 358:141919. [PMID: 38641291 DOI: 10.1016/j.chemosphere.2024.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
The global concern surrounding pollution caused by phthalates is escalating, with dimethyl phthalate (DMP) emerging as one of the most prevalent contaminants within the phthalates (PAEs) category. Although the biodegradation of DMP is considered both safe and efficient, its underlying degradation mechanism is not yet fully elucidated, and the degradation performance can be somewhat inconsistent. To address this issue, our study isolated a DMP-degrading bacterium (DNM-S1) from a vegetable greenhouse. The resulting data revealed that DNM-S1 exhibited a remarkable degradation performance, successfully degrading 84.98% of a 2000 mg L-1 DMP solution within 72 h. Remarkably, it achieved complete degradation of a 50 mg L-1 DMP solution within just 3 h. DMP degradation by DNM-S1 was also found to be efficient even under low-temperature conditions (10 °C). Our research further indicates that DNM-S1 is capable of capturing DMP through the ester bond in the bacterium's cell wall fatty acids, forming hydrogen bonds through hydrophobic interactions. The DMP was then transported into the DNM-S1 protoplasm using an active transport mechanism. Interestingly, the secondary metabolites of DNM-S1 contained natural carotenoids, which could potentially counteract the damaging effects of PAEs on cell membrane permeability. In summary, these findings highlight the potential of DNM-S1 in addressing PAEs pollution and provide new insights into the metabolic mechanism of PAEs degradation.
Collapse
Affiliation(s)
- Lei Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Chengcheng Feng
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Heilongjiang Province Ecological Environment Monitoring Center, Harbin, Heilongjiang, 150056, PR China.
| | - Yuxin Chen
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Qingqing Meng
- Heilongjiang Province Ecological Environment Monitoring Center, Harbin, Heilongjiang, 150056, PR China.
| | - Jingwei Li
- Heilongjiang Province Ecological Environment Monitoring Center, Harbin, Heilongjiang, 150056, PR China.
| | - Yi Liu
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Wenqian Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Zhe Li
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Jianhua Qu
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China.
| |
Collapse
|
14
|
Esmaeili Nasrabadi A, Ramavandi B, Bonyadi Z, Farjadfard S, Fattahi M. Landfill leachates as a significant source for emerging pollutants of phthalic acid esters: Identification, occurrence, characteristics, fate, and transport. CHEMOSPHERE 2024; 356:141873. [PMID: 38593958 DOI: 10.1016/j.chemosphere.2024.141873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 μg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.
Collapse
Affiliation(s)
- Afsaneh Esmaeili Nasrabadi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
15
|
Meng M, Yang Y, Song L, Peng J, Li S, Gao Z, Bu Y, Gao J. Association between urinary phthalates and phthalate metabolites and cancer risk: A systematic review and meta-analysis. Heliyon 2024; 10:e29684. [PMID: 38665549 PMCID: PMC11044039 DOI: 10.1016/j.heliyon.2024.e29684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Phthalates, widely utilized in industrial products, are classified as endocrine-disrupting chemicals (EDCs). Although certain phthalate and their metabolites have been implicated in cancer development, the reported findings have exhibited inconsistencies. Therefore, we conducted the comprehensive literature search to assess the association between phthalate and their metabolites and cancer risk by identifying original studies measuring phthalates or their metabolites and reporting their correlation with cancer until July 4, 2023. The Odds Ratios (ORs) and corresponding 95% confidence intervals (CIs) were extracted and analyzed to estimate the risk. Pooled data from eleven studies, including 3101 cancer patients and 6858 controls, were analyzed using a fixed- or random-effects model based on heterogeneity tests. When comparing extreme categories of different phthalates and their metabolites, we observed a significant association between urinary phthalates and phthalate metabolites (MEHHP, MECPP, DBP and MBzP) and cancer risk. The findings of our meta-analysis reinforce the existing evidence that urinary phthalates and phthalate metabolites is strongly associated with cancer development. Further investigations are warranted to elucidate the underlying mechanisms of this association. These results may offer novel insights into cancer development.
Collapse
Affiliation(s)
- Meng Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Liang Song
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jian Peng
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenglong Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhengjun Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
16
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli RR, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47005. [PMID: 38598326 PMCID: PMC11005960 DOI: 10.1289/ehp13435] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5 μ m ) microspheres or a mixture of polymer microspheres consisting of polystyrene (5 μ m ), polyethylene (1 - 4 μ m ), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5 μ m ). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4 mg / week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Estrella
- School of Civil & Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
17
|
Basini G, Bussolati S, Grolli S, Berni P, Grasselli F. Are the new phthalates safe? Evaluation of Diisononilphtalate (DINP) effects in porcine ovarian cell cultures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104384. [PMID: 38331371 DOI: 10.1016/j.etap.2024.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Phthalates are plasticizing chemicals, widely used in packaging materials and consumer products for several decades. These molecules have raised concerns because of their toxicity and their use have been restricted in several countries. Therefore, novel phthalates have been introduced. Among these, diisononilphtalate (DINP) is widely employed. However, its safety has not been properly addressed. Therefore, using a well validated granulosa cell model, collected from swine ovaries with a translational value, we studied potential DINP effects on important cellular functional parameters. In particular, we studied cell growth, steroidogenesis and redox status. Collected data showed that DINP stimulates (p < 0.05) cell growth, increases estrogen and inhibits progesterone production (p < 0.05), disrupts redox balance stimulating free radicals (p < 0.05) while reducing scavenger activities (p< 0.05). Taken together, DINP's impact on cultured swine granulosa cells provides cause for concern regarding its potential adverse effects on reproductive and endocrine functions.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - P Berni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
18
|
Moscardi AC, Irioda AC, Mogharbel BF, Milhorini SDS, Ferreira JDS, Santos SGD, Martino Andrade AJ, Guiloski IC. Exposure to the plasticizer diisopentyl phthalate can cause Vero cell line death. Food Chem Toxicol 2024; 186:114521. [PMID: 38369054 DOI: 10.1016/j.fct.2024.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Phthalates are synthetic plasticizers present in the daily lives of humans, as part of the composition of different products, such as food packaging, water bottles, and toys. These compounds can migrate from plastic materials to the environment changing biological systems. Although diisopentyl phthalate (DiPeP) is largely used in Brazil, there is a lack of information on the possible toxic effects of this compound. This research aims to evaluate the toxicity of DiPeP in the Vero renal cells. These cells were exposed to the 1-1000 μM of DiPeP for 24 and 72 h and subsequently, the cytotoxicity, apoptosis and necrosis-inducing potential, and antioxidant system (SOD, GPx, and GST) were investigated. DiPeP neither caused cytotoxicity nor altered SOD and GPx activity, although GST has been increased at 100 or 1 μM (24 and 72 h, respectively). However, cell death by apoptosis and necrosis was observed. These results indicate that DiPeP caused cell death by a non-oxidative stress-mediated mechanism, which shows the relevance of investigate other process in further researches.
Collapse
Affiliation(s)
- Ana Catharina Moscardi
- Instituto de Pesquisas Pele Pequeno Príncipe, Curitiba, Paraná, Brazil; Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | | | - Shayane da Silva Milhorini
- Instituto de Pesquisas Pele Pequeno Príncipe, Curitiba, Paraná, Brazil; Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Juliana da Silva Ferreira
- Instituto de Pesquisas Pele Pequeno Príncipe, Curitiba, Paraná, Brazil; Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Sheila Gabriel Dos Santos
- Instituto de Pesquisas Pele Pequeno Príncipe, Curitiba, Paraná, Brazil; Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Izonete Cristina Guiloski
- Instituto de Pesquisas Pele Pequeno Príncipe, Curitiba, Paraná, Brazil; Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.
| |
Collapse
|
19
|
Adel M, Sakhaie F, Hosseini Shekarabi SP, Gholamhosseini A, Impellitteri F, Faggio C. Dietary Mentha piperita essential oil loaded in chitosan nanoparticles mediated the growth performance and humoral immune responses in Siberian sturgeon (Acipenserbaerii). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109321. [PMID: 38122952 DOI: 10.1016/j.fsi.2023.109321] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Siberian sturgeon (Acipenser baerii) fry often face environmental stressors that can compromise their immune system, rendering them susceptible to opportunistic pathogens in intensive aquaculture systems. In this study, we explored the innovative use of chitosan nanoparticles loaded with Mentha piperita essential oil (MPO/CNPs) as a dietary supplement to improve the growth and immune responses of A. baerii. The results demonstrated that the addition of MPO/CNPs to the diet led to significant improvements in growth, as evidenced by increased red blood cell count, hematocrit, haemoglobin concentration, and reduced triglyceride levels. Furthermore, significant differences were observed in the immune parameters for the treatment groups receiving Mentha piperita essential oil loaded in chitosan nanoparticles (MPO/CNPs), including enhanced lysozyme activity, immunoglobulin M (IgM) levels, respiratory burst activity, and ACH50 activity. Additionally, gene expression analysis revealed upregulation of key immune-related genes in the MPO/CNPs-treated groups. These findings suggest that the use of MPO/CNPs can enhance the growth and bolster the immune defences of Siberian sturgeon fry, contributing to more sustainable production in intensive aquaculture environments.
Collapse
Affiliation(s)
- Milad Adel
- Department of Aquatic Animal Health and Diseases, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran
| | - Fahimeh Sakhaie
- School of Pharmacy, Shahid Beheshti University, Tehran, Iran
| | - Seyed Pezhman Hosseini Shekarabi
- National Research Center of Saltwater Aquatic Animals, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO), Bafq, Iran
| | - Amin Gholamhosseini
- Department of Aquatic Animal Health and Diseases, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
20
|
An J, Roh HH, Jeong H, Lee KY, Rhim T. Rapid Assessment of Di(2-ethylhexyl) Phthalate Migration from Consumer PVC Products. TOXICS 2023; 12:7. [PMID: 38276720 PMCID: PMC10818930 DOI: 10.3390/toxics12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Poly(vinyl chloride) (PVC) is widely used to produce various consumer goods, including food packaging, toys for children, building materials, and cosmetic products. However, despite their widespread use, phthalate plasticizers have been identified as endocrine disruptors, which cause adverse health effects, thus leading to increasing concerns regarding their migration from PVC products to the environment. This study proposed a method for rapidly measuring the migration of phthalates, particularly di(2-ethylhexyl) phthalate (DEHP), from PVC products to commonly encountered liquids. The release of DEHP under various conditions, including exposure to aqueous and organic solvents, different temperatures, and household microwaves, was investigated. The amount of DEHP released from both laboratory-produced PVC films and commercially available PVC products was measured to elucidate the potential risks associated with its real-world applications. Furthermore, tests were performed to evaluate cytotoxicity using estrogen-dependent and -independent cancer cell lines. The results revealed a dose-dependent impact on estrogen-dependent cells, thus emphasizing the potential health implications of phthalate release. This comprehensive study provides valuable insights into the migration patterns of DEHP from PVC products and forms a basis for further research on the safety of PVC and plasticizers.
Collapse
Affiliation(s)
- Jiwon An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Ho Roh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Haeyoon Jeong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kuen-Yong Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, Republic of Korea
| | - Taiyoun Rhim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
21
|
Jin S, Cui S, Mu X, Liu Z, Han Y, Cui T, Xiong W, Xi W, Zhang X. Exposure to phthalates and their alternatives in relation to biomarkers of inflammation and oxidative stress in adults: evidence from NHANES 2017-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123770-123784. [PMID: 37991617 DOI: 10.1007/s11356-023-30924-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Phthalates and their alternatives are considered significant environmental risk factors that potentially influence inflammation and oxidative stress. However, their impact on biomarkers of inflammation and oxidative stress was inconsistent. This study aimed to explore the associations between phthalates and high-sensitivity C-reactive protein (hsCRP), gamma-glutamyl transferase (GGT), and white blood cell (WBC) counts, employing both univariate exposure and multivariate co-exposure models. For this analysis, a total of 1619 individuals aged 18 years and above, sourced from the National Health and Nutrition Examination Survey (NHANES) conducted between 2017 and 2018, were selected as subjects. We explored the associations between hsCRP, GGT, and WBC counts and eighteen different phthalate metabolites. Multiple linear regression analysis revealed significant associations between both MCNP and MEHP and hsCRP. We observed negative correlations of MCOP, MCPP, MHBP, and MONP with GGT. Conversely, MEHHP and MEHHTP exhibited positive correlations with GGT. Furthermore, MECPTP and MEHHTP showed positive correlations with WBC. Notably, we identified a non-linear relationship between phthalates and inflammation and oxidative stress markers. The Bayesian kernel machine regression (BKMR) analysis demonstrated a negative joint effect of the phthalates mixture on GGT, particularly at lower concentrations. The BKMR model also found that MEOHP and MHiBP were negatively associated with GGT. In contrast, MEHHP showed a significant positive association with GGT. Moderating effect analysis suggested that dietary inflammatory index (DII), income-to-poverty ratio (PIR), age, BMI, and physical activity influenced the association between phthalates and inflammation and oxidative stress. These findings contribute to a deeper understanding of the relationships between phthalates and inflammation and oxidative stress.
Collapse
Affiliation(s)
- Shihao Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Shanshan Cui
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaoyu Mu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Zhao Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Tingkai Cui
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Wei Xi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
22
|
Javaji K, Mamilla J, Deshpande SS, Kanaka RY, Amanchy R, Misra S. Clastogenic, aneugenic, and tubulin polymerization properties of di-(2-ethylhexyl) phthalate and dibutyl phthalate. Toxicol Ind Health 2023:7482337231182191. [PMID: 37437592 DOI: 10.1177/07482337231182191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Phthalate compounds were found to disrupt the endocrine system and alter transcriptomes during human embryonic development. In our previous work, we have isolated and reported two such phthalates di-(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) from Brevibacterium mcbrellneri bacteria and evaluated their bioactive properties. Naturally derived phthalates might be less toxic compared with synthesized molecules. We have investigated biologically isolated phthalates to understand the possible genotoxic effects in mice and further investigated in silico binding and polymerization of β-tubulin. Three sub-lethal concentrations of DEHP (150 μM, 175 μM, and 200 μM) and DBP (10 μM, 15 μM, and 30 μM) were studied. The results showed that the phthalates were found to be highly genotoxic in nature. However, the pattern of genotoxic effects was not found to be dose-dependent in the induction of chromosome aberrations (CA), micronuclei (MN), and changes in the mitotic index (MI) in cells. In silico studies of phthalates on polymerization of β-tubulin suggested that both DBP and DEHP were able to interact with the hydrogen bonds and make strong van der Waals interactions with β-tubulin thereby possibly causing destabilization of microtubule network. Our study suggests that these phthalates might be playing an important role in normal cell division thereby showing highly genotoxic effects.
Collapse
Affiliation(s)
- Kalpana Javaji
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jhansi Mamilla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Shruti S Deshpande
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raju Y Kanaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Ramars Amanchy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sunil Misra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Remigante A, Spinelli S, Straface E, Gambardella L, Russo M, Cafeo G, Caruso D, Falliti G, Dugo P, Dossena S, Marino A, Morabito R. Mechanisms underlying the anti-aging activity of bergamot ( Citrus bergamia) extract in human red blood cells. Front Physiol 2023; 14:1225552. [PMID: 37457030 PMCID: PMC10348362 DOI: 10.3389/fphys.2023.1225552] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: Aging is a process characterised by a decline in physiological functions. Reactive species play a crucial role in the aging rate. Due to the close relationship between aging and oxidative stress, functional foods rich in phytochemicals are excellent candidates to neutralise age-related changes. Aim: This investigation aims to verify the potential protective role of bergamot (Citrus bergamia, Femminello cultivar) peel and juice extract in a model of aging represented by human red blood cells (RBCs) exposed to D-Galactose (DGal). Methods: Bergamot peel and juice extracts were subjected to RP-HPLC/PDA/MS for determination of their composition in bioactive compounds. Markers of oxidative stress, including ROS production, thiobarbituric acid reactive substances (TBARS) levels -a marker of lipid peroxidation, oxidation of total protein sulfhydryl groups, as well as the expression and anion exchange capability of band 3 and glycated haemoglobin (A1c) production have been investigated in RBCs treated with D-Gal for 24 h, with or without pre-incubation for 15 min with 5 μg/mL peel or juice extract. In addition, the activity of the endogenous antioxidant system, including catalase (CAT) and superoxide dismutase (SOD), as well as the diversion of the RBC metabolism from glycolysis towards the pentose phosphate pathway shunt, as denoted by activation of glucose-6-phosphate dehydrogenase (G6PDH), have been explored. Results: Data shown here suggest that bergamot peel and juice extract i) prevented the D-Gal-induced ROS production, and consequently, oxidative stress injury to biological macromolecules including membrane lipids and proteins; ii) significantly restored D-Gal-induced alterations in the distribution and ion transport kinetics of band 3; iii) blunted A1c production; iv) effectively impeded the over-activation of the endogenous antioxidant enzymes CAT and SOD; and v) significantly prevented the activation of G6PDH. Discussion: These results further contribute to shed light on aging mechanisms in human RBCs and identify bergamot as a functional food rich in natural antioxidants useful for prevention and treatment of oxidative stress-related changes, which may lead to pathological states during aging.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Russo
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Cafeo
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Paola Dugo
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Porretti M, Impellitteri F, Caferro A, Albergamo A, Litrenta F, Filice M, Imbrogno S, Di Bella G, Faggio C. Assessment of the effects of non-phthalate plasticizer DEHT on the bivalve molluscs Mytilus galloprovincialis. CHEMOSPHERE 2023; 336:139273. [PMID: 37343639 DOI: 10.1016/j.chemosphere.2023.139273] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Due to their uncontrolled use, plastics has become an environmental concern, not only for their varying dimension but also for the potential release of substances such as phthalates (PAEs) and non-phthalates (NPPs) into the water. Phthalates are the most common plasticizers of concern, but non-phthalate plasticizers such as di (2-ethylhexyl) terephthalate (DEHT) have also been lately found in the marine environment. Mytilus galloprovincialis is a well-known bioindicator of aquatic environments due to its ability to accumulate a wide variety of xenobiotics, including plasticizers. Hence, aim of this study was to evaluate the potential bioaccumulation and effects of the NPP DEHT on M. galloprovincialis. To this purpose, following exposure to DEHT at 1 mg/l (DEHT1) and 100 mg/l (DEHT100), its accumulation in tissues and its effects on total lipids and fatty acid (FA) composition, protein content, cell viability, ability to recover volume and changes in biomarkers of oxidative stress were assessed. Mussels were able to bioaccumulate DEHT in their tissues, with a statistically significant increase compared to the control organisms. Differences in FA composition were observed after exposure, since C16:0, C18:0, C20:5ω-3 and C22:6ω-3 were significantly decreased from control to exposed groups. As a result, total SFA, MUFA and PUFA were affected in DEHT-exposed groups. Also, total protein varied following DEHT exposure, and significantly decreased in the DEHT100-group. Considering the physiological responses, both DEHT-exposed groups lost their ability to return to the original volume of digestive gland (DG) cells. On the other hand, oxidative biomarkers in the gills and DG were not significantly affected by the DEHT exposure. Overall, this study showed for the first time that DEHT exposure differentially affect mussels, in their lipid and protein metabolism, as well as cellular parameters.
Collapse
Affiliation(s)
- Miriam Porretti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98100, Messina, Italy.
| | - Federica Impellitteri
- University of Messina, Department of Veterinary Sciences, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Ambrogina Albergamo
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Federica Litrenta
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Giuseppa Di Bella
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98100, Messina, Italy.
| |
Collapse
|