1
|
Sukeda M, Prakash H, Nagasawa T, Nakao M, Somamoto T. Non-specific cytotoxic cell receptor protein-1 (NCCRP-1) is involved in anti-parasite innate CD8 + T cell-mediated cytotoxicity in ginbuna crucian carp. FISH & SHELLFISH IMMUNOLOGY 2023:108904. [PMID: 37353062 DOI: 10.1016/j.fsi.2023.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
CD8+ cytotoxic T cells (CTLs) are a main cellular component of adaptive immunity. Our previous research has shown that CD8+ cells demonstrate spontaneous cytotoxic activity against the parasite Ichthyophthirius multifiliis in ginbuna crucian carp, suggesting that CD8+ cells play an important role in innate immunity. Herein, we investigated the molecules and cellular signal pathways involved in the cytotoxic response of ginbuna crucian carp. We considered non-specific cytotoxic receptor protein-1 (NCCRP-1) as candidate molecule for parasite recognition. We detected NCCRP-1 protein in CD8+ cells and the thymus as well as in other cells and tissues. CD8+ cells expressed mRNA for NCCRP-1, Jak2, and T cell-related molecules. In addition, treatment with a peptide containing the presumed antigen recognition site of ginbuna NCCRP-1 significantly inhibited the cytotoxic activity of CD8+ cells against the parasites. The cytotoxic activity of CD8+ cells was significantly inhibited by treatment with the JAK1/2 inhibitor baricitinib. These results suggest that teleost CTLs recognize I. multifiliis through NCCRP-1 and are activated by JAK/STAT signaling.
Collapse
Affiliation(s)
- Masaki Sukeda
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
2
|
Teng J, Cui MY, Zhao Y, Chen HJ, Du WJ, Xue LY, Ji XS. Expression changes of non-specific cytotoxic cell receptor (NCCRP1) and proliferation and migration of NCCs post-Nocardia seriolae infection in Northern Snakehead. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104576. [PMID: 36240859 DOI: 10.1016/j.dci.2022.104576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Non-specific cytotoxic cells (NCCs) are essential to the cytotoxic cell-mediated immune response in teleost. The fish non-specific cytotoxic cell receptor protein 1 (NCCRP1) plays an important role as a membrane protein in the recognition of target cells and the activation of NCC. However, the roles of fish NCCs during pathogen infection require comprehensive studies. In this study, the coding sequence of northern snakehead (Channa argus) nccrp1 (Canccrp1) was cloned. Canccrp1 contains an open reading frame of 690 bp, encoding a peptide of 229 amino acids with a conserved F-box-associated domain (FBA) and proline-rich motifs (PRMs). Transcriptional expression analysis revealed that the constitutive expression of Canccrp1 was higher in the immune-related organs, such as liver, kidneys, and spleen. Moreover, mRNA and protein expression of Canccrp1 gradually increased in the spleen at 1-6 days post infection (dpi) with Nocardia seriolae, in addition to reaching peak expression in both the kidneys and liver at 2 dpi. A polyclonal antibody prepared against recombinant CaNCCRP1 effectively labeled NCCs in peripheral blood and different tissues. Then, immunofluorescence (IF) staining showed that the number of NCCs was significantly increased and showed a scattered distribution in the early stages of N. seriolae infection (2 and 4 dpi) before the forming of granulomas. At the late stages of N. seriolae infection (6 dpi), more NCCs migrated to preexisting granulomas, showing significant coaccumulation with N. seriolae. All these results clearly indicate the expression changes of CaNCCRP1, and the number and localization changes of NCCs post-N. seriolae infection, implying potential roles for fish NCCs in the antimicrobial infection process in fish.
Collapse
Affiliation(s)
- Jian Teng
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Meng Yao Cui
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Yan Zhao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Hong Ju Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Wen Jing Du
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Liang Yi Xue
- College of Marine Sciences, Ningbo University, Ningbo, China.
| | - Xiang Shan Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China.
| |
Collapse
|
3
|
Gao C, Cai X, Cao M, Fu Q, Yang N, Liu X, Wang B, Li C. Comparative analysis of the miRNA-mRNA regulation networks in turbot (Scophthalmus maximus L.) following Vibrio anguillarum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104164. [PMID: 34129850 DOI: 10.1016/j.dci.2021.104164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs could not only regulate posttranscriptional silencing of target genes in eukaryotic organisms, but also have positive effect on their target genes as well. These microRNAs have been reported to be involved in mucosal immune responses to pathogen infection in teleost. Therefore, we constructed the immune-related miRNA-mRNA networks in turbot intestine following Vibrio anguillarum infection. In our results, 1550 differentially expressed (DE) genes and 167 DE miRNAs were identified. 113 DE miRNAs targeting 89 DE mRNAs related to immune response were used to construct miRNA-mRNA interaction networks. Functional analysis showed that target genes were associated with synthesis and degradation of ketone bodies, mucin type O-Glycan biosynthesis, homologous recombination, biotin metabolism, and intestinal immune network for IgA production that were equivalent to the function of IgT and IgM in fish intestine. Finally, 10 DE miRNAs and 7 DE mRNAs were selected for validating the accuracy of high-throughput sequencing results by qRT-PCR. The results of this study will provide valuable information for the elucidation of the regulation mechanisms of miRNA-mRNA interactions involved in disease resistance in teleost mucosal immune system.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Perth, 6150, Australia
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Perth, 6150, Australia
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Huang Y, Liu X, Cai J, Tang J, Cai S, Lu Y, Wang B, Jian J. Biological characterisation, expression and functional analysis of non-specific cytotoxic cell receptor protein 1 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 104:579-586. [PMID: 32610151 DOI: 10.1016/j.fsi.2020.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Non-specific cytotoxic cell receptor protein 1 (NCCRP-1) plays a role in recognition of target cell and activation of non-specific cytotoxic cell (NCC). In this study, the full length of Nile tilapia NCCRP-1 (On-NCCRP-1) was cloned. cDNA is composed of 1045 bp with a 90 bp of 5'-Untranslated Regions (UTR), 702 bp open reading frame (ORF) and 253 bp 3'-UTR, encoding 233 amino acids (GenBank accession no: MF162296). The On-NCCRP-1 genomic sequence is 4471 bp in length and contains six exons and five introns. On-NCCRP-1 possesses some inherent conservative domains, such as proline-rich motifs, antigen recognition site, and F-box-related domain. Subcellular localisation and Western blot analysis indicated that On-NCCRP-1 is located in the cell membrane. The transcript of On-NCCRP-1 was detected in all the examined tissues of healthy Nile tilapia by using qRT-PCR, with the highest expression levels in the liver. Following Streptococcus agalactiae challenged in vivo, the On-NCCRP-1 expression was up-regulated significantly in brain, intestines, head kidney and spleen. In the in vitro analysis, the On-NCCRP-1 expression in NCCs was up-regulated significantly from 8 h to 12 h after LPS challenge, and up-regulated significantly at 12 h after challenged with polyI:C. After NCCs were challenged with inactivated S. agalactiae, the On-NCCRP-1 expression was down-regulated significantly after 24 h. NF-кB pathway was strongly activated by the over-expression of On-NCCRP-1 in HEK-293T cells. These results indicate that On-NCCRP-1, as a membrane surface receptor of NCCs, may play an important role in immune response to pathogenic infection in Nile tilapia.
Collapse
Affiliation(s)
- Yu Huang
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Xinchao Liu
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jia Cai
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jufen Tang
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Shuanghu Cai
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yishan Lu
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Bei Wang
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
5
|
Wu N, Zhang XY, Huang B, Zhang N, Zhang XJ, Guo X, Chen XL, Zhang Y, Wu H, Li S, Li AH, Zhang YA. Investigating the potential immune role of fish NCAMs: Molecular cloning and expression analysis in mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2015; 46:765-777. [PMID: 26277647 DOI: 10.1016/j.fsi.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
The immune role of NCAMs has been revealed in mammals, yet there is no such report in fish. Hence, we analyzed the molecular characterizations and immune-associated expression patterns of NCAMs in mandarin fish. Three NCAM members, named mfNCAM1a, mfNCAM1b and mfNCAM2, were identified. Among the cDNA sequences of mfNCAMs, AU-rich elements in the 3' UTRs of mfNCAM1b and mfNCAM2 as well as VASE sequences in the fourth Ig-like domain-encoding regions of mfNCAM1a and mfNCAM1b were discovered. Moreover, the syntenic analysis suggested that the duplication of NCAM1 is fish-specific. At mRNA and protein levels, the expression analyses revealed that mfNCAMs existed in both systemic and mucosal immune tissues, and located within lymphoid cells. Upon stimulated either by LPS or poly I:C, the expression level of mfNCAM1a was significantly up-regulated in head kidney, spleen, liver, and gut, whereas mfNCAM1b only in head kidney and liver, and mfNCAM2 only in liver. Additionally, the cells coexpressed mfNCAM1 and mfNCCRP-1 might imply the equivalents to mammalian NK cells. Our finding firstly demonstrates the member-specific immune-related tissue expression pattern and immune activity for fish NCAMs. Current data indicate that mfNCAM2 has little immune activity, while the immune activity of mfNCAM1a exists in more tissues than mfNCAM1b, and mfNCAM1a may tend to respond more actively to viral while mfNCAM1b to bacterial stimulants. Additionally, NCAM1b should be a fish-specific member with unique immune function, judging from its different expression pattern, immune activity as well as phylogenetic relationship to mfNCAM1a.
Collapse
Affiliation(s)
- Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Huang
- College of Fisheries, Jimei University, Xiamen 361021, China
| | - Nu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Shanghai Ocean University, Shanghai 201306, China
| | - Xia Guo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 4302231, China
| | - Xiao-Ling Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Han Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ai-Hua Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
6
|
Huang XZ, Li YW, Mai YZ, Luo XC, Dan XM, Li AX. Molecular cloning of NCCRP-1 gene from orange-spotted grouper (Epinephelus coioides) and characterization of NCCRP-1(+) cells post Cryptocaryon irritans infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:267-278. [PMID: 24844613 DOI: 10.1016/j.dci.2014.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Nonspecific cytotoxic cells (NCCs) are an important cytotoxic cell population in the innate teleost immune system. The receptor designated "NCC receptor protein 1" (NCCRP-1) has been reported to be involved in the recognition and activation of NCCs. In this study, the full-length cDNA of Epinephelus coioides NCCRP-1 (ecnccrp-1) was cloned. The open reading frame (ORF) of ecnccrp-1 is 699 bp, encoding a 232 amino acid protein that includes proline-rich motifs at the N-terminus and is related to the F-box associated family. Although a bioinformatics analysis showed that EcNCCRP-1 had no signal peptide or transmembrane helices, a polyclonal antibody directed against recombinant EcNCCRP-1 efficiently labeled a membrane protein in the head kidney, detected with Western blot analysis, which indicated that the protein localized to the cell surface. RT-PCR showed that the constitutive expression of ecnccrp-1 was higher in the lymphoid organs, such as the trunk kidney, spleen, head kidney, and thymus, and lower in brain, heart, fat, liver, muscle, and skin. After infection with Cryptocaryon irritans, the transcription of ecnccrp-1 was analyzed at the infected sites (skin and gills) and in the systemic immune organs (head kidney and spleen). At the infected sites, especially the skin, ecnccrp-1 expression was upregulated at 6h post infection, reaching peak expression on day 3 post the primary infection. However, the expression patterns differed in the systemic immune organs. In the spleen, ecnccrp-1 was gradually increased in the early infection period and decreased sharply on day 3 post the primary infection, whereas in the head kidney, the transcription of ecnccrp-1 was depressed during almost the whole course of infection. An immunohistochemical analysis showed that EcNCCRP-1(+) cells accumulated at the sites of infection with C. irritans. These results suggested that NCCs were involved in the process of C. irritans infection in E. coioides.
Collapse
Affiliation(s)
- Xia-Zi Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, PR China
| | - Yan-Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, PR China
| | - Yong-Zhan Mai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Biotechnology, South China University of Technology, Panyu District, Guangzhou 510006, Guangdong Province, PR China
| | - Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province 510642, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
7
|
Cai J, Wei S, Wang B, Huang Y, Tang J, Lu Y, Wu Z, Jian J. Cloning and expression analysis of nonspecific cytotoxic cell receptor 1 (Ls-NCCRP1) from red snapper (Lutjanus sanguineus). Mar Genomics 2013; 11:39-44. [DOI: 10.1016/j.margen.2013.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/13/2013] [Accepted: 07/13/2013] [Indexed: 11/26/2022]
|
8
|
Kallio H, Tolvanen M, Jänis J, Pan PW, Laurila E, Kallioniemi A, Kilpinen S, Tuominen VJ, Isola J, Valjakka J, Pastorekova S, Pastorek J, Parkkila S. Characterization of non-specific cytotoxic cell receptor protein 1: a new member of the lectin-type subfamily of F-box proteins. PLoS One 2011; 6:e27152. [PMID: 22087255 PMCID: PMC3210139 DOI: 10.1371/journal.pone.0027152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022] Open
Abstract
Our previous microarray study showed that the non-specific cytotoxic cell receptor protein 1 (Nccrp1) transcript is significantly upregulated in the gastric mucosa of carbonic anhydrase IX (CA IX)-deficient (Car9−/−) mice. In this paper, we aimed to characterize human NCCRP1 and to elucidate its relationship to CA IX. Recombinant NCCRP1 protein was expressed in Escherichia coli, and a novel polyclonal antiserum was raised against the purified full-length protein. Immunocytochemistry showed that NCCRP1 is expressed intracellularly, even though it has previously been described as a transmembrane protein. Using bioinformatic analyses, we identified orthologs of NCCRP1 in 35 vertebrate genomes, and up to five paralogs per genome. These paralogs are FBXO genes whose protein products are components of the E3 ubiquitin ligase complexes. NCCRP1 proteins have no signal peptides or transmembrane domains. NCCRP1 has mainly been studied in fish and was thought to be responsible for the cytolytic function of nonspecific cytotoxic cells (NCCs). Our analyses showed that in humans, NCCRP1 mRNA is expressed in tissues containing squamous epithelium, whereas it shows a more ubiquitous tissue expression pattern in mice. Neither human nor mouse NCCRP1 expression is specific to immune tissues. Silencing CA9 using siRNAs did not affect NCCRP1 levels, indicating that its expression is not directly regulated by CA9. Interestingly, silencing NCCRP1 caused a statistically significant decrease in the growth of HeLa cells. These studies provide ample evidence that the current name, “non-specific cytotoxic cell receptor protein 1,” is not appropriate. We therefore propose that the gene name be changed to FBXO50.
Collapse
Affiliation(s)
- Heini Kallio
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Utke K, Kock H, Schuetze H, Bergmann SM, Lorenzen N, Einer-Jensen K, Köllner B, Dalmo RA, Vesely T, Ototake M, Fischer U. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:239-52. [PMID: 17629943 DOI: 10.1016/j.dci.2007.05.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 05/16/2023]
Abstract
To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells, respectively. In contrast, PBL from trout that were immunized against the N protein only killed VHSV-infected RTG-2 cells, indicating that this protein only elicits a CTL response. Further, a significant killing capacity of these PBL was only observed during summer months. PBL from fish that were immunized against the VHSV G protein significantly killed VHSV-infected but not infectious hematopoietic necrosis virus (IHNV)-infected targets indicating antigen specificity. Thus, this is the first report on cytotoxic immune responses after DNA vaccination in fish. Furthermore, cells isolated from the inflamed site of DNA injection were stained and transferred to isogeneic DNA-vaccinated recipients. Most of the stained donor leukocytes accumulated at the recipients' DNA injection site showing, for the first time, leukocyte homing in fish. Transferred donor leukocytes mainly migrated to the homologous vaccine injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibody Formation/immunology
- CD8 Antigens/genetics
- Cell Line
- Gene Expression
- Hemorrhagic Septicemia, Viral/immunology
- Hemorrhagic Septicemia, Viral/prevention & control
- Immunity, Cellular/immunology
- Immunologic Factors/genetics
- Injections, Intramuscular
- Leukocytes/cytology
- Leukocytes/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Novirhabdovirus/immunology
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- Nucleoproteins/metabolism
- Oncorhynchus mykiss/immunology
- Plasmids/genetics
- Seasons
- Spleen/cytology
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Katrin Utke
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Seppola M, Robertsen B, Jensen I. The gene structure and expression of the non-specific cytotoxic cell receptor protein (NCCRP-1) in Atlantic cod (Gadus morhua L.). Comp Biochem Physiol B Biochem Mol Biol 2007; 147:199-208. [PMID: 17368063 DOI: 10.1016/j.cbpb.2007.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 11/20/2022]
Abstract
The non-specific cell receptor protein (NCCRP-1) serves an important function in target cell recognition and activation of non-specific cytotoxic cells in teleosts. Atlantic cod NCCRP-1 was identified in a suppression-subtractive cDNA library and NCCRP-1 from Atlantic salmon, rainbow trout, Japanese medaka and fathead minnow was found deposited in the GenBank as EST sequences. The predicted amino acid sequences of these receptors contain the characteristic functional domains representing NCCRP-1, and phylogenetic analyses support the identification of five NCCRP-1 orthologues. Cod NCCRP-1 is shorter and has a different intron/exon organization from the common carp and channel catfish counterparts, but shows high extent of conservation in NCCRP-1 signature motives. Quantitative real-time PCR analyses showed that the gene expression of cod NCCRP-1 was higher in the lymphoid organs, head kidney (90-fold) and spleen (30-fold), compared to the organ with lowest expression. NCCRP-1 gene expression was not induced by in vitro treatment of head kidney cells with polyinosinic polycytidylic acid (poly I:C) or lipopolysaccharide (LPS), or by in vivo injections with poly I:C or formalin killed Vibrio anguillarum. These results show that the cod NCCRP-1 gene is differentially expressed in organs, and that gene expression is not induced by the tested treatments.
Collapse
Affiliation(s)
- Marit Seppola
- Fiskeriforskning, Norwegian Institute of Fisheries and Aquaculture Research, N-9291 Tromsø, Norway.
| | | | | |
Collapse
|
11
|
Reimers K, Abu Qarn M, Allmeling C, Bucan V, Vogt PM. Identification of the non-specific cytotoxic cell receptor protein 1 (NCCRP1) in regenerating axolotl limbs. J Comp Physiol B 2006; 176:599-605. [PMID: 16676190 DOI: 10.1007/s00360-006-0083-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 03/22/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
The teleost non-specific cytotoxic cells (NCC) are evolutionary precursors of the mammalian natural killer (NK) cells and an important element of innate immunity. The non-specific cytotoxic cell receptor protein (NCCRP1) is a characteristic cell surface protein with main functions in target cell recognition and cytotoxicity with sequence information available for many species of fish. We have isolated a cDNA encoding the Axolotl homologue of fish NCCRP1 out of limb regeneration blastema and analysed its expression by RT-PCR. Sequence analysis revealed a high degree of homology with teleost NCCRP1 on nucleotide and deduced amino acid levels. NCCRP1 contains a conserved C-terminal F-box-associated domain (FBA) and proline-rich motifs (PRM) characteristic for this protein family. NCCRP1 is expressed in multiple tissues with high levels in limb regeneration blastema. The present work describes for the first time the cloning of the NCCRP1 gene in a tetrapod vertebrate providing a valuable link between fish and higher vertebrates. Our findings suggest the existence of NCC in axolotl and a role of the innate immune system in the processes of limb regeneration.
Collapse
Affiliation(s)
- Kerstin Reimers
- Department for Plastic, Hand and Reconstructive Surgery, Medical School Hannover, Podbielskistrasse 380, 30659 Hannover, Germany.
| | | | | | | | | |
Collapse
|