1
|
Higazi AM, Kamel HM, Nasr MH, Keryakos HK, AbdEl-Hamid NM, Soliman SA. Potential role of circulating miRNA-146a and serum kallikrein 1 as biomarkers of renal disease in biopsy-proven lupus nephritis patients. THE EGYPTIAN RHEUMATOLOGIST 2023. [DOI: 10.1016/j.ejr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
2
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
3
|
Identification and pharmaceutical evaluation of novel frog skin-derived serine proteinase inhibitor peptide-PE-BBI (Pelophylax esculentus Bowman-Birk inhibitor) for the potential treatment of cancer. Sci Rep 2018; 8:14502. [PMID: 30267012 PMCID: PMC6162207 DOI: 10.1038/s41598-018-32947-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022] Open
Abstract
Amphibian venom-derived peptides have high potential in the field of anticancer drug discovery. We have isolated a novel Bowman-Birk proteinase inhibitor (BBI)-type peptide from the skin secretion of Pelophylax esculentus (PE) named PE-BBI, and evaluated its bio-functions and anti-cancer activity in vitro. PE-BBI is a heptadecapeptide with C-terminal amidation. The mRNA sequence and primary structure of PE-BBI were identified using RT-PCR and LC/MS, respectively. A trypsin inhibitory assay was used to characterize the serine proteinase inhibitory activity of synthetic PE-BBI. PE-BBI’s myotropic activity was analyzed using isolated rat bladder and rat-tail artery smooth muscle tissues, and the anti-cancer ability of PE-BBI using human colorectal cancer cells. PE-BBI’s mechanism of action was investigated using Discovery studio software. PE-BBI showed trypsin inhibitory activity (Ki = 310 ± 72 nM), strong myotropic activity, and cytotoxicity that were specific to cancer cells, and no side effect to normal epithelial cells. The docking stimulation showed that PE-BBI had high affinity to several members of human kallikrein related peptidase (KLK) family. This finding helps to enrich our understanding of BBI peptides’ mode of action. Moreover, the data presented here validates frog secretions as sources of potential novel proteinase inhibitors for cancer treatment.
Collapse
|
4
|
Hashem NN, Mara TW, Mohamed M, Zhang I, Fung K, Kwan KF, Daley TD, Diamandis EP, Darling MR. Human Kallikrein 14 (Klk14) Expression in Salivary Gland Tumors. Int J Biol Markers 2018; 25:32-7. [DOI: 10.1177/172460081002500105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective To analyze the expression of human kallikrein 14 (KLK14) in salivary gland tumors. Methods A standard immunoperoxidase staining technique was used to assess the expression profile of KLK14 in normal salivary glands and tumors including pleomorphic adenoma (PA; n=17), adenoid cystic carcinoma (ACC; n=13) and mucoepidermoid carcinoma (MEC; n=9). Tumor stage, grade, patient age and gender, and site of occurrence were recorded. These clinical parameters were correlated with KLK14 levels in malignant tumors. The expression profiles for KLK3, 5, 6, 8 and 13 were also retrieved. Results Normal salivary glands, PA, ACC and MEC showed strong expression of KLK14 in ductal and non-ductal cells. Both PA and ACC showed higher KLK14 levels than normal glands and MEC tissues. There were no statistically significant associations between levels of KLK14 and clinical parameters. Conclusions The differences in the levels of KLK14 suggest that KLKs may aid in the differential diagnosis of salivary gland tumors. The coexpression of KLKs suggests their possible involvement in an enzymatic pathway activated in salivary gland. KLK14 may be a promising new biomarker in salivary gland tumors.
Collapse
Affiliation(s)
- Nelly N. Hashem
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Thomas W. Mara
- Department of Oral Medicine and Radiology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Mohamed Mohamed
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, Schulich School of Medicine and Dentistry, University of Western Ontario and London Health Sciences Centre, London, Ontario
| | - Irene Zhang
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, Schulich School of Medicine and Dentistry, University of Western Ontario and London Health Sciences Centre, London, Ontario
| | - Kevin Fung
- Division of Head and Neck Oncology and Reconstructive Surgery, Department of Otolaryngology, Schulich School of Medicine and Dentistry, University of Western Ontario and London Health Sciences Centre, London, Ontario
| | - Keith F. Kwan
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Thomas D. Daley
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario - Canada
| | - Mark R. Darling
- Department of Pathology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| |
Collapse
|
5
|
Soualmia F, El Amri C. Serine protease inhibitors to treat inflammation: a patent review (2011-2016). Expert Opin Ther Pat 2017; 28:93-110. [PMID: 29171765 DOI: 10.1080/13543776.2018.1406478] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Inflammation is a physiological part of the complex biological response of tissues to counteract various harmful signals. This process involves diverse actors such as immune cells, blood vessels, and nerves as sources of mediators for inflammation control. Among them serine proteases are key elements in both physiological and pathological inflammation. AREAS COVERED Serine protease inhibitors to treat inflammatory diseases are being actively investigated by various industrial and academic institutions. The present review covers patent literature on serine protease inhibitors for the therapy of inflammatory diseases patented between 2011 and 2016. EXPERT OPINION Serine proteases regulating inflammation are versatile enzymes, usually involved in proinflammatory cytokine production and activation of immune cells. Their dysregulation during inflammation can have devastating consequences, promoting various diseases including skin and lung inflammation, neuroinflammation, and inflammatory arthritis. Several serine proteases were selected for their contribution to inflammatory diseases and significant efforts that are spread to develop inhibitors. Strategies developed for inhibitor identification consist on either peptide-based inhibitor derived from endogenous protein inhibitors or small-organic molecules. It is also worth noting that among the recent patents on serine protease inhibitors related to inflammation a significant number are related to retinal vascular dysfunction and skin diseases.
Collapse
Affiliation(s)
- Feryel Soualmia
- a B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology , Sorbonne Universités , UPMC Univ Paris 06, UMR 8256 , Paris , France
| | - Chahrazade El Amri
- a B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology , Sorbonne Universités , UPMC Univ Paris 06, UMR 8256 , Paris , France
| |
Collapse
|
6
|
Delaunay T, Deschamps L, Haddada M, Walker F, Soosaipillai A, Soualmia F, El Amri C, Diamandis EP, Brattsand M, Magdolen V, Darmoul D. Aberrant expression of kallikrein-related peptidase 7 is correlated with human melanoma aggressiveness by stimulating cell migration and invasion. Mol Oncol 2017. [PMID: 28636767 PMCID: PMC5623816 DOI: 10.1002/1878-0261.12103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Members of the tissue kallikrein‐related peptidase (KLK) family not only regulate several important physiological functions, but aberrant expression has also been associated with various malignancies. Clinically, KLKs have been suggested as promising biomarkers for diagnosis and prognosis in many types of cancer. As of yet, expression of KLKs and their role in skin cancers are, however, poorly addressed. Malignant melanoma is an aggressive disease associated with poor prognosis. Hence, diagnostic biomarkers to monitor melanoma progression are needed. Herein, we demonstrate that although mRNA of several KLKs are aberrantly expressed in melanoma cell lines, only the KLK7 protein is highly secreted in vitro. In line with these findings, ectopic expression of KLK7 in human melanomas and its absence in benign nevi were demonstrated by immunohistochemistry in vivo. Interestingly, overexpression of KLK7 induced a significant reduction in melanoma cell proliferation and colony formation. Moreover, KLK7 overexpression triggered an increase in cell motility and invasion associated with decreased expression of E‐cadherin and an upregulation of MCAM/CD146. Our results demonstrate, for the first time, that aberrant KLK7 expression leads to a switch from proliferative to invasive phenotype, suggesting a potential role of KLK7 in melanoma progression. Thus, we hypothesize that KLK7 may represent a potential biomarker for melanoma progression.
Collapse
Affiliation(s)
- Tiphaine Delaunay
- Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Saint Louis, Paris, France.,Sorbonne Paris Cité, UMRS-S976, Université Paris Diderot, France
| | - Lydia Deschamps
- Department of Pathology, Hôpital Bichat-Claude Bernard, Paris, France
| | - Meriem Haddada
- Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Saint Louis, Paris, France.,Sorbonne Paris Cité, UMRS-S976, Université Paris Diderot, France
| | - Francine Walker
- Department of Pathology, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Feryel Soualmia
- UPMC Univ Paris 06, IBPS, UMR 8256 CNRS-UPMC, ERL INSERM U1164, Biological Adaptation and Ageing, Sorbonne Universités, Paris, France
| | - Chahrazade El Amri
- UPMC Univ Paris 06, IBPS, UMR 8256 CNRS-UPMC, ERL INSERM U1164, Biological Adaptation and Ageing, Sorbonne Universités, Paris, France
| | | | - Maria Brattsand
- Department of Medical Biosciences, Pathology, Umeå University, Sweden
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technische Universität München, Germany
| | - Dalila Darmoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Saint Louis, Paris, France.,Sorbonne Paris Cité, UMRS-S976, Université Paris Diderot, France
| |
Collapse
|
7
|
Sells E, Pandey R, Chen H, Skovan BA, Cui H, Ignatenko NA. Specific microRNA-mRNA Regulatory Network of Colon Cancer Invasion Mediated by Tissue Kallikrein-Related Peptidase 6. Neoplasia 2017; 19:396-411. [PMID: 28431272 PMCID: PMC5397577 DOI: 10.1016/j.neo.2017.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 01/05/2023] Open
Abstract
Metastatic colon cancer is a major cause of deaths among colorectal cancer (CRC) patients. Elevated expression of kallikrein 6 (KLK6), a member of a kallikrein subfamily of peptidase S1 family serine proteases, has been reported in CRC and is associated with low patient survival rates and poor disease prognosis. We knocked down KLK6 expression in HCT116 colon cancer cells to determine the significance of KLK6 expression for metastatic dissemination and to identify the KLK6-associated microRNAs (miRNAs) signaling networks in metastatic colon cancer. KLK6 suppression resulted in decreased cells invasion in vitro with a minimal effect on the cell growth and viability. In vivo, animals with orthotopic colon tumors deficient in KLK6 expression had the statistically significant increase in survival rates (P = .005) and decrease in incidence of distant metastases. We further performed the integrated miRNA and messenger RNA (mRNA) expression profiling to identify functional miRNA-mRNA interactions associated with KLK6-mediated invasiveness of colon cancer. Through bioinformatics analysis we identified and functionally validated the top two up-regulated miRNAs, miR-182 and miR-203, and one down-regulated miRNA, miRNA-181d, and their seven mRNA effectors. The established miRNA-mRNA interactions modulate cellular proliferation, differentiation and epithelial–mesenchymal transition (EMT) in KLK6-expressing colon cancer cells via the TGF-β signaling pathway and RAS-related GTP-binding proteins. We confirmed the potential tumor suppressive properties of miR-181d and miR-203 in KLK6-expressing HCT116 cells using Matrigel invasion assay. Our data provide experimental evidence that KLK6 controls metastasis formation in colon cancer via specific downstream network of miRNA-mRNA effectors.
Collapse
Affiliation(s)
- Earlphia Sells
- Biochemistry and, Molecular and Cellular Biology Graduate Program, Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Ritu Pandey
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Hwudaurw Chen
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Bethany A Skovan
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Haiyan Cui
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Natalia A Ignatenko
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Yu Y, Prassas I, Muytjens CM, Diamandis EP. Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis. J Proteomics 2017; 155:40-48. [DOI: 10.1016/j.jprot.2017.01.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
9
|
Darling MR, Woodford R, Cuddy KK, Jackson-Boeters L, Hayter A, Inkaran J, Diamandis EP, Khan Z. Kallikrein-related peptidase expression in odontogenic cysts and tumors: An immunohistochemical comparative study. ACTA ACUST UNITED AC 2017; 8. [PMID: 28054463 DOI: 10.1111/jicd.12256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/22/2016] [Indexed: 11/28/2022]
Abstract
AIM The aim of the present study was to profile the expression of human kallikrein (KLK)-related peptidases (KLK) in odontogenic lesions. METHODS Paraffin-embedded, formalin-fixed, non-odontogenic (control) and odontogenic lesions were stained for KLK using a standard immunohistochemical technique. The intensity and proportion of epithelial cells stained was scored. Reverse transcription-polymerase chain reaction was utilized to evaluate KLK 1-15 mRNA expression in ameloblastomas. RESULTS KLK 3, 4, 9, 11, and 14 were present in all lesions. KLK 3 staining was increased in ameloblastomas and keratocystic odontogenic tumors. KLK 5 was present only in Keratocystic odontogenic tumor. KLK 6 was significantly higher in ameloblastomas than in other lesions. For KLK 7, keratocystic odontogenic tumors and nasopalatine duct cysts were significantly different. KLK 6, 8, 10, 11, and 13 were significantly higher in ameloblastomas than in other lesions. KLK 9 was increased in keratocystic odontogenic tumors and dentigerous cysts. The expression of KLK 1, 4, 7, 8, 10, and 12 mRNA was found in ameloblastomas. CONCLUSION The results suggested that KLK 6, 8, 10, and 13 could be involved in the progression of ameloblastomas. KLK 10 could have a greater role in odontogenic lesions, rather than non-odontogenic lesions. Future studies aim to define the specific roles of KLK cascades in odontogenic lesions.
Collapse
Affiliation(s)
- Mark Roger Darling
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Rebecca Woodford
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Karl Kevin Cuddy
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Linda Jackson-Boeters
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Alyssa Hayter
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jeyanth Inkaran
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Eleftherios P Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Zia Khan
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Guihard PJ, Yao J, Blazquez-Medela AM, Iruela-Arispe L, Boström KI, Yao Y. Endothelial-Mesenchymal Transition in Vascular Calcification of Ins2Akita/+ Mice. PLoS One 2016; 11:e0167936. [PMID: 27936229 PMCID: PMC5148029 DOI: 10.1371/journal.pone.0167936] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to normal development and disease processes. Here, we report that EndMTs occur in the diabetic endothelium of Ins2Akita/wt mouse, and show that induction of sex determining region Y-box 2 (Sox2) is a mediator of excess BMP signaling that results in activation of EndMTs and increased vascular calcification. We also find an induction of a complex of serine proteases in the diabetic endothelium, required for the up-regulation of Sox2. Our results suggest that EndMTs contribute to vascular calcification in diabetic arteries.
Collapse
Affiliation(s)
- Pierre J. Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ana M. Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Luisa Iruela-Arispe
- The Molecular Biology Institute at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California, United States of America
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- The Molecular Biology Institute at UCLA, Los Angeles, California, United States of America
- * E-mail: (YY); (KB)
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California, United States of America
- * E-mail: (YY); (KB)
| |
Collapse
|
11
|
Abstract
Cervical-vaginal fluid (CVF) is a complex biological fluid that hydrates the mucosa of the lower female reproductive system. In-depth proteomic and biochemical studies on CVF have revealed that it contains large amounts of endogenous proteases and protease inhibitors, including an abundance of several members of the tissue kallikrein-related peptidase (KLK) family. Despite their ubiquitous presence in human tissues and fluids, KLK expression levels vary considerably, with maximum expression observed in reproduction-related tissues and fluids. The roles of KLKs in the lower female reproductive system are not fully understood. The activation of KLKs in CVF is dependent on pH and various modes of KLK regulation in the vagina exist. KLKs have been postulated to have roles in physiological functions related to antimicrobial processes, vaginal and cervical epithelial desquamation, sperm transport, and the processing of fetal membranes as observed in preterm premature rupture of membranes. Increased understanding of the functional roles of KLKs in the lower female reproductive system could lead to new diagnostic and therapeutic modalities for conditions such as vaginal infections and vaginal atrophy.
Collapse
|
12
|
Serino G, Curci C, Schena FP. Role of miR-422a and kallikrein-related peptidase 4 implicated in the development of lupus nephritis. Do we work in this direction? Nephrol Dial Transplant 2016; 31:683-5. [PMID: 26614269 DOI: 10.1093/ndt/gfv396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022] Open
Affiliation(s)
- Grazia Serino
- C.A.R.S.O. Consortium, University of Bari, 70100 Valenzano (Ba), Italy IRCCS "de Bellis", Laboratory of Experimental Immunopathology, 70013 Castellana Grotte, BA, Italy
| | - Claudia Curci
- C.A.R.S.O. Consortium, University of Bari, 70100 Valenzano (Ba), Italy Schena Foundation, Research Center of Kidney Diseases, Valenzano, Bari, Italy
| | - Francesco Paolo Schena
- C.A.R.S.O. Consortium, University of Bari, 70100 Valenzano (Ba), Italy Schena Foundation, Research Center of Kidney Diseases, Valenzano, Bari, Italy
| |
Collapse
|
13
|
Synthesis, biological evaluation and molecular modeling of pseudo-peptides based statine as inhibitors for human tissue kallikrein 5. Eur J Med Chem 2016; 112:39-47. [DOI: 10.1016/j.ejmech.2016.01.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/11/2016] [Accepted: 01/30/2016] [Indexed: 02/05/2023]
|
14
|
Marques PI, Fonseca F, Sousa T, Santos P, Camilo V, Ferreira Z, Quesada V, Seixas S. Adaptive Evolution Favoring KLK4 Downregulation in East Asians. Mol Biol Evol 2015; 33:93-108. [PMID: 26420451 DOI: 10.1093/molbev/msv199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human kallikrein (KLK) cluster, located at chromosome 19q13.3-13.4, encodes 15 serine proteases, including neighboring genes (KLK3, KLK2, KLK4, and KLK5) with key roles in the cascades of semen liquefaction, tooth enamel maturation, and skin desquamation. KLK2 and KLK3 were previously identified as targets of adaptive evolution in primates through different mechanisms linked to reproductive biology and, in humans, genome-wide scans of positive selection captured, a yet unexplored, evidence for KLK neutrality departure in East Asians. We perform a detailed evaluation of KLK3-KLK5 variability in the 1000 Genomes samples from East Asia, Europe, and Africa, which was sustained by our own sequencing. In East Asians, we singled out a 70-kb region surrounding KLK4 that combined unusual low levels of diversity, high frequency variants with significant levels of population differentiation (FST > 0.5) and fairly homogenous haplotypes given the large local recombination rates. Among these variants, rs1654556_G, rs198968_T, and rs17800874_A stand out for their location on putative regulatory regions and predicted functional effects, namely the introduction of several microRNA binding sites and a repressor motif. Our functional assays carried out in different cellular models showed that rs198968_T and rs17800874_A operate synergistically to reduce KLK4 expression and could be further assisted by rs1654556_G. Considering the previous findings that KLK4 inactivation causes enamel malformations in humans and mice, and that this gene is coexpressed in epidermal layers along with several substrates involved in either cell adhesion or keratinocyte differentiation, we propose KLK4 as another target of selection in East Asians correlated to tooth and epidermal morphological traits.
Collapse
Affiliation(s)
- Patrícia Isabel Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal Department of Biochemistry and Molecular Biology-IUOPA, University of Oviedo, Oviedo, Spain Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Filipa Fonseca
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Tânia Sousa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Paulo Santos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Vânia Camilo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Zélia Ferreira
- Department of Computational and Systems Biology, University of Pittsburgh
| | - Victor Quesada
- Department of Biochemistry and Molecular Biology-IUOPA, University of Oviedo, Oviedo, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
15
|
Tissue Kallikrein Activity, Detected by a Novel Method, May Be a Predictor of Recurrent Stroke: A Case-Control Study. DISEASE MARKERS 2015; 2015:159750. [PMID: 26451066 PMCID: PMC4584216 DOI: 10.1155/2015/159750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/24/2015] [Accepted: 08/30/2015] [Indexed: 11/21/2022]
Abstract
Aim. Tissue kallikrein (TK) protein content in plasma has been shown to be negatively associated with both incident and recurrent strokes. The aims of this study were to develop a novel method for detecting TK activity and to investigate its association with event-free survival over 5 years in Chinese first-ever stroke patients. Methods. We designed a case-control study with 321 stroke patients (174: ischemic stroke, 147: hemorrhagic stroke) and 323 healthy local controls. TK activity was measured by a novel assay utilizing the immunological characteristics of TK and the catalysis of benzoyl arginine ethyl ester hydrochloride (BAEE). Results. TK protein levels above 0.200 mg/L in plasma were not associated with urinary TK activity or the risk of stroke recurrence. TK activity was significantly lower in stroke patients compared with controls (1.583 ± 0.673 Eu/mL versus 1.934 ± 0.284 Eu/mL, P < 0.001). After adjusting for traditional risk factors, TK activity was negatively associated, in a dose-response manner, with the risk of overall stroke recurrence and positively associated with event-free survival during a 5-year follow-up (relative risk (RR), 0.69; 95% CI, 0.57–0.84; P < 0.001). Conclusions. Our findings suggest that urinary TK activity may be a stronger predictor of stroke recurrence than plasma TK levels.
Collapse
|
16
|
Silva JA, Santana ET, Manchini MT, Antônio EL, Bocalini DS, Krieger JE, Tucci PJF, Serra AJ. Exercise training can prevent cardiac hypertrophy induced by sympathetic hyperactivity with modulation of kallikrein-kinin pathway and angiogenesis. PLoS One 2014; 9:e91017. [PMID: 24614810 PMCID: PMC3948752 DOI: 10.1371/journal.pone.0091017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/07/2014] [Indexed: 01/19/2023] Open
Abstract
Sympathetic hyperactivity induces adverse effects in myocardial. Recent studies have shown that exercise training induces cardioprotection against sympathetic overload; however, relevant mechanisms of this issue remain unclear. We analyzed whether exercise can prevent pathological hypertrophy induced by sympathetic hyperactivity with modulation of the kallikrein-kinin and angiogenesis pathways. Male Wistar rats were assigned to non-trained group that received vehicle; non-trained isoproterenol treated group (Iso, 0.3 mg kg(-1) day-(1)); and trained group (Iso+Exe) which was subjected to sympathetic hyperactivity with isoproterenol. The Iso rats showed hypertrophy and myocardial dysfunction with reduced force development and relaxation of muscle. The isoproterenol induced severe fibrosis, apoptosis and reduced myocardial capillary. Interestingly, exercise blunted hypertrophy, myocardial dysfunction, fibrosis, apoptosis and capillary decreases. The sympathetic hyperactivity was associated with high abundance of ANF mRNA and β-MHC mRNA, which was significantly attenuated by exercise. The tissue kallikrein was augmented in the Iso+Exe group, and kinin B1 receptor mRNA was increased in the Iso group. Moreover, exercise induced an increase of kinin B2 receptor mRNA in myocardial. The myocardial content of eNOS, VEGF, VEGF receptor 2, pAkt and Bcl-2 were increased in the Iso+Exe group. Likewise, increased expression of pro-apoptotic Bad in the Iso rats was prevented by prior exercise. Our results represent the first demonstration that exercise can modulate kallikrein-kinin and angiogenesis pathways in the myocardial on sympathetic hyperactivity. These findings suggest that kallikrein-kinin and angiogenesis may have a key role in protecting the heart.
Collapse
Affiliation(s)
- José Antônio Silva
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Medicina, Rua Vergueiro, São Paulo, SP, Brazil
| | - Eduardo Tadeu Santana
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
| | - Martha Trindade Manchini
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
| | - Ednei Luis Antônio
- Universidade Federal de São Paulo (Unifesp), Rua Napoleão de Barros, São Paulo, SP, Brazil
| | - Danilo Sales Bocalini
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
| | - José Eduardo Krieger
- Universidade de São Paulo, Incor. Av. Dr. Enéas de Carvalho Aguiar, São Paulo, SP, Brazil
| | | | - Andrey Jorge Serra
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Ciências da Reabilitação, Rua Vergueiro, São Paulo, SP, Brazil
- Universidade Nove de Julho (Uninove), Programa de Pós-graduação em Medicina, Rua Vergueiro, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Oliveira JPC, Freitas RF, Melo LSD, Barros TG, Santos JAN, Juliano MA, Pinheiro S, Blaber M, Juliano L, Muri EMF, Puzer L. Isomannide-based peptidomimetics as inhibitors for human tissue kallikreins 5 and 7. ACS Med Chem Lett 2014; 5:128-32. [PMID: 24900785 DOI: 10.1021/ml4003698] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/06/2013] [Indexed: 02/05/2023] Open
Abstract
Human kallikrein 5 (KLK5) and 7 (KLK7) are potential targets for the treatment of skin inflammation and cancer. Previously, we identified isomannide derivatives as potent and competitive KLK7 inhibitors. The introduction of N-protected amino acids into the isomannide-based scaffold was studied. Some KLK5 inhibitors with submicromolar affinity (K i values of 0.3-0.7 μM) were identified, and they were 6- to 13-fold more potent than our previous hits. Enzyme kinetics studies and the determination of the mechanism of inhibition confirmed that the new isomannide-based derivatives are competitive inhibitors of both KLK5 and KLK7. Molecular docking and MD simulations of selected inhibitors into the KLK5 binding site provide insight into the molecular mechanism by which these compounds interact with the enzyme. The promising results obtained in this study open new prospects on the design and synthesis of highly specific KLK5 and KLK7 inhibitors.
Collapse
Affiliation(s)
- Jocelia P. C. Oliveira
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa
Adélia 166, Bairro Bangu, Santo André
SP, 09210-170, Brazil
| | - Renato F. Freitas
- Department
of Biology, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Leandro Silva de Melo
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa
Adélia 166, Bairro Bangu, Santo André
SP, 09210-170, Brazil
| | - Thalita G. Barros
- Faculdade
de Farmácia, Universidade Federal Fluminense, R. Miguel de Frias, 9 - Icaraı́, Niterói, RJ, 24220-008, Brazil
| | - Jorge A. N. Santos
- Instituto
Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Inconfidentes, MG, 37576-000, Brazil
| | - Maria A. Juliano
- Departamento
de Biofísica, Universidade Federal de São Paulo, Rua Três
de Maio 100, São Paulo, SP, 04107-001, Brasil
| | - Sérgio Pinheiro
- Instituto
de Química, Universidade Federal Fluminense, R. Miguel de Frias, 9 - Icaraı́, Niterói, RJ 24220-008, Brazil
| | - Michael Blaber
- Department
of Biomedical Sciences, Florida State University, 600 West College Avenue, Tallahassee, Florida 32306, United States
| | - Luiz Juliano
- Departamento
de Biofísica, Universidade Federal de São Paulo, Rua Três
de Maio 100, São Paulo, SP, 04107-001, Brasil
| | - Estela M. F. Muri
- Faculdade
de Farmácia, Universidade Federal Fluminense, R. Miguel de Frias, 9 - Icaraı́, Niterói, RJ, 24220-008, Brazil
| | - Luciano Puzer
- Centro
de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa
Adélia 166, Bairro Bangu, Santo André
SP, 09210-170, Brazil
| |
Collapse
|
18
|
Shahinian H, Loessner D, Biniossek ML, Kizhakkedathu JN, Clements JA, Magdolen V, Schilling O. Secretome and degradome profiling shows that Kallikrein-related peptidases 4, 5, 6, and 7 induce TGFβ-1 signaling in ovarian cancer cells. Mol Oncol 2013; 8:68-82. [PMID: 24120346 PMCID: PMC5528505 DOI: 10.1016/j.molonc.2013.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/04/2013] [Accepted: 09/18/2013] [Indexed: 11/16/2022] Open
Abstract
Kallikrein‐related peptidases, in particular KLK4, 5, 6 and 7 (4–7), often have elevated expression levels in ovarian cancer. In OV‐MZ‐6 ovarian cancer cells, combined expression of KLK4–7 reduces cell adhesion and increases cell invasion and resistance to paclitaxel. The present work investigates how KLK4–7 shape the secreted proteome (“secretome”) and proteolytic profile (“degradome”) of ovarian cancer cells. The secretome comparison consistently identified >900 proteins in three replicate analyses. Expression of KLK4–7 predominantly affected the abundance of proteins involved in cell–cell communication. Among others, this includes increased levels of transforming growth factor β‐1 (TGFβ‐1). KLK4–7 co‐transfected OV‐MZ‐6 cells share prominent features of elevated TGFβ‐1 signaling, including increased abundance of neural cell adhesion molecule L1 (L1CAM). Augmented levels of TGFβ‐1 and L1CAM upon expression of KLK4–7 were corroborated in vivo by an ovarian cancer xenograft model. The degradomic analysis showed that KLK4–7 expression mostly affected cleavage sites C‐terminal to arginine, corresponding to the preference of kallikreins 4, 5 and 6. Putative kallikrein substrates include chemokines, such as growth differentiation factor 15 (GDF 15) and macrophage migration inhibitory factor (MIF). Proteolytic maturation of TGFβ‐1 was also elevated. KLK4–7 have a pronounced, yet non‐degrading impact on the secreted proteome, with a strong association between these proteases and TGFβ‐1 signaling in tumor biology. Expression of KLK4, 5, 6, and 7 yields subtle secretome and degradome alterations. Pro‐ and anti‐tumorigenic proteins are affected. TGFβ‐1 signaling is elevated. Degradomic analysis supports cell‐contextual KLK activity. Potential substrates of KLK4–7 have been identified.
Collapse
Affiliation(s)
- Hasmik Shahinian
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany
| | - Daniela Loessner
- Cancer Program, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Judith A Clements
- Cancer Program, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, D-81675, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, University of Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
19
|
Devetzi M, Trangas T, Scorilas A, Xynopoulos D, Talieri M. Parallel overexpression and clinical significance of kallikrein-related peptidases 7 and 14 (KLK7KLK14) in colon cancer. Thromb Haemost 2012; 109:716-25. [PMID: 23224034 DOI: 10.1160/th12-07-0518] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/20/2012] [Indexed: 12/12/2022]
Abstract
Currently available colon cancer (CC) markers lack sensitivity and specificity. Kallikrein-related peptidases (KLKs) present a new class of biomarkers under investigation for diverse diseases, including cancer. KLKs are co-expressed in various tissues participating in proteolytic cascades. KLK7 in human tumours facilitates metastasis by degrading components of the extracellular matrix. KLK14 promotes tumourigenesis by activating proteinase-activated receptors. In the present study we examined the concomitant expression of KLK7 and KLK14 in245 colonic tissue specimens from 175 patients; 70 were pairs of cancerous-normal tissues, 31 were cancerous tissues and 74 were colonic adenomas. We used quantitative real-time PCR and proved that both genes are up-regulated in CC at the mRNA level. Receiver-operating characteristic (ROC) analysis of our results showed that both genes have discriminatory value between CC and adenoma tissues, with KLK14 obtaining greater distinguishing power (area under the curve [AUC]=0.708 for KLK14; AUC=0.669 for KLK7). Current work showed that the two genes are fairly co-expressed in all three types of colon tissues examined (normal rs=0.667, p<0.001, adenomas rs=0.373, p=0.001, carcinomas rs=0.478, p<0.001). KLK14 is associated with shorter disease-free survival (DFS) and overall survival (OS) of patients (p=0.003, p=0.016 respectively), whereas KLK7only with shorter DFS (p=0.004). KLK7 and KLK14 gene expression can be regarded as markers of poor prognosis for CC patients with discriminating power between CC and adenoma patients.
Collapse
Affiliation(s)
- Marina Devetzi
- Department of Cellular Physiology, G. Papanicolaou Research Center of Oncology, Saint Savvas Cancer Hospital, 171, Alexandras Avenue, Athens 11522, Greece
| | | | | | | | | |
Collapse
|
20
|
Stratum corneum proteases and dry skin conditions. Cell Tissue Res 2012; 351:217-35. [DOI: 10.1007/s00441-012-1501-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
|
21
|
Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, Russo P, Zhang H, Tian Y, Li Y, Kulasingam V, Drabovich A, Smith CR, Batruch I, Oran PE, Fredolini C, Luchini A, Liotta L, Petricoin E, Diamandis EP, Chan DW, Nelson R, Lopez MF. Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J Proteome Res 2012; 11:3986-95. [PMID: 22639787 DOI: 10.1021/pr300014s] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past few years, mass spectrometry has emerged as a technology to complement and potentially replace standard immunoassays in routine clinical core laboratories. Application of mass spectrometry to protein and peptide measurement can provide advantages including high sensitivity, the ability to multiplex analytes, and high specificity at the amino acid sequence level. In our previous study, we demonstrated excellent reproducibility of mass spectrometry-selective reaction monitoring (MS-SRM) assays when applying standardized standard operating procedures (SOPs) to measure synthetic peptides in a complex sample, as lack of reproducibility has been a frequent criticism leveled at the use of mass spectrometers in the clinical laboratory compared to immunoassays. Furthermore, an important caveat of SRM-based assays for proteins is that many low-abundance analytes require some type of enrichment before detection with MS. This adds a level of complexity to the procedure and the potential for irreproducibility increases, especially across different laboratories with different operators. The purpose of this study was to test the interlaboratory reproducibility of SRM assays with various upfront enrichment strategies and different types of clinical samples (representing real-world body fluids commonly encountered in routine clinical laboratories). Three different, previously published enrichment strategies for low-abundance analytes and a no-enrichment strategy for high-abundance analytes were tested across four different laboratories using different liquid chromatography-SRM (LC-SRM) platforms and previously developed SOPs. The results demonstrated that these assays were indeed reproducible with coefficients of variation of less than 30% for the measurement of important clinical proteins across all four laboratories in real world samples.
Collapse
Affiliation(s)
- Amol Prakash
- Thermo Fisher Scientific, BRIMS (Biomarker Research in Mass Spectrometry), Cambridge, Massachusetts 02139, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hiss D. Optimizing molecular-targeted therapies in ovarian cancer: the renewed surge of interest in ovarian cancer biomarkers and cell signaling pathways. JOURNAL OF ONCOLOGY 2012; 2012:737981. [PMID: 22481932 PMCID: PMC3306947 DOI: 10.1155/2012/737981] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/24/2011] [Indexed: 12/18/2022]
Abstract
The hallmarks of ovarian cancer encompass the development of resistance, disease recurrence and poor prognosis. Ovarian cancer cells express gene signatures which pose significant challenges for cancer drug development, therapeutics, prevention and management. Despite enhancements in contemporary tumor debulking surgery, tentative combination regimens and abdominal radiation which can achieve beneficial response rates, the majority of ovarian cancer patients not only experience adverse effects, but also eventually relapse. Therefore, additional therapeutic possibilities need to be explored to minimize adverse events and prolong progression-free and overall response rates in ovarian cancer patients. Currently, a revival in cancer drug discovery is devoted to identifying diagnostic and prognostic ovarian cancer biomarkers. However, the sensitivity and reliability of such biomarkers may be complicated by mutations in the BRCA1 or BRCA2 genes, diverse genetic risk factors, unidentified initiation and progression elements, molecular tumor heterogeneity and disease staging. There is thus a dire need to expand existing ovarian cancer therapies with broad-spectrum and individualized molecular targeted approaches. The aim of this review is to profile recent developments in our understanding of the interrelationships among selected ovarian tumor biomarkers, heterogeneous expression signatures and related molecular signal transduction pathways, and their translation into more efficacious targeted treatment rationales.
Collapse
Affiliation(s)
- Donavon Hiss
- Molecular Oncology Research Laboratory, Department of Medical BioSciences, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
23
|
Talieri M, Alexopoulou DK, Scorilas A, Kypraios D, Arnogiannaki N, Devetzi M, Patsavela M, Xynopoulos D. Expression analysis and clinical evaluation of kallikrein-related peptidase 10 (KLK10) in colorectal cancer. Tumour Biol 2011; 32:737-44. [PMID: 21487810 DOI: 10.1007/s13277-011-0175-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/31/2011] [Indexed: 12/17/2022] Open
Abstract
Kallikrein-related peptidases (KLKs) represent a serine protease family having 15 members. KLK10 is a secreted protease with a trypsin-like activity. The function of KLK10 is poorly understood, although it has been suggested that KLK10 may function as a tumor suppressor gene. In human cancer, KLK10 gene shows organ-specific up- or down-regulation. Since KLKs are promising tumor biomarkers, the examination of KLK10 mRNA expression and its association with colorectal cancer (CRC) progression was studied using semi-quantitative PCR. One hundred and nineteen primary CRC specimens were examined for which follow-up information was available for a median period of 29 months (range, 1-104 months). KLK10 expression was found to be significantly associated with TNM stage (p=0.028). Cox proportional hazard regression model using univariate analysis revealed for the first time that high status KLK10 expression is a significant factor for disease-free survival (DFS; p=0.002) and overall survival (OS; p=0.026) of patients. Kaplan-Meier survival curves demonstrated that KLK10 expression of low status is significantly associated with longer DFS (p=0.001) as well as OS (p=0.021), suggesting that KLK10 gene expression may be used as a marker of unfavorable prognosis for CRC. As the epigenetics of cancer are unraveled, KLK10 may represent not only a novel biomarker, but also a promising future therapeutic target for the disease.
Collapse
Affiliation(s)
- Maroulio Talieri
- Department of Cellular Physiology, G. Papanicolaou Research Center of Oncology, Saint Savvas Cancer Hospital, 171, Alexandras Avenue, Athens, 11522, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Rabien A, Fritzsche FR, Jung M, Tölle A, Diamandis EP, Miller K, Jung K, Kristiansen G, Stephan C. KLK15 is a prognostic marker for progression-free survival in patients with radical prostatectomy. Int J Cancer 2010; 127:2386-94. [PMID: 20473923 DOI: 10.1002/ijc.25435] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In search of biomarkers for prostate cancer, we evaluated the expression of the human kallikrein-related peptidase KLK15 in samples of prostatic adenocarcinomas from radical prostatectomies. Twenty-five pairs of cancerous and adjacent normal prostatic tissue were selected by laser capture microdissection. The tissue was used for quantification of KLK15 mRNA by reverse-transcriptase polymerase chain reaction. Immunohistochemical expression of the KLK15 protein in 193 samples of prostatic adenocarcinoma was analysed in relation to clinicopathological parameters of the patients and disease progression. Expression of KLK15 correlated with the pathological tumour stage and Gleason score of the cases, both at mRNA and at protein level. While mRNA expression in the tumour was elevated, the protein level of KLK15 was reduced compared with adjacent normal tissue and to prostatic intraepithelial neoplasia. Univariate Kaplan-Meier analysis showed a significant association of dichotomised KLK15 levels with disease progression defined by prostate-specific antigen relapse (p = 0.001). Multivariate analysis according to the Cox proportional hazards regression model identified dichotomised KLK15 expression, corrected for the patient parameters age, preoperative prostate-specific antigen level, pathological tumour stage, Gleason score and surgical margin status, as an independent prognostic factor for poor outcome (inclusion model, hazard ratio 1.802, 95% confidence interval 1.037-3.132, p = 0.037). We suggest KLK15 as a new independent tumour marker for patients at risk for disease progression after radical prostatectomy.
Collapse
Affiliation(s)
- Anja Rabien
- Department of Urology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Batra J, Tan OL, O'Mara T, Zammit R, Nagle CM, Clements JA, Kedda MA, Spurdle AB. Kallikrein-related peptidase 10 (KLK10) expression and single nucleotide polymorphisms in ovarian cancer survival. Int J Gynecol Cancer 2010; 20:529-36. [PMID: 20686372 DOI: 10.1111/igc.0b013e3181d9273e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION Kallikrein-related peptidase 10 (KLK10) overexpression is a predictor of poor disease outcome in women with late-stage ovarian cancer. We aimed to identify whether KLK10 overexpression could be attributed to genetic variants, in particular, in hormone response elements or transcription factor binding sites. METHODS Cox regression analysis was used to assess the association between 2 tag and 1 exonic KLK10 single nucleotide polymorphisms (SNPs) and the survival of 319 patients with ovarian cancer. Four different ovarian cancer cell lines were investigated for KLK10 expression after hormone stimulation, and sequence variation in the 3.6-Kb upstream of the KLK10 start site. In silico analyses of SNPs in cell lines and from published databases were undertaken to identify further research novel and potentially functional SNPs that are not covered by tag SNPs. RESULTS The KLK10 SNPs investigated were not associated with ovarian cancer survival. However, steroid hormone treatment of ovarian cell lines showed KLK10 up-regulation in response to estrogen and estrogen plus progesterone treatments in the aggressive cell line PEO1 and affirmed a role for KLK10 in aggressive ovarian cancer. Potentially functional KLK10 SNPs were identified by cell line sequencing and bioinformatic analysis. CONCLUSION Potentially functional candidate KLK10 SNPs require investigation in future association studies of ovarian cancer risk and survival, including rs3760738 identified in aggressive ovarian cancer cell lines and predicted to affect transcription factor binding sites.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/mortality
- Adenocarcinoma, Mucinous/drug therapy
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/mortality
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/mortality
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/mortality
- Estrogens/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Haplotypes/genetics
- Humans
- Kallikreins/genetics
- Kallikreins/metabolism
- Middle Aged
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Polymerase Chain Reaction
- Polymorphism, Single Nucleotide/genetics
- Progesterone/pharmacology
- Prognosis
- Promoter Regions, Genetic/genetics
- Response Elements/genetics
- Survival Rate
- Young Adult
Collapse
Affiliation(s)
- Jyotsna Batra
- School of Life Sciences, Hormone-Dependent Cancer Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
White NM, Bui A, Mejia-Guerrero S, Chao J, Soosaipillai A, Youssef Y, Mankaruos M, Honey RJ, Stewart R, Pace KT, Sugar L, Diamandis EP, Doré J, Yousef GM. Dysregulation of kallikrein-related peptidases in renal cell carcinoma: potential targets of miRNAs. Biol Chem 2010; 391:411-23. [DOI: 10.1515/bc.2010.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractRenal cell carcinoma (RCC) accounts for 3% of all adult malignancies and currently no diagnostic marker exists. Kallikrein-related peptidases (KLKs) have been implicated in numerous cancers including ovarian, prostate, and breast carcinoma. KLKs 5, 6, 10, and 11 have decreased expression in RCC when compared to normal kidney tissue. Our bioinformatic analysis indicated that theKLK 1,6, and7genes have decreased expression in RCC. We experimentally verified these results and found that decreased expression ofKLKs 1and3were significantly associated with the clear cell RCC subtype (p<0.001). An analysis of miRNAs differentially expressed in RCC showed that 61 of the 117 miRNAs that were reported to be dysregulated in RCC were predicted to target KLKs. We experimentally validated two targets using two independent approaches. Transfection of miR-224 into HEK-293 cells resulted in decreased KLK1 protein levels. A luciferase assay demonstrated that hsa-let-7f can target KLK10 in the RCC cell line ACHN. Our results, showing differential expression of KLKs in RCC, suggest that KLKs could be novel diagnostic markers for RCC and that their dysregulation could be under miRNA control. The observation that KLKs could represent targets for miRNAs suggests a post-transcriptional regulatory mechanism with possible future therapeutic applications.
Collapse
|
27
|
Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 2010; 102:1244-53. [PMID: 20354523 PMCID: PMC2856011 DOI: 10.1038/sj.bjc.6605634] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Kallikrein-related peptidases (KLKs) are a family of serine proteases that have been shown to be dysregulated in several malignancies including ovarian cancer. The control of kallikrein genes and their physiological function in cancer is not well understood. We hypothesized that microRNAs (miRNAs) represent a novel mechanism for post-transcriptional control of KLK expression in cancer. METHODS We first analysed miRNA expression in ovarian cancer in silico. A total of 98 miRNAs were reported to have altered expression in ovarian cancer. Three of these miRNAs were predicted to target KLK10. We experimentally verified the predicted miR-KLK10 interaction using two independent techniques, a luciferase assay with a construct containing the KLK10 3' untranslated region (UTR), pMIR-KLK10, and measuring KLK10 protein levels after transfection with miRNA. RESULTS When we co-transfected cells with pMIR-KLK10 and either let-7f, miR-224, or mR-516a, we saw decreased luciferase signal, suggesting that these miRNAs can target KLK10. We then examined the effect of these three miRNAs on KLK10 protein expression and cell growth. Transfection of all miRNAs, let-7f, miR-224, and miR-516a led to a decrease in protein expression and cellular growth. This effect was shown to be dose dependent. The KLK10 protein levels were partially restored by co-transfecting let-7f and its inhibitor. In addition, there was a slight decrease in KLK10 mRNA expression after transfection with let-7f. CONCLUSION Our results confirm that KLKs can be targeted by more than one miRNA. Increased expression of certain miRNAs in ovarian cancer can lead to decreased KLK protein expression and subsequently have a negative effect on cell proliferation. This dose-dependent effect suggests that a 'tweaking' or 'fine-tuning' mechanism exists in which the expression of one KLK can be controlled by multiple miRNAs. These data together suggest that miRNA may be used as potential therapeutic options and further studies are required.
Collapse
|
28
|
Mavridis K, Avgeris M, Koutalellis G, Stravodimos K, Scorilas A. Expression analysis and study of the KLK15 mRNA splice variants in prostate cancer and benign prostatic hyperplasia. Cancer Sci 2010; 101:693-9. [PMID: 20067463 PMCID: PMC11158190 DOI: 10.1111/j.1349-7006.2009.01450.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in male populations in the Western world. The KLK15 gene, the newest member of the kallikrein family, is expressed in the prostate gland. The purpose of this study is the expression analysis and the clinical evaluation of the KLK15 mRNA spliced variants in prostate cancer (CaP) and benign prostatic hyperplasia (BPH) patients. Total RNA was isolated from 104 CaP and BPH tissue specimens. After testing the quality of the RNA, cDNA was produced by reverse transcription, and PCR was performed for the amplification of the KLK15 mRNA transcripts. GAPDH and HPRT genes were used as endogenous controls Our data revealed that mRNA spliced variants of KLK15 were differentially expressed in prostate tissue specimens. Analysis of data showed a statistically significant (P < 0.001) increase in the frequency of overexpression of KLK15 transcripts encoding for both the active isoform and for the isoform 3 in CaP compared to BPH samples. Furthermore, KLK15 transcripts were found to be highly expressed in more aggressive tumors (P = 0.017). These results suggest that KLK15 expression analysis could be employed as a valuable tool for the discrimination between BPH and CaP tissue specimens and as an unfavorable prognostic marker for prostate cancer.
Collapse
Affiliation(s)
- Konstantinos Mavridis
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
29
|
Mattsson JM, Laakkonen P, Stenman UH, Koistinen H. Antiangiogenic properties of prostate-specific antigen (PSA). Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:447-51. [PMID: 19551556 DOI: 10.1080/00365510903056031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The prostate produces high levels of prostate-specific antigen (PSA, also known as kallikrein-related peptidase 3, KLK3), which is a potential target for tumor imaging and treatment. Although serum PSA levels are elevated in prostate cancer, PSA expression is lower in malignant than in normal prostatic epithelium and it is further reduced in poorly differentiated tumors. PSA has been shown to inhibit angiogenesis both in in vitro and in vivo models. In this review we focus on our recent studies concerning the mechanism of the antiangiogenic function of PSA. We have recently shown that the antiangiogenic activity of PSA is related to its enzymatic activity. Inactive PSA isoforms do not have antiangiogenic activity as studied by a human umbelical vein endothelial cell (HUVEC) tube formation model. Furthermore, inhibition of PSA, either by a monoclonal antibody or small molecule inhibitors abolishes the effect of PSA, while a peptide that stimulates the activity of PSA enhances the antiangiogenic effect. We have analyzed changes in gene expression associated with the PSA induced reduction of tube formation in the HUVEC model. Several small changes were observed and they were found to be opposite to those associated with tube formation. Taken together, these studies suggest that PSA exerts antiantiogenic activity related to its enzymatic activity. Thus it might be associated with the slow growth of prostate cancer.
Collapse
Affiliation(s)
- Johanna M Mattsson
- Department of Clinical Chemistry, Biomedicum, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | |
Collapse
|
30
|
Korbakis D, Gregorakis AK, Scorilas A. Quantitative Analysis of Human Kallikrein 5 (KLK5) Expression in Prostate Needle Biopsies: An Independent Cancer Biomarker. Clin Chem 2009; 55:904-13. [DOI: 10.1373/clinchem.2008.103788] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Kallikrein 5 (KLK5), a recently cloned member of the kallikrein family, codes for the secreted protein KLK5. Active KLK5 protein has a trypsin activity, and the expression of KLK5 gene seems to be regulated by steroid hormones. We performed an expression analysis and clinical evaluation of the KLK5 gene, at the mRNA level, in prostate needle biopsies.
Methods: We examined KLK5 mRNA concentrations in 103 prostate tissue specimens. After testing of RNA quality, cDNA was prepared by reverse transcription. A highly sensitive quantitative real-time PCR (qRT-PCR) method for KLK5 mRNA quantification was developed using the SYBR Green chemistry. GAPDH was used as a housekeeping gene.
Results: Specimens from patients with benign prostatic hyperplasia (BPH) showed higher levels of KLK5 mRNA expression than those from patients with prostate cancer (PCa) (P = 0.024). ROC analysis demonstrated that KLK5 expression had significant discriminatory value between BPH and PCa (AUC 0.64; P = 0.016). KLK5 mRNA expression showed a statistically significant negative correlation with the total PSA serum concentration in the PCa patients (P = 0.003). Early-stage tumors showed higher KLK5 expression than late-stage ones (P = 0.014), whereas KLK5 expression was negatively correlated to Gleason score (P = 0.005).
Conclusions: KLK5 mRNA, analyzed by quantitative PCR in prostate needle biopsies, could be an independent biomarker for the differential diagnosis and prognosis in prostate cancer.
Collapse
Affiliation(s)
- Dimitrios Korbakis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens, Greece
| | - Alkiviades K Gregorakis
- 2nd Department of Urology, Faculty of Medicine, University of Athens, Attikon Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens, Greece
| |
Collapse
|
31
|
Abstract
Several members of the human tissue kallikrein-related peptidase (KLK) family are emerging cancer biomarkers. The aim of this study was to analyse the expression of a panel of KLKs in colorectal cancer and to find out if the multiparametric combination of them can increase the accuracy of prediction of patients survival beyond the traditional clinical information. Nine KLKs (KLK5-8, KLK10, KLK11, KLK13-15) were measured using ELISA assays in cytosolic extracts of 122 colon cancer tissues and their nearby normal mucosa, obtained during surgery. The mean levels of almost all KLKs in tumour tissues were significantly different from their counterparts of normal tissue (P<0.0001). KLK 5, 6, 7, 13, 14 were significantly associated with overall survival in univariate analysis, but after adjusting for age, TNM and differentiation stage, only KLK5 (HR: 1.24 (95% CI: 1.05-1.47)), KLK7 (HR: 1.57 (95% CI: 1.04-2.37)) and KLK14 (HR: 1.43 (95% CI: 1.05-1.94)) remained significant. Addition of a panel of selected KLK markers to clinical parameters gave an increment in AUC of 0.86 beyond the clinical factors at year 1, showing that it can increase the accuracy of prediction of overall survival beyond the traditional clinical information, particularly the short-term (1 year) survival after surgery.
Collapse
|
32
|
Abstract
The human kallikrein 8 protein (KLK8) is expressed in many normal tissues including esophagus, skin, testis, tonsil, kidney, breast, and salivary gland, and is found in biological fluids including breast milk, amniotic fluid, seminal fluid and serum. It has also been shown to be a biomarker and prognostic factor for breast cancer. The aim of this study was to determine whether KLK8 is expressed in salivary gland tissues and salivary gland tumors (both benign and malignant), in order to compare normal with tumor tissues. Pleomorphic adenomas, adenoid cystic carcinomas, polymorphous low grade adenocarcinomas, acinic cell carcinomas, mucoepidermoid carcinomas, and adenocarcinomas NOS of both minor and major salivary glands were examined. The results of this study indicate that most salivary gland tumors show high levels of expression of KLK8.
Collapse
|
33
|
Planque C, Bléchet C, Ayadi-Kaddour A, Heuzé-Vourc'h N, Dumont P, Guyétant S, Diamandis EP, El Mezni F, Courty Y. Quantitative RT-PCR analysis and immunohistochemical localization of the kallikrein-related peptidases 13 and 14 in lung. Biol Chem 2008; 389:781-6. [DOI: 10.1515/bc.2008.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Expression of the KLK13 and KLK14 genes was examined at the mRNA and protein levels in a cohort of 57 patients with non-small-cell lung cancer (NSCLC). The mRNA levels, assessed by real-time RT-PCR, were significantly different in malignant tissues compared to adjacent non-malignant tissues (KLK13, p=0.006; KLK14, p=0.022). KLK13 and KLK14 mRNA overexpression in tumors (1/3 of the patients) was associated with a positive nodal status in multivariate analysis (p=0.018 and p=0.069, respectively). KLK13 and KLK14 were localized in the cytoplasm of epithelial cells of normal bronchus and NSCLC, as determined by immunohistochemistry. Moreover, positive staining was significantly associated with adenocarcinoma histotype (KLK13, p=0.014) and tumor size (KLK14, p=0.048). Although the results are marginally significant, patients with high KLK13 expression at the mRNA or protein level had lower overall survival.
Collapse
|
34
|
Lu Y, Papagerakis P, Yamakoshi Y, Hu JCC, Bartlett JD, Simmer JP. Functions of KLK4 and MMP-20 in dental enamel formation. Biol Chem 2008; 389:695-700. [PMID: 18627287 PMCID: PMC2688471 DOI: 10.1515/bc.2008.080] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two proteases are secreted into the enamel matrix of developing teeth. The early protease is enamelysin (MMP-20). The late protease is kallikrein 4 (KLK4). Mutations in MMP20 and KLK4 both cause autosomal recessive amelogenesis imperfecta, a condition featuring soft, porous enamel containing residual protein. MMP-20 is secreted along with enamel proteins by secretory-stage ameloblasts. Enamel protein-cleavage products accumulate in the space between the crystal ribbons, helping to support them. MMP-20 steadily cleaves accumulated enamel proteins, so their concentration decreases with depth. KLK4 is secreted by transition- and maturation-stage ameloblasts. KLK4 aggressively degrades the retained organic matrix following the termination of enamel protein secretion. The principle functions of MMP-20 and KLK4 in dental enamel formation are to facilitate the orderly replacement of organic matrix with mineral, generating an enamel layer that is harder, less porous, and unstained by retained enamel proteins.
Collapse
Affiliation(s)
- Yuhe Lu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109-1078
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109-1078
| | - Yasuo Yamakoshi
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109-1078
| | - Jan C-C. Hu
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109-1078
| | - John D. Bartlett
- Harvard-Forsyth Department of Oral Biology, Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109-1078
| |
Collapse
|
35
|
Abstract
Abstract
microRNAs (miRNAs) are a recently discovered class of small non-coding RNAs that regulate gene expression. Rapidly accumulating evidence has revealed that miRNAs are associated with cancer. The human tissue kalli-krein gene family is the largest contiguous family of proteases in the human genome, containing 15 genes. Many kallikreins have been reported as potential tumor markers. In this review, recent bioinformatics and experimental evidence is presented indicating that kallikreins are potential miRNA targets. The available experimental approaches to investigate these interactions and the potential diagnostic and therapeutic applications are also discussed. miRNAs represent a possible regulatory mechanism for controlling kallikrein expression at the post-transcriptional level. Many miRNAs were predicted to target kallikreins and a single miRNA can target more than one kallikrein. Recent evidence suggests that miRNAs can also exert ‘quantitative’ control of kallikreins by utilizing multiple targeting sites in the kallikrein mRNA. More research is needed to experimentally verify the in silico predictions and to investigate the possible role in tumor initiation and/or progression.
Collapse
|
36
|
Hansen KK, Oikonomopoulou K, Li Y, Hollenberg MD. Proteinases, proteinase-activated receptors (PARs) and the pathophysiology of cancer and diseases of the cardiovascular, musculoskeletal, nervous and gastrointestinal systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2008; 377:377-92. [PMID: 17952408 DOI: 10.1007/s00210-007-0194-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 09/19/2007] [Indexed: 12/31/2022]
Abstract
Proteinases like thrombin, trypsin and tissue kallikreins are now known to regulate cell signaling by cleaving and activating a novel family of G-protein-coupled proteinase-activated receptors (PARs 1 to 4) via exposure of a 'tethered' receptor-triggering ligand. On their own, short synthetic peptides based on the 'tethered ligand' sequences of the PARs (PAR-APs) can, in the absence of receptor proteolysis, selectively activate PARs 1, 2 and 4 and cause physiological responses both in vitro and in vivo. Using the PAR-APs as probes in vivo, it has been found that PAR activation can affect the vascular, renal, respiratory, gastrointestinal, musculoskeletal and nervous systems (both central and peripheral) and can promote cancer metastasis and invasion. The responses triggered by PARs 1, 2 and 4 are in keeping with an innate immune inflammatory response, ranging from vasodilatation to intestinal inflammation, increased cytokine production and increased nociception. Thus, PARs have been implicated in a number of disease states including cancer and inflammation of the cardiovascular, respiratory, musculoskeletal, gastrointestinal and nervous systems. Furthermore, PAR-regulating proteinases have been implicated in pathogen-induced inflammation. The identities of the proteinases that regulate PARs in these pathological settings in vivo have yet to be explored in depth. In addition to activating or dis-arming PARs, proteinases can also cause hormone-like effects by signaling mechanisms that do not involve the PARs and that may be as important as the activation of PARs. Thus, the working hypotheses of this article are: (1) that proteinases in general must now be considered as 'hormone-like' messengers that can signal either via PARs or other mechanisms and (2) that the PARs themselves, their activating serine proteinases and their associated signaling pathways can be considered as attractive targets for therapeutic drug development.
Collapse
Affiliation(s)
- Kristina K Hansen
- Department of Pharmacology & Therapeutics, Canadian Institutes of Health Research, Proteinases and Inflammation Network, Faculty of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | |
Collapse
|
37
|
Planque C, Li L, Zheng Y, Soosaipillai A, Reckamp K, Chia D, Diamandis EP, Goodglick L. A Multiparametric Serum Kallikrein Panel for Diagnosis of Non–Small Cell Lung Carcinoma. Clin Cancer Res 2008; 14:1355-62. [DOI: 10.1158/1078-0432.ccr-07-4117] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Emami N, Diamandis EP. New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family. Mol Oncol 2007; 1:269-87. [PMID: 19383303 DOI: 10.1016/j.molonc.2007.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/04/2007] [Accepted: 09/07/2007] [Indexed: 11/28/2022] Open
Abstract
The Kallikrein-related peptidase (KLK) family consists of fifteen conserved serine proteases that form the largest contiguous cluster of proteases in the human genome. While primarily recognized for their clinical utilities as potential disease biomarkers, new compelling evidence suggests that this family plays a significant role in various physiological processes, including skin desquamation, semen liquefaction, neural plasticity, and body fluid homeostasis. KLK activation is believed to be mediated through highly organized proteolytic cascades, regulated through a series of feedback loops, inhibitors, auto-degradation and internal cleavages. Gene expression is mainly hormone-dependent, even though transcriptional epigenetic regulation has also been reported. These regulatory mechanisms are integrated with various signaling pathways to mediate multiple functions. Dysregulation of these pathways has been implicated in a large number of neoplastic and non-neoplastic pathological conditions. This review highlights our current knowledge of structural/phylogenetic features, functional role and regulatory/signaling mechanisms of this important family of enzymes.
Collapse
Affiliation(s)
- Nashmil Emami
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|