1
|
Zhang L, Liu J, Xiao E, Han Q, Wang L. Sphingosine-1-phosphate related signalling pathways manipulating virus replication. Rev Med Virol 2023; 33:e2415. [PMID: 36597202 DOI: 10.1002/rmv.2415] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023]
Abstract
Viruses can create a unique cellular environment that facilitates replication and transmission. Sphingosine kinases (SphKs) produce sphingosine-1-phosphate (S1P), a bioactive sphingolipid molecule that performs both physiological and pathological effects primarily by activating a subgroup of the endothelial differentiation gene family of G-protein coupled cell surface receptors known as S1P receptors (S1PR1-5). A growing body of evidence indicates that the SphK/S1P axis is crucial for regulating cellular activities in virus infections like respiratory viruses, enteroviruses, hepatitis viruses, herpes viruses, and arboviruses replicate. Depending on the type of virus, pro- or anti-viral activities of the SphK/S1P axis sometimes rely on the host immune system and sometimes directly through intracellular signalling pathways or cell proliferation. Recent research has shown novel roles of S1P and SphK in viral replication. Sphingosine kinase isoforms (SphK1 and SphK2) levels can be manipulated by several viruses to promote the effects that are expected. Regulation of cellular signalling pathways plays a significant role in the mechanism. The purpose of this review is to provide insight of the characters played by the SphK/S1P axis throughout diverse viral infection processes. We then assess potential therapeutic methods that are based on S1P signalling and metabolism during viral infections.
Collapse
Affiliation(s)
- Lu Zhang
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Juan Liu
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Erya Xiao
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Qingzhen Han
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Lin Wang
- Center of Clinical Laboratory, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
2
|
Qiu Y, Shen J, Jiang W, Yang Y, Liu X, Zeng Y. Sphingosine 1-phosphate and its regulatory role in vascular endothelial cells. Histol Histopathol 2022; 37:213-225. [PMID: 35118637 DOI: 10.14670/hh-18-428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive metabolite of sphingomyelin. S1P activates a series of signaling cascades by acting on its receptors S1PR1-3 on endothelial cells (ECs), which plays an important role in endothelial barrier maintenance, anti-inflammation, antioxidant and angiogenesis, and thus is considered as a potential therapeutic biomarker for ischemic stroke, sepsis, idiopathic pulmonary fibrosis, cancers, type 2 diabetes and cardiovascular diseases. We presently review the levels of S1P in those vascular and vascular-related diseases. Plasma S1P levels were reduced in various inflammation-related diseases such as atherosclerosis and sepsis, but were increased in other diseases including type 2 diabetes, neurodegeneration, cerebrovascular damages such as acute ischemic stroke, Alzheimer's disease, vascular dementia, angina, heart failure, idiopathic pulmonary fibrosis, community-acquired pneumonia, and hepatocellular carcinoma. Then, we highlighted the molecular mechanism by which S1P regulated EC biology including vascular development and angiogenesis, inflammation, permeability, and production of reactive oxygen species (ROS), nitric oxide (NO) and hydrogen sulfide (H₂S), which might provide new ways for exploring the pathogenesis and implementing individualized therapy strategies for those diseases.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Yang
- Department of Orthopeadics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Molecular Mechanisms of Sphingolipid Transport on Plasma Lipoproteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:57-65. [DOI: 10.1007/978-981-19-0394-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Donati C, Cencetti F, Bernacchioni C, Vannuzzi V, Bruni P. Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cell Signal 2020; 78:109861. [PMID: 33253915 DOI: 10.1016/j.cellsig.2020.109861] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by the excessive accumulation of extracellular matrix components, leading to loss of tissue function in affected organs. Although the majority of fibrotic diseases have different origins, they have in common a persistent inflammatory stimulus and lymphocyte-monocyte interactions that determine the production of numerous fibrogenic cytokines. Treatment to contrast fibrosis is urgently needed, since some fibrotic diseases lead to systemic fibrosis and represent a major cause of death. In this article, the role of the bioactive sphingolipid sphingosine 1-phosphate (S1P) and its signalling pathway in the fibrosis of different tissue contexts is extensively reviewed, highlighting that it may represent an innovative and promising pharmacological therapeutic target for treating this devastating multifaceted disease. In multiple tissues S1P influences different aspects of fibrosis modulating the recruitment of inflammatory cells, as well as cell proliferation, migration and transdifferentiation into myofibroblasts, the cell type mainly involved in fibrosis development. Moreover, at the level of fibrotic lesions, S1P metabolism is profoundly influenced by multiple cross-talk with profibrotic mediators, such as transforming growth factor β, thus finely regulating the development of fibrosis. This article is part of a Special Issue entitled "Physiological and pathological roles of bioactive sphingolipids".
Collapse
Affiliation(s)
- Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy.
| | - Francesca Cencetti
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Valentina Vannuzzi
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| | - Paola Bruni
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", University of Florence, viale GB Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
5
|
Yue F, Xia K, Wei L, Xing L, Wu S, Shi Y, Lam SM, Shui G, Xiang X, Russell R, Zhang D. Effects of constant light exposure on sphingolipidomics and progression of NASH in high-fat-fed rats. J Gastroenterol Hepatol 2020; 35:1978-1989. [PMID: 32027419 DOI: 10.1111/jgh.15005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/25/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Non-alcoholic fatty liver disease (NAFLD) is a growing public health concern worldwide. With the progression of urbanization, light pollution is becoming an inevitable risk factor for NAFLD. However, the role of light pollution on NAFLD is insufficiently understood, and the underlying mechanism remains unclear. The present study explored effects of constant light exposure on NAFLD and elucidated its related mechanisms. METHODS Thirty-two male Sprague Dawley rats were divided into four groups (n = 8 each): (i) rats on a normal diet exposed to standard light-dark cycle (ND-LD); (ii) rats on a normal diet exposed to constant light (ND-LL); (iii) rats on a high-fat diet exposed to standard light-dark cycle (HFD-LD); and (iv) and rats on a high-fat diet exposed to constant light (HFD-LL). After 12 weeks of treatment, rats were sacrificed and pathophysiological assessments were performed. Targeted lipidomics was used to measure sphingolipids, including ceramides, glucosylceramides, and lactosylceramides, sphingomyelins, and sphingosine-1-phosphates in plasma and liver tissues. RESULTS In normal chow rats, constant light exposure led to glucose abnormalities and dyslipidemia. In high-fat-fed rats, constant light exposure exacerbated glucose abnormalities, dyslipidemia, insulin resistance, and inflammation and aggravated steatohepatitis. Compared with HFD-LD rats, HFD-LL had decreased plasma sphingosine-1-phosphate and elevated liver concentrations of total ceramide and specific ceramide species (ceramide d18:0/24:0, ceramide d18:1/22:0, ceramide d18:1/24:0, and ceramide d18:1/24:1), which were associated with increased hepatocyte apoptosis. CONCLUSIONS Constant light exposure causes dysregulation of sphingolipids and promotes steatohepatitis in high-fat-fed rats.
Collapse
Affiliation(s)
- Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Xia
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xingwei Xiang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Chen Z, Hu M. The apoM-S1P axis in hepatic diseases. Clin Chim Acta 2020; 511:235-242. [PMID: 33096030 DOI: 10.1016/j.cca.2020.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Liver dysfunction is always accompanied by lipid metabolism dysfunction. Apolipoprotein M (apoM), a member of the apolipoprotein family, is primarily expressed and secreted from the liver. apoM is the main chaperone of sphingosine-1-phosphate (S1P), a small signalling molecule associated with numerous physiologic and pathophysiologic processes. In addition to transport, apoM also influences the biologic effects of S1P. Most recently, numerous studies have investigated the potential role of the apoM-S1P axis in a variety of hepatic diseases. These include liver fibrosis, viral hepatitis B and C infection, hepatobiliary disease, non-alcoholic and alcoholic steatohepatitis, acute liver injury and hepatocellular carcinoma. In this review, the roles of apoM and S1P in the development of hepatic diseases are summarized, and novel insights into the diagnosis and treatment of hepatic diseases are discussed.
Collapse
Affiliation(s)
- Zhiyang Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, PR China.
| |
Collapse
|
7
|
Sah RK, Pati S, Saini M, Boopathi PA, Kochar SK, Kochar DK, Das A, Singh S. Reduction of Sphingosine Kinase 1 Phosphorylation and Activity in Plasmodium-Infected Erythrocytes. Front Cell Dev Biol 2020; 8:80. [PMID: 32195246 PMCID: PMC7062701 DOI: 10.3389/fcell.2020.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 01/11/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid mediator is involved in an array of biological processes and linked to pathological manifestations. Erythrocyte is known as the major reservoir for S1P as they lack S1P-degrading enzymes (S1P lyase and S1P phosphohydrolase) and harbor sphingosine kinase-1 (SphK-1) essential for sphingosine conversion to S1P. Reduced S1P concentration in serum was correlated with disease severity in patients with Plasmodium falciparum and Plasmodium vivax infections. Herein, we aimed to identify the underlying mechanism and contribution of host erythrocytes toward depleted S1P levels in Plasmodium-infected patients vs. healthy individuals. The level and activity of SphK-1 were measured in vitro in both uninfected and cultured P. falciparum-infected erythrocytes. Infected erythrocytes demonstrated a significant decrease in SphK-1 level in a time-dependent manner. We found that 10–42 h post invasion (hpi), SphK1 level was predominantly reduced to ∼50% in rings, trophozoites, and schizonts compared to uninfected erythrocytes. We next analyzed the phosphorylation status of SphK-1, a modification responsible for its activity and S1P production, in both uninfected control and Plasmodium-infected erythrocytes. Almost ∼50% decrease in phosphorylation of SphK-1 was observed that could be corroborated with significant reduction in the production and release of S1P in infected erythrocytes. Serum S1P levels were studied in parallel in P. falciparum (N = 15), P. vivax (N = 36)-infected patients, and healthy controls (N = 6). The findings revealed that S1P concentration was significantly depleted in uncomplicated malaria cases and was found to be lowest in complicated malaria and thrombocytopenia in both P. falciparum and P. vivax-infected groups (∗∗p < 0.01). The lower serum S1P level could be correlated with the reduced platelet count defining the role of S1P level in platelet formation. In conclusion, erythrocyte SphK-1 and S1P levels were studied in Plasmodium-infected individuals and erythrocytes that helped in characterizing the complications associated with malaria and thrombocytopenia, providing insights into the contribution of host erythrocyte biology in malaria pathogenesis. Finally, this study proposes the use of S1P and its analog as a novel adjunct therapy for malaria complications.
Collapse
Affiliation(s)
- Raj Kumar Sah
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | | | | | | | - Ashis Das
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Liu Y, Wang R, Zheng K, Xin Y, Jia S, Zhao X. Metabonomics analysis of liver in rats administered with chronic low-dose acrylamide. Xenobiotica 2020; 50:894-905. [PMID: 31928121 DOI: 10.1080/00498254.2020.1714791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current study aimed to investigate the hepatotoxicity of rats administered with chronic low-dose acrylamide (AA) by using metabonomics technology on the basis of ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). A total of 40 male Wistar rats were randomly divided into the following four groups: control, low-dose AA (0.2 mg/kg bw, non-carcinogenic end-point based on the induction of morphological nerve changes in rats), middle-dose AA (1 mg/kg bw), and high-dose AA (5 mg/kg bw). The rats continuously received AA by administering it in drinking water daily for 16 weeks. After the treatment, rat livers were collected for metabonomics analysis and histopathology examination. Principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) were used to investigate the metabonomics profile changes in rat liver tissues and screen the potential biomarkers.Fourteen metabolites were identified with significant changes in intensities (increased or decreased compared with the control group) as a result of treatment (p < 0.05 or p < 0.01). These metabolites included tauro-b-muricholic acid, docosapentaenoic acid, sphingosine 1-phosphate, taurodeoxycholic acid, lysoPE(20:5), cervonyl carnitine, linoleyl carnitine, docosahexaenoic acid, lysoPC(20:4), lysoPE(18:3), PA(20:4), stearidonyl carnitine, alpha-linolenic acid, and lysoPA(18:0).Results showed that chronic exposure to AA at NOAEL (0.2 mg/kg bw) exhibited no toxic effect in rat livers at the metabolic level. AA induced oxidative stress to the liver and disrupted lipid metabolism. The results of liver histopathology examination further supported the metabonomic results.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Ruijuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Kai Zheng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Youwei Xin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Cao C, Shi H, Zhang M, Bo L, Hu L, Li S, Chen S, Jia S, Liu YJ, Liu YL, Zhao X, Zhang L. Metabonomic analysis of toxic action of long-term low-level exposure to acrylamide in rat serum. Hum Exp Toxicol 2018; 37:1282-1292. [DOI: 10.1177/0960327118769708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study assessed the effects of long-term, low-dose acrylamide (AA) administration in rats using ultra-performance liquid chromatography–mass spectrometry. Forty male Wistar rats were randomly divided into the following four groups: control, low-dose AA (0.2 mg/kg BW), middle-dose AA (1 mg/kg BW), and high-dose AA (5 mg/kg BW). AA was administered to rats via drinking water ad libitum. After 16-week treatment, rat serum was collected for metabonomic analysis. Biochemical tests were further conducted to verify metabolic alterations. Eleven metabolites were identified with significant changes in intensities (increased or reduced) as a result of treatment. These metabolites included citric acid, pantothenic acid, isobutyryl-l-carnitine, eicosapentaenoic acid, docosahexaenoic acid, sphingosine 1-phosphate, LysoPC(20:4), LysoPC(22:6), LysoPE(20:3), undecanedioic acid, and dodecanedioic acid. Results indicate that chronic exposure to AA at no observed adverse effect level does not exert a toxic effect on rats at the body metabolism level. AA disturbed the metabolism of lipids and energy, affected the nervous system of rats, and induced oxidative stress and liver dysfunction.
Collapse
Affiliation(s)
- C Cao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - H Shi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - M Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - L Bo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - L Hu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - S Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - S Chen
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - S Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - YJ Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - YL Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - X Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, Heilongjiang, China
| | - L Zhang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
10
|
Kleuser B. Divergent Role of Sphingosine 1-Phosphate in Liver Health and Disease. Int J Mol Sci 2018; 19:ijms19030722. [PMID: 29510489 PMCID: PMC5877583 DOI: 10.3390/ijms19030722] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Arthur-Scheunert Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
11
|
YATOMI Y, KURANO M, IKEDA H, IGARASHI K, KANO K, AOKI J. Lysophospholipids in laboratory medicine. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:373-389. [PMID: 30541965 PMCID: PMC6374142 DOI: 10.2183/pjab.94.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lysophospholipids (LPLs), such as lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), and lysophosphatidylserine (LysoPS), are attracting attention as second-generation lipid mediators. In our laboratory, the functional roles of these lipid mediators and the mechanisms by which the levels of these mediators are regulated in vivo have been studied. Based on these studies, the clinical introduction of assays for LPLs and related proteins has been pursued and will be described in this review. Although assays of these lipids themselves are possible, autotaxin (ATX), apolipoprotein M (ApoM), and phosphatidylserine-specific phospholipase A1 (PS-PLA1) are more promising as alternate biomarkers for LPA, S1P, and LysoPS, respectively. Presently, ATX, which produces LPA through its lysophospholipase D activity, has been shown to be a useful laboratory test for the diagnosis and staging of liver fibrosis, whereas PS-PLA1 and ApoM are considered to be promising clinical markers reflecting the in vivo actions induced by LysoPS and S1P.
Collapse
Affiliation(s)
- Yutaka YATOMI
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: Y. Yatomi, Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan (e-mail: )
| | - Makoto KURANO
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi IKEDA
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji IGARASHI
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | - Kuniyuki KANO
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Junken AOKI
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| |
Collapse
|
12
|
Schmidt KG, Herrero San Juan M, Trautmann S, Berninger L, Schwiebs A, Ottenlinger FM, Thomas D, Zaucke F, Pfeilschifter JM, Radeke HH. Sphingosine-1-Phosphate Receptor 5 Modulates Early-Stage Processes during Fibrogenesis in a Mouse Model of Systemic Sclerosis: A Pilot Study. Front Immunol 2017; 8:1242. [PMID: 29033951 PMCID: PMC5626866 DOI: 10.3389/fimmu.2017.01242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare multi-organ autoimmune disease characterized by progressive skin fibrosis. Inflammation, type 2 immunity, and fibrogenic processes are involved in disease development and may be affected by sphingolipids. However, details about early-stage pathophysiological mechanisms and implicated mediators remain elusive. The sphingolipid sphingosine-1-phosphate (S1P) is elevated in the sera of SSc patients, and its receptor S1P5 is expressed in skin tissue. Nevertheless, almost nothing is known about the dermatological contribution of S1P5 to inflammatory and pro-fibrotic processes leading to the pathological changes seen in SSc. In this study, we observed a novel effect of S1P5 on the inflammatory processes during low-dose bleomycin (BLM)-induced fibrogenesis in murine skin. By comparing 2-week-treated skin areas of wild-type (WT) and S1P5-deficient mice, we found that S1P5 is important for the transcriptional upregulation of the Th2 characteristic transcription factor GATA-3 under treatment-induced inflammatory conditions, while T-bet (Th1) and FoxP3 (Treg) mRNA expression was regulated independently of S1P5. Additionally, treatment caused a regulation of S1P receptor 1 and S1P receptor 3 mRNA as well as a regulation of long-chain ceramide profiles, which both differ significantly between the genotypes. Despite S1P5-dependent differences regarding inflammatory processes, similar macroscopic evidence of fibrosis was detected in the skin histology of WT and S1P5-deficient mice after 4 weeks of subcutaneous BLM treatment. However, at the earlier 2-week point in time, the mRNA data of pro-collagen type 1 and SMAD7 indicate a pro-fibrotic S1P5 contribution in the applied SSc mouse model. In conclusion, we propose that S1P5 plays a role as a novel modulator during the early phase of BLM-caused fibrogenesis in murine skin. An immediate relationship between dermal S1P5 expression and fibrotic processes leading to skin alterations, such as formative for SSc pathogenesis, is indicated but should be studied more profound in further investigations. Therefore, this study is an initial step in understanding the role of S1P5-mediated effects during early stages of fibrogenesis, which may encourage the ongoing search for new therapeutic options for SSc patients.
Collapse
Affiliation(s)
- Katrin G Schmidt
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Martina Herrero San Juan
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Sandra Trautmann
- pharmazentrum frankfurt/ZAFES, Institute for Clinical Pharmacology, Hospital of the Goethe University, Frankfurt, Germany
| | - Lucija Berninger
- Dr Rolf M Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, Frankfurt, Germany
| | - Anja Schwiebs
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Florian M Ottenlinger
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Dominique Thomas
- pharmazentrum frankfurt/ZAFES, Institute for Clinical Pharmacology, Hospital of the Goethe University, Frankfurt, Germany
| | - Frank Zaucke
- Dr Rolf M Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, Frankfurt, Germany
| | - Josef M Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Heinfried H Radeke
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| |
Collapse
|
13
|
Li S, Xu P, Han L, Mao W, Wang Y, Luo G, Yang N. Disease-syndrome combination modeling: metabolomic strategy for the pathogenesis of chronic kidney disease. Sci Rep 2017; 7:8830. [PMID: 28821830 PMCID: PMC5562836 DOI: 10.1038/s41598-017-09311-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023] Open
Abstract
Conventional disease animal models have limitations on the conformity to the actual clinical situation. Disease-syndrome combination (DS) modeling may provide a more efficient strategy for biomedicine research. Disease model and DS model of renal fibrosis in chronic kidney disease were established by ligating the left ureter and by ligating unilateral ureteral combined with exhaustive swimming, respectively. Serum metabolomics was conducted to evaluate disease model and DS model by using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Potential endogenous biomarkers were identified by multivariate statistical analysis. There are no differences between two models regarding their clinical biochemistry and kidney histopathology, while metabolomics highlights their difference. It is found that abnormal sphingolipid metabolism is a common characteristic of both models, while arachidonic acid metabolism, linolenic acid metabolism and glycerophospholipid metabolism are highlighted in DS model. Metabolomics is a promising approach to evaluate experiment animal models. DS model are comparatively in more coincidence with clinical settings, and is superior to single disease model for the biomedicine research.
Collapse
Affiliation(s)
- Shasha Li
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China
| | - Peng Xu
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China
| | - Ling Han
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China
| | - Wei Mao
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China
| | - Yiming Wang
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China
- Department of Chemistry, Tsinghua University, No. 30 Shuangqing Road in Haidian Distric, Beijing, 100084, China
| | - Guoan Luo
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China.
- Department of Chemistry, Tsinghua University, No. 30 Shuangqing Road in Haidian Distric, Beijing, 100084, China.
| | - Nizhi Yang
- Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
14
|
Iqbal J, Walsh MT, Hammad SM, Hussain MM. Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends Endocrinol Metab 2017; 28:506-518. [PMID: 28462811 PMCID: PMC5474131 DOI: 10.1016/j.tem.2017.03.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/09/2017] [Accepted: 03/28/2017] [Indexed: 12/28/2022]
Abstract
Sphingolipids are structurally and functionally diverse molecules with significant physiologic functions and are found associated with cellular membranes and plasma lipoproteins. The cellular and plasma concentrations of sphingolipids are altered in several metabolic disorders and may serve as prognostic and diagnostic markers. Here we discuss various sphingolipid transport mechanisms and highlight how changes in cellular and plasma sphingolipid levels contribute to cardiovascular disease, obesity, diabetes, insulin resistance, and nonalcoholic fatty liver disease (NAFLD). Understanding of the mechanisms involved in intracellular transport, secretion, and extracellular transport may provide novel information that might be amenable to therapeutic targeting for the treatment of various metabolic disorders.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, NY 11203, USA; King Abdullah International Medical Research Center, MNGHA, Al Ahsa 31982, Saudi Arabia
| | - Meghan T Walsh
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, NY 11203, USA
| | - Samar M Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, NY 11203, USA; VA New York Harbor Healthcare System, Brooklyn, New York, NY 11209; Center for Diabetes and Obesity Research, NYU Winthrop Hospital, Mineola, NY 11501, USA.
| |
Collapse
|
15
|
Punsawad C, Viriyavejakul P. Reduction in serum sphingosine 1-phosphate concentration in malaria. PLoS One 2017; 12:e0180631. [PMID: 28666023 PMCID: PMC5493422 DOI: 10.1371/journal.pone.0180631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/19/2017] [Indexed: 11/29/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lipid mediator formed by the metabolism of sphingomyelin which is involved in the endothelial permeability and inflammation. Although the plasma S1P concentration is reportedly decreased in patients with cerebral malaria, the role of S1P in malaria is still unclear. The purpose of this study was to examine the impact of malaria on circulating S1P concentration and its relationship with clinical data in malaria patients. Serum S1P levels were measured in 29 patients with P. vivax, 30 patients with uncomplicated P. falciparum, and 13 patients with complicated P. falciparum malaria on admission and on day 7, compared with healthy subjects (n = 18) as control group. The lowest level of serum S1P concentration was found in the complicated P. falciparum malaria group, compared with P. vivax, uncomplicated P. falciparum patients and healthy controls (all p < 0.001). In addition, serum S1P level was positively correlated with platelet count, hemoglobin and hematocrit levels in malaria patients. In conclusions, low levels of S1P are associated with the severity of malaria, and are correlated with thrombocytopenia and anemia. These findings highlight a role of S1P in the severity of malaria and support the use of S1P and its analogue as a novel adjuvant therapy for malaria complications.
Collapse
Affiliation(s)
- Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Tropical Diseases and Parasitic Infectious Diseases Research Group, Walailak University, Nakhon Si Thammarat, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Rohrbach T, Maceyka M, Spiegel S. Sphingosine kinase and sphingosine-1-phosphate in liver pathobiology. Crit Rev Biochem Mol Biol 2017; 52:543-553. [PMID: 28618839 DOI: 10.1080/10409238.2017.1337706] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over 20 years ago, sphingosine-1-phosphate (S1P) was discovered to be a bioactive signaling molecule. Subsequent studies later identified two related kinases, sphingosine kinase 1 and 2, which are responsible for the phosphorylation of sphingosine to S1P. Many stimuli increase sphingosine kinase activity and S1P production and secretion. Outside the cell, S1P can bind to and activate five S1P-specific G protein-coupled receptors (S1PR1-5) to regulate many important cellular and physiological processes in an autocrine or paracrine manner. S1P is found in high concentrations in the blood where it functions to control vascular integrity and trafficking of lymphocytes. Obesity increases blood S1P levels in humans and mice. With the world wide increase in obesity linked to consumption of high-fat, high-sugar diets, S1P is emerging as an accomplice in liver pathobiology, including acute liver failure, metabolic syndrome, control of blood lipid and glucose homeostasis, nonalcoholic fatty liver disease, and liver fibrosis. Here, we review recent research on the importance of sphingosine kinases, S1P, and S1PRs in liver pathobiology, with a focus on exciting insights for new therapeutic modalities that target S1P signaling axes for a variety of liver diseases.
Collapse
Affiliation(s)
- Timothy Rohrbach
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| | - Michael Maceyka
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| | - Sarah Spiegel
- a Department of Biochemistry and Molecular Biology and the Massey Cancer Center , VCU School of Medicine , Richmond , VA , USA
| |
Collapse
|
17
|
Becker S, Kinny-Köster B, Bartels M, Scholz M, Seehofer D, Berg T, Engelmann C, Thiery J, Ceglarek U, Kaiser T. Low sphingosine-1-phosphate plasma levels are predictive for increased mortality in patients with liver cirrhosis. PLoS One 2017; 12:e0174424. [PMID: 28334008 PMCID: PMC5363961 DOI: 10.1371/journal.pone.0174424] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/08/2017] [Indexed: 12/24/2022] Open
Abstract
Background & aim The association of circulating sphingosine-1-phosphate (S1P), a bioactive lipid involved in various cellular processes, and related metabolites such as sphinganine-1-phosphate (SA1P) and sphingosine (SPH) with mortality in patients with end-stage liver disease is investigated in the presented study. S1P as a bioactive lipid mediator, is involved in several cellular processes, however, in end-stage liver disease its role is not understood. Methods The study cohort consisted of 95 patients with end-stage liver disease and available information on one-year outcome. The median MELD (Model for end-stage liver disease) score was 12.41 (Range 6.43–39.63). The quantification of sphingolipids in citrated plasma specimen was performed after methanolic protein precipitation followed by hydrophilic interaction liquid chromatography and tandem mass spectrometric detection. Results S1P and SA1P displayed significant correlations with the MELD score. Patients with circulating S1P levels below the lowest tertile (110.68 ng/ml) showed the poorest one-year survival rate of only 57.1%, whereas one-year survival rate in patients with S1P plasma levels above 165.67 ng/ml was 93.8%. In a multivariate cox regression analysis including platelet counts, concentrations of hemoglobin and MELD score, S1P remained a significant predictor for three-month and one-year mortality. Conclusions Low plasma S1P concentrations are highly significantly associated with prognosis in end-stage liver disease. This association is independent of the stage of liver disease. Further studies should be performed to investigate S1P, its role in the pathophysiology of liver diseases and its potential for therapeutic interventions.
Collapse
Affiliation(s)
- Susen Becker
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnosis, University Hospital Leipzig, Leipzig, Germany
| | - Benedict Kinny-Köster
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnosis, University Hospital Leipzig, Leipzig, Germany
| | - Michael Bartels
- Department of Visceral, Vascular, Thoracic and Transplant Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE – Leipzig Research Center for Civilization Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Daniel Seehofer
- Department of Visceral, Vascular, Thoracic and Transplant Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Thomas Berg
- Department of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Cornelius Engelmann
- Department of Gastroenterology and Rheumatology, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnosis, University Hospital Leipzig, Leipzig, Germany
- LIFE – Leipzig Research Center for Civilization Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnosis, University Hospital Leipzig, Leipzig, Germany
- LIFE – Leipzig Research Center for Civilization Diseases, University Hospital Leipzig, Leipzig, Germany
| | - Thorsten Kaiser
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnosis, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
18
|
Chen JY, Newcomb B, Zhou C, Pondick JV, Ghoshal S, York SR, Motola DL, Coant N, Yi JK, Mao C, Tanabe KK, Bronova I, Berdyshev EV, Fuchs BC, Hannun Y, Chung RT, Mullen AC. Tricyclic Antidepressants Promote Ceramide Accumulation to Regulate Collagen Production in Human Hepatic Stellate Cells. Sci Rep 2017; 7:44867. [PMID: 28322247 PMCID: PMC5359599 DOI: 10.1038/srep44867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) in response to injury is a key step in hepatic fibrosis, and is characterized by trans-differentiation of quiescent HSCs to HSC myofibroblasts, which secrete extracellular matrix proteins responsible for the fibrotic scar. There are currently no therapies to directly inhibit hepatic fibrosis. We developed a small molecule screen to identify compounds that inactivate human HSC myofibroblasts through the quantification of lipid droplets. We screened 1600 compounds and identified 21 small molecules that induce HSC inactivation. Four hits were tricyclic antidepressants (TCAs), and they repressed expression of pro-fibrotic factors Alpha-Actin-2 (ACTA2) and Alpha-1 Type I Collagen (COL1A1) in HSCs. RNA sequencing implicated the sphingolipid pathway as a target of the TCAs. Indeed, TCA treatment of HSCs promoted accumulation of ceramide through inhibition of acid ceramidase (aCDase). Depletion of aCDase also promoted accumulation of ceramide and was associated with reduced COL1A1 expression. Treatment with B13, an inhibitor of aCDase, reproduced the antifibrotic phenotype as did the addition of exogenous ceramide. Our results show that detection of lipid droplets provides a robust readout to screen for regulators of hepatic fibrosis and have identified a novel antifibrotic role for ceramide.
Collapse
Affiliation(s)
- Jennifer Y Chen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Benjamin Newcomb
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Chan Zhou
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Joshua V Pondick
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Sarani Ghoshal
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA USA
| | - Samuel R York
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Daniel L Motola
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Nicolas Coant
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Jae Kyo Yi
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Cungui Mao
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Kenneth K Tanabe
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA USA
| | | | | | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA USA
| | - Yusuf Hannun
- Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Raymond T Chung
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Alan C Mullen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA.,Harvard Stem Cell Institute, Cambridge, MA 02138 USA
| |
Collapse
|
19
|
Sato M, Ikeda H, Uranbileg B, Kurano M, Saigusa D, Aoki J, Maki H, Kudo H, Hasegawa K, Kokudo N, Yatomi Y. Sphingosine kinase-1, S1P transporter spinster homolog 2 and S1P2 mRNA expressions are increased in liver with advanced fibrosis in human. Sci Rep 2016; 6:32119. [PMID: 27562371 PMCID: PMC4999825 DOI: 10.1038/srep32119] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
The role of sphingosine 1-phosphate (S1P) in liver fibrosis or inflammation was not fully examined in human. Controversy exists which S1P receptors, S1P1 and S1P3 vs S1P2, would be importantly involved in its mechanism. To clarify these matters, 80 patients who received liver resection for hepatocellular carcinoma and 9 patients for metastatic liver tumor were enrolled. S1P metabolism was analyzed in background, non-tumorous liver tissue. mRNA levels of sphingosine kinase 1 (SK1) but not SK2 were increased in livers with fibrosis stages 3-4 compared to those with 0-2 and to normal liver. However, S1P was not increased in advanced fibrotic liver, where mRNA levels of S1P transporter spinster homolog 2 (SPNS2) but not S1P-degrading enzymes were enhanced. Furthermore, mRNA levels of S1P2 but not S1P1 or S1P3 were increased in advanced fibrotic liver. These increased mRNA levels of SK1, SPNS2 and S1P2 in fibrotic liver were correlated with α-smooth muscle actin mRNA levels in liver, and with serum ALT levels. In conclusion, S1P may be actively generated, transported to outside the cells, and bind to its specific receptor in human liver to play a role in fibrosis or inflammation. Altered S1P metabolism in fibrotic liver may be their therapeutic target.
Collapse
Affiliation(s)
- Masaya Sato
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan.,CREST, JST, Japan
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan.,CREST, JST, Japan
| | - Daisuke Saigusa
- CREST, JST, Japan.,Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo machi, Aobaku Sendai, Miyagi, Japan
| | - Junken Aoki
- CREST, JST, Japan.,Graduate School of Pharmaceutical Science, Tohoku University, 6-3, Ara-makiazaaoba, Aobaku, Sendai, Miyagi, Japan
| | - Harufumi Maki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Hiroki Kudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo Japan.,CREST, JST, Japan
| |
Collapse
|
20
|
Frati A, Ricci B, Pierucci F, Nistri S, Bani D, Meacci E. Role of sphingosine kinase/S1P axis in ECM remodeling of cardiac cells elicited by relaxin. Mol Endocrinol 2016; 29:53-67. [PMID: 25415609 DOI: 10.1210/me.2014-1201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The initiation and progression of heart failure is linked to adverse cardiac remodeling of the extracellular matrix (ECM) during disease mainly through the deregulation of myocardial metalloproteinases (MMPs). Relaxin (RLX), a peptide hormone acting as a physiological cardiac effector, is a key regulator of ECM remodeling in reproductive and nonreproductive tissues. Studying primary cultures of mouse cardiac muscle cells and rat H9c2 cardiomyoblasts, we have obtained evidence for a new signaling pathway activated by RLX to induce ECM remodeling that involves the bioactive sphingolipids sphingosine-1-phosphate (S1P) and ceramide. In both cell populations, recombinant human RLX increased sphingosine kinase activity and S1P formation, whereas sphingomyelin and ceramide content were decreased in [(3)H]serine-labeled cells. According to the literature, RLX promoted MMP-2 and MMP-9 expression/release. Pharmacological inhibition of sphingolipid metabolism and silencing of sphingosine kinase 1, the enzyme responsible for S1P formation, were able to prevent MMP expression/release elicited by the hormone and induce the expression of tissue inhibitor of MMPs. In addition, we found that sphingolipid signaling is required for the regulation of connective tissue growth factor, a member of the CCN 1-3 family of genes that are involved in cell proliferation and differentiation. Finally, the induction of cardiomyoblast maturation induced by RLX was also found to be counteracted by inhibition of S1P formation. In conclusion, these findings provide a novel mechanism by which RLX acts on cardiac ECM remodeling and cardiac cell differentiation and offer interesting therapeutic options to prevent heart fibrosis and to favor myocardial regeneration.
Collapse
Affiliation(s)
- Alessia Frati
- Department of Biomedical, Experimental, and Clinical Sciences (A.F., B.R., F.P., E.M.), Research Unit of Biochemistry, and Department of Experimental and Clinical Medicine (S.N., D.B.), Research Unit of Histology and Embryology, University of Florence, 50134 Florence, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Li JF, Qu F, Zheng SJ, Ren F, Wu HL, Liu M, Ren JY, Chen Y, Duan ZP, Zhang JL. Plasma sphingolipids: potential biomarkers for severe hepatic fibrosis in chronic hepatitis C. Mol Med Rep 2015; 12:323-330. [PMID: 25695872 DOI: 10.3892/mmr.2015.3361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 01/29/2015] [Indexed: 01/06/2023] Open
Abstract
The plasma profile of sphingolipids in hepatic fibrosis patients with chronic hepatitis C (CHC) is rarely considered at present. The association between plasma sphingolipids and severe fibrosis in CHC remains an obscure area of research. The aim of the present study was to assess the plasma profile of sphingolipids and to examine the association between plasma sphingolipids and severe fibrosis in CHC, in order to identify potential novel markers of severe fibrosis in CHC. A cohort of 120 treatment-naïve patients with CHC were included in the present study. Liver biopsies were performed and routine serological indicators were measured. Plasma sphingolipids were detected using high performance liquid chromatography tandem mass spectrometry. A total of 44 plasma sphingolipids were detected. Plasma hexosylceramide (HexCer; d18:1/12:0), HexCer (d18:1/16:0) and HexCer (d18:1/22:0) were shown to be significantly different in patients with CHC between those with and without severe fibrosis (Metavir F ≥ 3; P < 0.05). HexCer (d18:1/12:0) was observed to be closely associated with severe fibrosis in CHC [odds ratio (OR)=1.03] following adjustment for confounding variables in a multivariate analysis. HexCer (d18:1/12:0) had diagnostic value for severe fibrosis in CHC [area under the curve (AUC)=0.69]. In patients with CHC who had developed significant fibrosis (Metavir F ≥ 2), HexCer (d18:1/12:0) remained closely associated with severe fibrosis (OR=1.08) in this subgroup. In addition, HexCer (d18:1/12:0) had sufficient diagnostic ability (AUC=0.73) to distinguish severe fibrosis in patients with CHC with significant fibrosis. In conclusion, the present study indicated that plasma HexCer (d18:1/12:0) exhibits a close correlation with severe hepatic fibrosis in CHC, particularly in patients who have significant fibrosis. Additionally, HexCer (d18:1/12:0) may be a potential marker of severe hepatic fibrosis in CHC.
Collapse
Affiliation(s)
- Jun-Feng Li
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Feng Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Su-Jun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Feng Ren
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Hui-Li Wu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Mei Liu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Jin-Yu Ren
- Evergreen Wellness Center, Kansas College of Chinese Medicine, Wichita, Kansas 67207, USA
| | - Yu Chen
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Zhong-Ping Duan
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
22
|
Książek M, Chacińska M, Chabowski A, Baranowski M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res 2015; 56:1271-81. [PMID: 26014962 PMCID: PMC4479332 DOI: 10.1194/jlr.r059543] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/12/2015] [Indexed: 12/16/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts either as an intracellular messenger or as a ligand for its membrane receptors. S1P is a normal constituent of blood, where it is found both in plasma and blood cells. Compared with other cell types, sphingolipid metabolism in erythrocytes and platelets has unique features that allow the erythrocytes and platelets to accumulate S1P. In plasma, S1P is bound mainly to HDLs and albumin. Of note, metabolism and biological activity of S1P is to a large extent affected by the type of its carrier. Plasma S1P is characterized by a short half-life, indicating rapid clearance by degradative enzymes and the presence of high-capacity sources involved in maintaining its high concentration. These sources include blood cells, vascular endothelium, and hepatocytes. However, the extent to which each of these contributes to the plasma pool of S1P is a matter of debate. Circulating S1P plays a significant physiological role. It was found to be the key regulator of lymphocyte trafficking, endothelial barrier function, and vascular tone. The purpose of this review is to summarize the present state of knowledge on the metabolism, transport, and origin of plasma S1P, and to discuss the mechanisms regulating its homeostasis in blood.
Collapse
Affiliation(s)
- Monika Książek
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marta Chacińska
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
23
|
Possible involvement of sphingomyelin in the regulation of the plasma sphingosine 1-phosphate level in human subjects. Clin Biochem 2015; 48:690-7. [PMID: 25863111 DOI: 10.1016/j.clinbiochem.2015.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid mediator. Although the plasma S1P concentration is reportedly determined by cellular components, including erythrocytes, platelets, and vascular endothelial cells, the possible involvement of other factors, such as serum sphingomyelin (SM) and autotaxin (ATX), remains to be elucidated. DESIGN AND METHODS We measured S1P using high-performance liquid chromatography (HPLC), SM and lysophosphatidic acid (LPA) using enzymatic assays, ATX antigen using a two-site enzyme immunoassay, and ATX activity using a lysophospholipase D activity assay. To fractionate the lipoproteins, plasma samples were separated using fast protein liquid chromatography (FPLC) utilizing a Superose 6 column. RESULTS The plasma S1P level was positively correlated with the levels of SM and lysophosphatidylcholine, but not with the level of phosphatidylcholine. Although SM was present in the very low-density lipoprotein (VLDL) fraction, neither the plasma S1P level nor the SM level was affected by feeding. The plasma S1P level was negatively correlated with the ATX activity. Although the incubation of 100 μmol/L of sphingosylphosphorylcholine (SPC) with the serum resulted in a significant increase in the S1P level because of the presence of ATX, the physiological concentration of SPC did not mimic this effect. CONCLUSION The plasma S1P level was affected by the serum SM level, while the possibility of ATX involvement in the increase in the plasma S1P level was considered to be remote at least in healthy human subjects.
Collapse
|
24
|
Grammatikos G, Ferreiros N, Bon D, Schwalm S, Dietz J, Berkowski C, Fitting D, Herrmann E, Zeuzem S, Sarrazin C, Pfeilschifter J. Variations in serum sphingolipid levels associate with liver fibrosis progression and poor treatment outcome in hepatitis C virus but not hepatitis B virus infection. Hepatology 2015; 61:812-22. [PMID: 25348752 DOI: 10.1002/hep.27587] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/24/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Ablation of very-long-chain ceramides (Cers) with consecutive elevations in sphinganine levels has been shown to cause a severe hepatopathy in a knockout mouse model. We have recently shown that serum sphingolipids (SLs) are deregulated in patients with chronic liver disease. However, their role as possible biomarkers in liver fibrosis remains to date unexplored. We assessed, using liquid chromatography/tandem mass spectrometry, serum concentrations of various SL metabolites in 406 patients with chronic viral hepatitis, 203 infected with genotype 1 hepatitis C virus (HCV) and 203 with hepatitis B virus (HBV), respectively. We observed significant variations of serum SLs, with sphingosine and sphinganine being, both in univariate (P<0.05) as well as in multivariate analysis, significantly associated to severity of liver fibrosis in HCV-infected patients (odds ratio [OR]: 1.111; confidence interval [CI]: 1.028-1.202; P=0.007 and OR, 0.634; CI, 0.435-0.925; P=0.018, respectively). Serum SLs correlated significantly with serum triglyceride and cholesterol levels as well as with insulin resistance, defined by the homeostatic model assessment index, in HCV patients. Sustained viral response rates in HCV patients were independently predicted by serum C24Cer (OR, 0.998; CI, 0.997-0.999; P=0.001), its unsaturated derivative C24:1Cer (OR, 1.001; CI, 1.000-1.002; P=0.059), and C18:1Cer (OR, 0.973; CI, 0.947-0.999; P=0.048), together with ferritin (OR, 1.006; CI, 1.003-1.010; P<0.001), alkaline phosphatase (OR, 1.020; CI, 1.001-1.039; P=0.032), and interleukin-28B genotype (OR, 9.483; CI, 3.139-28.643; P<0.001). CONCLUSION Our study demonstrates a tight interaction between variations in serum SL levels and progression of liver fibrosis as well as responsiveness to antiviral therapy. Particularly, sphingosine, sphinganine, and C24Cer appear as promising novel biomarkers in chronic HCV infection and should be further evaluated within the noninvasive prediction of liver fibrosis.
Collapse
Affiliation(s)
- Georgios Grammatikos
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Frankfurt am Main, Germany; Goethe University Hospital, Medizinische Klinik 1, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wilkerson BA, Argraves KM. The role of sphingosine-1-phosphate in endothelial barrier function. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1841:1403-1412. [PMID: 25009123 PMCID: PMC4169319 DOI: 10.1016/j.bbalip.2014.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 02/08/2023]
Abstract
Loss of endothelial barrier function is implicated in the etiology of metastasis, atherosclerosis, sepsis and many other diseases. Studies suggest that sphingosine-1-phosphate (S1P), particularly HDL-bound S1P (HDL-S1P) is essential for endothelial barrier homeostasis and that HDL-S1P may be protective against the loss of endothelial barrier function in disease. This review summarizes evidence providing mechanistic insights into how S1P maintains endothelial barrier function, highlighting the recent findings that implicate the major S1P carrier, HDL, in the maintenance of the persistent S1P-signaling needed to maintain endothelial barrier function. We review the mechanisms proposed for HDL maintenance of persistent S1P-signaling, the evidence supporting these mechanisms and the remaining fundamental questions.
Collapse
Affiliation(s)
- Brent A Wilkerson
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., BSB650, Charleston, SC 29425, USA
| | - Kelley M Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., BSB650, Charleston, SC 29425, USA.
| |
Collapse
|
26
|
Li JF, Qu F, Zheng SJ, Ren JY, Wu HL, Liu M, Liu H, Ren F, Chen Y, Zhang JL, Duan ZP. Plasma sphingolipids as potential indicators of hepatic necroinflammation in patients with chronic hepatitis C and normal alanine aminotransferase level. PLoS One 2014; 9:e95095. [PMID: 24736528 PMCID: PMC3988168 DOI: 10.1371/journal.pone.0095095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/23/2014] [Indexed: 01/05/2023] Open
Abstract
Accurate estimation of hepatic necroinflammation caused by chronic hepatitis C (CHC) is crucial for prediction of prognosis and design of therapeutic strategy, which is particularly true for CHC patients with normal alanine aminotransferase (ALT) level. Recent studies have shown that sphingolipids have a close relationship with hepatitis C virus infection. The present study aimed to identify plasma sphingolipids related to hepatic necroinflammation. We included 120 treatment-naïve CHC patients and 64/120 had normal ALT levels (<40 U/L). CHC patients who underwent liver biopsies were subjected to Scheuer scoring analysis for scope of hepatic inflammation. Plasma sphingolipids were detected by high-performance liquid chromatography tandem mass spectrometry. Our results showed 44 plasma sphingolipids were detected altogether. Of all detected sphingolipids, hexosylceramide (HexCer) (d18∶1/22∶0) and HexCer (d18∶1/24∶0) showed a significant difference among G0/G1, G2, and G3/G4 (P<0.05). For identifying hepatic necroinflammation (G≥2), after adjusting other factors, the odds ratio (OR) of HexCer (d18∶1/22∶0) reached 1.01 (95% confidence interval [CI]: 1.00–1.02). Furthermore, the area under the curve (AUC) of HexCer (d18∶1/22∶0) was 0.7 (P = 0.01) and approached that of ALT (AUC = 0.78). However, in CHC patients with normal ALT, HexCer (d18∶1/22∶0) was an independent factor (OR: 1.02, 95% CI: 1.01–1.03) to identify the hepatic necroinflammation (G≥2). HexCer (d18∶1/22∶0) not only showed the largest AUC (0.78, P = 0.001), but also exhibited the highest specificity of all indicators. These results indicate that plasma HexCer (d18∶1/22∶0) is a potential indicator to distinguish hepatic necroinflammation in CHC patients. For CHC with normal ALT, the ability of HexCer (d18∶1/22∶0) to distinguish hepatic necroinflammation might be superior to conventional serum indicators.
Collapse
Affiliation(s)
- Jun-Feng Li
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Feng Qu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Su-Jun Zheng
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jin-Yu Ren
- Evergreen Wellness Center, Kansas College of Chinese Medicine, Wichita, Kansas, United States of America
| | - Hui-Li Wu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail: (ZPD); (JLZ)
| | - Zhong-Ping Duan
- Artificial Liver Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- * E-mail: (ZPD); (JLZ)
| |
Collapse
|
27
|
Kim SJ, Back SH, Koh JM, Yoo HJ. Quantitative determination of major platelet activating factors from human plasma. Anal Bioanal Chem 2014; 406:3111-8. [PMID: 24682147 DOI: 10.1007/s00216-014-7736-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/20/2022]
Abstract
Platelet activating factor (PAF) is a potent lipid mediator that is involved in many important biological functions, including platelet aggregation and neuronal differentiation. Although an ELISA assay has been used to measure PAF levels, it cannot distinguish between its isoforms. To achieve this, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been used instead. However, isobaric lysophosphatidylcholine (lyso PC), which is often present in large amounts in complex biological samples and has similar retention times in many LC conditions, can affect the accurate measurement of PAF. The present study examined the fragmentation behavior of major PAF and lyso PC during various MS/MS conditions. Fragment ions at m/z 184 and at m/z 104 were abundantly observed from MS/MS of lyso PCs. PAF provided a dominant fragment ion at m/z 184, but a fragment ion at m/z 104 was almost never produced, regardless of the collision energy. Thus, the two fragment ions at m/z 184 and m/z 104 were used to accurately measure PAF levels. First, the fragment ion at m/z 184 and the retention time of PAF in LC-MS/MS were used to identify and quantitate PAF. However, if there were small retention time shifts, which are common in multiple sample runs, and lipid composition in a sample is very complicated, the fragment ion at m/z 104 was used to confirm whether the fragment ion at m/z 184 belonged to PAF. This novel method accurately determined the major PAF (C16:0 PAF, C18:0 PAF, and C18:1 PAF) levels in human plasma.
Collapse
Affiliation(s)
- Su Jung Kim
- Biomedical Research Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, 138-736, Republic of Korea
| | | | | | | |
Collapse
|
28
|
O'Sullivan C, Dev KK. The structure and function of the S1P1 receptor. Trends Pharmacol Sci 2013; 34:401-12. [PMID: 23763867 DOI: 10.1016/j.tips.2013.05.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) receptors (S1PRs) belong to the class A family of G protein-coupled receptors (GPCRs). S1PRs are widely expressed on many cell types, including those of the immune, cardiovascular, and central nervous systems. The S1PR family is rapidly gaining attention as an important mediator of many cellular processes, including cell differentiation, migration, survival, angiogenesis, calcium homeostasis, inflammation and immunity. Importantly, S1PRs are known drug targets for multiple sclerosis (MS), for which the newly developed oral therapy fingolimod, an S1PR modulator, has recently been approved for clinical use. Much progress has also recently been made in the field of structural biology and in the modeling of heterotrimeric GPCRs allowing the crystal structure of the S1PR1 subtype to be elucidated and key interactions defined. Here, we outline the structure and function of S1PR1, highlighting the key residues involved in receptor activation, signaling, transmembrane interactions, ligand binding, post-translational modification, and protein-protein interactions.
Collapse
Affiliation(s)
- Catherine O'Sullivan
- Molecular Neuropharmacology, Department of Physiology, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
29
|
Kurano M, Tsukamoto K, Ohkawa R, Hara M, Iino J, Kageyama Y, Ikeda H, Yatomi Y. Liver involvement in sphingosine 1-phosphate dynamism revealed by adenoviral hepatic overexpression of apolipoprotein M. Atherosclerosis 2013; 229:102-9. [PMID: 23664237 DOI: 10.1016/j.atherosclerosis.2013.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 02/17/2013] [Accepted: 04/14/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Sphingosine 1-phosphate (S1P) is a vasoprotective lipid mediator that is mainly carried on HDL in the circulation and several anti-atherosclerotic properties of HDL is considered to be ascribed to S1P. Since S1P riding on HDL was recently shown to bind to apolipoprotein M (apoM), which is derived from liver, we analyzed the possible involvement of liver in S1P metabolism. METHODS AND RESULTS Using adenoviruses, we overexpressed apoM in HepG2 cells and mice livers and found that both the medium/plasma and cell/liver S1P contents increased. Among lipoprotein subclasses, S1P contents increased mainly in HDL fractions. On the other hand, hepatectomy resulted in the reduction of plasma S1P levels in mice. The incubation of S1P in the conditional medium of apoM-overexpressing HepG2 cells interfered with S1P degradation. Furthermore, adenoviral hepatic overexpression of apoM resulted in increase in the S1P level of plasma but not of blood cells, while combination of hepatic apoM overexpression and intraperitoneal administration of C₁₇-sphingosine resulted in the increase in the C₁₇-S1P level both in livers and in plasma, but again not in blood cells. CONCLUSIONS Livers are involved in S1P dynamism, and it was suggested that apoM, produced from livers, increases circulating plasma S1P by augmenting the S1P output from livers and modifies extracellular S1P metabolism.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kageyama Y, Ikeda H, Watanabe N, Nagamine M, Kusumoto Y, Yashiro M, Satoh Y, Shimosawa T, Shinozaki K, Tomiya T, Inoue Y, Nishikawa T, Ohtomo N, Tanoue Y, Yokota H, Koyama T, Ishimaru K, Okamoto Y, Takuwa Y, Koike K, Yatomi Y. Antagonism of sphingosine 1-phosphate receptor 2 causes a selective reduction of portal vein pressure in bile duct-ligated rodents. Hepatology 2012; 56:1427-38. [PMID: 22505286 DOI: 10.1002/hep.25780] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Sinusoidal vasoconstriction, in which hepatic stellate cells operate as contractile machinery, has been suggested to play a pivotal role in the pathophysiology of portal hypertension. We investigated whether sphingosine 1-phosphate (S1P) stimulates contractility of those cells and enhances portal vein pressure in isolated perfused rat livers with Rho activation by way of S1P receptor 2 (S1P(2) ). Rho and its effector, Rho kinase, reportedly contribute to the pathophysiology of portal hypertension. Thus, a potential effect of S1P(2) antagonism on portal hypertension was examined. Intravenous infusion of the S1P(2) antagonist, JTE-013, at 1 mg/kg body weight reduced portal vein pressure by 24% without affecting mean arterial pressure in cirrhotic rats induced by bile duct ligation at 4 weeks after the operation, whereas the same amount of S1P(2) antagonist did not alter portal vein pressure and mean arterial pressure in control sham-operated rats. Rho kinase activity in the livers was enhanced in bile duct-ligated rats compared to sham-operated rats, and this enhanced Rho kinase activity in bile duct-ligated livers was reduced after infusion of the S1P(2) antagonist. S1P(2) messenger RNA (mRNA) expression, but not S1P(1) or S1P(3) , was increased in bile duct-ligated livers of rats and mice and also in culture-activated rat hepatic stellate cells. S1P(2) expression, determined in S1P 2LacZ/+ mice, was highly increased in hepatic stellate cells of bile duct-ligated livers. Furthermore, the increase of Rho kinase activity in bile duct-ligated livers was observed as early as 7 days after the operation in wildtype mice, but was less in S1P 2-/- mice. CONCLUSION S1P may play an important role in the pathophysiology of portal hypertension with Rho kinase activation by way of S1P(2) . The S1P(2) antagonist merits consideration as a novel therapeutic agent for portal hypertension.
Collapse
MESH Headings
- Animals
- Bile Ducts/surgery
- Cells, Cultured/drug effects
- Disease Models, Animal
- Enzyme Activation/drug effects
- Enzyme Activation/genetics
- Gene Expression Regulation
- Hemodynamics/drug effects
- Hemodynamics/physiology
- Hepatic Stellate Cells/drug effects
- Hepatic Stellate Cells/physiology
- Hypertension, Portal/drug therapy
- Hypertension, Portal/physiopathology
- Immunoblotting
- Immunohistochemistry
- Infusions, Intravenous
- Ligation
- Male
- Mice
- Mice, Transgenic
- Pyrazoles/pharmacology
- Pyridines/pharmacology
- Random Allocation
- Rats
- Rats, Sprague-Dawley
- Real-Time Polymerase Chain Reaction
- Receptors, Lysosphingolipid/antagonists & inhibitors
- Receptors, Lysosphingolipid/drug effects
- Receptors, Lysosphingolipid/genetics
- Reference Values
- Sensitivity and Specificity
- rho-Associated Kinases/drug effects
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Yuko Kageyama
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schwalm S, Pfeilschifter J, Huwiler A. Sphingosine-1-phosphate: a Janus-faced mediator of fibrotic diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:239-50. [PMID: 22889995 DOI: 10.1016/j.bbalip.2012.07.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/27/2012] [Accepted: 07/28/2012] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that acts either on G protein-coupled S1P receptors on the cell surface or via intracellular target sites. In addition to the well established effects of S1P in angiogenesis, carcinogenesis and immunity, evidence is now continuously accumulating which demonstrates that S1P is an important regulator of fibrosis. The contribution of S1P to fibrosis is of a Janus-faced nature as S1P exhibits both pro- and anti-fibrotic effects depending on its site of action. Extracellular S1P promotes fibrotic processes in a S1P receptor-dependent manner, whereas intracellular S1P has an opposite effect and dampens a fibrotic reaction by yet unidentified mechanisms. Fibrosis is a result of chronic irritation by various factors and is defined by an excess production of extracellular matrix leading to tissue scarring and organ dysfunction. In this review, we highlight the general effects of extracellular and intracellular S1P on the multistep cascade of pathological fibrogenesis including tissue injury, inflammation and the action of pro-fibrotic cytokines that stimulate ECM production and deposition. In a second part we summarize the current knowledge about the involvement of S1P signaling in the development of organ fibrosis of the lung, kidney, liver, heart and skin. Altogether, it is becoming clear that targeting the sphingosine kinase-1/S1P signaling pathway offers therapeutic potential in the treatment of various fibrotic processes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe-Universität Frankfurt am Main, Germany
| | | | | |
Collapse
|
32
|
Takuwa Y, Ikeda H, Okamoto Y, Takuwa N, Yoshioka K. Sphingosine-1-phosphate as a mediator involved in development of fibrotic diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:185-92. [PMID: 22735357 DOI: 10.1016/j.bbalip.2012.06.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 12/30/2022]
Abstract
Fibrosis is a pathological process characterized by massive deposition of extracellular matrix (ECM) such as type I/III collagens and fibronectin that are secreted by an expanded pool of myofibroblasts, which are phenotypically altered fibroblasts with more contractile, proliferative, migratory and secretory activities. Fibrosis occurs in various organs including the lung, heart, liver and kidney, resulting in loss of normal tissue architecture and functions. Myofibroblasts could originate from multiple sources including tissue-resident fibroblasts, epithelial and endothelial cells through mechanisms of epithelial/endothelial-mesenchymal transition (EMT/EndMT), and bone marrow-derived circulating progenitors called fibrocytes. Emerging evidence in recent years shows that sphingosine-1-phosphate (S1P) acts on several types of target cells and is engaged in pro-fibrotic inflammatory process and fibrogenic process through multiple mechanisms, which include vascular permeability change, leukocyte infiltration, and migration, proliferation and myofibroblast differentiation of fibroblasts. Many of these S1P actions are receptor subtype-specific. In these actions, S1P has multiple cross-talks with other cytokines, particularly transforming growth factor-β (TGFβ), which plays a major role in fibrosis. The cross-talks include the regulation of S1P production through altered expression and activity of sphingosine kinases in fibrotic lesions, altered expression of S1P receptors, and S1P receptor-mediated transactivation of TGFβ signaling pathway. These cross-talks may give rise to a feed-forward, amplifying loop between S1P and TGFβ, and possibly with other cytokines in stimulating fibrogenesis. Another lysophospholipid mediator lysophosphatidic acid has also been recently implicated in fibrosis. The lysophospholipid signaling pathways represent novel, promising therapeutic targets for treating refractory fibrotic diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
33
|
Shea BS, Tager AM. Sphingolipid regulation of tissue fibrosis. Open Rheumatol J 2012; 6:123-9. [PMID: 22802910 PMCID: PMC3395890 DOI: 10.2174/1874312901206010123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023] Open
Abstract
Bioactive sphingolipids, such as sphingosine 1-phosphate (S1P), dihydrosphingosine 1-phosphate (dhS1P) and ceramide, regulate a diverse array of cellular processes. Many of these processes are important components of wound-healing responses to tissue injury, including cellular apoptosis, vascular leak, fibroblast migration, and TGF-β signaling. Since over-exuberant or aberrant wound-healing responses to repetitive injury have been implicated in the pathogenesis of tissue fibrosis, these signaling sphingolipids have the potential to influence the development and progression of fibrotic diseases. Here we review accumulating in vitro and in vivo data indicating that these lipid mediators can in fact influence fibrogenesis in numerous organ systems, including the lungs, skin, liver, heart, and eye. Targeting these lipids, their receptors, or the enzymes involved in their metabolism consequently now appears to hold great promise for the development of novel therapies for fibrotic diseases.
Collapse
Affiliation(s)
- Barry S Shea
- Pulmonary and Critical Care Unit, and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
34
|
Bourquin F, Capitani G, Grütter MG. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Protein Sci 2012; 20:1492-508. [PMID: 21710479 DOI: 10.1002/pro.679] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sphingolipids are membrane constituents as well as signaling molecules involved in many essential cellular processes. Serine palmitoyltransferase (SPT) and sphingosine-1-phosphate lyase (SPL), both PLP (pyridoxal 5'-phosphate)-dependent enzymes, function as entry and exit gates of the sphingolipid metabolism. SPT catalyzes the condensation of serine and a fatty acid into 3-keto-dihydrosphingosine, whereas SPL degrades sphingosine-1-phosphate (S1P) into phosphoethanolamine and a long-chain aldehyde. The recently solved X-ray structures of prokaryotic homologs of SPT and SPL combined with functional studies provide insight into the structure-function relationship of the two enzymes. Despite carrying out different reactions, the two enzymes reveal striking similarities in the overall fold, topology, and residues crucial for activity. Unlike their eukaryotic counterparts, bacterial SPT and SPL lack a transmembrane helix, making them targets of choice for biochemical characterization because the use of detergents can be avoided. Both human enzymes are linked to severe diseases or disorders and might therefore serve as targets for the development of therapeutics aiming at the modulation of their activity. This review gives an overview of the sphingolipid metabolism and of the available biochemical studies of prokaryotic SPT and SPL, and discusses the major similarities and differences to the corresponding eukaryotic enzymes.
Collapse
Affiliation(s)
- Florence Bourquin
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | | |
Collapse
|