1
|
Wu S, Wu G, Wu H. Importance of rational use of vitamin C in G6PD deficiency patients. INT J VITAM NUTR RES 2023; 93:1-3. [PMID: 35045756 DOI: 10.1024/0300-9831/a000747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shuxie Wu
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Gao Wu
- Department of Pharmacy, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Hanbin Wu
- Clinical Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Sousa NA, Oliveira GAL, de Oliveira AP, Lopes ALF, Iles B, Nogueira KM, Araújo TSL, Souza LKM, Araújo AR, Ramos-Jesus J, Plácido A, Amaral C, Campelo YDM, Barbosa EA, Portugal CC, Socodato R, Lobo A, Relvas J, Bemquerer M, Eaton P, Leite JRSA, Medeiros JVR. Novel Ocellatin Peptides Mitigate LPS-induced ROS Formation and NF-kB Activation in Microglia and Hippocampal Neurons. Sci Rep 2020; 10:2696. [PMID: 32060388 PMCID: PMC7021831 DOI: 10.1038/s41598-020-59665-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cutaneous secretions of amphibians have bioactive compounds, such as peptides, with potential for biotechnological applications. Therefore, this study aimed to determine the primary structure and investigate peptides obtained from the cutaneous secretions of the amphibian, Leptodactylus vastus, as a source of bioactive molecules. The peptides obtained possessed the amino acid sequences, GVVDILKGAAKDLAGH and GVVDILKGAAKDLAGHLASKV, with monoisotopic masses of [M + H]± = 1563.8 Da and [M + H]± = 2062.4 Da, respectively. The molecules were characterized as peptides of the class of ocellatins and were named as Ocellatin-K1(1-16) and Ocellatin-K1(1-21). Functional analysis revealed that Ocellatin-K1(1-16) and Ocellatin-K1(1-21) showed weak antibacterial activity. However, treatment of mice with these ocellatins reduced the nitrite and malondialdehyde content. Moreover, superoxide dismutase enzymatic activity and glutathione concentration were increased in the hippocampus of mice. In addition, Ocellatin-K1(1-16) and Ocellatin-K1(1-21) were effective in impairing lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) formation and NF-kB activation in living microglia. We incubated hippocampal neurons with microglial conditioned media treated with LPS and LPS in the presence of Ocellatin-K1(1-16) and Ocellatin-K1(1-21) and observed that both peptides reduced the oxidative stress in hippocampal neurons. Furthermore, these ocellatins demonstrated low cytotoxicity towards erythrocytes. These functional properties suggest possible to neuromodulatory therapeutic applications.
Collapse
Affiliation(s)
- Nayara A Sousa
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Guilherme A L Oliveira
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Ana Patrícia de Oliveira
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - André Luís F Lopes
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Bruno Iles
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Kerolayne M Nogueira
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil
| | - Thiago S L Araújo
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil.,Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Luan K M Souza
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil.,Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Alyne R Araújo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, UFPI, Piauí, Brazil
| | - Joilson Ramos-Jesus
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, UFPI, Piauí, Brazil.,Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Alexandra Plácido
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Constança Amaral
- Instituto de Medicina Molecular, IMM, Universidade de Lisboa, Lisboa, Portugal
| | - Yuri D M Campelo
- Instituto de Educação Superior do Vale do Parnaíba, FAHESP/IESVAP/NRE, Parnaíba, Brazil
| | - Eder Alves Barbosa
- Laboratório de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química, UnB, Brasília, Brazil
| | - Camila C Portugal
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Renato Socodato
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Andrea Lobo
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Joao Relvas
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | | | - Peter Eaton
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal.,Instituto de Medicina Molecular, IMM, Universidade de Lisboa, Lisboa, Portugal
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunonologia Aplicada, NuPMIA, Área Morfologia, Faculdade de Medicina, UnB, Brasília, Brazil
| | - Jand Venes R Medeiros
- Laboratório de Farmacologia da Inflamação e Doenças Gastrintestinais, Universidade Federal do Delta do Parnaíba, UFDPar, Piauí, Brazil. .,Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Universidade Federal do Piauí, UFPI, Piauí, Brazil.
| |
Collapse
|
3
|
Bulat K, Dybas J, Kaczmarska M, Rygula A, Jasztal A, Szczesny-Malysiak E, Baranska M, Wood BR, Marzec KM. Multimodal detection and analysis of a new type of advanced Heinz body-like aggregate (AHBA) and cytoskeleton deformation in human RBCs. Analyst 2020; 145:1749-1758. [PMID: 31913373 DOI: 10.1039/c9an01707k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of aggregate, formed in human red blood cells (RBCs) in response to glutaraldehyde treatment, was discovered and analyzed with the classical and advanced biomolecular imaging techniques. Advanced Heinz body-like aggregates (AHBA) formed in a single human RBC are characterized by a higher level of hemoglobin (Hb) degradation compared to typical Heinz bodies, which consist of hemichromes. The complete destruction of the porphyrin structure of Hb and the aggregation of the degraded proteins in the presence of Fe3+ ions are observed. The presence of such aggregated, highly degraded proteins inside RBCs, without cell membrane destruction, has been never reported before. For the first time the spatial differentiation of two kinds of protein mixtures inside a single RBC, with different phenylalanine (Phe) conformations, is visualized. The non-resonant Raman spectra of altered RBCs with AHBA are characterized by the presence of a strong band located at 1037 cm-1, which confirms that glutaraldehyde interacts strongly with Phe. The shape-shifting of RBCs from a biconcave disk to a spherical structure and sinking of AHBA to the bottom of the cell are observed. Results reveal that the presence of AHBA should be considered when fixing RBCs and indicate the analytical potential of Raman spectroscopy, atomic force microscopy and scanning near-field optical microscopy in AHBA detection and analysis.
Collapse
Affiliation(s)
- Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics, Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Contreras N, Alvíz A. Human red blood cell polymorphisms prevalent in Colombian population and its protective role against malaria. Transfus Clin Biol 2019; 26:60-68. [DOI: 10.1016/j.tracli.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/02/2018] [Indexed: 01/03/2023]
|
5
|
Wu S, Wu G, Wu H. Hemolytic jaundice induced by pharmacological dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency: A case report. Medicine (Baltimore) 2018; 97:e13588. [PMID: 30572463 PMCID: PMC6319863 DOI: 10.1097/md.0000000000013588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RATIONALE Hemolysis induced by high dose ascorbic acid (AA) in patients with G6PD deficiency has been reported, but is rare. To our knowledge, this is the first reported case of a male with G6PD deficiency, coexpressed with cholecystolithiasis and cholecystitis, who developed extreme hemolysis and hyperbilirubinemia after receiving pharmacological doses ascorbic acid infusion. PATIENT CONCERNS A 27-year-old man history with glucose-6-phosphate dehydrogenase deficiency was admitted to our hospital because of cholecystolithiasis and cholecystitis. He appeared with scleral jaundice and very deep colored urine after receiving pharmacological doses ascorbic acid infusion. DIAGNOSES Clinical findings when combined with his medical history and various laboratory results confirmed the diagnosis as hemolysis and hyperbilirubinemia induced by ascorbic acid. INTERVENTIONS The patient was treated with steroids, hepatoprotective drugs, and folic acid in addition avoidance of agents with known hemolysis risk (such as vitamin C). OUTCOMES As a result, the patient's symptoms from hemolytic jaundice improved, hemoglobin remained stable, and the patient was discharged 11 days later. LESSONS Clinicians should bear in mind the possibility that vitamin C exposure may result in hemolysis in patients with G6PD deficiency, especially in those with known severe disease.
Collapse
Affiliation(s)
- Shuxie Wu
- Xiangya School of Medicine, Central South University, Changsha
| | - Gao Wu
- Department of Pharmacy, The 411st Hospital of PLA
| | - Hanbin Wu
- Clinical Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Membrane protein carbonylation of Plasmodium falciparum infected erythrocytes under conditions of sickle cell trait and G6PD deficiency. Mol Biochem Parasitol 2018; 227:5-14. [PMID: 30472238 DOI: 10.1016/j.molbiopara.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Deficiency of glucose-6-phosphate dehydrogenase (G6PD) and sickle cell trait (SCT) are described as the polymorphic disorders prevalent in erythrocytes. Both are considered the result of the selective pressure exerted by Plasmodium parasites over human genome, due to a certain degree of resistance to the clinical symptoms of severe malaria. There exist in both a prooxidant environment that favors the oxidative damage on membrane proteins, which probably is part of molecular protector mechanisms. Nevertheless, mechanisms are not completely understood at molecular level for each polymorphism yet, and even less if are commons for several of them. Here, synchronous cultures at high parasitemia levels of P. falciparum 3D7 were used to quantify oxidative damage in membrane proteins of erythrocytes with G6PD deficient and SCT. Carbonyl index by dot blot assay was used to calculate the variation of oxidative damage during the asexual phases. Besides, protein carbonylation profiles were obtained by Western blot and complemented with mass spectrometry using MALDI-TOF-TOF analysis. Erythrocytes with G6PD deficient and SCT showed higher carbonyl index values than control and similar profiles of carbonylated proteins; moreover, cytoskeletal and stress response proteins were identified as the main targets of oxidative damage. Therefore, both polymorphisms promote carbonylation on the same membrane proteins. Finally, these results allowed to reinforce the hypothesis of oxidative damage in erythrocyte membrane proteins as molecular mechanism of human adaptation to malaria infection.
Collapse
|
7
|
S AlSalhi M, Devanesan S, E AlZahrani K, AlShebly M, Al-Qahtani F, Farhat K, Masilamani V. Impact of Diabetes Mellitus on Human Erythrocytes: Atomic Force Microscopy and Spectral Investigations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112368. [PMID: 30373127 PMCID: PMC6266196 DOI: 10.3390/ijerph15112368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disease indicated by high sugar levels in the blood over a prolonged period. When left untreated, it can lead to long-term complications, such as cardiovascular disease, stroke, and diabetic retinopathy or foot ulcers. Approximately 415 million people (about 8.3% of the world’s population) had diabetes worldwide in 2015, with 90% of the cases classified as Type 2 DM, which is caused by insulin resistance that arises mostly from being overweight and from a lack of exercise. DM affects every part of the body, including the erythrocytes. The aim of the present report is to gain insight into the damage done to the erythrocytes of patients classified with pre-diabetes and diabetes (plenty are found in the Kingdom of Saudi Arabia, a country where young people encompass a large segment of the population). The study presents results on the morphological analysis of erythrocytes by atomic force microscopy (AFM) and molecular investigations by fluorescence spectroscopy (FS). Our results indicate significant differences (in the morphology, size, and hemolytic end products) between the erythrocytes of diabetic patients (HbA1C, glycated hemoglobin, levels of 8–10%) and normal controls. It is well-known that DM and smoking are two major contributory factors for cardiovascular diseases (CVDs), and our observations presented in this study suggest that diabetes plays a relatively less damaging role than smoking for CVD.
Collapse
Affiliation(s)
- Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Khalid E AlZahrani
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 1451, Saudi Arabia.
| | - Mashael AlShebly
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Fatima Al-Qahtani
- Hematology Unit, Department of Pathology, College of Medicine, King Saud University and King Saud University Medical City, Riyadh 11451, Saudi Arabia.
| | - Karim Farhat
- Cancer Research Chair, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Vadivel Masilamani
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
He M, Lin K, Huang Y, Zhou L, Yang Q, Li S, Jiang W. Prevalence and Molecular Study of G6PD Deficiency in the Dai and Jingpo Ethnic Groups in the Dehong Prefecture of the Yunnan Province. Hum Hered 2018; 83:55-64. [PMID: 29860254 DOI: 10.1159/000489009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To estimate the prevalence and mutation types of G6PD deficiency and evaluate the relationship between G6PD genotypes and erythrocyte phenotypes in the Dai and Jingpo ethnic groups in the Dehong prefecture of the Yunnan province, China. METHODS G6PD deficiency was screened in Dai (1,530 individuals) and Jingpo (372 individuals) populations using a modified G6PD/6PGD ratio assay. Red blood cell traits were analyzed using the Sysmex XE2100 fully automated blood analyzer. PCR-direct sequencing for G6PD genotyping analysis was performed, and then the linkage disequilibrium blocks of the target SNPs were constructed with Haploview 4.2 software. RESULTS The prevalence of G6PD deficiency was higher in the Dai ethnic group (8.63%) than in the Jingpo ethnic group (5.91%). The major mutations in descending order were rs137852314 G>A, rs72554664 G>A, rs72554665 G>T, and rs137852341 G>T. Hemoglobin concentration was significantly lower in the rs137852314 G>A group than in the normal group (p = 0.021). Mean corpuscular volume and mean corpuscular hemoglobin were substantially higher in the rs137852341 G>T group compared to the normal group (p = 0.049, p = 0.042). A linkage disequilibrium block of 13 SNPs was constructed for the G6PD deficiency group from the Dai sample. CONCLUSIONS The Dai and Jingpo ethnic groups have distinctive incidence rates and gene frequencies of G6PD deficiency, and the genotypes of G6PD deficiency are associated with erythrocyte phenotypes.
Collapse
|
9
|
Hu X, Zhai Y, Shi R, Qian Y, Cui H, Yang J, Bi Y, Yan T, Yang J, Ma Y, Zhang L, Liu Y, Li G, Zhang M, Cui Y, Kong P, Cheng X. FAT1 inhibits cell migration and invasion by affecting cellular mechanical properties in esophageal squamous cell carcinoma. Oncol Rep 2018; 39:2136-2146. [PMID: 29565465 PMCID: PMC5928768 DOI: 10.3892/or.2018.6328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
FAT atypical cadherin 1 (FAT1) belongs to the cadherin superfamily and has been reported to regulate cell-cell adhesion and other cell behaviors, suggesting its pivotal roles in human cancers. We previously identified FAT1 as one of the significant mutant genes in esophageal squamous cell carcinoma (ESCC). In the present study, the knockdown of FAT1 expression in YSE2 and Colo680N cell lines was carried out by lentivirus, and we found that knockdown of FAT1 led to acceleration of cell migration and invasion. Furthermore, we detected the cell adhesive force and cell elasticity force by atomic force microscopy (AFM) and found that the suppression of endogenous expression of FAT1 led to a decrease in the cell adhesive force and increase in the cell elasticity force compared with the control groups. In conclusion, our study demonstrated that FAT1 altered cellular mechanical properties leading to deregulation of cell migration and invasion of ESCC, which may be a novel target for ESCC therapy.
Collapse
Affiliation(s)
- Xiaoling Hu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuanfang Zhai
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ruyi Shi
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yu Qian
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Heyang Cui
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jie Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanghui Bi
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jian Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanchun Ma
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ling Zhang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yiqian Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guodong Li
- Department of Otorhinolaryngology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yongping Cui
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengzhou Kong
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
10
|
Du G, Xiao M, Wei X, Zhou C, Li S, Cai W. Hepatic transcriptional profiling response to fava bean-induced oxidative stress in glucose-6-phosphate dehydrogenase-deficient mice. Gene 2018; 652:66-77. [PMID: 29428800 DOI: 10.1016/j.gene.2018.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 11/24/2022]
Abstract
Favism is an acute hemolytic syndrome caused by the ingestion of fava bean (FB) in glucose 6-phosphate dehydrogenase (G6PD) deficient individuals. However, little is known about the global transcripts alteration in liver tissue after FB ingestion in G6PD-normal and -deficient states. In this study, deep sequencing was used to analyze liver genes expression alterations underlying the effects of FB in C3H (Wild Type, WT) and G6PD-deficient (G6PDx) mice and to evaluate and visualize the collective annotation of a list of genes to Gene Ontology (GO) terms associated with favism. Our results showed that FB resulted in a decrease of glutathione (GSH)-to-oxidized glutathione (GSSG) ratio and an increase of malondialdehyde (MDA) both in the G6PDx and WT-control check (CK) mice plasma. Significantly, liver transcript differences were observed between the control and FB-treated groups of both WT and G6PDx mice. A total of 320 differentially expressed transcripts were identified by comparison of G6PDx-CK with WT-CK and were associated with immune response and oxidation-reduction function. A total of 149 differentially expressed genes were identified by comparison of WT-FB with WT-CK. These genes were associated with immune response, steroid metabolic process, creatine kinase activity, and fatty acid metabolic process. A total of 438 differential genes were identified by comparing G6PDx-FB with G6PD-CK, associated with the negative regulation of fatty acid metabolic process, endoplasmic reticulum, iron binding, and glutathione transferase activity. These findings indicate that G6PD mutations may affect the functional categories such as immune response and oxidation-reduction.
Collapse
Affiliation(s)
- Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China.
| | - Man Xiao
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China
| | - Xiuyu Wei
- Biotechnology major, Hainan Medical College, Haikou 571199, China
| | - Chen Zhou
- Biotechnology major, Hainan Medical College, Haikou 571199, China
| | - Shuoshuo Li
- Biotechnology major, Hainan Medical College, Haikou 571199, China
| | - Wangwei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou 571199, China.
| |
Collapse
|
11
|
Zeng Y, Deng FY, Zhu W, Zhang L, He H, Xu C, Tian Q, Zhang JG, Zhang LS, Hu HG, Deng HW. Mass spectrometry based proteomics profiling of human monocytes. Protein Cell 2017; 8:123-133. [PMID: 27878450 PMCID: PMC5291777 DOI: 10.1007/s13238-016-0342-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022] Open
Abstract
Human monocyte is an important cell type which is involved in various complex human diseases. To better understand the biology of human monocytes and facilitate further studies, we developed the first comprehensive proteome knowledge base specifically for human monocytes by integrating both in vivo and in vitro datasets. The top 2000 expressed genes from in vitro datasets and 779 genes from in vivo experiments were integrated into this study. Altogether, a total of 2237 unique monocyte-expressed genes were cataloged. Biological functions of these monocyte-expressed genes were annotated and classified via Gene Ontology (GO) analysis. Furthermore, by extracting the overlapped genes from in vivo and in vitro datasets, a core gene list including 541 unique genes was generated. Based on the core gene list, further gene-disease associations, pathway and network analyses were performed. Data analyses based on multiple bioinformatics tools produced a large body of biologically meaningful information, and revealed a number of genes such as SAMHD1, G6PD, GPD2 and ENO1, which have been reported to be related to immune response, blood biology, bone remodeling, and cancer respectively. As a unique resource, this study can serve as a reference map for future in-depth research on monocytes biology and monocyte-involved human diseases.
Collapse
Affiliation(s)
- Yong Zeng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Fei-Yan Deng
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- Laboratory of Proteins and Proteomics, Department of Epidemiology, Soochow University School of Public Health, Suzhou, 205123, China
| | - Wei Zhu
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lan Zhang
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Hao He
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Chao Xu
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Qing Tian
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Ji-Gang Zhang
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Li-Shu Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Hong-Gang Hu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Hong-Wen Deng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
- Center of Bioinformatics and Genomics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Oprisan B, Stoica I, Avadanei MI. Morphological changes induced in erythrocyte membrane by the antiepileptic treatment: An atomic force microscopy study. Microsc Res Tech 2016; 80:364-373. [DOI: 10.1002/jemt.22804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Bogdan Oprisan
- Faculty of Medicine, Discipline Biophysics and Medical Physics; “Grigore T. Popa” University of Medicine and Pharmacy; Iasi Romania
| | - Iuliana Stoica
- Department of Polymer Materials Physics; “Petru Poni” Institute of Macromolecular Chemistry; Iasi Romania
| | - Mihaela Iuliana Avadanei
- Department of Polymer Materials Physics; “Petru Poni” Institute of Macromolecular Chemistry; Iasi Romania
| |
Collapse
|
13
|
Lasalvia M, Castellani S, D'Antonio P, Perna G, Carbone A, Colia AL, Maffione AB, Capozzi V, Conese M. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology. Exp Cell Res 2016; 348:46-55. [PMID: 27590528 DOI: 10.1016/j.yexcr.2016.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023]
Abstract
The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalized airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption.
Collapse
Affiliation(s)
- Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Palma D'Antonio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Perna
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Annalucia Carbone
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Bruna Maffione
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vito Capozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
14
|
Fang Z, Jiang C, Feng Y, Chen R, Lin X, Zhang Z, Han L, Chen X, Li H, Guo Y, Jiang W. Effects of G6PD activity inhibition on the viability, ROS generation and mechanical properties of cervical cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2245-54. [PMID: 27217331 DOI: 10.1016/j.bbamcr.2016.05.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency has been revealed to be involved in the efficacy to anti-cancer therapy but the mechanism remains unclear. We aimed to investigate the anti-cancer mechanism of G6PD deficiency. In our study, dehydroepiandrosterone (DHEA) and shRNA technology were used for inhibiting the activity of G6PD of cervical cancer cells. Peak Force QNM Atomic Force Microscopy was used to assess the changes of topography and biomechanical properties of cells and detect the effects on living cells in a natural aqueous environment. Flow cytometry was used to detect the apoptosis and reactive oxygen species (ROS) generation. Scanning electron microscopy was used to observe cell morphology. Moreover, a laser scanning confocal microscope was used to observe the alterations in cytoskeleton to explore the involved mechanism. When G6PD was inhibited by DHEA or RNA interference, the abnormal Young's modulus and increased roughness of cell membrane were observed in HeLa cells, as well as the idioblasts. Simultaneously, G6PD deficiency resulted in decreased HeLa cells migration and proliferation ability but increased ROS generation inducing apoptosis. What's more, the inhibition of G6PD activity caused the disorganization of microfilaments and microtubules of cytoskeletons and cell shrinkage. Our results indicated the anti-cervix cancer mechanism of G6PD deficiency may be involved with the decreased cancer cells migration and proliferation ability as a result of abnormal reorganization of cell cytoskeleton and abnormal biomechanical properties caused by the increased ROS. Suppression of G6PD may be a promising strategy in developing novel therapeutic methods for cervical cancer.
Collapse
Affiliation(s)
- Zishui Fang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Chengrui Jiang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Yi Feng
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Rixin Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Xiaoying Lin
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Zhiqiang Zhang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Luhao Han
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Xiaodan Chen
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Hongyi Li
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Yibin Guo
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China
| | - Weiying Jiang
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, University and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education Guangzhou, 510080, China.
| |
Collapse
|
15
|
Masilamani V, AlZahrani K, Devanesan S, AlQahtani H, AlSalhi MS. Smoking Induced Hemolysis: Spectral and microscopic investigations. Sci Rep 2016; 6:21095. [PMID: 26891995 PMCID: PMC4759537 DOI: 10.1038/srep21095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/18/2016] [Indexed: 11/09/2022] Open
Abstract
Smoking is one of the major causes of lifestyle associated mortality and morbidity such as cancer of the oral cavity and lungs, and also cardiovascular diseases. In this study, we have provided evidences for the smoking-induced hemolysis using two methods: spectra of blood components and atomic force microscopic analysis of surface morphology. A total of 62 subjects (control = 31; smoker = 31: 21 male; 10 female in each set) were considered for the study. The findings indicate that smoking leads to potholes on the surface, swelling of shape, rupturing of erythrocytes, removal of hematoporphyrin and flushing into the plasma as metabolites of the erythrocyte. The overall morphology of the erythrocytes of the smoker group appears more like a Mexican hat. The mean surface roughness was 5.5 ± 3 nm for the smoker group, but 1.2 ± 0.2 nm for the control group. Such damages might help the toxins, (CO, peroxidants, aldehydes etc.,) to gain easy access and get strongly absorbed by the hemoglobin, leading to enhanced rates of hemolysis as shown by the spectral features of metabolites. This indicates that the average life span of the smoker's erythrocytes is significantly less than that of the control group.
Collapse
Affiliation(s)
- Vadivel Masilamani
- Department of Physics and Astronomy, King Saud University, Riyadh, KSA- 11451, Saudi Arabia
- Research Chair in Laser Diagnosis of Cancers, College of Sceince, King Saud University, Riyadh, KSA- 11451, Saudi Arabia
| | - Khalid AlZahrani
- Department of Physics and Astronomy, King Saud University, Riyadh, KSA- 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, KSA- 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancers, College of Sceince, King Saud University, Riyadh, KSA- 11451, Saudi Arabia
| | - Hadi AlQahtani
- Department of Physics and Astronomy, King Saud University, Riyadh, KSA- 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, KSA- 11451, Saudi Arabia
| | - Mohamad Saleh AlSalhi
- Department of Physics and Astronomy, King Saud University, Riyadh, KSA- 11451, Saudi Arabia
- Research Chair in Laser Diagnosis of Cancers, College of Sceince, King Saud University, Riyadh, KSA- 11451, Saudi Arabia
| |
Collapse
|