1
|
Chen H, Wu B, Guan K, Chen L, Chai K, Ying M, Li D, Zhao W. Identification of lipid metabolism related immune markers in atherosclerosis through machine learning and experimental analysis. Front Immunol 2025; 16:1549150. [PMID: 40070840 PMCID: PMC11893410 DOI: 10.3389/fimmu.2025.1549150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Background Atherosclerosis is a significant contributor to cardiovascular disease, and conventional diagnostic methods frequently fall short in the timely and accurate detection of early-stage atherosclerosis. Abnormal lipid metabolism plays a critical role in the development of atherosclerosis. Consequently, the identification of new diagnostic markers is essential for the precise diagnosis of this condition. Method The datasets related to atherosclerosis utilized in this research were obtained from the GEO database (GSE2470, GSE24495, GSE100927 and GSE43292). The ssGSEA technique was first utilized to assess lipid metabolism scores in samples affected by atherosclerosis, thereby aiding in the discovery of important regulatory genes linked to lipid metabolism via WGCNA. Following this, differential expression analysis and functional evaluations were carried out, after which various machine learning approaches were employed to determine significant diagnostic genes for atherosclerosis. A diagnostic model was then developed and validated through several machine learning algorithms. Furthermore, molecular docking studies were conducted to analyze the binding affinity of these key markers with therapeutic agents for atherosclerosis. The ssGSEA technique was also used to measure immune cell scores in atherosclerotic samples, aiding the exploration of the connection between key diagnostic markers and immune cells. Finally, the expression variations of the identified pivotal genes were confirmed through experimental validation. Result WGCNA identified 302 lipid metabolism-related genes in atherosclerotic samples, and functional analysis revealed that these genes are associated with multiple immune pathways. Through further differential analysis and screening using machine learning algorithms, APLNR, PCDH12, PODXL, SLC40A1, TM4SF18, and TNFRSF25 were identified as key diagnostic genes for atherosclerosis. The diagnostic model we constructed was confirmed to predict the occurrence of atherosclerosis with high accuracy, and molecular docking studies indicated that these six key diagnostic genes have potential as drug targets. Additionally, the ssGSEA algorithm further validated the association of these diagnostic genes with various immune cells. Finally, the expression levels of these six genes were experimentally confirmed. Conclusion Our study introduces novel lipid metabolism-related diagnostic markers for atherosclerosis and emphasizes their potential as immune-related drug targets. This research provides a valuable approach for the predictive diagnosis and targeted therapy of atherosclerosis.
Collapse
Affiliation(s)
- Hang Chen
- Department of Thyroid Breast Vascular Surgery, Banan Hospital of Chongqing Medical University, Chongqing, China
| | - Biao Wu
- Department of Vascular Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
- Cancer Research Centre Nantong, Nantong Tumor Hospital, Nantong, China
| | - Kunyu Guan
- Pediatrics, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Liang Chen
- Department of Vascular Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Kangjie Chai
- Department of Vascular Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Maoji Ying
- General Practice, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Dazhi Li
- Department of Vascular Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Weicheng Zhao
- Department of Interventional, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
2
|
Lian PA, Zhu WQ, Zhao WX, Huang PP, Ran JL, Tang YX, Huang XS, Li R. Lipoprotein(a) in atherosclerotic cardiovascular disease and proprotein convertase subtilisin/kexin-type 9 inhibitors. Clin Chim Acta 2025; 565:119982. [PMID: 39366516 DOI: 10.1016/j.cca.2024.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
High plasma lipoprotein(a) (Lp(a)) levels increase the cardiovascular risk in populations with atherosclerotic cardiovascular disease (ASCVD). Apolipoprotein (a) [apo(a)], a unique protein component of Lp(a), plays an important role in the pathogenesis of atherosclerosis. Statins, the primary medication in managing ASCVD, lower low-density lipoprotein cholesterol (LDL-C) but concurrently elevate plasma Lp(a) levels, contributing to an increased residual cardiovascular risk. In turn, proprotein convertase subtilisin/kexin-type 9 (PCSK9) inhibitors, a novel class of LDL-C lowering drugs, effectively reduce plasma Lp(a) levels, which is believed to decrease residual cardiovascular risk. However, the mechanism by which PCSK9 inhibitors reduce Lp(a) levels remains unknown. In addition, there are some clinical limitations of PCSK9 inhibitors. Here, we systematically review the past, present, and prospects of studies pertaining to Lp(a), PCSK9 inhibitors, and ASCVD.
Collapse
Affiliation(s)
- Ping-An Lian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Qiang Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei-Xin Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Piao-Piao Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan-Li Ran
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Xin Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xian-Sheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cardiovascular Medicine, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Stomatology, Guilin Hospital of The Second Xiangya Hospital, Central South University, Guilin, China.
| |
Collapse
|
3
|
Chen J, Liu F, Meng X. miR-432-5p Targeting SORT1 to Protect Artery Smooth Muscle Cells and Inhibit Coronary Artery Disease. Biochem Genet 2024:10.1007/s10528-024-10998-w. [PMID: 39730974 DOI: 10.1007/s10528-024-10998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024]
Abstract
Recent studies highlight the crucial role of microRNAs (miRNAs) in coronary artery disease (CAD). This retrospective study investigated the abundance of miR-432-5p in the serum of CAD patients and explored its role. 252 volunteers were included. The levels of miR-432-5p and Sortilin 1 (SORT1) in the serum of CAD patients and oxidized low-density lipoprotein (ox-LDL)-treated human arterial smooth muscle cells (HASMCs) were quantified via qRT-PCR. The correlation coefficient, clinical diagnostic performance, and risk factors were analyzed with Pearson correlation, receiver operating characteristic (ROC) curve, and binomial logistic regression, respectively. HASMC proliferation, migration, and apoptosis were evaluated using Cell Counting Kit-8 (CCK-8), transwell, and flow cytometry assay, respectively. Potential binding sites between miR-432-5p and SORT1 were predicted with TargetScan and validated through dual-luciferase reporter assay and co-transfection experiments. Serum miR-432-5p was decreased, while SORT1 was elevated in CAD patients and ox-LDL-induced HASMCs. miR-432-5p showed a negative correlation with total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), C-reactive protein (CRP), and Gensini score. miR-432-5p and SORT1 effectively distinguished CAD patients from controls based on ROC analysis. miR-432-5p and SORT1 serve as independent risk predictors. Restoration of miR-432-5p reversed ox-LDL-induced increases in HASMC proliferation and migration and restored apoptosis levels. SORT1 was confirmed as a direct target of miR-432-5p, and its upregulation counteracted the protective effects of miR-432-5p on HASMC under ox-LDL exposure. This study suggests that miR-432-5p protects HASMCs and inhibits coronary artery disease progression by targeting SORT1, positioning both miR-432-5p and SORT1 as potential biomarkers for CAD.
Collapse
Affiliation(s)
- Jinhe Chen
- Department of Cardiovascular Medicine, Yantai Yantaishan Hospital, Yantai, Shandong, China
| | - Fan Liu
- Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Kunming, Yunnan, China
| | - Xianwei Meng
- Department of Cardiovascular Medicine, Shanghai Baoshan Luodian Hospital, No. 88, Yongshun Road, Baoshan District, Shanghai, 201908, China.
| |
Collapse
|
4
|
Ming X, Chen S, Li H, Wang Y, Zeng H, Lv Y. 6-methylcoumarin/miR-122 suppresses hepatic Sortilin-mediated ApoB-100 secretion to attenuate aortic atherosclerosis. Cell Signal 2024; 124:111384. [PMID: 39243919 DOI: 10.1016/j.cellsig.2024.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
This study aimed to investigate the effects of hepatic microRNA-122 (miR-122) on Sortilin-mediated apolipoprotein B100 (apoB-100) secretion, and on aortic lipid deposition and atherosclerosis (AS) lesions and to clarify the antiatherosclerotic mechanism of 6-methylcoumarin (6-MC) via the modulation of miR-122. Bioinformatics analysis revealed that miR-122 was putatively overexpressed in a liver-specific manner and was downregulated in steatotic livers. miR-122 was shown to suppress the expression of Sortilin by complementarily pairing to the 3'-untranslated region (3'-UTR) of Sortilin mRNA via bioinformatics and dual-luciferase reporter assays, impeding Sortilin-mediated apoB-100 secretion from HepG2 cells. Administration of 6-MC significantly upregulated hepatocellular miR-122 levels, reducing Sortilin expression and apoB-100 secretion in HepG2 cells. The miR-122 mimic vigorously enhanced 6-MC-depressed Sortilin expression, while miR-122 inhibitor repealed the inhibitory effect of 6-MC on Sortilin expression to some extent in HepG2 cells. After internal intervention with the miR-122 precursor, and 6-MC supplementation alone or in combination with the miR-122 sponge led to the reduction in blood triglyceride (TG) levels, low-density lipoprotein-cholesterol (LDL-C) and apoB-100 and a reduction in aortic lipid deposition and AS lesions in apolipoprotein E-deficient (ApoE-/-) mice fed a high fat diet (HFD). The hepatic levels of Sortilin and apoB-100 expression were also decreased in these treated mice. In conclusion, miR-122 suppresses Sortilin expression and Sortilin-mediated apoB-100 secretion to resist circulating LDL production and aortic AS development, which is enhanced by 6-MC-upregulated miR-122 in the liver.
Collapse
Affiliation(s)
- Xinyue Ming
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Shirui Chen
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Huijuan Li
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Yun Wang
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China
| | - Haijun Zeng
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China.
| | - Yuncheng Lv
- People's Hospital of Shaodong of Internship Teaching Base of Guilin Medical University & Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
5
|
Kandror KV. Self-assembly of the insulin-responsive vesicles creates a signaling platform for the insulin action on glucose uptake. VITAMINS AND HORMONES 2024; 128:93-121. [PMID: 40097254 DOI: 10.1016/bs.vh.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
In fat and skeletal muscle cells, insulin causes plasma membrane translocation of specialized insulin-responsive vesicles, or IRVs. These vesicles consist of multiple copies of Glut4, sortilin, IRAP, and LRP1 as well as several auxiliary components. Major IRV proteins have relatively long half-life inside the cell and survive multiple rounds of translocation to and from the cell surface. Here, we summarize evidence showing how the IRVs are self-assembled from pre-synthesized Glut4, sortilin, IRAP, and LRP1 after each translocation event. Furthermore, the cytoplasmic tail of sortilin binds Akt while cytoplasmic tails of IRAP and LRP1 interact with the Akt target, TBC1D4. Recruitment of signaling proteins to the IRVs may render insulin responsiveness to this compartment and thus distinguish it from other intracellular membrane vesicles.
Collapse
Affiliation(s)
- Konstantin V Kandror
- Department of Biochemistry and Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States.
| |
Collapse
|
6
|
Namitokov A. Sortilin and its potential role in cardiovascular pathology. Egypt Heart J 2024; 76:78. [PMID: 38913092 PMCID: PMC11196447 DOI: 10.1186/s43044-024-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND This comprehensive review explores the multifaceted role of sortilin, a key receptor in lipid metabolism, within the context of cardiovascular diseases (CVDs), the leading cause of global mortality. MAIN BODY Sortilin, encoded by the SORT1 gene, is implicated in the pathogenesis of atherosclerosis, primarily through its regulation of low-density lipoprotein cholesterol (LDL-C) and very low-density lipoproteins (VLDL). The review delves into the biological functions of sortilin, emphasizing its critical role in lipid and cholesterol homeostasis and its influence on hepatic secretion of lipoproteins and atherogenesis. We highlight sortilin's pathophysiological significance in atherosclerosis, underscoring its involvement in lipid metabolism pathways and vascular inflammation, and its impact on macrophage functions in atherosclerotic plaque formation. The potential of sortilin as a therapeutic target is discussed, considering evidence that suggests its modulation could ameliorate atherosclerosis. The review also acknowledges current inconsistencies and gaps in the evidence, calling for more comprehensive patient studies and in-depth mechanistic research. Finally, the article outlines future research directions, focusing on understanding sortilin's specific cellular mechanisms in cardiovascular health, exploring its genetic variability, therapeutic implications, and its broader relevance to other diseases. CONCLUSION This review underscores the significance of sortilin as a biomarker and a promising target for therapeutic intervention in cardiovascular pathology, while advocating for continued research to fully unravel its complex role.
Collapse
Affiliation(s)
- Alim Namitokov
- Kuban State Medical University, Krasnodar, Russia.
- Scientific Research Institute - Regional Clinical Hospital #1 NA Prof. S.V. Ochapovsky, Krasnodar, Russia.
| |
Collapse
|
7
|
Almoyad MA, Wahab S, Mohanto S, Khan NJ. Repurposing Drugs to Modulate Sortilin: Structure-Guided Strategies Against Atherogenesis, Coronary Artery Disease, and Neurological Disorders. ACS OMEGA 2024; 9:18438-18448. [PMID: 38680294 PMCID: PMC11044209 DOI: 10.1021/acsomega.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/10/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Sortilin (SORT1) is a multifunctional protein intricately involved in atherogenesis, coronary artery disease (CAD), and various neurological disorders. It has materialized as a potential pharmacological target for therapeutic development due to its diverse biological roles in pathological processes. Despite its central role under these conditions, effective therapeutic strategies targeting SORT1 remain challenging. In this study, we introduce a drug repurposing strategy guided by structural insights to identify potent SORT1 inhibitors with broad therapeutic potential. Our approach combines molecular docking, virtual screening, and molecular dynamics (MD) simulations, enabling the systematic evaluation of 3648 FDA-approved drugs for their potential to modulate SORT1. The investigation reveals a subset of repurposed drugs exhibiting highly favorable binding profiles and stable interactions within the binding site of SORT1. Notably, two hits, ergotamine and digitoxin, were carefully chosen based on their drug profiles and subjected to analyze their interactions with SORT1 and stability assessment via all-atom MD simulations spanning 300 ns (ns). The structural analyses uncover the complex binding interactions between these identified compounds and SORT1, offering essential mechanistic insights. Additionally, we explore the clinical implications of repurposing these compounds as potential therapeutic agents, emphasizing their significance in addressing atherogenesis, CAD, and neurological disorders. Overall, this study highlights the efficacy of structure-guided drug repurposing and provides a solid foundation for future research endeavors aimed at the development of effective therapies targeting SORT1 under diverse pathological conditions.
Collapse
Affiliation(s)
- Mohammad
Ali Abdullah Almoyad
- Department
of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushyt, PO Box. 4536, Abha 61412, Saudi Arabia
| | - Shadma Wahab
- Department
of Pharmacognosy, College of Pharmacy, King
Khalid University, Abha 61421, Saudi Arabia
| | - Sourav Mohanto
- Department
of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Nida Jamil Khan
- Department
of Biosciences, Jamia Millia Islamia University, New Delhi 110025, India
| |
Collapse
|
8
|
Kumar AHS. Network Proteins of Human Sortilin1, Its Expression and Targetability Using Lycopene. Life (Basel) 2024; 14:137. [PMID: 38255751 PMCID: PMC10817468 DOI: 10.3390/life14010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Sortilin1 (SORT1) is a ubiquitously expressed transporter involved in sorting or clearing proteins and is pathologically linked to tissue fibrosis and calcification. Targeting SORT1 may have potential clinical efficacy in controlling or reversing cardiovascular fibrosis and/or calcification. Hence, this study assessed the protein-protein network of human SORT1 and its targetability using known nutra-/pharmaceuticals. MATERIAL AND METHODS Network proteins of human SORT1 were identified using the String database, and the affinity of the protein-protein interaction of this network was analysed using Chimera software (Chimera-1.17.3-mac64). The tissue-specific expression profile of SORT1 was evaluated and assessed for enrichment in different cell types, including immune cells. A library of in-house small molecules and currently used therapeutics for cardiovascular diseases were screened using AutoDock Vina to assess the targetability of human SORT1. The concentration affinity (CA) ratio of the small molecules was estimated to assess the clinical feasibility of targeting SORT1. RESULTS IGF2R, NTRK2, GRN and GGA1 were identified as high-affinity interaction networks of SORT1. Of these high-affinity interactions, IGF2R and GRN can be considered relevant networks in regulating tissue fibrosis or the microcalcification process due to their influence on T-cell activation, inflammation, wound repair, and the tissue remodelling process. The tissue cell-type enrichment indicated major expression of SORT1 in adipocytes, specialised epithelial cells, monocytes, cardiomyocytes, and thyroid glandular cells. The binding pocket analysis of human SORT1 showed twelve potential drug interaction sites with varying binding scores (0.86 to 5.83) and probability of interaction (0.004 to 0.304). Five of the drug interaction sites were observed to be targetable at the therapeutically feasible concentration of the small molecules evaluated. Empagliflozin, sitagliptin and lycopene showed a superior affinity and CA ratio compared to established inhibitors of SORT1. CONCLUSION IGF2R and GRN are relevant networks of SORT1, regulating tissue fibrosis or the microcalcification process. SORT1 can be targeted using currently approved small-molecule therapeutics (empagliflozin and sitagliptin) or widely used nutraceuticals (lycopene), which should be evaluated in a randomised clinical trial to assess their efficacy in reducing the cardiac/vascular microcalcification process.
Collapse
Affiliation(s)
- Arun H S Kumar
- Stemcology, School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
9
|
Şimsek Z, Alizade E, Abdurahmanova İ, Güner A, Zehir R, Pala S. Serum sortilin as a predictor of stroke in patients with intermediate carotid artery stenosis. Vascular 2023; 31:317-324. [PMID: 35403511 DOI: 10.1177/17085381211067051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sortilin was an important molecular protein involved in the pathogenesis of atherosclerosis. Besides, serum sortilin was associated with adverse cerebrovascular events. Atherosclerotic stenosis in the carotid artery is a major etiology for ischemic stroke. The risk of stroke in patients with intermediate carotid artery stenosis (CAS) was unknown. Hence, the aim of the present study was to evaluate the relationship between serum sortilin levels and stroke in patients with intermediate CAS. METHODS A total of 195 intermediate CAS patients were included in this cross-sectional study. The patients were divided into two groups as symptomatic (N = 95) and asymptomatic (N = 100) patients. Patients with a transient ischemic attack (TIA), retinal ischemic event, or ischemic stroke resulting from the narrowed carotid artery were considered to be symptomatic. Serum sortilin concentrations were measured using the enzyme-linked immunosorbent assay. RESULTS Serum sortilin level was significantly higher in the symptomatic group than in the severe asymptomatic group (1.53 ± 0.25 ng/mL vs 1.34 ± 0.19 ng/mL, p < 0.001). Besides, high serum sortilin levels (odds ratio = 4.91, 95% confidence intervals 1.24-19.51, p = 0.023) were identified as independent predictors of symptomatic carotid plaque. In the receiver operating characteristic curve analysis, serum sortilin levels higher than 1.34 ng/mL predicted stroke/TIA with a sensitivity of 66.3% and a specificity of 67% (AUC = 0.725, p < 0.001). CONCLUSIONS Serum sortilin level is increased in the presence of symptomatic intermediate CAS and may have clinical value in the management of patients with carotid artery disease.
Collapse
Affiliation(s)
- Zeki Şimsek
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Elnur Alizade
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - İlahe Abdurahmanova
- Department of Cardiology, Ministry of Emergency Situation of the Republic of Azerbaijan, Baku, Azerbaijan
| | - Ahmet Güner
- Department of Cardiology, 187456Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Regayip Zehir
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Selçuk Pala
- Cardiology Department, 111350Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Knockdown of sortilin improves the neurological injury and regional cerebral blood flow in rats after subarachnoid hemorrhage. Neuroreport 2022; 33:697-704. [DOI: 10.1097/wnr.0000000000001833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Ertaş S, Ünver G, Gonca Okumuş Z, Yılmaz S, Dağ İ, Turhan U. Maternal serum Sortilin-1 level as a potential biomarker for intrahepatic cholestasis of pregnancy. Gynecol Endocrinol 2022; 38:935-938. [PMID: 36068972 DOI: 10.1080/09513590.2022.2119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective: Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease related to pregnancy in women. Sortilin-1 is a sorting receptor belonging to the vacuolar protein sorting 10 (Vps10p) domain family, and recent studies have shown that Sortilin-1 has a distinct role in the pathogenesis of biliary fibrosis and cirrhosis. We aimed to evaluate maternal serum Sortilin-1 level as a potential biomarker in pregnant women with intrahepatic cholestasis.Materials and methods: A prospective observational cohort study was conducted. We enrolled 80 pregnant women, 49 with the diagnosis of intrahepatic cholestasis of pregnancy and 31 healthy controls. Then, we measured maternal serum Sortilin-1 levels using an enzyme-linked immunosorbent assay method and compared them between groups.Results: The mean Sortilin-1 level in the ICP group was higher than control group (3.3 ± 1.7 ng/mL vs. 2.0 ± 0.6 ng/mL, respectively, p < .001). The receiver operating characteristic curve (ROC) analysis based on maternal serum Sortilin-1 levels to predict the presence of ICP was 85.3% controls [area under the curve (AUC), 0.853; 95% CI, 0.738-0.938, p < .001]. The optimal cutoff value of Sortilin-1 was 2.24 ng/mL (71.4% sensitivity and 74.2% specificity) to detect intrahepatic cholestasis of pregnancy.Conclusion: Elevated maternal serum Sortilin-1 levels are associated with ICP and can be used as a disease biomarker. Sortilin-1 levels can be combined with total bile acids, transaminases, and blood coagulation profile in the follow-up of ICP.
Collapse
Affiliation(s)
- Sinem Ertaş
- VKV American Hospital, Women's Health Center, İstanbul, Turkey
| | - Gökhan Ünver
- Samsun Training and Research Hospital, Samsun, Turkey
| | | | | | | | | |
Collapse
|
12
|
Sortilin, carbamylation, and cardiovascular calcification in chronic kidney disease. Kidney Int 2022; 101:456-459. [DOI: 10.1016/j.kint.2021.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
|
13
|
Simsek Z, Alizade E, Güner A, Zehir R. Correlation between serum sortilin levels and severity of extracranial carotid artery stenosis. Int J Clin Pract 2021; 75:e14733. [PMID: 34387924 DOI: 10.1111/ijcp.14733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Atherosclerosis is a chronic inflammatory vascular condition characterised by intimal thickening with cholesterol accumulation and macrophage foam cell infiltration causing plaque formation at the site of the injured vessel wall. This condition is a major contributor to carotid artery stenosis (CAS). Sortilin, a member of the mammalian vacuolar protein sorting 10 protein family, promotes uptake of low-density lipoprotein particles into macrophages with consequent foam cell formation independent of the low-density lipoprotein receptor, and thereby, accelerates atherosclerotic plaque formation and progression. We investigated the correlation between serum sortilin levels and the severity of extracranial CAS. MATERIALS AND METHODS The study included 149 patients who underwent carotid angiography for suspected carotid artery disease. The North American Symptomatic Carotid Endarterectomy Trial 2011 criteria were used to determine the degree of CAS. Serum sortilin concentrations were measured using the enzyme-linked immunosorbent assay. RESULTS Serum sortilin levels were significantly higher in the severe CAS than in the non-severe CAS group (2.71 ± 0.71 ng/mL vs 1.63 ± 0.57 ng/mL, P < .001). Receiver operating characteristic curve analysis showed that serum sortilin levels >1.66 ng/mL predicted severe CAS with sensitivity of 83.49% and specificity of 56.76%. CONCLUSION Current data suggest that prediction of severe CAS may serve as an atherosclerosis biomarker and significantly contribute to research on disease progression in atherosclerosis, as well as in other arterial diseases. Sortilin may be a potential therapeutic target owing to its role in the pathogenesis of atherosclerotic carotid artery disease.
Collapse
Affiliation(s)
- Zeki Simsek
- Cardiology Department, Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Elnur Alizade
- Cardiology Department, Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| | - Ahmet Güner
- Department of Cardiology, Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Regayip Zehir
- Cardiology Department, Kartal Kosuyolu Heart Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
Berger K, Pauwels E, Parkinson G, Landberg G, Le T, Demillo VG, Lumangtad LA, Jones DE, Islam MA, Olsen R, Kapri T, Intasiri A, Vermeire K, Rhost S, Bell TW. Reduction of Progranulin-Induced Breast Cancer Stem Cell Propagation by Sortilin-Targeting Cyclotriazadisulfonamide (CADA) Compounds. J Med Chem 2021; 64:12865-12876. [PMID: 34428050 PMCID: PMC10501753 DOI: 10.1021/acs.jmedchem.1c00943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclotriazadisulfonamide (CADA) compounds selectively down-modulate two human proteins of potential therapeutic interest, cluster of differentiation 4 (CD4) and sortilin. Progranulin is secreted from some breast cancer cells, causing dedifferentiation of receiving cancer cells and cancer stem cell proliferation. Inhibition of progranulin binding to sortilin, its main receptor, can block progranulin-induced metastatic breast cancer using a triple-negative in vivo xenograft model. In the current study, seven CADA compounds (CADA, VGD020, VGD071, TL020, TL023, LAL014, and DJ010) were examined for reduction of cellular sortilin expression and progranulin-induced breast cancer stem cell propagation. In addition, inhibition of progranulin-induced mammosphere formation was examined and found to be most significant for TL020, TL023, VGD071, and LAL014. Full experimental details are given for the synthesis and characterization of the four new compounds (TL020, TL023, VGD071, and DJ010). Comparison of solubilities, potencies, and cytotoxicities identified VGD071 as a promising candidate for future studies using mouse breast cancer models.
Collapse
Affiliation(s)
- Karoline Berger
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Eva Pauwels
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Gabrielle Parkinson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Truc Le
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Violeta G Demillo
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Liezel A Lumangtad
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
- Nanosyn, 3100 Central Expressway, Santa Clara, California 95051, United States
| | - Dylan E Jones
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Md Azizul Islam
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Ryan Olsen
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Topprasad Kapri
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Amarawan Intasiri
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Kurt Vermeire
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Sara Rhost
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| |
Collapse
|
15
|
Zhou C, Song H, Feng J, Hu Z, Yu ZL, Yang MJ, Shi P, Li YR, Guo YJ, Zhang T. RNA-Seq analysis and WGCNA reveal dynamic molecular responses to air exposure in the hard clam Mercenaria mercenaria. Genomics 2021; 113:2847-2859. [PMID: 34153497 DOI: 10.1016/j.ygeno.2021.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Intertidal bivalves are constantly exposed to air due to daily and seasonal tidal cycles. The hard clam Mercenaria mercenaria is an economically important bivalve species and often subjected to air exposure for more than 10 days during long-distance transportation. Hard clam exhibits remarkable tolerance to air exposure. In this study, we performed RNA sequencing on hemocytes of M. mercenaria exposed to air for 0, 1, 5, 10, 20 and 30 days. The overall and dynamic molecular responses of hard clams to air exposure were revealed by different transcriptomic analysis strategies. As a result, most cytochrome P450 1A and 3A, and monocarboxylate transporter family members were up-regulated during air exposure. Additionally, the dominant molecular process in response to 5-d, 10-d, 20-d and 30-d air exposure was refolding of misfolded proteins in endoplasmic reticulum, lysosome-mediated degradation of phospholipids, protein metabolism and reorganization of cytoskeleton, and activation of anti-apoptotic process, respectively. Our results facilitated comprehensive understanding of the tolerance mechanisms of intertidal bivalves to air exposure.
Collapse
Affiliation(s)
- Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
16
|
Vrablik M, Dlouha D, Todorovova V, Stefler D, Hubacek JA. Genetics of Cardiovascular Disease: How Far Are We from Personalized CVD Risk Prediction and Management? Int J Mol Sci 2021; 22:4182. [PMID: 33920733 PMCID: PMC8074003 DOI: 10.3390/ijms22084182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the rapid progress in diagnosis and treatment of cardiovascular disease (CVD), this disease remains a major cause of mortality and morbidity. Recent progress over the last two decades in the field of molecular genetics, especially with new tools such as genome-wide association studies, has helped to identify new genes and their variants, which can be used for calculations of risk, prediction of treatment efficacy, or detection of subjects prone to drug side effects. Although the use of genetic risk scores further improves CVD prediction, the significance is not unambiguous, and some subjects at risk remain undetected. Further research directions should focus on the "second level" of genetic information, namely, regulatory molecules (miRNAs) and epigenetic changes, predominantly DNA methylation and gene-environment interactions.
Collapse
Affiliation(s)
- Michal Vrablik
- 3rd Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 11636 Prague, Czech Republic; (V.T.); (J.A.H.)
| | - Dana Dlouha
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Veronika Todorovova
- 3rd Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 11636 Prague, Czech Republic; (V.T.); (J.A.H.)
| | - Denes Stefler
- Department of Epidemiology and Public Health, Institute of Epidemiology and Health Care, University College London, London WC1E 7HB, UK;
| | - Jaroslav A. Hubacek
- 3rd Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 11636 Prague, Czech Republic; (V.T.); (J.A.H.)
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| |
Collapse
|
17
|
The rs599839 A>G Variant Disentangles Cardiovascular Risk and Hepatocellular Carcinoma in NAFLD Patients. Cancers (Basel) 2021; 13:cancers13081783. [PMID: 33917919 PMCID: PMC8068289 DOI: 10.3390/cancers13081783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Dyslipidemia is a hallmark of nonalcoholic fatty liver disease (NAFLD) and the rs599839 variant in the CELSR2-PSRC1-SORT1 genetic cluster, has been associated with a protection against cardiovascular events. Here, we revealed a novel link between the rs599839 variant and hepatocellular carcinoma (HCC) whose onset in the context of NAFLD is rapidly increasing. We found that the rs599839 variant disentangled the risk of HCC from that of cardiovascular abnormalities by modulating SORT1 and PSRC1 expressions. The latter emerged as a potential modifier of liver carcinogenesis. Abstract Background and Aims: Dyslipidemia and cardiovascular diseases (CVD) are comorbidities of nonalcoholic fatty liver disease (NAFLD), which ranges from steatosis to hepatocellular carcinoma (HCC). The rs599839 A>G variant, in the CELSR2-PSRC1-SORT1 gene cluster, has been associated CVD, but its impact on metabolic traits and on the severity liver damage in NAFLD has not been investigated yet. Methods: We evaluated the effect of the rs599839 variant in 1426 NAFLD patients (Overall cohort) of whom 131 had HCC (NAFLD-HCC), in 500,000 individuals from the UK Biobank Cohort (UKBBC), and in 366 HCC samples from The Cancer Genome Atlas (TCGA). Hepatic PSRC1, SORT1 and CELSR2 expressions were evaluated by RNAseq (n = 125). Results: The rs599839 variant was associated with reduced circulating LDL, carotid intima-media thickness, carotid plaques and hypertension (p < 0.05) in NAFLD patients and with protection against dyslipidemia in UKBBC. The minor G allele was associated with higher risk of HCC, independently of fibrosis severity (odds ratio (OR): 5.62; 95% c.i. 1.77–17.84, p = 0.003), poor prognosis and advanced tumor stage (p < 0.05) in the overall cohort. Hepatic PSRC1, SORT1 and CELSR2 expressions were increased in NAFLD patients carrying the rs599839 variant (p < 0.0001). SORT1 mRNA levels negatively correlated with circulating lipids and with those of genes involved in lipoprotein turnover (p < 0.0001). Conversely, PSRC1 expression was positively related to that of genes implicated in cell proliferation (p < 0.0001). In TCGA, PSRC1 over-expression promoted more aggressive HCC development (p < 0.05). Conclusions: In sum, the rs599839 A>G variant is associated with protection against dyslipidemia and CVD in NAFLD patients, but as one it might promote HCC development by modulating SORT1 and PSRC1 expressions which impact on lipid metabolism and cell proliferation, respectively.
Collapse
|
18
|
Syntheses and anti-HIV and human cluster of differentiation 4 (CD4) down-modulating potencies of pyridine-fused cyclotriazadisulfonamide (CADA) compounds. Bioorg Med Chem 2020; 28:115816. [PMID: 33181479 DOI: 10.1016/j.bmc.2020.115816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023]
Abstract
CADA compounds selectively down-modulate human cell-surface CD4 protein and are of interest as HIV entry inhibitors and as drugs for asthma, rheumatoid arthritis, diabetes and some cancers. Postulating that fusing a pyridine ring bearing hydrophobic substituents into the macrocyclic scaffold of CADA compounds may lead to potent compounds with improved properties, 17 macrocycles were synthesized, 14 with 12-membered rings having an isobutylene head group, two arenesulfonyl side arms, and fused pyridine rings bearing a para substituent. The analogs display a wide range of CD4 down-modulating and anti-HIV potencies, including some with greater potency than CADA, proving that a highly basic nitrogen atom in the 12-membered ring is not required for potency and that hydrophobic substituents enhance potency of pyridine-fused CADA compounds. Cytotoxicities of the new compounds compared favorably with those of CADA, showing that incorporation of a pyridine ring into the macrocyclic scaffold can produce selective compounds for potently down-modulating proteins of medicinal interest.
Collapse
|
19
|
Ouyang S, Jia B, Xie W, Yang J, Lv Y. Mechanism underlying the regulation of sortilin expression and its trafficking function. J Cell Physiol 2020; 235:8958-8971. [PMID: 32474917 DOI: 10.1002/jcp.29818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
This review summarizes and analyzes the updated information on the regulation of sortilin expression and its trafficking function. Evidence indicates that the expression and function of sortilin are closely regulated at four levels: DNA, messenger RNA (mRNA), protein, and trafficking function. DNA methylation, several mutations, and minor single-nucleotide polymorphisms within DNA fragments affect the expression of SORT1 gene. A few transcription factors and microRNAs modulate its transcription as well as the splicing or stability of the mRNA. Moreover, several translation factors control the synthesis of sortilin protein, and posttranslational modifications affect its degradation processes. Multiple adaptor molecules modulate the sortilin trafficking function in the anterograde or retrograde pathway. Recent advances in the regulation of sortilin expression and function, and its related mechanisms will help the ongoing research related to sortilin and promote future clinical application via sortilin intervention.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Bo Jia
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Xie
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China
| | - Jing Yang
- Department of Endocrinology of the First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Yuncheng Lv
- Department of Anatomy, Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, China
| |
Collapse
|
20
|
Lumangtad LA, Bell TW. The signal peptide as a new target for drug design. Bioorg Med Chem Lett 2020; 30:127115. [PMID: 32209293 PMCID: PMC7138182 DOI: 10.1016/j.bmcl.2020.127115] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 01/16/2023]
Abstract
Many current and potential drug targets are membrane-bound or secreted proteins that are expressed and transported via the Sec61 secretory pathway. They are targeted to translocon channels across the membrane of the endoplasmic reticulum (ER) by signal peptides (SPs), which are temporary structures on the N-termini of their nascent chains. During translation, such proteins enter the lumen and membrane of the ER by a process known as co-translational translocation. Small molecules have been found that interfere with this process, decreasing protein expression by recognizing the unique structures of the SPs of particular proteins. The SP may thus become a validated target for designing drugs for numerous disorders, including certain hereditary diseases.
Collapse
Affiliation(s)
| | - Thomas W Bell
- Department of Chemistry, University of Nevada, Reno, NV 89557-0216, USA.
| |
Collapse
|
21
|
Huang S, Yu X, Wang H, Zheng J. Elevated serum sortilin is related to carotid plaque concomitant with calcification. Biomark Med 2020; 14:381-389. [PMID: 32077308 DOI: 10.2217/bmm-2019-0472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To explore whether elevated serum sortilin was associated with calcified carotid plaque and ischemic stroke. Methods: A total of 171 patients with cardiovascular risk factors were enrolled. Ultrasonography was performed to evaluate calcified plaques and noncalcified plaques. Serum sortilin concentration was measured by ELISA. Results: Serum sortilin level was higher in patients with calcified carotid plaque and positively related to carotid plaque burden, but not with ischemic stroke during the follow-up. Multivariable logistic regression analysis revealed serum sortilin level was an independent determinant for calcified carotid plaque (p = 0.001). Receiving operating characteristic analysis showed an area under the curve of sortilin for carotid calcification was 0.759. Conclusion: Higher serum sortilin level was associated with carotid calcification and severe carotid plaque score.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Ultrasound, Shenzhen Second People’s Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, Guangdong, PR China
| | - Xingxing Yu
- Department of Internal Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Haiqing Wang
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Jianlei Zheng
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| |
Collapse
|
22
|
Lv Y, Yang J, Gao A, Sun S, Zheng X, Chen X, Wan W, Tang C, Xie W, Li S, Guo D, Peng T, Zhao G, Zhong L. Sortilin promotes macrophage cholesterol accumulation and aortic atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:471-483. [PMID: 30950489 DOI: 10.1093/abbs/gmz029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 11/13/2022] Open
Abstract
Sortilin is closely associated with hyperlipidemia and the risk of atherosclerosis (AS). The role of sortilin and the underlying mechanism in peripheral macrophage are not fully understood. In this study, we investigated the effect of macrophage sortilin on ATP-binding cassette transporter A1 (ABCA1) expression, ABCA1-mediated cholesterol efflux, and aortic AS. Macrophage sortilin expression was upregulated by oxidized low-density lipoproteins (ox-LDLs) in both concentration- and time-dependent manners. Its expression reached the peak level when cells were incubated with 50 μg/ml ox-LDL for 24 h. Overexpression of sortilin in macrophage reduced cholesterol efflux, leading to an increase in intracellular total cholesterol, free cholesterol, and cholesterol ester. Sortilin was found to bind with ABCA1 protein and suppress macrophage ABCA1 expression, resulting in a decrease in cholesterol efflux from macrophages. The inhibitory effect of sortilin in cholesterol efflux was partially reversed by treatment with chloroquine, a lysosomal inhibitor. On the contrary, the ABCA1 protein level and ABCA1-mediated cholesterol efflux is increased by sortilin short hairpin RNA transfection. The fecal and biliary cholesterol 3H-sterol from cholesterol-laden mouse peritoneal macrophage was reduced by sortilin overexpression through lentivirus vector (LV)-sortilin in low-density lipoprotein receptor knockout mice, which was prevented by co-treatment with chloroquine. Treatment with LV-sortilin reduced plasma high-density lipoprotein and increased plasma ox-LDL levels. Accordingly, aortic lipid deposition and plaque area were exacerbated, and ABCA1 expression was reduced in mice in response to infection with LV-sortilin alone. These effects of LV-sortilin were partially reversed by chloroquine. Sortilin enhances lysosomal degradation of ABCA1 protein and suppresses ABCA1-mediated cholesterol efflux from macrophages, leading to foam cell formation and AS development.
Collapse
Affiliation(s)
- Yuncheng Lv
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Jing Yang
- Clinical Medical Research Institute of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Anbo Gao
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Sha Sun
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Xilong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, The University of Calgary, Health Sciences Center, Calgary, Canada
| | - Xi Chen
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Wei Wan
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Medical Research Center, University of South China, Hengyang, China
| | - Wei Xie
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Suyun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Dongming Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Tianhong Peng
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Guojun Zhao
- Department of Histology and Embryology, Guilin Medical University, Guilin, China
| | - Liyuan Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, China
| |
Collapse
|
23
|
Talbot H, Saada S, Naves T, Gallet PF, Fauchais AL, Jauberteau MO. Regulatory Roles of Sortilin and SorLA in Immune-Related Processes. Front Pharmacol 2019; 9:1507. [PMID: 30666202 PMCID: PMC6330335 DOI: 10.3389/fphar.2018.01507] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Sortilin, also known as Neurotensin Receptor-3, and the sorting-related receptor with type-A repeats (SorLA) are both members of the Vps10p domain receptor family. Initially identified in CNS cells, they are expressed in various other cell types where they exert multiple functions. Although mostly studied for its involvement in Alzheimer’s disease, SorLA has recently been shown to be implicated in immune response by regulating IL-6-mediated signaling, as well as driving monocyte migration. Sortilin has been shown to act as a receptor, as a co-receptor and as an intra- and extracellular trafficking regulator. In the last two decades, deregulation of sortilin has been demonstrated to be involved in many human pathophysiologies, including neurodegenerative disorders (Alzheimer and Parkinson diseases), type 2 diabetes and obesity, cancer, and cardiovascular pathologies such as atherosclerosis. Several studies highlighted different functions of sortilin in the immune system, notably in microglia, pro-inflammatory cytokine regulation, phagosome fusion and pathogen clearance. In this review, we will analyze the multiple roles of sortilin and SorLA in the human immune system and how their deregulation may be involved in disease development.
Collapse
Affiliation(s)
- Hugo Talbot
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Sofiane Saada
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Thomas Naves
- Faculty of Medicine, University of Limoges, Limoges, France
| | | | - Anne-Laure Fauchais
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Internal Medicine, University Hospital Limoges Dupuytren Hospital, Limoges, France
| | - Marie-Odile Jauberteau
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Immunology, University Hospital Limoges Dupuytren Hospital, Limoges, France
| |
Collapse
|
24
|
Sung HY, Lee JY, Park AK, Moon YJ, Jo I, Park EM, Wang KC, Phi JH, Ahn JH, Kim SK. Aberrant Promoter Hypomethylation of Sortilin 1: A Moyamoya Disease Biomarker. J Stroke 2018; 20:350-361. [PMID: 30309230 PMCID: PMC6186926 DOI: 10.5853/jos.2018.00962] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of moyamoya disease (MMD) remains poorly understood, and no reliable molecular biomarkers for MMD have been identified to date. The present study aimed to identify epigenetic biomarkers for use in the diagnosis of MMD. METHODS We performed integrated analyses of gene expression profiles and DNA methylation profiles in endothelial colony forming cells (ECFCs) from three patients with MMD and two healthy individuals. Candidate gene mRNA expression and DNA methylation status were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and pyrosequencing analysis of an expanded ECFC sample set from nine patients with MMD and ten controls. We evaluated the diagnostic accuracy of the potential biomarkers identified here using receiver operating characteristic curve analyses and further measured major angiogenic factor expression levels using a tube formation assay and RT-qPCR. RESULTS Five candidate genes were selected via integrated analysis; all five were upregulated by hypomethylation of specific promoter CpG sites. After further validation in an expanded sample set, we identified a candidate biomarker gene, sortilin 1 (SORT1). DNA methylation status at a specific SORT1 promoter CpG site in ECFCs readily distinguished patients with MMD from the normal controls with high accuracy (area under the curve 0.98, sensitivity 83.33%, specificity 100%). Furthermore, SORT1 overexpression suppressed endothelial cell tube formation and modulated major angiogenic factor and matrix metalloproteinase-9 expression, implying SORT1 involvement in MMD pathogenesis. CONCLUSION s Our findings suggest that DNA methylation status at the SORT1 promoter CpG site may be a potential biomarker for MMD.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea.,Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Kyung Park
- Suncheon National University College of Pharmacy, Suncheon, Korea
| | - Youn Joo Moon
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Eun-Mi Park
- Department of Pharmacology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Emam RH, Ghattas MH, Mesbah NM, Abo-Elmatty DM, Mehanna ET. Relation of locus 1p13 rs646776 polymorphism with the risk of preeclampsia. Hypertens Pregnancy 2018; 37:81-86. [PMID: 29575956 DOI: 10.1080/10641955.2018.1454462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE This study aimed to assess the relation of locus 1p13 rs646776 (T/C) polymorphism with preeclampsia in Egyptian women. METHODS The study included 100 healthy pregnant female subjects and 100 preeclampsia patients. The genotypes of the polymorphisms were assessed. Endothelin-1 level was determined in plasma. RESULTS The major T allele of the 1p13.3 genomic region rs646776 polymorphism had a higher frequency in preeclampsia patients. Carriers of C allele had significantly lower endothelin-1 levels, lower systolic and diastolic blood pressure, decreased proteinuria, and increased HDL-C in the patients. CONCLUSION The rare C allele of rs646776 polymorphism in chromosomal locus 1p13.3 is associated with decreased risk of preeclampsia.
Collapse
Affiliation(s)
- Rana H Emam
- a Faculty of Pharmacy, Department of Biochmistry , Suez Canal University , Ismailia , Egypt
| | - Maivel H Ghattas
- b Faculty of Medicine, Department of Medical Biochemistry , Port Said University , Port Said , Egypt
| | - Noha M Mesbah
- a Faculty of Pharmacy, Department of Biochmistry , Suez Canal University , Ismailia , Egypt
| | - Dina M Abo-Elmatty
- a Faculty of Pharmacy, Department of Biochmistry , Suez Canal University , Ismailia , Egypt
| | - Eman T Mehanna
- a Faculty of Pharmacy, Department of Biochmistry , Suez Canal University , Ismailia , Egypt
| |
Collapse
|
26
|
Gao A, Cayabyab FS, Chen X, Yang J, Wang L, Peng T, Lv Y. Implications of Sortilin in Lipid Metabolism and Lipid Disorder Diseases. DNA Cell Biol 2017; 36:1050-1061. [DOI: 10.1089/dna.2017.3853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anbo Gao
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Francisco S. Cayabyab
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Jing Yang
- Department of Metabolism & Endocrinology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
27
|
Pravenec M, Saba LM, Zídek V, Landa V, Mlejnek P, Šilhavý J, Šimáková M, Strnad H, Trnovská J, Škop V, Hüttl M, Marková I, Oliyarnyk O, Malínská H, Kazdová L, Smith H, Tabakoff B. Systems genetic analysis of brown adipose tissue function. Physiol Genomics 2017; 50:52-66. [PMID: 29127223 DOI: 10.1152/physiolgenomics.00091.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brown adipose tissue (BAT) has been suggested to play an important role in lipid and glucose metabolism in rodents and possibly also in humans. In the current study, we used genetic and correlation analyses in the BXH/HXB recombinant inbred (RI) strains, derived from Brown Norway (BN) and spontaneously hypertensive rats (SHR), to identify genetic determinants of BAT function. Linkage analyses revealed a quantitative trait locus (QTL) associated with interscapular BAT mass on chromosome 4 and two closely linked QTLs associated with glucose oxidation and glucose incorporation into BAT lipids on chromosome 2. Using weighted gene coexpression network analysis (WGCNA) we identified 1,147 gene coexpression modules in the BAT from BXH/HXB rats and mapped their module eigengene QTLs. Through an unsupervised analysis, we identified modules related to BAT relative mass and function. The Coral4.1 coexpression module is associated with BAT relative mass (includes Cd36 highly connected gene), and the Darkseagreen coexpression module is associated with glucose incorporation into BAT lipids (includes Hiat1, Fmo5, and Sort1 highly connected transcripts). Because multiple statistical criteria were used to identify candidate modules, significance thresholds for individual tests were not adjusted for multiple comparisons across modules. In summary, a systems genetic analysis using genomic and quantitative transcriptomic and physiological information has produced confirmation of several known genetic factors and significant insight into novel genetic components functioning in BAT and possibly contributing to traits characteristic of the metabolic syndrome.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Václav Zídek
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Vladimír Landa
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Jan Šilhavý
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Miroslava Šimáková
- Institute of Physiology of the Czech Academy of Sciences , Prague , Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the Czech Academy of Sciences , Prague , Czech Republic
| | - Jaroslava Trnovská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vojtěch Škop
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olena Oliyarnyk
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ludmila Kazdová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Harry Smith
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
28
|
Rilla K, Mustonen AM, Arasu UT, Härkönen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol 2017; 75-76:201-219. [PMID: 29066152 DOI: 10.1016/j.matbio.2017.10.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EV) are small plasma membrane-derived particles released into the extracellular space by virtually all cell types. Recently, EV have received increased interest because of their capability to carry nucleic acids, proteins, lipids and signaling molecules and to transfer their cargo into the target cells. Less attention has been paid to their role in modifying the composition of the extracellular matrix (ECM), either directly or indirectly via regulating the ability of target cells to synthesize or degrade matrix molecules. Based on recent results, EV can be considered one of the structural and functional components of the ECM that participate in matrix organization, regulation of cells within it, and in determining the physical properties of soft connective tissues, bone, cartilage and dentin. This review addresses the relevance of EV as specific modulators of the ECM, such as during the assembly and disassembly of the molecular network, signaling through the ECM and formation of niches suitable for tissue regeneration, inflammation and tumor progression. Finally, we assess the potential of these aspects of EV biology to translational medicine.
Collapse
Affiliation(s)
- Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland.
| | - Anne-Mari Mustonen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Uma Thanigai Arasu
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Kai Härkönen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Johanna Matilainen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| | - Petteri Nieminen
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI 70211, Kuopio, Finland
| |
Collapse
|
29
|
Integrated analysis of miRNA and mRNA expression profiles in human endothelial cells exposed to fisetin. BIOCHIP JOURNAL 2017. [DOI: 10.1007/s13206-017-1308-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Filippatos TD, Kei A, Rizos CV, Elisaf MS. Effects of PCSK9 Inhibitors on Other than Low-Density Lipoprotein Cholesterol Lipid Variables. J Cardiovasc Pharmacol Ther 2017; 23:3-12. [DOI: 10.1177/1074248417724868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Low-density lipoprotein cholesterol (LDL-C) is a major cardiovascular risk factor, but other lipid variables such as triglycerides (TRGs), high-density lipoprotein cholesterol (HDL-C) and lipoprotein a [Lp(a)] also affect cardiovascular risk. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors significantly lower LDL-C concentration but also modestly improve the concentrations of TRGs and HDL-C and more robustly decrease Lp(a) levels. The review presents the associated mechanisms of the beneficial effects of PCSK9 inhibitors on the other than LDL-C lipid variables, including the effects on lipid/apolipoprotein secretion and clearance and the heteroexchange between lipoproteins, as well as the possible effects on other variables involved in lipid metabolism such as sortilin. Proprotein convertase subtilisin/kexin type 9 inhibitors improve the overall lipid profile, and these beneficial effects may play a role in the reduction of cardiovascular risk.
Collapse
Affiliation(s)
| | - Anastazia Kei
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Christos V. Rizos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
31
|
Oh TJ, Ahn CH, Kim BR, Kim KM, Moon JH, Lim S, Park KS, Lim C, Jang H, Choi SH. Circulating sortilin level as a potential biomarker for coronary atherosclerosis and diabetes mellitus. Cardiovasc Diabetol 2017; 16:92. [PMID: 28728579 PMCID: PMC5520342 DOI: 10.1186/s12933-017-0568-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/22/2017] [Indexed: 01/17/2023] Open
Abstract
Context A previous genome-wide association study showed that a genetic variant of sortilin was associated with the risk of coronary artery disease (CAD). However, the role of circulating sortilin is still unknown. We investigated the potential role of plasma sortilin as a biomarker for CAD and diabetes mellitus. Methods We enrolled statin-naïve subjects with CAD (n = 31) who underwent coronary artery bypass surgery and control subjects (n = 116) who were free from CAD as evaluated by coronary CT angiography. The presence of diabetes mellitus was evaluated and plasma sortilin levels were measured with a commercial ELISA kit. Results Plasma sortilin levels were higher in subjects with CAD and subjects with diabetes mellitus than in those without CAD or diabetes mellitus. Subjects in the highest sortilin tertile group were older and had higher glucose and HbA1c levels, but lipid profiles in the three tertile groups were comparable. Multivariable logistic regression analysis revealed that sortilin levels were independently associated with CAD. In addition, the receiver operating characteristic curve analysis showed that plasma sortilin levels could identify the presence of CAD or diabetes mellitus. Conclusions Elevated circulating sortilin levels are associated with CAD and diabetes mellitus and can be used as a biomarker of both diseases in statin-naïve subjects.
Collapse
Affiliation(s)
- Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Bo-Rahm Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Kyoung Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Jae Hoon Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheong Lim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, South Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - HakChul Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Internal Medicine, Seoul National University Bundang Hospital, 300, Gumi-dong, Bundang-gu, Seongnam, 463-070, South Korea.
| |
Collapse
|
32
|
Andersen JL, Lindberg S, Langgård M, Maltas PJ, Rønn LCB, Bundgaard C, Strandbygaard D, Thirup S, Watson SP. The identification of novel acid isostere based inhibitors of the VPS10P family sorting receptor Sortilin. Bioorg Med Chem Lett 2017; 27:2629-2633. [DOI: 10.1016/j.bmcl.2017.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
|
33
|
Scott Kiss R, Sniderman A. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte. J Biomed Res 2017; 31:95-107. [PMID: 28808191 PMCID: PMC5445212 DOI: 10.7555/jbr.31.20160139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet, underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of therapeutic agents such as statins.
Collapse
Affiliation(s)
- Robert Scott Kiss
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Allan Sniderman
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
34
|
Béraud-Dufour S, Devader C, Massa F, Roulot M, Coppola T, Mazella J. Focal Adhesion Kinase-Dependent Role of the Soluble Form of Neurotensin Receptor-3/Sortilin in Colorectal Cancer Cell Dissociation. Int J Mol Sci 2016; 17:ijms17111860. [PMID: 27834811 PMCID: PMC5133860 DOI: 10.3390/ijms17111860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
The aim of the present review is to unravel the mechanisms of action of the soluble form of the neurotensin (NT) receptor-3 (NTSR3), also called Sortilin, in numerous physiopathological processes including cancer development, cardiovascular diseases and depression. Sortilin/NTSR3 is a transmembrane protein thought to exert multiple functions both intracellularly and at the level of the plasma membrane. The Sortilin/NTSR3 extracellular domain is released by shedding from all the cells expressing the protein. Although the existence of the soluble form of Sortilin/NTSR3 (sSortilin/NTSR3) has been evidenced for more than 10 years, the studies focusing on the role of this soluble protein at the mechanistic level remain rare. Numerous cancer cells, including colonic cancer cells, express the receptor family of neurotensin (NT), and particularly Sortilin/NTSR3. This review aims to summarize the functional role of sSortilin/NTSR3 characterized in the colonic cancer cell line HT29. This includes mechanisms involving signaling cascades through focal adhesion kinase (FAK), a key pathway leading to the weakening of cell-cell and cell-extracellular matrix adhesions, a series of events which could be responsible for cancer metastasis. Finally, some future approaches targeting the release of sNTSR3 through the inhibition of matrix metalloproteases (MMPs) are suggested.
Collapse
Affiliation(s)
- Sophie Béraud-Dufour
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Chistelle Devader
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Fabienne Massa
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Morgane Roulot
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Thierry Coppola
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| |
Collapse
|