1
|
Umapathi KK, Schmidt SB, Kohli U. A rare genetic variant in PRDM16 is associated with Wolff-Parkinson-White syndrome with complex accessory pathway characteristics and left ventricular non-compaction cardiomyopathy. Cardiol Young 2025:1-8. [PMID: 39895316 DOI: 10.1017/s1047951124036631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Not only has Wolff-Parkinson-White syndrome been associated with congenital cardiac abnormalities and cardiomyopathies, but familial clustering of Wolff-Parkinson-White syndrome has also been reported. Despite these well-known associations, direct genetic aetiology is rarely implicated in patients with Wolff-Parkinson-White syndrome. We report a 17-year-old girl with Wolff-Parkinson-White syndrome and left ventricular non-compaction cardiomyopathy due to a rare genetic variant in PR-domain containing protein 16. The report is supplemented by a comprehensive review of literature on association between PRDM16, left ventricular non-compaction and Wolff-Parkinson-White syndrome.
Collapse
Affiliation(s)
- Krishna Kishore Umapathi
- Division of Pediatric Cardiology, Department of Pediatrics, Charleston Area Medical Center, Charleston, WV, USA
| | - Stanley B Schmidt
- Department of Cardiology, Division of Electrophysiology, West Virginia University School of Medicine and Heart and Vascular Institute, Morgantown, WV, USA
| | - Utkarsh Kohli
- Division of Pediatric Cardiology, Department of Pediatrics, West Virginia University School of Medicine and West Virginia University Children's Heart Center, Morgantown, WV, USA
| |
Collapse
|
2
|
Yılmaz Uzman C, Gürsoy S, Özkan B, Vuran G, Ayyıldız Emecen D, Köprülü Ö, Bilen MM, Hazan F. Clinical features and molecular genetics of patients with RASopathies: expanding the phenotype with rare genes and novel variants. Eur J Pediatr 2024; 184:108. [PMID: 39725732 DOI: 10.1007/s00431-024-05825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024]
Abstract
The RASopathies are a group of disorders resulting from a germline variant in the genes encoding the Ras/mitogen-activated protein kinase pathway. These disorders include Noonan syndrome (NS), cardiofaciocutaneous syndrome (CFC), Costello syndrome (CS), Legius syndrome (LS), and neurofibromatosis type 1 (NF1), and have overlapping clinical features due to RAS/MAPK dysfunction. In this study, we aimed to describe the clinical and molecular features of patients exhibiting phenotypic manifestations consistent with RASopathies. The study included 149 patients from 146 unrelated families who were admitted between 2019 and 2023 with a clinical suspicion of RASopathy spectrum disorder. Clinical and laboratory characteristics of the patients at the time of the diagnosis were obtained from hospital records. Variant analysis of twenty-four RASopathy genes was performed using a targeted next-generation sequencing (NGS) panel, and the variants were classified according to American College of Medical Genetics and Genomics Standards and Guidelines recommendations. Pathogenic/likely pathogenic variants were detected in 39 out of 149 patients (26.1%). Thirty-two patients were diagnosed as NS (32/39; 82%). The variants detected in NS patients were PTPN11 (21/32; 65.6%), LZTR1 (3/32; 9.3%), SOS1 (2/32; 6.2%), RAF1 (2/32; 6.2%), RIT1 (2/32; 6.2%), KRAS (1/32; 3.1%), and RRAS (1/32; 3.1%) genes, respectively. The remaining patients were diagnosed with CS (2/39; 5.1%), NF1 (2/39; 5.1%), NF-NS (2/39; 5.1%), and CFC (1/39; 2.5%). We observed rare clinical findings including lymphangioma circumscriptum, Meckel's diverticulum, and omphalocele in three patients with PTPN11 gene variations. Additionally, we detected corpus callosum thickness in a patient with the SOS1 gene variant, which has not been previously described in NS. We also identified three novel variants in RIT1, BRAF, and NF1 genes. CONCLUSION In this study, we described rare clinical manifestations and detected three novel variants in NF1, BRAF, and RIT1 genes. We propose that NGS technology enables the detection of variants in rare genes responsible for the etiology of RASopathies. The study, therefore, not only contributes to the existing literature but also expands the spectrum of genotype and phenotype of RASopathies. WHAT IS KNOWN • RASopathies are a group of disorders caused by germline variants in genes involved in the Ras/mitogen-activated protein kinase (RAS/MAPK) pathway. • These disorders, including Noonan syndrome (NS), Cardiofaciocutaneous syndrome (CFC), Costello syndrome (CS), Legius syndrome, and Neurofibromatosis type 1 (NF1), share overlapping clinical features due to RAS/MAPK dysfunction. Molecular diagnosis of RASopathies is crucial for understanding the genetic basis and guiding clinical management, although the phenotype-genotype relationships remain incompletely defined. WHAT IS NEW • This study provides new insights into the molecular and clinical characteristics of RASopathies by examining 149 patients from 146 families, with a focus on the genetic variants found in 24 RASopathy-related genes. Three novel variants were identified in the RIT1, BRAF, and NF1 genes, expanding the genetic spectrum of RASopathies. • Additionally, rare clinical findings, such as lymphangioma circumscriptum and corpus callosum thickness, were reported in patients with PTPN11 and SOS1 gene variations, respectively. These observations contribute new phenotypic data to the existing body of knowledge.
Collapse
Affiliation(s)
- Ceren Yılmaz Uzman
- Department of Pediatric Genetics, Dr. Behçet Uz Children's Hospital, Izmir, Turkey.
| | - Semra Gürsoy
- Department of Pediatric Genetics, Dokuz Eylül University Faculty of Medicine, Izmir, Turkey
| | - Behzat Özkan
- Department of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Gamze Vuran
- Department of Pediatric Cardiology, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | | | - Özge Köprülü
- Department of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Mertkan Mustafa Bilen
- Department of Pediatric Cardiology, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Filiz Hazan
- Department of Medical Genetics, Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| |
Collapse
|
3
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
4
|
Monda E, De Michele G, Diana G, Verrillo F, Rubino M, Cirillo A, Fusco A, Amodio F, Caiazza M, Dongiglio F, Palmiero G, Buono P, Russo MG, Limongelli G. RETRACTED: Left Ventricular Non-Compaction in Children: Aetiology and Diagnostic Criteria. Diagnostics (Basel) 2024; 14:115. [PMID: 38201424 PMCID: PMC10871098 DOI: 10.3390/diagnostics14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Left ventricular non-compaction (LVNC) is a heterogeneous myocardial disorder characterized by prominent trabeculae protruding into the left ventricular lumen and deep intertrabecular recesses. LVNC can manifest in isolation or alongside other heart muscle diseases. Its occurrence among children is rising due to advancements in imaging techniques. The origins of LVNC are diverse, involving both genetic and acquired forms. The clinical manifestation varies greatly, with some cases presenting no symptoms, while others typically manifesting with heart failure, systemic embolism, and arrhythmias. Diagnosis mainly relies on assessing heart structure using imaging tools like echocardiography and cardiac magnetic resonance. However, the absence of a universally agreed-upon standard and limitations in diagnostic criteria have led to ongoing debates in the scientific community regarding the most reliable methods. Further research is crucial to enhance the diagnosis of LVNC, particularly in early life stages.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
- Institute of Cardiovascular Science, University College London, London WC1N 3JH, UK
| | - Gianantonio De Michele
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Gaetano Diana
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Marta Rubino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Annapaola Cirillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Adelaide Fusco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Federica Amodio
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Francesca Dongiglio
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Giuseppe Palmiero
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Pietro Buono
- Department of Maternal and Child Health, General Directorate for Health, 80131 Naples, Italy;
| | - Maria Giovanna Russo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 80131 Naples, Italy; (E.M.); (G.D.M.); (G.D.); (F.V.); (M.R.); (A.C.); (A.F.); (F.A.); (M.C.); (F.D.); (G.P.); (M.G.R.)
- Institute of Cardiovascular Science, University College London, London WC1N 3JH, UK
| |
Collapse
|
5
|
Korotkikh A, Vakhnenko Y, Zabolotskikh T, Kazantsev A, Annaev Z. NON-COMPACTION CARDIOMYOPATHY: ISSUES, CONTRADICTIONS AND SEARCH FOR EFFECTIVE DIAGNOSTIC CRITERIA. LITERATURE REVIEW. PART 2. Curr Probl Cardiol 2023; 48:101723. [PMID: 36990189 DOI: 10.1016/j.cpcardiol.2023.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Active research of non-compaction cardiomyopathy (NCM) has been going on for more than 30 years. A significant amount of information has been accumulated that is familiar to a much larger number of specialists than in the most recent past. Despite this, numerous issues remain unresolved, ranging from classification (congenital or acquired, nosology or morphological phenotype) to the ongoing search for clear diagnostic criteria that separate NCM from physiological hypertrabecularity and secondary non-compaction myocardium with the background of existing chronic processes. Meanwhile, a high risk of adverse cardiovascular events in a certain group of people with NCM is quite high. These patients need timely and often quite aggressive therapy. This review of sources of scientific and practical information is devoted to the current aspects of the classification, extremely diverse clinical picture, extremely complex genetic and instrumental diagnosis of NCM, and the possibilities of its treatment. The purpose of this review is to analyze current ideas about the controversial problems of non-compaction cardiomyopathy. The material for its preparation is the numerous sources of databases Web Science, PubMed, Google Scholar, eLIBRARY. As a result of their analysis, the authors tried to identify and summarize the main problems of the NCM and identify the ways to resolve them.
Collapse
|
6
|
Yu W, Thomas MA, Mills L, Wright JR. Prenatal Diagnosis of Isolated Right Ventricular Non-Compaction Cardiomyopathy with an MYH7 Likely Pathogenic Variant. Fetal Pediatr Pathol 2023; 42:464-471. [PMID: 36630130 DOI: 10.1080/15513815.2022.2120785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: Noncompaction of ventricular myocardium is a cardiomyopathy that typically involves the left ventricle or both ventricles; it has often been associated with mutations in genes encoding sarcomere proteins. Little is known about isolated right ventricular noncompaction, as only a few cases have been reported. Case Report: A 30 year old G2P1 woman experienced a spontaneous fetal loss at 19 weeks and 4 days. An ultrasound examination at 19 weeks showed right ventricular and tricuspid valve abnormalities, ascites, and early hydrops. At autopsy, the right ventricular chamber was dilated with numerous prominent trabeculations and deep intrabecular recesses as well as a dysplastic tricuspid valve. Histologic examination confirmed isolated right ventricular noncompaction. Whole exome sequencing showed a likely pathogenic variant in the MYH7 gene. Conclusions: This appears to be the first report of isolated right ventricular noncompaction associated with a gene mutation as well as the first diagnosis in a fetus.
Collapse
Affiliation(s)
- Weiming Yu
- Departments of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mary Ann Thomas
- Departments of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Lindsay Mills
- Departments of Pediatric Cardiology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - James R Wright
- Departments of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Departments of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
7
|
Spracklen TF, Keavney B, Laing N, Ntusi N, Shaboodien G. Modern genomic techniques in the identification of genetic causes of cardiomyopathy. Heart 2022; 108:1843-1850. [PMID: 35140110 DOI: 10.1136/heartjnl-2021-320424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022] Open
Abstract
Over the past three decades numerous disease-causing genes have been linked to the pathogenesis of heritable cardiomyopathies, but many causal genes are yet to be identified. Next-generation sequencing (NGS) platforms have revolutionised clinical testing capacity in familial cardiomyopathy. In this review, we summarise how NGS technologies have advanced our understanding of genetic non-syndromic cardiomyopathy over the last decade. First, 26 putative new disease-causing genes have been identified to date, mostly from whole-exome sequencing, and some of which (FLNC, MTO1, HCN4) have had a considerable clinical impact and are now included in routine diagnostic gene panels. Second, we consider challenges in variant interpretation and the importance of large-scale NGS population control cohorts for this purpose. Third, an emerging role of common variation in some forms of genetic cardiomyopathy is being elucidated through recent studies which have illustrated an additive effect of numerous polymorphic loci on cardiac parameters; this may explain phenotypic variability and low rates of genetic diagnosis from sequencing studies. Finally, we discuss the clinical utility of genetic testing in cardiomyopathy in Western settings, where NGS panel testing of core disease genes is currently recommended with possible implications for patient management. Given the findings of recent studies, whole-exome or whole-genome sequencing should be considered in patients of non-European ancestry with clearly familial disease, or severe paediatric disease, when no result is obtained on panel sequencing. The clinical utility of polygenic risk assessment needs to be investigated further in patients with unexplained dilated cardiomyopathy and hypertrophic cardiomyopathy in whom a pathogenic variant is not identified.
Collapse
Affiliation(s)
- Timothy F Spracklen
- Cape Heart Institute, University of Cape Town Department of Medicine, Cape Town, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Bernard Keavney
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Nakita Laing
- Division of Human Genetics, University of Cape Town, Cape Town, South Africa
| | - Ntobeko Ntusi
- Cape Heart Institute, University of Cape Town Department of Medicine, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Universities Body Imaging Centre, Cape Town, South Africa
| | - Gasnat Shaboodien
- Cape Heart Institute, University of Cape Town Department of Medicine, Cape Town, South Africa
| |
Collapse
|
8
|
Rojanasopondist P, Nesheiwat L, Piombo S, Porter GA, Ren M, Phoon CKL. Genetic Basis of Left Ventricular Noncompaction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003517. [PMID: 35549379 DOI: 10.1161/circgen.121.003517] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Left ventricular noncompaction (LVNC) is the third most common pediatric cardiomyopathy characterized by a thinned myocardium and prominent trabeculations. Next-generation genetic testing has led to a rapid increase in the number of genes reported to be associated with LVNC, but we still have little understanding of its pathogenesis. We sought to grade the strength of the gene-disease relationship for all genes reported to be associated with LVNC and identify molecular pathways that could be implicated. METHODS Following a systematic PubMed review, all genes identified with LVNC were graded using a validated, semi-quantitative system based on all published genetic and experimental evidence created by the Clinical Genome Resource (ClinGen). Genetic pathway analysis identified molecular processes and pathways associated with LVNC. RESULTS We identified 189 genes associated with LVNC: 11 (6%) were classified as definitive, 21 (11%) were classified as moderate, and 140 (74%) were classified as limited, but 17 (9%) were classified as no evidence. Of the 32 genes classified as definitive or moderate, the most common gene functions were sarcomere function (n=11; 34%), transcriptional/translational regulator (n=6; 19%), mitochondrial function (n=3; 9%), and cytoskeletal protein (n=3; 9%). Furthermore, 18 (56%) genes were implicated in noncardiac syndromic presentations. Lastly, 3 genetic pathways (cardiomyocyte differentiation via BMP receptors, factors promoting cardiogenesis in vertebrates, and Notch signaling) were found to be unique to LVNC and not overlap with pathways identified in dilated cardiomyopathy and hypertrophic cardiomyopathy. CONCLUSIONS LVNC is a genetically heterogeneous cardiomyopathy. Distinct from dilated or hypertrophic cardiomyopathies, LVNC appears to arise from abnormal developmental processes.
Collapse
Affiliation(s)
- Pakdee Rojanasopondist
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| | - Leigh Nesheiwat
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| | - Sebastian Piombo
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| | - George A Porter
- Division of Pediatric Cardiology, Department of Pediatrics, University of Rochester School of Medicine, NY (G.A.P.)
| | - Mindong Ren
- Departments of Anesthesiology and Cell Biology (M.R.), NYU Grossman School of Medicine, NY
| | - Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics (P.R., L.N., S.P., C.K.L.P.), NYU Grossman School of Medicine, NY
| |
Collapse
|
9
|
Clinical Presentation of Left Ventricular Noncompaction Cardiomyopathy and Bradycardia in Three Families Carrying HCN4 Pathogenic Variants. Genes (Basel) 2022; 13:genes13030477. [PMID: 35328031 PMCID: PMC8949387 DOI: 10.3390/genes13030477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Left ventricular noncompaction (LVNC) is a genetically and phenotypically heterogeneous cardiomyopathy in which myocardium consists of two, distinct compacted and noncompacted layers, and prominent ventricular trabeculations and deep intertrabecular recesses are present. LVNC is associated with an increased risk of heart failure, atrial and ventricular arrhythmias and thromboembolic events. Familial forms of primary sinus bradycardia have been attributed to alterations in HCN4. There are very few reports about the association between HCN4 and LVNC. The aim of our study was to characterize the clinical phenotype of families with LVNC and sinus bradycardia caused by pathogenic variants of the HCN4 gene. Methods: From March 2008 to July 2021, we enrolled six patients from four families with diagnosed isolated LVNC based on the clinical presentation, family history and echocardiographic and cardiovascular magnetic resonance (CMR) evidence of LVNC. Next generation sequencing (NGS) analysis was undertaken for the evaluation of the molecular basis of the disease in each family. Results: A total of six children (median age 11 years) were recruited and followed prospectively for the median of 12 years. All six patients were diagnosed with LVNC by echocardiography, and five participants additionally by CMR. The presence of late gadolinium enhancement (LGE) was found in three children. Sinus bradycardia and dilation of the ascending aorta occurred in five studied patients. In four patients from three families, the molecular studies demonstrated the presence of rare heterozygous HCN4 variants. Conclusion: (1) The HCN4 molecular variants influence the presence of a complex LVNC phenotype, sinus bradycardia and dilation of the ascending aorta. (2) The HCN4 alteration may be associated with the early presentation of clinical symptoms and the severe course of the disease. (3) It is particularly important to assess myocardial fibrosis not only within the ventricles, but also in the atria in patients with LVNC and sinus bradycardia.
Collapse
|
10
|
Imaging Features of Pediatric Left Ventricular Noncompaction Cardiomyopathy in Echocardiography and Cardiovascular Magnetic Resonance. J Cardiovasc Dev Dis 2022; 9:jcdd9030077. [PMID: 35323625 PMCID: PMC8956040 DOI: 10.3390/jcdd9030077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Left ventricular noncompaction (LVNC) is a distinct cardiomyopathy characterized by the presence of a two-layer myocardium with prominent trabeculation and deep intertrabecular recesses. The diagnosis of LVNC can be challenging because the diagnostic criteria are not uniform. The aim of our study was to evaluate echocardiographic and CMR findings in a group of children with isolated LVNC. Methods: From February 2008 to July 2021, pediatric patients under 18 years of age at the time of diagnosis with echocardiographic evidence of isolated LVNC were prospectively enrolled. The patients underwent echocardiography and contrast-enhanced cardiovascular magnetic resonance (CMR) with late gadolinium enhancement to assess myocardial noncompaction, ventricular size, and function. Results: A total of 34 patients, with a median age of 11.9 years, were recruited. The patients were followed prospectively for a median of 5.1 years. Of the 31 patients who met Jenni’s criteria in echocardiography, CMR was performed on 27 (79%). Further comprehensive analysis was performed in the group of 25 patients who met the echocardiographic and CMR criteria for LVNC. In echocardiography, the median NC/C ratio in systole was 2.60 and in diastole 3.40. In 25 out of 27 children (93%), LVNC was confirmed by CMR, according to Petersen’s criteria, with a median NC/C ratio of 3.27. Conclusions: (1) Echocardiography precisely identifies patients with LVNC. (2) Echocardiography is a good method for monitoring LV systolic function, but CMR is indicated for the precise assessment of LV remodeling and RV size and function, as well as for the detection of myocardial fibrosis.
Collapse
|
11
|
Brunet-Garcia L, Odori A, Fell H, Field E, Roberts AM, Starling L, Kaski JP, Cervi E. Noncompaction Cardiomyopathy, Sick Sinus Disease, and Aortic Dilatation: Too Much for a Single Diagnosis? JACC Case Rep 2022; 4:287-293. [PMID: 35257104 PMCID: PMC8897149 DOI: 10.1016/j.jaccas.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
Abstract
HCN4 mutations have been reported in association with sick sinus syndrome. A more complex phenotype, including noncompaction cardiomyopathy and aortic dilatation, has recently emerged. We report 3 family members with the pathogenic p.Gly482Arg variant, emphasizing the importance of considering HCN4 mutations when this combination of features is encountered in clinical practice. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Laia Brunet-Garcia
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
- Paediatric Cardiology, Consorci Sanitari del Maresme, Hospital de Mataró, Barcelona, Spain
| | - Alessia Odori
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - Hannah Fell
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - Ella Field
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - Angharad M. Roberts
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
- National Heart and Lung Institute, Imperial College London. London, United Kingdom
| | - Luke Starling
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
| | - Juan Pablo Kaski
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Elena Cervi
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| |
Collapse
|
12
|
Abstract
BACKGROUND Paediatric cardiomyopathy is a progressive, often lethal disorder and the most common cause of heart failure in children. Despite its severe outcomes, the genetic aetiology is still poorly characterised. High-throughput sequencing offers a great opportunity for a better understanding of the genetic causes of cardiomyopathy. AIM The current study aimed to elucidate the genetic background of cardiomyopathy in Egyptian children. METHODS This hospital-based study involved 68 patients; 58 idiopathic primary dilated cardiomyopathy and 10 left ventricular noncompaction cardiomyopathy. Cardiomyopathy-associated genes were investigated using targeted next-generation sequencing. RESULTS Consanguinity was positive in 53 and 70% of dilated cardiomyopathy and left ventricular noncompaction cardiomyopathy patients, respectively. Positive family history of cardiomyopathy was present in 28% of dilated cardiomyopathy and 10% of the left ventricular noncompaction cardiomyopathy patients. In 25 patients, 29 rare variants were detected; 2 likely pathogenic variants in TNNI3 and TTN and 27 variants of uncertain significance explaining 2.9% of patients. CONCLUSIONS The low genetic detection rate suggests that novel genes or variants might underlie paediatric cardiomyopathy in Egypt, especially with the high burden of consanguinity. Being the first national and regional report, our study could be a reference for future genetic testing in Egyptian cardiomyopathy children. Genome-wide tests (whole exome/genome sequencing) might be more suitable than the targeted sequencing to investigate the primary cardiomyopathy patients. Molecular characterisation of cardiomyopathies in different ethnicities will allow for global comparative studies that could result in understanding the pathophysiology and heterogeneity of cardiomyopathies.
Collapse
|
13
|
Spectrum of Clinical Features and Genetic Profile of Left Ventricular Noncompaction Cardiomyopathy in Children. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11040020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Left ventricular noncompaction (LVNC) is a genetically determined cardiomyopathy that occurs following a disruption of endomyocardial morphogenesis. The purpose of this study was to identify the clinical characteristics and genetic profile of children with LVNC. Methods: From February 2008 to July 2020, a total of 32 children (median 11.5 years) with LVNC were prospectively enrolled and followed up for a median of 4.02 years. Diagnosis was made based on characteristic features of LVNC in echocardiography and cardiovascular magnetic resonance (CMR). Patients’ clinical symptoms, family history, ECG, Holter ECG, and genetic tests were also evaluated. Results: The most common presenting symptom was heart failure (31% of children). ECG abnormalities were noted in 56% of patients. The most prominent features were ventricular arrhythmias, sinus bradycardia, and paroxysmal third-degree atrioventricular block. Most of the patients (94%) met the criteria for LVNC and CMR confirmed this diagnosis in 82% of cases. The molecular etiology was found in 53% of children. Conclusion: Although heart failure and arrhythmias were very frequent in our study group, thromboembolic events and genetic syndromes were rare. For the accurate and reliable assessment of children with LVNC, it is necessary to get to know their family history and detailed clinical profile.
Collapse
|
14
|
Martinez HR, Beasley GS, Miller N, Goldberg JF, Jefferies JL. Clinical Insights Into Heritable Cardiomyopathies. Front Genet 2021; 12:663450. [PMID: 33995492 PMCID: PMC8113776 DOI: 10.3389/fgene.2021.663450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathies (CMs) encompass a heterogeneous group of structural and functional abnormalities of the myocardium. The phenotypic characteristics of these myocardial diseases range from silent to symptomatic heart failure, to sudden cardiac death due to malignant tachycardias. These diseases represent a leading cause of cardiovascular morbidity, cardiac transplantation, and death. Since the discovery of the first locus associated with hypertrophic cardiomyopathy 30 years ago, multiple loci and molecular mechanisms have been associated with these cardiomyopathy phenotypes. Conversely, the disparity between the ever-growing landscape of cardiovascular genetics and the lack of awareness in this field noticeably demonstrates the necessity to update training curricula and educational pathways. This review summarizes the current understanding of heritable CMs, including the most common pathogenic gene variants associated with the morpho-functional types of cardiomyopathies: dilated, hypertrophic, arrhythmogenic, non-compaction, and restrictive. Increased understanding of the genetic/phenotypic associations of these heritable diseases would facilitate risk stratification to leveraging appropriate surveillance and management, and it would additionally provide identification of family members at risk of avoidable cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gary S. Beasley
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Noah Miller
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jason F. Goldberg
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John L. Jefferies
- The Cardiovascular Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
15
|
Bogunovic N, Farr M, Pirl L, Faber L, van Buuren F, Rudolph V, Roder F. Systolic longitudinal global and segmental myocardial mechanics in symptomatic isolated left ventricular non-compaction cardiomyopathy. Echocardiography 2021; 38:555-567. [PMID: 33738851 DOI: 10.1111/echo.15014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/04/2021] [Accepted: 02/13/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Left ventricular (LV) non-compaction cardiomyopathy (LV-NC) is rare, and data of segmental myocardial mechanics are largely lacking. We investigated myocardial longitudinal mechanics in adults with symptomatic LV-NC (n = 30) versus individuals with healthy hearts (n = 150). The contribution of compacted and non-compacted myocardial layer to systolic LV function has to be determined. METHODS Seven parameters derived from speckle tracking echocardiography were evaluated and documented utilizing polar-diagrams to obtain overviews of myocardial mechanics of the entire LV. RESULTS According to embryonal myocardial development, non-compacted myocardium was mostly located in mid-ventricular and apical segments of the free LV wall. LV ejection fraction was reduced in LV-NC (34 ± 15%, healthy 63 ± 5%, P < .0001). The compact wall layer in LV-NC demonstrated increasing systolic radial thickness (diastolic 5.6 ± 1.4, systolic 6.5 ± 1.4mm, P = .016), whereas the non-compacted layer remained unchanged or tended to decrease in thickness (diastolic 17.6 ± 5.3, systolic 16.0 ± 4.6mm, P = .22). Compared with heart-healthy individuals in LV-NC peak systolic longitudinal strain (healthy -21.1% vs. LV-NC -8.8, P < .0001), peak systolic longitudinal strain-rate (-1.23%/s vs. -0.64, P < .0001), and peak longitudinal displacement (12.1 vs. 5.6 mm, P < .0001) were reduced, while pre-systolic stretch index (1.31% vs. 3.2%, P < .0001) and post-systolic index (2.5% vs. 15.9%, P < .0001) increased. Time-to-peak longitudinal strain (371 vs. 389 ms, P = .065) and time-to-peak longitudinal strain rate (181 vs. 200 ms, P = .0677) did not differ significantly. In LV-NC, there were no significant differences between analyses using an interpolated endocardial border along the edges of the recesses and the endocardial edge of the compact wall layer. Hence, LV function appeared to depend only on the thin compact wall layer. CONCLUSION In LV-NC, myocardial efficiency is severely diminished compared with healthy controls and LV function seemed to depend mainly on the compact myocardial wall layer.
Collapse
Affiliation(s)
- Nikola Bogunovic
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Bad Oeynhausen, Germany
| | - Martin Farr
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Bad Oeynhausen, Germany
| | - Lukas Pirl
- Institut für Röntgendiagnostik und Nuklearmedizin, Klinikum Braunschweig, Braunschweig, Germany
| | - Lothar Faber
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Bad Oeynhausen, Germany
| | - Frank van Buuren
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Bad Oeynhausen, Germany.,Martinus Hospital South-Westphalia, Olpe, Germany
| | - Volker Rudolph
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Bad Oeynhausen, Germany
| | - Fabian Roder
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, Ruhr Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
16
|
Fadel S, Walker AE. The Postmortem Interpretation of Cardiac Genetic Variants of Unknown Significance in Sudden Death in the Young: A Case Report and Review of the Literature. Acad Forensic Pathol 2021; 10:166-175. [PMID: 33815637 DOI: 10.1177/1925362120984868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022]
Abstract
Sudden cardiac death (SCD) in adolescents and young adults is a major traumatic event for families and communities. In these cases, it is not uncommon to have a negative autopsy with structurally and histologically normal heart. Such SCD cases are generally attributed to channelopathies, which include long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. Our understanding of the causes for SCDs has changed significantly with the advancements in molecular and genetic studies, where many mutations are now known to be associated with certain channelopathies. Postmortem analysis provides great value in informing decision-making with regard to screening tests and prophylactic measures that should be taken to prevent sudden death in first degree relatives of the decedent. As this is a rapidly advancing field, our ability to identify genetic mutations has surpassed our ability to interpret them. This led to a unique challenge in genetic testing called variants of unknown significance (VUS). VUSs present a diagnostic dilemma and uncertainty for clinicians and patients with regard to next steps. Caution should be exercised when interpreting VUSs since misinterpretation can result in mismanagement of patients and their families. A case of a young adult man with drowning as his proximate cause of death is presented in circumstances where cardiac genetic testing was indicated and undertaken. Eight VUSs in genes implicated in inheritable cardiac dysfunction were identified and the interpretation of VUSs in this scenario is discussed.
Collapse
|
17
|
Rohde S, Muslem R, Kaya E, Dalinghaus M, van Waning JI, Majoor-Krakauer D, Towbin J, Caliskan K. State-of-the art review: Noncompaction cardiomyopathy in pediatric patients. Heart Fail Rev 2021; 27:15-28. [PMID: 33715140 PMCID: PMC8739285 DOI: 10.1007/s10741-021-10089-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Noncompaction cardiomyopathy (NCCM) is a disease characterized by hypertrabeculation, commonly hypothesized due to an arrest in compaction during fetal development. In 2006, NCCM was classified as a distinct form of cardiomyopathy (CMP) by the American Heart Association. NCCM in childhood is more frequently familial than when diagnosed in adulthood and is associated with other congenital heart diseases (CHDs), other genetic CMPs, and neuromuscular diseases (NMDs). It is yet a rare cardiac diseased with an estimated incidence of 0.12 per 100.000 in children up to 10 years of age. Diagnosing NCCM can be challenging due to non-uniform diagnostic criteria, unawareness, presumed other CMPs, and presence of CHD. Therefore, the incidence of NCCM in children might be an underestimation. Nonetheless, NCCM is the third most common cardiomyopathy in childhood and is associated with heart failure, arrhythmias, and/or thromboembolic events. This state-of-the-art review provides an overview on pediatric NCCM. In addition, we discuss the natural history, epidemiology, genetics, clinical presentation, outcome, and therapeutic options of NCCM in pediatric patients, including fetuses, neonates, infants, and children. Furthermore, we provide a simple classification of different forms of the disease. Finally, the differences between the pediatric population and the adult population are described.
Collapse
Affiliation(s)
- Sofie Rohde
- Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Room RG 431, 3015 GD, Rotterdam, The Netherlands
| | - Rahatullah Muslem
- Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Room RG 431, 3015 GD, Rotterdam, The Netherlands
| | - Emrah Kaya
- Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Room RG 431, 3015 GD, Rotterdam, The Netherlands
| | - Michel Dalinghaus
- Division of Pediatric Cardiology, Sophia Children's Hospital, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jaap I van Waning
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jeffery Towbin
- The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Kadir Caliskan
- Thoraxcenter, Department of Cardiology, Erasmus University Medical Center, Room RG 431, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Alimohamed MZ, Johansson LF, Posafalvi A, Boven LG, van Dijk KK, Walters L, Vos YJ, Westers H, Hoedemaekers YM, Sinke RJ, Sijmons RH, Sikkema-Raddatz B, Jongbloed JDH, van der Zwaag PA. Diagnostic yield of targeted next generation sequencing in 2002 Dutch cardiomyopathy patients. Int J Cardiol 2021; 332:99-104. [PMID: 33662488 DOI: 10.1016/j.ijcard.2021.02.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Next-generation sequencing (NGS) is increasingly used for clinical evaluation of cardiomyopathy patients as it allows for simultaneous screening of multiple cardiomyopathy-associated genes. Adding copy number variant (CNV) analysis of NGS data is not routine yet and may contribute to the diagnostic yield. OBJECTIVES Determine the diagnostic yield of our targeted NGS gene panel in routine clinical diagnostics of Dutch cardiomyopathy patients and explore the impact of exon CNVs on diagnostic yield. METHODS Patients (N = 2002) referred for clinical genetic analysis underwent diagnostic testing of 55-61 genes associated with cardiomyopathies. Samples were analyzed and evaluated for single nucleotide variants (SNVs), indels and CNVs. CNVs identified in the NGS data and suspected of being pathogenic based on type, size and location were confirmed by additional molecular tests. RESULTS A (likely) pathogenic (L)P variant was detected in 22.7% of patients, including 3 with CNVs and 25 where a variant was identified in a gene currently not associated with the patient's cardiomyopathy subtype. Only 15 out of 2002 patients (0.8%) were found to carry two (L)P variants. CONCLUSION The yield of routine clinical diagnostics of cardiomyopathies was relatively low when compared to literature. This is likely due to the fact that our study reports the outcome of patients in daily routine diagnostics, therefore also including patients not fully fulfilling (subtype specific) cardiomyopathy criteria. This may also explain why (L)P variants were identified in genes not associated with the reported subtype. The added value of CNV analysis was shown to be limited but not negligible.
Collapse
Affiliation(s)
- Mohamed Z Alimohamed
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Lennart F Johansson
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Anna Posafalvi
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Ludolf G Boven
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Krista K van Dijk
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Lisa Walters
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Yvonne J Vos
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Helga Westers
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Yvonne M Hoedemaekers
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Richard J Sinke
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Rolf H Sijmons
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Birgit Sikkema-Raddatz
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Jan D H Jongbloed
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Paul A van der Zwaag
- University of Groningen, University Medical Center Groningen, Department of Genetics, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
19
|
Yogasundaram H, Alhumaid W, Dzwiniel T, Christian S, Oudit GY. Cardiomyopathies and Genetic Testing in Heart Failure: Role in Defining Phenotype-Targeted Approaches and Management. Can J Cardiol 2021; 37:547-559. [PMID: 33493662 DOI: 10.1016/j.cjca.2021.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiomyopathies represent an important cause of heart failure, often affecting young individuals, and have important implications for relatives. Genetic testing for cardiomyopathies is an established care pathway in contemporary cardiology practice. The primary cardiomyopathies where genetic testing is indicated are hypertrophic, dilated, arrhythmogenic, and restrictive cardiomyopathies, with left ventricular noncompaction as a variant phenotype. Early identification and initiation of therapies in patients with inherited cardiomyopathies allow for targeting asymptomatic and presymptomatic patients in stages A and B of the American College of Cardiology/American Heart Association classification of heart failure. The current approach for genetic testing uses gene panel-based testing with the ability to extend to whole-exome and whole-genome sequencing in rare instances. The central components of genetic testing include defining the genetic basis of the diagnosis, providing prognostic information, and the ability to screen and risk-stratify relatives. Genetic testing for cardiomyopathies should be coordinated by a multidisciplinary team including adult and pediatric cardiologists, genetic counsellors, and geneticists, with access to expertise in cardiac imaging and electrophysiology. A pragmatic approach for addressing genetic variants of uncertain significance is important. In this review, we highlight the indications for genetic testing in the various cardiomyopathies, the value of early diagnosis and treatment, family screening, and the care process involved in genetic counselling and testing.
Collapse
Affiliation(s)
- Haran Yogasundaram
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Waleed Alhumaid
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tara Dzwiniel
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Christian
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Filho DCS, do Rêgo Aquino PL, de Souza Silva G, Fabro CB. Left Ventricular Noncompaction: New Insights into a Poorly Understood Disease. Curr Cardiol Rev 2021; 17:209-216. [PMID: 32674738 PMCID: PMC8226207 DOI: 10.2174/1573403x16666200716151015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022] Open
Abstract
Left ventricular noncompaction (LVNC) is a congenital pathology that directly affects the lining walls of myocardial tissue, causing trabeculations with blood filling in the inner wall of the heart, concomitantly with the development of a mesocardial thinning. Although LVNC was described for the first time as long ago as 1984, our understanding of the disease with regard to its genetic pattern, diagnosis, clinical presentation and treatment is still scanty. LVNC can present as an isolated condition or associated with congenital heart disease, genetic syndromes or neuromuscular disease. This suggests that LVNC is not a distinct form of cardiomyopathy, but rather a morphological expression of different diseases. Recognition of the disease is of fundamental importance because its clinical manifestations are variable, ranging from the absence of any symptom to congestive heart failure, lethal arrhythmias and thromboembolic events. The study of this disease has emphasized its genetic aspects, as it may be of sporadic origin or hereditary, in which case it most commonly has an autosomal dominant inheritance or one linked to the X chromosome. Echocardiography is the gold standard for diagnosis, and magnetic resonance imaging may refine the identification of the disease, especially in those patients with non-conclusive echocardiography. This article sets out to review the main characteristics of LVNC and present updates, especially in the genetic pattern, diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Dário C. Sobral Filho
- Address correspondence to this author at the R. dos Palmares - Santo Amaro, 252, Recife - PE, zipcode: 50.100-060, Brazil; E-mail:
| | | | | | | |
Collapse
|
21
|
Martinez HR, Miller E, Mead R, Osher J, Almasri M, Parent JJ. Biventricular noncompaction cardiomyopathy with severe dilated phenotype in a family with a novel MYH7 gene variant. PROGRESS IN PEDIATRIC CARDIOLOGY 2020. [DOI: 10.1016/j.ppedcard.2020.101205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Vilcu M, Scurtu I, Ohad DG, Papuc I, Scurtu L, Tabaran F. Canine infantile left ventricular noncompaction. BMC Vet Res 2020; 16:255. [PMID: 32703195 PMCID: PMC7379346 DOI: 10.1186/s12917-020-02480-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Left ventricular noncompaction (LVNC) is a rare form of cardiomyopathy currently described in humans and cats. It consists of a spongy myocardium characterized by prominent trabeculation and deep recesses involving more than 50% of the ventricular thickness. We describe the clinical and pathological features of LVNC combined with tricuspid valve dysplasia, double-orifice tricuspid valve and severe pulmonary stenosis in a puppy. In addition, we briefly review the LVNC causes, pathogenesis, forms and current diagnostic criteria. Case presentation A seven-week-old intact German Shorthaired Pointer-cross male was presented with a poor body condition, exercise intolerance and dyspnea. Clinical exam identified a bilateral systolic murmur (grade IV/VI over the right heart base and grade III/VI over the left heart base). Echocardiography identified tricuspid valve dysplasia, mild mitral regurgitation, and severe pulmonic stenosis with a trans-valvar systolic pressure gradient of 106 mmHg. Left ventricular noncompaction was diagnosed by necropsy and further confirmed histopathologically by the presence of two distinct myocardial layers: an inner noncompacted zone covering more than 50% of ventricular thickness containing prominent trabeculation and deep recesses, and an outer zone of compact myocardium. Conclusions This is the first case describing LVNC in a canine patient, supporting the introduction of this form of heart disease as a differential diagnosis for cardiomyopathies in juvenile and adult dogs.
Collapse
Affiliation(s)
- Maria Vilcu
- University of Agricultural Science and Veterinary Medicine, Calea Manastur 3-5, 400372, Cluj- Napoca, Romania
| | - Iuliu Scurtu
- University of Agricultural Science and Veterinary Medicine, Calea Manastur 3-5, 400372, Cluj- Napoca, Romania.
| | - Dan G Ohad
- The Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Ionel Papuc
- University of Agricultural Science and Veterinary Medicine, Calea Manastur 3-5, 400372, Cluj- Napoca, Romania
| | - Laura Scurtu
- Modis Competence Center, Strada Muresului 9, 400598, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- University of Agricultural Science and Veterinary Medicine, Calea Manastur 3-5, 400372, Cluj- Napoca, Romania
| |
Collapse
|
23
|
Delplancq G, Tarris G, Vitobello A, Nambot S, Sorlin A, Philippe C, Carmignac V, Duffourd Y, Denis C, Eicher JC, Chevarin M, Millat G, Khallouk B, Rousseau T, Falcon-Eicher S, Vasiljevic A, Harizay FT, Thauvin-Robinet C, Faivre L, Kuentz P. Cardiomyopathy due to PRDM16 mutation: First description of a fetal presentation, with possible modifier genes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:129-135. [PMID: 31965688 DOI: 10.1002/ajmg.c.31766] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
PRDM16 (positive regulatory domain 16) is localized in the critical region for cardiomyopathy in patients with deletions of chromosome 1p36, as defined by Gajecka et al., American Journal of Medical Genetics, 2010, 152A, 3074-3083, and encodes a zinc finger transcription factor. We present the first fetal case of left ventricular non-compaction (LVNC) with a PRDM16 variant. The third-trimester obstetric ultrasound revealed a hydropic fetus with hydramnios and expanded hypokinetic heart. After termination of pregnancy, foetopathology showed a eutrophic fetus with isolated cardiomegaly. Endocardial fibroelastosis was associated with non-compaction of the myocardium of the left ventricle. Exome sequencing (ES) identified a de novo unreported p.(Gln353*) heterozygous nonsense variant in PRDM16. ES also identified two rare variants of unknown significance, according to the American College of Medical Genetics and Genomics guidelines, in the titin gene (TTN): a de novo missense p.(Lys14773Asn) variant and a c.33043+5A>G variant inherited from the mother. Along with the PRDM16 de novo probably pathogenic variant, TTN VOUS variants could possibly contribute to the severity and early onset of the cardiac phenotype. Because of the genetic heterogeneity of cardiomyopathies, large panels or even ES could be considered as the main approaches for the molecular diagnosis, particularly in fetal presentations, where multiple hits seem to be common.
Collapse
Affiliation(s)
- Geoffroy Delplancq
- Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | | | - Antonio Vitobello
- Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France
| | - Sophie Nambot
- Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Maladies Rares 'Anomalies du Développement' de l'Interrégion Est, Hôpital d'Enfants, CHU, Dijon, France
| | - Arthur Sorlin
- Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France
| | - Christophe Philippe
- Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté, Dijon, France
| | - Virginie Carmignac
- Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France.,Centre de référence MAGEC (Maladies génétiques à expression cutanée), CHU Dijon, Dijon, France
| | - Yannis Duffourd
- Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté, Dijon, France
| | - Charlotte Denis
- Département de Cardiologie Pédiatrique, CHU Dijon, Dijon, France
| | | | - Martin Chevarin
- Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France
| | - Gilles Millat
- Laboratoire Cardiogénétique, Centre de Biologie et Pathologie Est, CHU de Lyon HCL - GH Est, Lyon, France
| | - Bouchra Khallouk
- Département de Gynécologie Obstétrique, CHU Dijon, Dijon, France
| | - Thierry Rousseau
- Département de Gynécologie Obstétrique, CHU Dijon, Dijon, France
| | | | - Alexandre Vasiljevic
- Institut de Pathologie Multi-sites des HCL/Centre de Pathologie et Fœtopathologie Est, CHU Lyon, Lyon, France
| | | | - Christel Thauvin-Robinet
- Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Maladies Rares 'Anomalies du Développement' de l'Interrégion Est, Hôpital d'Enfants, CHU, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté, Dijon, France
| | - Laurence Faivre
- Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France.,Centre de Génétique et Centre de Référence Maladies Rares 'Anomalies du Développement' de l'Interrégion Est, Hôpital d'Enfants, CHU, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté, Dijon, France
| | - Paul Kuentz
- Équipe GAD (Génétique des Anomalies du Développement), UMR INSERM 1231, Université de Bourgogne, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), Centre Hospitalier Universitaire de Dijon et Université de Bourgogne-Franche Comté, Dijon, France.,Génétique biologique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| |
Collapse
|
24
|
Frustaci A, De Luca A, Guida V, Biagini T, Mazza T, Gaudio C, Letizia C, Russo MA, Galea N, Chimenti C. Novel α-Actin Gene Mutation p.(Ala21Val) Causing Familial Hypertrophic Cardiomyopathy, Myocardial Noncompaction, and Transmural Crypts. Clinical-Pathologic Correlation. J Am Heart Assoc 2018; 7:JAHA.117.008068. [PMID: 29440008 PMCID: PMC5850207 DOI: 10.1161/jaha.117.008068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Mutations of α‐actin gene (ACTC1) have been phenotypically related to various cardiac anomalies, including hypertrophic cardiomyopathy and dilated cardiomyopathy and left ventricular (LV) myocardial noncompaction. A novel ACTC mutation is reported as cosegregating for familial hypertrophic cardiomyopathy and LV myocardial noncompaction with transmural crypts. Methods and Results In an Italian family of 7 subjects, 4 aged 10 (II‐1), 14 (II‐2), 43 (I‐4) and 46 years (I‐5), presenting abnormal ECG changes, dyspnea and palpitation (II‐2, I‐4, and I‐5), and recurrent cerebral ischemic attack (I‐5), underwent 2‐dimensional echo, cardiac magnetic resonance, Holter monitoring, and next‐generation sequencing gene analysis. Patients II‐2 and I‐5 with ventricular tachycardia underwent a cardiac invasive study, including coronary with LV angiography and endomyocardial biopsy. In all the affected members, ECG showed right bundle branch block and left anterior hemiblock with age‐related prolongation of QRS duration. Two‐dimensional echo and cardiac magnetic resonance documented LV myocardial noncompaction in all and in I‐4, I‐5, and II‐2 a progressive LV hypertrophy up to 22‐mm maximal wall thickness. Coronary arteries were normal. LV angiography showed transmural crypts progressing to spongeous myocardial transformation with LV dilatation and dysfunction in the oldest subject. At histology and electron microscopy detachment of myocardiocytes were associated with cell and myofibrillar disarray and degradation of intercalated discs causing disanchorage of myofilaments to cell membrane. Next‐generation sequencing showed in affected members an unreported p.(Ala21Val) mutation of ACTC. Conclusions Novel p.(Ala21Val) mutation of ACTC1 causes myofibrillar and intercalated disc alteration leading to familial hypertrophic cardiomyopathy and LV myocardial noncompaction with transmural crypts.
Collapse
Affiliation(s)
- Andrea Frustaci
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and GeriatricSciences, Sapienza University, Rome, Italy .,Cellular and Molecular Lab, IRCCS L. Spallanzani, Rome, Italy
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Valentina Guida
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Carlo Gaudio
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and GeriatricSciences, Sapienza University, Rome, Italy
| | - Claudio Letizia
- Department of Internal Medicine, Center for Secondary Hypertension, Sapienza University, Rome, Italy
| | - Matteo Antonio Russo
- IRCCS San Raffaele Pisana, and MEBIC Consortium, San Raffaele Rome Open University, Rome, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, La Sapienza University, Rome, Italy
| | - Cristina Chimenti
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and GeriatricSciences, Sapienza University, Rome, Italy.,Cellular and Molecular Lab, IRCCS L. Spallanzani, Rome, Italy
| |
Collapse
|
25
|
Navigating Genetic and Phenotypic Uncertainty in Left Ventricular Noncompaction. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001857. [DOI: 10.1161/circgenetics.117.001857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Fox PR, Kittleson MD, Basso C, Thiene G. Letter to the Editor. J Vet Intern Med 2017. [PMID: 28626958 PMCID: PMC5508327 DOI: 10.1111/jvim.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- P R Fox
- Caspary Research Institute of the Animal Medical Center, New York, NY
| | - M D Kittleson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - C Basso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padova, Italy
| | - G Thiene
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Padova, Italy
| |
Collapse
|