1
|
Li X, Wang J, Wang P, Qi S, Amalraj J, Zhou J, Ding Z. The role of circular RNAs in autoimmune diseases: Potential diagnostic biomarkers and therapeutic targets. FASEB J 2025; 39:e70263. [PMID: 39873909 PMCID: PMC11774230 DOI: 10.1096/fj.202401764r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025]
Abstract
With the emergence of high-quality sequencing technologies, further research on transcriptomes has become possible. Circular RNA (circRNA), a novel type of endogenous RNA molecule with a covalently closed circular structure through "back-splicing," is reported to be widely present in eukaryotic cells and participates mainly in regulating gene and protein expression in various ways. It is becoming a research hotspot in the non-coding RNA field. CircRNA shows close relation to several varieties of autoimmune diseases (AIDs) in both the physiological and pathological level and could potentially be used clinically in terms of diagnosis and treatment. Here, we focus on reviewing the importance of circRNA in various AIDs, with the aim of establishing new biomarkers and providing novel insights into understanding the role and functions of circRNA in AIDs. Specific signaling pathways of how circular RNAs are regulated in AIDs will also be illustrated in this review.
Collapse
Affiliation(s)
- Xin’ai Li
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
- Tongchuan City Thyroid Disease Prevention CenterTongchuanChina
| | - Junhui Wang
- Thyropathy Hospital, Sun Simiao HospitalBeijing University of Chinese MedicineTongchuanChina
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Peng Wang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Shuo Qi
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
- Tongchuan City Thyroid Disease Prevention CenterTongchuanChina
- Thyropathy Hospital, Sun Simiao HospitalBeijing University of Chinese MedicineTongchuanChina
| | | | - Jingwei Zhou
- The 1st Ward, Department of Nephrology and Endocrinology, Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Zhiguo Ding
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
- Tongchuan City Thyroid Disease Prevention CenterTongchuanChina
- Thyropathy Hospital, Sun Simiao HospitalBeijing University of Chinese MedicineTongchuanChina
| |
Collapse
|
2
|
Sisto M, Lisi S. Epigenetic Modulations of Non-Coding RNAs: A Novel Therapeutic Perspective in Sjӧgren's Syndrome. FRONT BIOSCI-LANDMRK 2024; 29:403. [PMID: 39735974 DOI: 10.31083/j.fbl2912403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 12/31/2024]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease that can be classified as an epithelitis based on the immune-mediated attack directed specifically at epithelial cells. SS predominantly affects women, is characterized by the production of highly specific circulating autoantibodies, and the major targets are the salivary and lachrymal glands. Although a genetic predisposition has been amply demonstrated for SS, the etiology remains unclear. The recent integration of epigenetic data relating to autoimmune diseases opens new therapeutic perspectives based on a better understanding of the molecular processes implicated. In the autoimmune field, non-coding RNA molecules (nc-RNA), which regulate gene expression by binding to mRNAs and could have a therapeutic value, have aroused great interest. The focus of this review is to summarize the biological functions of nc-RNAs in the pathogenesis of SS and decode molecular pathways implicated in the disease, in order to identify new therapeutic strategies.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
3
|
Son CJ, Carnino JM, Lee H, Jin Y. Emerging Roles of Circular RNA in Macrophage Activation and Inflammatory Lung Responses. Cells 2024; 13:1407. [PMID: 39272979 PMCID: PMC11394395 DOI: 10.3390/cells13171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.
Collapse
Affiliation(s)
- Chang Jun Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| |
Collapse
|
4
|
Unlu I, Maguire S, Guan S, Sun Z. Induro-RT mediated circRNA-sequencing (IMCR-seq) enables comprehensive profiling of full-length and long circular RNAs from low input total RNA. Nucleic Acids Res 2024; 52:e55. [PMID: 38850158 PMCID: PMC11260445 DOI: 10.1093/nar/gkae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/23/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
Circular RNA (circRNA) has recently gained attention for its emerging biological activities, relevance to disease, potential as biomarkers, and promising an alternative modality for RNA vaccines. Nevertheless, sequencing circRNAs has presented challenges. In this context, we introduce a novel circRNA sequencing method called Induro-RT mediated circRNA-sequencing (IMCR-seq), which relies on a group II intron reverse transcriptase with robust rolling circle reverse transcription activity. The IMCR-seq protocol eliminates the need for conventional circRNA enrichment methods such as rRNA depletion and RNaseR digestion yet achieved the highest circRNA enrichment and detected 6-1000 times more circRNAs for the benchmarked human samples compared to other methods. IMCR-seq is applicable to any organism, capable of detecting circRNAs of longer than 7000 nucleotides, and is effective on samples as small as 10 ng of total RNA. These enhancements render IMCR-seq suitable for clinical samples, including disease tissues and liquid biopsies. We demonstrated the clinical relevance of IMCR-seq by detecting cancer-specific circRNAs as potential biomarkers from IMCR-seq results on lung tumor tissues together with blood plasma samples from both a healthy individual and a lung cancer patient. In summary, IMCR-seq presents an efficient and versatile circRNA sequencing method with high potential for research and clinical applications.
Collapse
Affiliation(s)
- Irem Unlu
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Sean Maguire
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Shengxi Guan
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Zhiyi Sun
- New England Biolabs Inc., Beverly, MA 01915, USA
| |
Collapse
|
5
|
Barbosa DF, Oliveira LS, Nachtigall PG, Valentini Junior R, de Souza N, Paschoal AR, Kashiwabara AY. cirCodAn: A GHMM-based tool for accurate prediction of coding regions in circRNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:289-334. [PMID: 38448139 DOI: 10.1016/bs.apcsb.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Studies focusing on characterizing circRNAs with the potential to translate into peptides are quickly advancing. It is helping to elucidate the roles played by circRNAs in several biological processes, especially in the emergence and development of diseases. While various tools are accessible for predicting coding regions within linear sequences, none have demonstrated accurate open reading frame detection in circular sequences, such as circRNAs. Here, we present cirCodAn, a novel tool designed to predict coding regions in circRNAs. We evaluated the performance of cirCodAn using datasets of circRNAs with strong translation evidence and showed that cirCodAn outperformed the other tools available to perform a similar task. Our findings demonstrate the applicability of cirCodAn to identify coding regions in circRNAs, which reveals the potential of use of cirCodAn in future research focusing on elucidating the biological roles of circRNAs and their encoded proteins. cirCodAn is freely available at https://github.com/denilsonfbar/cirCodAn.
Collapse
Affiliation(s)
- Denilson Fagundes Barbosa
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina (IFSC), Canoinhas, Santa Catarina, Brazil
| | - Liliane Santana Oliveira
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Pedro Gabriel Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Rodolpho Valentini Junior
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Nayane de Souza
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - Alexandre Rossi Paschoal
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil
| | - André Yoshiaki Kashiwabara
- Programa de Pós-Graduação Associado em Bioinformática (UFPR/UTFPR), Departamento Acadêmico de Computação (DACOM), Universidade Tecnológica Federal do Paraná (UTFPR), Cornélio Procópio, Paraná, Brazil.
| |
Collapse
|
6
|
Mao S, Huang X, Chen R, Zhang C, Diao Y, Li Z, Wang Q, Tang S, Guo S. STW-MD: a novel spatio-temporal weighting and multi-step decision tree method for considering spatial heterogeneity in brain gene expression data. Brief Bioinform 2024; 25:bbae051. [PMID: 38385881 PMCID: PMC10883420 DOI: 10.1093/bib/bbae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Gene expression during brain development or abnormal development is a biological process that is highly dynamic in spatio and temporal. Previous studies have mainly focused on individual brain regions or a certain developmental stage. Our motivation is to address this gap by incorporating spatio-temporal information to gain a more complete understanding of brain development or abnormal brain development, such as Alzheimer's disease (AD), and to identify potential determinants of response. In this study, we propose a novel two-step framework based on spatial-temporal information weighting and multi-step decision trees. This framework can effectively exploit the spatial similarity and temporal dependence between different stages and different brain regions, and facilitate differential gene analysis in brain regions with high heterogeneity. We focus on two datasets: the AD dataset, which includes gene expression data from early, middle and late stages, and the brain development dataset, spanning fetal development to adulthood. Our findings highlight the advantages of the proposed framework in discovering gene classes and elucidating their impact on brain development and AD progression across diverse brain regions and stages. These findings align with existing studies and provide insights into the processes of normal and abnormal brain development.
Collapse
Affiliation(s)
- Shanjun Mao
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Xiao Huang
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Runjiu Chen
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Chenyang Zhang
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Yizhu Diao
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Zongjin Li
- Central University of Finance and Economics
| | - Qingzhe Wang
- Shanghai Institute for Advanced Studies, University of Science and Technology of China
| | - Shan Tang
- Department of Statistics, Hunan University, Shijiachong Road, Changsha 410000, China
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Lushan Road, Changsha 410000, China
| |
Collapse
|
7
|
Kim YS, Kim DH, An D, Lim Y, Seo YJ, Kim HK, Kang HY. The RNA ligation method using modified splint DNAs significantly improves the efficiency of circular RNA synthesis. Anim Cells Syst (Seoul) 2023; 27:208-218. [PMID: 37808549 PMCID: PMC10552601 DOI: 10.1080/19768354.2023.2265165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Circular RNA (circRNA) is a non-coding RNA with a covalently closed loop structure and usually more stable than messenger RNA (mRNA). However, coding sequences (CDSs) following an internal ribosome entry site (IRES) in circRNAs can be translated, and this property has been recently utilized to produce proteins as novel therapeutic tools. However, it is difficult to produce large proteins from circRNAs because of the low circularization efficiency of lengthy RNAs. In this study, we report that we successfully synthesized circRNAs with the splint DNA ligation method using RNA ligase 1 and the splint DNAs, which contain complementary sequences to both ends of precursor linear RNAs. This method results in more efficient circularization than the conventional enzymatic method that does not use the splint DNAs, easily generating circRNAs that express relatively large proteins, including IgG heavy and light chains. Longer splint DNA (42 nucleotide) is more effective in circularization. Also, the use of splint DNAs with an adenine analog, 2,6-diaminopurine (DAP), increase the circularization efficiency presumably by strengthening the interaction between the splint DNAs and the precursor RNAs. The splint DNA ligation method requires 5 times more splint DNA than the precursor RNA to efficiently produce circRNAs, but our modified splint DNA ligation method can produce circRNAs using the amount of splint DNA which is equal to that of the precursor RNA. Our modified splint DNA ligation method will help develop novel therapeutic tools using circRNAs, to treat various diseases and to develop human and veterinary vaccines.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Drug Discovery Center, NuclixBio, Seoul, Republic of Korea
| | - Do-Hyung Kim
- Drug Discovery Center, NuclixBio, Seoul, Republic of Korea
| | - Daegi An
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ho-Young Kang
- Drug Discovery Center, NuclixBio, Seoul, Republic of Korea
| |
Collapse
|
8
|
Gu A, Jaijyan DK, Yang S, Zeng M, Pei S, Zhu H. Functions of Circular RNA in Human Diseases and Illnesses. Noncoding RNA 2023; 9:38. [PMID: 37489458 PMCID: PMC10366867 DOI: 10.3390/ncrna9040038] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) represent single-stranded RNA species that contain covalently closed 3' and 5' ends that provide them more stability than linear RNA, which has free ends. Emerging evidence indicates that circRNAs perform essential functions in many DNA viruses, including coronaviruses, Epstein-Barr viruses, cytomegalovirus, and Kaposi sarcoma viruses. Recent studies have confirmed that circRNAs are present in viruses, including DNA and RNA viruses, and play various important functions such as evading host immune response, disease pathogenesis, protein translation, miRNA sponges, regulating cell proliferation, and virus replication. Studies have confirmed that circRNAs can be biological signatures or pathological markers for autoimmune diseases, neurological diseases, and cancers. However, our understanding of circRNAs in DNA and RNA viruses is still limited, and functional evaluation of viral and host circRNAs is essential to completely understand their biological functions. In the present review, we describe the metabolism and cellular roles of circRNA, including its roles in various diseases and viral and cellular circRNA functions. Circular RNAs are found to interact with RNA, proteins, and DNA, and thus can modulate cellular processes, including translation, transcription, splicing, and other functions. Circular RNAs interfere with various signaling pathways and take part in vital functions in various biological, physiological, cellular, and pathophysiological processes. We also summarize recent evidence demonstrating cellular and viral circRNA's roles in DNA and RNA viruses in this growing field of research.
Collapse
Affiliation(s)
- Alison Gu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Mulan Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Shaokai Pei
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
9
|
Bersani F, Picca F, Morena D, Righi L, Napoli F, Russo M, Oddo D, Rospo G, Negrino C, Castella B, Volante M, Listì A, Zambelli V, Benso F, Tabbò F, Bironzo P, Monteleone E, Poli V, Pietrantonio F, Di Nicolantonio F, Bardelli A, Ponzetto C, Novello S, Scagliotti GV, Taulli R. Exploring circular MET RNA as a potential biomarker in tumors exhibiting high MET activity. J Exp Clin Cancer Res 2023; 42:120. [PMID: 37170152 PMCID: PMC10176894 DOI: 10.1186/s13046-023-02690-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND MET-driven acquired resistance is emerging with unanticipated frequency in patients relapsing upon molecular therapy treatments. However, the determination of MET amplification remains challenging using both standard and next-generation sequencing-based methodologies. Liquid biopsy is an effective, non-invasive approach to define cancer genomic profiles, track tumor evolution over time, monitor treatment response and detect molecular resistance in advance. Circular RNAs (circRNAs), a family of RNA molecules that originate from a process of back-splicing, are attracting growing interest as potential novel biomarkers for their stability in body fluids. METHODS We identified a circRNA encoded by the MET gene (circMET) and exploited blood-derived cell-free RNA (cfRNA) and matched tumor tissues to identify, stratify and monitor advanced cancer patients molecularly characterized by high MET activity, generally associated with genomic amplification. RESULTS Using publicly available bioinformatic tools, we discovered that the MET locus transcribes several circRNA molecules, but only one candidate, circMET, was particularly abundant. Deeper molecular analysis revealed that circMET levels positively correlated with MET expression and activity, especially in MET-amplified cells. We developed a circMET-detection strategy and, in parallel, we performed standard FISH and IHC analyses in the same specimens to assess whether circMET quantification could identify patients displaying high MET activity. Longitudinal monitoring of circMET levels in the plasma of selected patients revealed the early emergence of MET amplification as a mechanism of acquired resistance to molecular therapies. CONCLUSIONS We found that measurement of circMET levels allows identification and tracking of patients characterized by high MET activity. Circulating circMET (ccMET) detection and analysis could be a simple, cost-effective, non-invasive approach to better implement patient stratification based on MET expression, as well as to dynamically monitor over time both therapy response and clonal evolution during treatment.
Collapse
Affiliation(s)
- Francesca Bersani
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesca Picca
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Deborah Morena
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Mariangela Russo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Daniele Oddo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Rospo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Carola Negrino
- Department of Oncology, University of Torino, Orbassano, Italy
| | - Barbara Castella
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), University of Torino, Turin, Italy
| | - Marco Volante
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Angela Listì
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Vanessa Zambelli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Benso
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Fabrizio Tabbò
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Paolo Bironzo
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Emanuele Monteleone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Orbassano, Italy
- IFOM, Istituto Fondazione di Oncologia Molecolare ETS, Milan, Italy
| | - Carola Ponzetto
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio V Scagliotti
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Torino, Orbassano, Italy.
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
10
|
Abbas MN, Kausar S, Gul I, Li J, Yu H, Dong M, Cui H. The Potential Biological Roles of Circular RNAs in the Immune Systems of Insects to Pathogen Invasion. Genes (Basel) 2023; 14:genes14040895. [PMID: 37107653 PMCID: PMC10137924 DOI: 10.3390/genes14040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Circular RNAs (circRNAs) are a newly discovered class of endogenously expressed non-coding RNAs (ncRNAs). They are highly stable, covalently closed molecules that frequently exhibit tissue-specific expression in eukaryotes. A small number of circRNAs are abundant and have been remarkably conserved throughout evolution. Numerous circRNAs are known to play important biological roles by acting as microRNAs (miRNAs) or protein inhibitors ('sponges'), by regulating the function of proteins, or by being translated themselves. CircRNAs have distinct cellular functions due to structural and production differences from mRNAs. Recent advances highlight the importance of characterizing circRNAs and their targets in a variety of insect species in order to fully understand how they contribute to the immune responses of these insects. Here, we focus on the recent advances in our understanding of the biogenesis of circRNAs, regulation of their abundance, and biological roles, such as serving as templates for translation and in the regulation of signaling pathways. We also discuss the emerging roles of circRNAs in regulating immune responses to various microbial pathogens. Furthermore, we describe the functions of circRNAs encoded by microbial pathogens that play in their hosts.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Isma Gul
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Jisheng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Mengyao Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
11
|
Huang Y, Xue Q, Cheng C, Wang Y, Wang X, Chang J, Miao C. Circular RNA in autoimmune diseases: special emphasis on regulation mechanism in RA and SLE. J Pharm Pharmacol 2023; 75:370-384. [PMID: 36583516 DOI: 10.1093/jpp/rgac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/26/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Autoimmune diseases are diseases caused by tissue damage caused by the body's immune response to autoantibodies. Circular RNAs (CircRNAs) are a kind of special endogenous non-coding RNA that play a biological role by regulating gene transcription. METHODS In this work, we searched the PubMed, Web of Science (SCIE), National Science and Technology Library (NSTL), and ScienceDirect Online (SDOL) databases to summarize the impact of circRNAs on autoimmune diseases, especially the results of circRNAs in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). RESULTS The study on the function of circRNAs and autoimmune diseases further deepened our understanding of the development and pathogenesis of autoimmune diseases. CircRNAs may act as miRNA sponges to regulate biological processes and affect the occurrence and development of autoimmune diseases. CircRNAs are closely related to the pathogenesis of RA and SLE and may become potential biomarkers for the diagnosis and treatment of RA and SLE. CONCLUSION CircRNAs play an important role in the pathogenesis of RA, SLE and other autoimmune diseases, and are expected to provide new biomarkers for the diagnosis and treatment of autoimmune diseases. However, the function and mechanism of circRNAs in autoimmune diseases need more comprehensive research.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, China.,Anhui Public Health Clinical Center, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Zheng F, Tan L, Zhang F, Li S, Lai Z, Xu H, Xiong Z, Dai Y. The circRNA-miRNA-mRNA regulatory network in plasma and peripheral blood mononuclear cells and the potential associations with the pathogenesis of systemic lupus erythematosus. Clin Rheumatol 2023:10.1007/s10067-023-06560-5. [PMID: 36862342 DOI: 10.1007/s10067-023-06560-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES This study aimed to explore the possible role of plasma and peripheral blood mononuclear cells (PBMCs) circular RNA (circRNA) in systemic lupus erythematosus (SLE). METHOD Total RNA was extracted from blood plasma samples obtained from 10 patients with SLE and 10 healthy controls and subjected to microarray analysis to define the profile of circRNA expression. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) amplification was conducted. The overlapped circRNA between PBMCs and plasma was performed, the interactions with microRNAs were predicted, the miRNA target mRNA was predicted, and the GEO database was used. The Gene ontology and pathway analysis was performed. RESULTS One hundred thirty-one upregulated and 314 significantly downregulated circRNAs were identified in the plasma of patients with SLE by the Fold change criteria (≥ 2.0) and P < 0.05. The qRT-PCR results showed that the expression of has-circRNA-102531, has-circRNA-103984, and has-circRNA-104262 was increased in plasma of SLE, and the expression of has-circRNA-102972, has-circRNA-102006, has-circRNA-104313 was decreased in plasma of SLE. Twenty-eight upregulated circRNAs and 119 downregulated circRNAs were overlapped from PBMCs and plasma, and ubiquitination was enriched. Furthermore, the circRNA-miRNA-mRNA network was constructed in SLE after analyzing dataset GSE61635 from GEO. The circRNA-miRNA-mRNA network comprises 54 circRNAs, 41 miRNAs, and 580 mRNAs. In addition, the TNF signaling pathway and the MAPK pathway were enriched from the mRNA of the miRNA target. CONCLUSION We first revealed the differentially expressed circRNAs in plasma and PBMCs, and then the circRNA-miRNA-mRNA network was constructed. The network's circRNAs could be a potential diagnostic biomarker and potentially play an important role in the pathogenesis and development of SLE. Key Points • This study analyzed the circRNAs expression profiles combined with the plasma and PBMCs, which provided a comprehensive overview of circRNAs expression patterns in SLE. • The network of the circRNA-miRNA-mRNA in SLE was constructed, which contributes to a better understanding of the pathogenesis and development of SLE.
Collapse
Affiliation(s)
- Fengping Zheng
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Lishan Tan
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Fan Zhang
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Sanmu Li
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zhiwei Lai
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Huixuan Xu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Zuying Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| |
Collapse
|
13
|
The role of non-coding RNA in lupus nephritis. Hum Cell 2023; 36:923-936. [PMID: 36840837 DOI: 10.1007/s13577-023-00883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with multiple manifestations. The renal implication, also called lupus nephritis (LN) is the most regular type of complication and results in adverse outcomes. Multiple studies revealed the importance of non-coding RNA in diseases, likewise observed in nephropathies, particularly LN. Long-non-coding RNA (lncRNA) is a group of RNA that are more than 200 nucleotides in length. And in circular RNA (circRNA), the head and tail of RNA are connected by a 3' → 5' phosphodiester bond. Both two types of non-coding RNA play important roles in LN pathogenesis through the competitive endogenous RNA (ceRNA) effect. LncRNAs and circRNAs can sponge miRNAs and consequently act on downstream signaling pathways, which are capable to influence various aspects of LN, including cell proliferation, inflammation, and oxidative stress. And lncRNAs and circRNAs have the potential to act as biomarkers to diagnose LN and distinguish whether SLE patients with LN or not. In the future, lncRNAs and circRNAs may be accessible therapeutic targets.
Collapse
|
14
|
Abbas AA, Abdulkader HA, Giordo R, Ashour HM, Erre GL, Pintus G, Zayed H. Implications and theragnostic potentials of circular RNAs in rheumatic diseases. Int J Biol Macromol 2023; 235:123783. [PMID: 36822282 DOI: 10.1016/j.ijbiomac.2023.123783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Circular RNAs (circRNAs), a class of non-coding RNAs (ncRNAs), are highly stable and ubiquitous molecules that exhibit tissue-specific expression. Accumulating evidence has shown that aberrant expression of circRNAs can play a role in the pathogenesis of several diseases. Rheumatic diseases are a varied group of autoimmune and inflammatory disorders affecting mainly the musculoskeletal system. Notably, circRNAs, which are essential immune system gene modulators, are strongly linked to the occurrence and progression of autoimmune disorders. Here, we present and discuss the current findings concerning the roles, implications and theragnostic potentials of circRNAs in common rheumatic diseases, including ankylosing spondylitis (AS), osteoarthritis (OA), osteoporosis (OP), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Crohn's disease (CD), and gout. This review aims to provide new insights to support the development of novel diagnostic and therapeutic strategies for these disabling diseases.
Collapse
Affiliation(s)
- Alaa Ahmed Abbas
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hadil Adnan Abdulkader
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
15
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Lu GF, Geng F, Deng LP, Lin DC, Huang YZ, Lai SM, Lin YC, Gui LX, Sham JSK, Lin MJ. Reduced CircSMOC1 Level Promotes Metabolic Reprogramming via PTBP1 (Polypyrimidine Tract-Binding Protein) and miR-329-3p in Pulmonary Arterial Hypertension Rats. Hypertension 2022; 79:2465-2479. [PMID: 35997022 DOI: 10.1161/hypertensionaha.122.19183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension maintains rapid cell proliferation and vascular remodeling through metabolic reprogramming. Recent studies suggested that circRNAs play important role in pulmonary vascular remodeling and pulmonary arterial smooth muscle cells proliferation. However, the relationship between circRNA, cell proliferation, and metabolic reprogramming in pulmonary arterial hypertension has not been investigated. METHODS RNA-seq and qRT-PCR reveal the differential expression profile of circRNA in pulmonary arteries of pulmonary arterial hypertension rat models. Transfection was used to examine the effects of circSMOC1 on pulmonary artery smooth muscle cells, and the roles of circSMOC1 in vivo were investigated by adenoassociated virus. Mass spectrometry, RNA pull-down, RNA immunoprecipitation, and dual-luciferase reporter assay were performed to investigate the signaling pathway of circSMOC1 regulating the metabolic reprogramming. RESULTS CircSMOC1 was significantly downregulated in pulmonary arteries of pulmonary arterial hypertension rats. CircSMOC1 knockdown promoted proliferation and migration and enhanced aerobic glycolysis of pulmonary artery smooth muscle cells. CircSMOC1 overexpression in vivo alleviates pulmonary vascular remodeling, right ventricular pressure, and right heart hypertrophy. In the nucleus, circSMOC1 directly binds to PTBP1 (polypyrimidine tract-binding protein), competitively inhibits the specific splicing of PKM (pyruvate kinase M) premRNA, resulting in the upregulation of PKM2 (pyruvate kinase M2), the key enzyme of aerobic glycolysis, to enhance glycolysis. In the cytoplasm, circSMOC1 acted as a miR-329-3p sponge, and its reduction in pulmonary arterial hypertension suppressed PDHB (pyruvate dehydrogenase E1 subunit beta) expression, leading to the impairment of mitochondrial oxidative phosphorylation. CONCLUSIONS circSMOC1 is crucially involved in the metabolic reprogramming of pulmonary artery smooth muscle cells through PTBP1 and miR-329-3p to regulate pulmonary vascular remodeling in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Gui-Feng Lu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Fei Geng
- Department of Physiology and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong province, People’s Republic of China
| | - Li-Ping Deng
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Da-Cen Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yan-Zhen Huang
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Su-Mei Lai
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Yi-Chen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - Long-Xin Gui
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
17
|
Li X, Li L, Si X, Zhang Z, Ni Z, Zhou Y, Liu K, Xia W, Zhang Y, Gu X, Huang J, Yin C, Shao A, Jiang L. The regulatory roles of circular RNAs via autophagy in ischemic stroke. Front Neurol 2022; 13:963508. [PMID: 36330428 PMCID: PMC9623297 DOI: 10.3389/fneur.2022.963508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic stroke (IS) is a severe disease with a high disability, recurrence, and mortality rates. Autophagy, a highly conserved process that degrades damaged or aging organelles and excess cellular components to maintain homeostasis, is activated during IS. It influences the blood–brain barrier integrity and regulates apoptosis. Circular RNAs (circRNAs) are novel non-coding RNAs involved in IS-induced autophagy and participate in various pathological processes following IS. In addition, they play a role in autophagy regulation. This review summarizes current evidence on the roles of autophagy and circRNA in IS and the potential mechanisms by which circRNAs regulate autophagy to influence IS injury. This review serves as a basis for the clinical application of circRNAs as novel biomarkers and therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaoqin Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhumei Ni
- Department of Emergency, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keqin Liu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congguo Yin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Congguo Yin
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China
- Anwen Shao
| | - Lin Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Lin Jiang
| |
Collapse
|
18
|
Seeler S, Moldovan LI, Bertelsen T, Hager H, Iversen L, Johansen C, Kjems J, Sommer Kristensen L. Global circRNA expression changes predate clinical and histological improvements of psoriasis patients upon secukinumab treatment. PLoS One 2022; 17:e0275219. [PMID: 36174034 PMCID: PMC9522259 DOI: 10.1371/journal.pone.0275219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease accompanied by heterogenous clinical and histological features, including a characteristic keratinocyte hyperproliferation and dermal immunogenic profile. In addition, psoriasis is associated with widespread transcriptomic alterations including changes in microRNA (miRNA) and circular RNA (circRNA) abundance, which constitute non-coding RNA (ncRNA) classes with specific regulatory capacities in diverse physiological and pathological processes. However, the knowledge about the expression dynamics of ncRNA during psoriasis treatment is sparse. To elucidate the dynamics of miRNA and circRNA abundance during secukinumab (anti-IL-17A) treatment, we studied their expression patterns in skin biopsies from 14 patients with severe plaque-type psoriasis before and during an 84-day secukinumab therapy at day 0, 4, 14, 42, and 84 using NanoString nCounter technology. We found a comprehensive downregulation of the majority of investigated circRNAs and specific alterations in the miRNA profile, including an upregulation of miR-203a-3p, miR-93-5p, and miR-378i in lesional compared to non-lesional skin before treatment. During treatment, the circRNAs progressively returned to the expression levels observed in non-lesional skin and already four days after treatment initiation most circRNAs were significantly upregulated. In comparison, for miRNAs, the normalization to baseline during treatment was delayed and limited to a subset of miRNAs. Moreover, we observed a strong correlation between multiple circRNAs, including ciRS-7 and circPTPRA, and the psoriasis area and severity index (PASI). Similar pronounced correlations could, however, not be found for miRNAs. Finally, we did not observe any significant changes in circRNA expression in peripheral blood mononuclear cells during treatment. In conclusion, we uncovered a rapid shift in global circRNA abundance upon anti-IL-17A treatment, which predated clinical and histological improvements, and a strong correlation with PASI, indicating a biomarker potential of individual circRNAs.
Collapse
Affiliation(s)
- Sabine Seeler
- Faculty of Health, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Liviu-Ionut Moldovan
- Faculty of Health, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
19
|
Xie Y, Cao Y, Guo CJ, Guo XY, He YF, Xu QY, Shen F, Pan Q. Profile analysis and functional modeling identify circular RNAs in nonalcoholic fatty liver disease as regulators of hepatic lipid metabolism. Front Genet 2022; 13:884037. [PMID: 36186461 PMCID: PMC9520628 DOI: 10.3389/fgene.2022.884037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, associated with an outcome of hepatic fibrosis/cirrhosis and hepatocellular carcinoma. However, limited exploration of the underlying mechanisms hinders its prevention and treatment. To investigate the mechanisms of epigenetic regulation in NAFLD, the expression profile of circular RNA (circRNA) of rodents in which NAFLD was induced by a high-fat, high-cholesterol (HFHC) diet was studied. Modeling of the circRNA-microRNA (miRNA) -mRNA regulatory network revealed the functional characteristics of NAFLD-specific circRNAs. The targets and effects in the liver of such NAFLD-specific circRNAs were further assessed. Our results uncovered that the downregulation of 28 annotated circRNAs characterizes HFHC diet-induced NAFLD. Among the downregulated circRNAs, long intergenic non-protein coding RNA, P53 induced transcript (LNCPINT) -derived circRNAs (circ_0001452, circ_0001453, and circ_0001454) targeted both miR-466i-3p and miR-669c-3p. Their deficiency in NAFLD abrogated the circRNA-based inhibitory effect on both miRNAs, which further inactivated the AMPK signaling pathway via AMPK-α1 suppression. Inhibition of the AMPK signaling pathway promotes hepatic steatosis, depending on the transcriptional and translational upregulation of lipogenic genes, such as those encoding sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN) in hepatocytes. The levels of LNCPINT-derived circRNAs displayed a negative association with hepatic triglyceride (TG) concentration. These findings suggest that loss of LNCPINT-derived circRNAs may underlie NAFLD via miR-466i-3p- and miR-669c-3p-dependent inactivation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Yang Xie
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Cao
- Department of Pediatric Digestion and Nutrition, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Can-Jie Guo
- Department of Gastroenterology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Ya Guo
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Fang He
- Department of Pediatric Respiratory, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Yang Xu
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Shen
- Endoscopy Center, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Feng Shen, ; Qin Pan,
| | - Qin Pan
- Department of Gastroenterology, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- Research Center, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Feng Shen, ; Qin Pan,
| |
Collapse
|
20
|
circRNA: A New Biomarker and Therapeutic Target for Esophageal Cancer. Biomedicines 2022; 10:biomedicines10071643. [PMID: 35884948 PMCID: PMC9313320 DOI: 10.3390/biomedicines10071643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022] Open
Abstract
Circular RNAs (circRNAs) comprise a large class of endogenous non-coding RNA with covalently closed loops and have independent functions as linear transcripts transcribed from identical genes. circRNAs are generated by a “back-splicing” process regulated by regulatory elements in cis and associating proteins in trans. Many studies have shown that circRNAs play important roles in multiple processes, including splicing, transcription, chromatin modification, miRNA sponges, and protein decoys. circRNAs are highly stable because of their closed ring structure, which prevents them from degradation by exonucleases, and are more abundant in terminally differentiated cells, such as brains. Recently, it was demonstrated that numerous circRNAs are differentially expressed in cancer cells, and their dysfunction is involved in tumorigenesis and metastasis. However, the crucial functions of these circRNAs and the dysregulation of circRNAs in cancer are still unknown. In this review, we summarize the recent reports on the biogenesis and biology of circRNAs and then catalog the advances in using circRNAs as biomarkers and therapeutic targets for cancer therapy, particularly esophageal cancer.
Collapse
|
21
|
Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell 2022; 185:2016-2034. [PMID: 35584701 DOI: 10.1016/j.cell.2022.04.021] [Citation(s) in RCA: 487] [Impact Index Per Article: 162.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Most circular RNAs are produced from the back-splicing of exons of precursor mRNAs. Recent technological advances have in part overcome problems with their circular conformation and sequence overlap with linear cognate mRNAs, allowing a better understanding of their cellular roles. Depending on their localization and specific interactions with DNA, RNA, and proteins, circular RNAs can modulate transcription and splicing, regulate stability and translation of cytoplasmic mRNAs, interfere with signaling pathways, and serve as templates for translation in different biological and pathophysiological contexts. Emerging applications of RNA circles to interfere with cellular processes, modulate immune responses, and direct translation into proteins shed new light on biomedical research. In this review, we discuss approaches used in circular RNA studies and the current understanding of their regulatory roles and potential applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
22
|
Tumor Cells-derived exosomal CircRNAs: Novel cancer drivers, molecular mechanisms, and clinical opportunities. Biochem Pharmacol 2022; 200:115038. [DOI: 10.1016/j.bcp.2022.115038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
|
23
|
Exosome circRNAs and ceRNA network profiles in different ANA sera. Immunol Res 2022; 70:518-529. [PMID: 35554827 DOI: 10.1007/s12026-022-09282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/12/2022] [Indexed: 11/05/2022]
Abstract
Increasing evidences show that circRNAs are associated with some autoimmunity diseases either as a biomarker or therapeutic target. Exosomes containing nucleic acids and proteins are found in sera of series diseases and could serve as either diagnostic or therapeutic target. ANA serves as first common diagnostic test for autoimmunity disease, different ANA staining reflecting different types of autoimmunity disease. Till now, whether different ANA sera exosomes express different circRNAs and relevant ceRNA networks are still shortage of investigation. This study analyzed circRNAs, miRNAs, and their interaction networks in different ANA sera exosomes by high-throughput sequencing. It found no significant difference of total circRNAs and miRNAs amount across different ANA sera exosomes. However, significant differences were found of circRNAs, miRNA constituents, function analysis by KEGG and GO, and their ceRNA networks including miRNA-circRNA and miRNA-mRNA among different ANA sera exosomes, suggesting sera exosome circRNAs as either biomarker or mechanism of autoimmunity diseases.
Collapse
|
24
|
Wang P, Zhang Y, Deng L, Qu Z, Guo P, Liu L, Yu Z, Wang P, Liu N. The function and regulation network mechanism of circRNA in liver diseases. Cancer Cell Int 2022; 22:141. [PMID: 35361205 PMCID: PMC8973545 DOI: 10.1186/s12935-022-02559-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Circular RNA (circRNA), a new type of endogenous non-coding RNA, is abundantly present in eukaryotic cells, and characterized as stable high conservation and tissue specific expression. It has been generated increasing attention because of their close association with the progress of diseases. The liver is the vital organ of humans, while it is prone to acute and chronic diseases due to the influence of multiple pathogenic factors. Moreover, hepatocellular carcinoma (HCC) is the one of most common cancer and the leading cause of cancer death worldwide. Overwhelming evidences indicate that some circRNAs are differentially expressed in liver diseases, such as, HCC, chronic hepatitis B, hepatic steatosis and hepatoblastoma tissues, etc. Additionally, these circRNAs are related to proliferation, invasion, migration, angiogenesis, apoptosis, and metastasis of cell in liver diseases and act as oncogenic agents or suppressors, and linked to clinical manifestations. In this review, we briefly summarize the biogenesis, characterization and biological functions, recent detection and identification technologies of circRNA, and regulation network mechanism of circRNA in liver diseases, and discuss their potential values as biomarkers or therapeutic targets for liver diseases, especially on HCC.
Collapse
Affiliation(s)
- Panpan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Yunhuan Zhang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Lugang Deng
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China. .,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, 475004, People's Republic of China. .,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, People's Republic of China.
| |
Collapse
|
25
|
Shen Y, Qu B, Shen N. Expanding Roles of Noncoding RNAs in the Pathogenesis of Systemic Lupus Erythematosus. Curr Rheumatol Rep 2022; 24:64-75. [PMID: 35239107 DOI: 10.1007/s11926-022-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW The exact pathogenesis of systemic lupus erythematosus (SLE) remains unclear. Accumulating finds have indicated the roles of the non-coding RNAs (ncRNAs) acting as novel epigenetic regulatory elements in the dysfunction of the immune system in SLE. This review will introduce recent studies on how ncRNAs are involved in the development of SLE. RECENT FINDINGS Recent advances in ncRNAs biology have greatly expanded our understanding of epigenetic regulation of immune responses and inflammation, and increasing evidence suggests ncRNAs are important players in SLE development. Identifications of abnormal expression patterns of ncRNAs and relevant biological impacts in lupus patients have revealed their potential as novel biomarkers and therapeutic targets for SLE. The dysregulation of ncRNAs contributes to the immunopathogenesis of SLE. Clarifying the functions and mechanisms of SLE-associated ncRNAs provides new opportunities for disease biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Yiwei Shen
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
| | - Bo Qu
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China
| | - Nan Shen
- Department of Rheumatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China.
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China.
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032, China.
| |
Collapse
|
26
|
Jiang B, Tian M, Li G, Sadula A, Xiu D, Yuan C, Bing Y. circEPS15 Overexpression in Hepatocellular Carcinoma Modulates Tumor Invasion and Migration. Front Genet 2022; 13:804848. [PMID: 35211158 PMCID: PMC8861492 DOI: 10.3389/fgene.2022.804848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Recent evidence has shown that circular RNAs (circRNAs) play important roles in tissue development, gene transcription, signal regulation and tumorigenesis. However, whether circRNAs are involved in HCC progression and encode functional proteins remains largely unknown. In the present study, we aimed to explore the function and molecular mechanism of circRNAs in HCC. First, many circRNAs were found to be differentially expressed in HCC samples and paired adjacent normal liver tissues. The validation of dysregulated circRNAs by qRT-PCR revealed that circEPS15 expression was downregulated in HCC tissues, and the survival curves showed that low circEPS15 levels were associated with poor overall survival in HCC patients. Then, the overexpression of circEPS15 suppressed tumor cell invasion and migration by inhibiting the TJP1/CDH2/VIM signaling pathway and retarded cell cycle progression, which was confirmed by the Transwell culture system, wound healing assays, flow cytometry and western blot assays. After that, the spanning junction open reading frame in circEPS15 driven by IRES was shown to encode a novel protein, which was verified by western blotting with full-length, mutated, and truncated sequences of circEPS15 with a FLAG tag. Moreover, ceRNA analysis and qRT-PCR results suggest a possible circRNA (circEPS15)-miRNA-mRNA network in HCC. Collectively, our study reveals that endogenous circEPS15 plays a novel role in repressing HCC through the ceRNA network and encodes a functional protein.
Collapse
Affiliation(s)
- Bin Jiang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Maolin Tian
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Gang Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | | | - Dianrong Xiu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Chunhui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Yuntao Bing
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
27
|
Yu J, Xie D, Huang N, Zhou Q. Circular RNAs as Novel Diagnostic Biomarkers and Therapeutic Targets in Kidney Disease. Front Med (Lausanne) 2021; 8:714958. [PMID: 34604256 PMCID: PMC8481637 DOI: 10.3389/fmed.2021.714958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of non-coding RNAs that have aroused growing attention in this decade. They are widely expressed in eukaryotes and generally have high stability owing to their special closed-loop structure. Many circRNAs are abundant, evolutionarily conserved, and exhibit cell-type-specific and tissue-specific expression patterns. Mounting evidence suggests that circRNAs have regulatory potency for gene expression by acting as microRNA sponges, interacting with proteins, regulating transcription, or directly undergoing translation. Dysregulated expression of circRNAs were found in many pathological conditions and contribute to the pathogenesis and progression of various disorders, including renal diseases. Recent studies have revealed that circRNAs may serve as novel reliable biomarkers for the diagnosis and prognosis prediction of multiple kidney diseases, such as renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), and other glomerular diseases. Furthermore, circRNAs expressed by intrinsic kidney cells are shown to play a substantial role in kidney injury, mostly reported in DKD and RCC. Herein, we review the biogenesis and biological functions of circRNAs, and summarize their roles as promising biomarkers and therapeutic targets in common kidney diseases.
Collapse
Affiliation(s)
- Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danli Xie
- Department of Nephrology, Shishi General Hospital, Quanzhou, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Jiang L, Wang X, Zhan X, Kang S, Liu H, Luo Y, Lin L. Advance in circular RNA modulation effects of heart failure. Gene 2021; 763S:100036. [PMID: 32793879 PMCID: PMC7412861 DOI: 10.1016/j.gene.2020.100036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
CircRNA (circular RNA) is a kind of closed circular structure of noncoding RNA molecules without 5′ hat structure and 3′ polyA, mainly located in the cytoplasm or stored in exosomes. It is not affected by RNA exonuclease, so it's stable and hard to be degraded. Proved to be widespread in a variety of eukaryotes, most circRNAs are cyclized by exons, some are lasso structures formed by intron cyclization. Recently, circRNAs have been demonstrated to play crucial roles in cardiomyocyte hypertrophy, fibrosis, autophagy and apoptosis, participating in the development of heart failure. There is increasing evidence that circRNAs may be a novel target for the treatment of heart failure.
Collapse
Affiliation(s)
- Li Jiang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institute of Biomedical Science, Fudan University, 180 Feng Lin Road, Shanghai 200032, China
| | - Xiaopeng Zhan
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sheng Kang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Haibo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Park East Road, Shanghai 201700, China
| | - Yu Luo
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Corresponding authors at: Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China.
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Corresponding authors at: Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China.
| |
Collapse
|
29
|
Liu Y, Wang X, Yang F, Zheng Y, Ye T, Yang L. Immunomodulatory Role and Therapeutic Potential of Non-Coding RNAs Mediated by Dendritic Cells in Autoimmune and Immune Tolerance-Related Diseases. Front Immunol 2021; 12:678918. [PMID: 34394079 PMCID: PMC8360493 DOI: 10.3389/fimmu.2021.678918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Xue T, Liu Y, Cao M, Tian M, Zhang L, Wang B, Liu X, Li C. Revealing New Landscape of Turbot ( Scophthalmus maximus) Spleen Infected with Aeromonas salmonicida through Immune Related circRNA-miRNA-mRNA Axis. BIOLOGY 2021; 10:biology10070626. [PMID: 34356481 PMCID: PMC8301059 DOI: 10.3390/biology10070626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary In this study, the expression of circRNAs, miRNAs, and mRNA in the immune organs spleen of turbot (Scophthalmus maximus) infected with Aeromonas salmonicida was analyzed by high-throughput sequencing, and circRNA-miRNA-mRNA network was constructed, so as to explore the function of non-coding RNA in the immune system of teleost. A total of 119, 140, and 510 differential expressed circRNAs, miRNAs, and mRNAs were identified in the infected groups compared with the uninfected group. The qRT-PCR verified the reliability and accuracy of the Illumina sequencing data. Fifteen triple networks of circRNA-miRNA-mRNA were presented in the form of “up (circRNA)-down (miRNA)-up (mRNA)” or “down-up-down”. Immune-related genes were also found in these networks. These results indicate that circRNAs and miRNAs may regulate the expression of immune-related genes through the circRNA-miRNA-mRNA regulatory network and thus participate in the immune response of turbot spleen after pathogen infection. Abstract Increasing evidence suggests that non-coding RNAs (ncRNA) play an important role in a variety of biological life processes by regulating gene expression at the transcriptional and post-transcriptional levels. Turbot (Scophthalmus maximus) has been threatened by various pathogens. In this study, the expression of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNA in the immune organs spleen of turbot infected with Aeromonas salmonicida was analyzed by high-throughput sequencing, and a circRNA-miRNA-mRNA network was constructed, so as to explore the function of non-coding RNA in the immune system of teleost. Illumina sequencing was performed on the uninfected group and infected group. A total of 119 differential expressed circRNAs (DE-circRNAs), 140 DE-miRNAs, and 510 DE-mRNAs were identified in the four infected groups compared with the uninfected group. Most DE-mRNAs and the target genes of DE-ncRNAs were involved in immune-related pathways. The quantitative real-time PCR (qRT-PCR) results verified the reliability and accuracy of the high-throughput sequencing data. Ninety-six differentially expressed circRNA-miRNA-mRNA regulatory networks were finally constructed. Among them, 15 circRNA-miRNA-mRNA were presented in the form of “up (circRNA)-down (miRNA)-up (mRNA)” or “down-up-down”. Immune-related genes gap junction CX32.2, cell adhesion molecule 3, and CC chemokine were also found in these networks. These results indicate that ncRNA may regulate the expression of immune-related genes through the circRNA-miRNA-mRNA regulatory network and thus participate in the immune response of turbot spleen after pathogen infection.
Collapse
|
31
|
Mahmoudi E, Green MJ, Cairns MJ. Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder. J Mol Med (Berl) 2021; 99:981-991. [PMID: 33782720 DOI: 10.1007/s00109-021-02070-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are head-to-tail back-spliced RNA transcripts that have been linked to several biological processes and their perturbation is evident in human disease, including neurological disorders. There is also emerging research suggesting circRNA expression may also be altered in psychiatric and behavioural syndromes. Here, we provide a comprehensive analysis of circRNA expression in peripheral blood mononuclear cells (PBMCs) from 39 patients with schizophrenia and bipolar disorder as well as 20 healthy individuals using deep RNA-seq. We observed systematic alternative splicing leading to a complex and diverse profile of RNA transcripts including 8762 high confidence circRNAs. More specific scrutiny of the circular transcriptome in schizophrenia and bipolar disorder, compared to a non-psychiatric control group, revealed significant dysregulation of 55 circRNAs with a bias towards downregulation. These molecules were predicted to interact with a large number of miRNAs that target genes enriched in psychiatric disorders. Further replication and cross-validation to determine the specificity of these circRNAs across broader diagnostic groups and subgroups in psychiatry will enable their potential utility as biomarkers to be established. KEY MESSAGES: • We identified 8762 high confidence circRNAs with systematic alternative splicing in human PBMCs. • CircRNAs were dysregulated in schizophrenia and bipolar disorder, compared to a non-psychiatric control group. • The DE circRNAs were predicted to interact with miRNAs with target genes enriched in psychiatric disorders. • Some circRNAs have the potential to serve as biomarkers in psychiatry.
Collapse
Affiliation(s)
- Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW, Australia.,Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia. .,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Hunter Medical Research Institute, New Lambton Heights, Australia.
| |
Collapse
|
32
|
Huang Y, Zhang C, Xiong J, Ren H. Emerging important roles of circRNAs in human cancer and other diseases. Genes Dis 2021; 8:412-423. [PMID: 34179306 PMCID: PMC8209354 DOI: 10.1016/j.gendis.2020.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
CircRNAs are a large class of endogenous single-stranded RNA that is different from other linear RNA, which are produced by back-splicing and fusion of either exons, introns, or both exon-intron into covalently closed loops. CircRNAs are found in almost all living organisms and have emerged as potentially important players effecting on all life activities. It was characterized by stable structure, resistant to RNA degradation, highly abundance and conservation and tissue-specific expression. Early circRNAs were ignored as a by-product of meaningless abnormally cut RNA and had little biological function. Currently, circRNAs have become a research hotspot due to its special characteristics. CircRNAs could function as miRNA sponges, interfere with splicing and bind to protein to regulate the expression of parental genes and so on. In recent years, an increasing number of studies have revealed that circRNAs are closely related to a series of physiological and pathological processes. Additionally, circRNAs play an important role in the occurrence and development of a variety of diseases, suggesting circRNAs may be as novel indicators or biomarkers for cancer and other diseases with which they are associated. In this article, we review the biogenesis, biological functions of circRNAs and recent advances in circRNAs research in human diseases. Results will provide new insights on the roles and new ideas of circRNAs for the diagnosis and treatment of diseases and possible directions and approach for future circRNA applications.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Jianli Xiong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| | - Hongtao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan Province, 471023, PR China
| |
Collapse
|
33
|
Function of Circular RNAs in Fish and Their Potential Application as Biomarkers. Int J Mol Sci 2021; 22:ijms22137119. [PMID: 34281172 PMCID: PMC8268770 DOI: 10.3390/ijms22137119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are an emerging class of regulatory RNAs with a covalently closed-loop structure formed during pre-mRNA splicing. Recent advances in high-throughput RNA sequencing and circRNA-specific computational tools have driven the development of novel approaches to their identification and functional characterization. CircRNAs are stable, developmentally regulated, and show tissue- and cell-type-specific expression across different taxonomic groups. They play a crucial role in regulating various biological processes at post-transcriptional and translational levels. However, the involvement of circRNAs in fish immunity has only recently been recognized. There is also broad evidence in mammals that the timely expression of circRNAs in muscle plays an essential role in growth regulation but our understanding of their expression and function in teleosts is still very limited. Here, we discuss the available knowledge about circRNAs and their role in growth and immunity in vertebrates from a comparative perspective, with emphasis on cultured teleost fish. We expect that the interest in teleost circRNAs will increase substantially soon, and we propose that they may be used as biomarkers for selective breeding of farmed fish, thus contributing to the sustainability of the aquaculture sector.
Collapse
|
34
|
Bu T, Qiao Z, Wang W, Yang X, Zhou J, Chen L, Yang J, Xu J, Ji Y, Wang Y, Zhang W, Yang Y, Qiu X, Yu Y. Diagnostic Biomarker Hsa_circ_0126218 and Functioning Prediction in Peripheral Blood Monocular Cells of Female Patients With Major Depressive Disorder. Front Cell Dev Biol 2021; 9:651803. [PMID: 34095115 PMCID: PMC8174117 DOI: 10.3389/fcell.2021.651803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Although major depressive diroder (MDD) has brought huge burden and challenges to society globally, effective and accurate diagnoses and treatments remain inadequate. The pathogenesis that for women are more likely to suffer from depression than men needs to be excavated as well. The function of circRNAs in pathological process of depression has not been widely investigated. This study aims to explore potential diagnostic biomarker circRNA of female patients with MDD and to investigate its role in pathogenesis. Methods First, an expression profile of circRNAs in the peripheral blood monocular cells of MDD patients and healthy peripherals were established based on high-throughput sequencing analysis. In addition, the top 10 differentially expressed circRNAs were quantified by quantitative real-time PCR to explore diagnostic biomarkers. To further investigate the function of biomarkers in the pathogenesis of MDD, bioinformatics analysis on downstream target genes of the biomarkers was carried out. Results There is a mass of dysregulated circRNAs in PBMCs between female MDD patients and healthy controls. Among the top 10 differentially expressed circRNAs, hsa_circ_0126218 is more feasible as a diagnostic biomarker. The expression level of hsa_circ_0126218 displayed upregulation in patients with MDD and the area under the operating characteristic curve of hsa_circ_0126218 was 0.801 (95% CI 0.7226–0.8791, p < 0.0001). To explain the competing endogenous RNA role of hsa_circ_0126218 in the pathogenesis of female MDD, a hsa_circ_0126218-miRNA-mRNA network was established. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses stated that some of the enriched pathways downstream of hsa_circ_0126218 are closely related to MDD. Moreover, we established a protein-protein network to further screen out the hub genes (PIK3CA, PTEN, MAPK1, CDC42, Lyn, YES1, EPHB2, SMAD2, STAT1, and ILK). The function of hsa_circ_0126218 was refined by constructing a verified circRNA-predicted miRNA-hub gene subnetwork. Conclusion hsa_circ_0126218 can be considered as a new female MDD biomarker, and the pathogenesis of female MDD by the downstream regulation of hsa_circ_0126218 has been predicted. These findings may help further improve the early detection, effective diagnosis, convenient monitoring of complications, precise treatment, and timely recurrence prevention of depression.
Collapse
Affiliation(s)
- Tianyi Bu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Zhengxue Qiao
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Wenbo Wang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Xiuxian Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jiawei Zhou
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Lu Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Jiarun Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jia Xu
- Psychotherapy Department, The First Psychiatric Hospital of Harbin, Harbin, China
| | - Yanping Ji
- Department of Nursing, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yini Wang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Wenxin Zhang
- Medical Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Xiaohui Qiu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Yunmiao Yu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Yan J, Yang Y, Fan X, Tang Y, Tang Z. Sp1-Mediated circRNA circHipk2 Regulates Myogenesis by Targeting Ribosomal Protein Rpl7. Genes (Basel) 2021; 12:genes12050696. [PMID: 34066653 PMCID: PMC8151578 DOI: 10.3390/genes12050696] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed single-stranded RNA molecules that are emerging as essential regulators of various biological processes. The circRNA circHipk2 originates from exon 2 of the Hipk2 gene in mice and was reported to be involved in acute promyelocytic leukemia and myocardial injury. However, the functions and mechanisms of circHipk2 in myogenesis are largely unknown. Here, to deepen our knowledge about the role of circHipk2, we studied the expression and function of circHipk2 during skeletal myogenesis. We found that circHipk2 was mostly distributed in the cytoplasm, and dynamically and differentially expressed in various myogenesis systems in vitro and in vivo. Functionally, overexpression of circHipk2 inhibited myoblast proliferation and promoted myotube formation in C2C12 cells, whereas the opposite effects were observed after circHipk2 knockdown. Mechanistically, circHipk2 could directly bind to ribosomal protein Rpl7, an essential 60S preribosomal assembly factor, to inhibit ribosome translation. In addition, we verified that transcription factor Sp1 directly bound to the promoter of circHipk2 and affected the expression of Hipk2 and circHipk2 in C2C12 myoblasts. Collectively, these findings identify circHipk2 as a candidate circRNA regulating ribosome biogenesis and myogenesis proliferation and differentiation.
Collapse
Affiliation(s)
- Junyu Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
| | - Xinhao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
| | - Yijie Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (J.Y.); (Y.Y.); (X.F.); (Y.T.)
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Research Centre of Animal Nutritional Genomics, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- GuangXi Engineering Centre for Resource Development of Bama Xiang Pig, Bama 547500, China
- Correspondence:
| |
Collapse
|
36
|
Pastar I, Marjanovic J, Stone RC, Chen V, Burgess JL, Mervis JS, Tomic-Canic M. Epigenetic regulation of cellular functions in wound healing. Exp Dermatol 2021; 30:1073-1089. [PMID: 33690920 DOI: 10.1111/exd.14325] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Stringent spatiotemporal regulation of the wound healing process involving multiple cell types is associated with epigenetic mechanisms of gene regulation, such as DNA methylation, histone modification and chromatin remodelling, as well as non-coding RNAs. Here, we discuss the epigenetic changes that occur during wound healing and the rapidly expanding understanding of how these mechanisms affect healing resolution in both acute and chronic wound milieu. We provide a focussed overview of current research into epigenetic regulators that contribute to wound healing by specific cell type. We highlight the role of epigenetic regulators in the molecular pathophysiology of chronic wound conditions. The understanding of how epigenetic regulators can affect cellular functions during normal and impaired wound healing could lead to novel therapeutic approaches, and we outline questions that can provide guidance for future research on epigenetic-based interventions to promote healing. Dissecting the dynamic interplay between cellular subtypes involved in wound healing and epigenetic parameters during barrier repair will deepen our understanding of how to improve healing outcomes in patients affected by chronic non-healing wounds.
Collapse
Affiliation(s)
- Irena Pastar
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jelena Marjanovic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rivka C Stone
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vivien Chen
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jamie L Burgess
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua S Mervis
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marjana Tomic-Canic
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
37
|
Zhai X, Zhang Y, Xin S, Cao P, Lu J. Insights Into the Involvement of Circular RNAs in Autoimmune Diseases. Front Immunol 2021; 12:622316. [PMID: 33717126 PMCID: PMC7947908 DOI: 10.3389/fimmu.2021.622316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded, endogenous, non-coding RNA (ncRNA) molecules formed by the backsplicing of messenger RNA (mRNA) precursors and have covalently closed circular structures without 5′-end caps and 3′-end polyadenylation [poly(A)] tails. CircRNAs are characterized by abundant species, stable structures, conserved sequences, cell- or tissue-specific expression, and widespread and stable presence in many organisms. Therefore, circRNAs can be used as biomarkers for the prediction, diagnosis, and treatment of a variety of diseases. Autoimmune diseases (AIDs) are caused by defects in immune tolerance or abnormal immune regulation, which leads to damage to host organs. Due to the complexity of the pathophysiological processes of AIDs, clinical therapeutics have been suboptimal. The emergence of circRNAs sheds new light on the treatment of AIDs. In particular, circRNAs mainly participate in the occurrence and development of AIDs by sponging targets. This review systematically explains the formation, function, mechanism, and characteristics of circRNAs in the context of AIDs. With a deeper understanding of the pathophysiological functions of circRNAs in the pathogenesis of AIDs, circRNAs may become reasonable, accurate, and effective biomarkers for the diagnosis and treatment of AIDs in the future.
Collapse
Affiliation(s)
- Xingyu Zhai
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yunfei Zhang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
38
|
Liu H, Zou Y, Chen C, Tang Y, Guo J. Current Understanding of Circular RNAs in Systemic Lupus Erythematosus. Front Immunol 2021; 12:628872. [PMID: 33717154 PMCID: PMC7946848 DOI: 10.3389/fimmu.2021.628872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a common and potentially fatal autoimmune disease that affects multiple organs. To date, its etiology and pathogenesis remains elusive. Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs with covalently closed loop structure. Growing evidence has demonstrated that circRNAs may play an essential role in regulation of gene expression and transcription by acting as microRNA (miRNA) sponges, impacting cell survival and proliferation by interacting with RNA binding proteins (RBPs), and strengthening mRNA stability by forming RNA-protein complexes duplex structures. The expression patterns of circRNAs exhibit tissue-specific and pathogenesis-related manner. CircRNAs have implicated in the development of multiple autoimmune diseases, including SLE. In this review, we summarize the characteristics, biogenesis, and potential functions of circRNAs, its impact on immune responses and highlight current understanding of circRNAs in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Hongjiang Liu
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Department of Rheumatology and Immunology, The People’s Hospital of China Three Gorges University/The First People’s Hospital of Yichang, Yichang, China
| | - Yundong Zou
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chen Chen
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yundi Tang
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People’s Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| |
Collapse
|
39
|
Shu J, Du J, Wang F, Cheng Y, Chen G, Xu B, Zhang D, Chen S. Circ_0091579 enhances the malignancy of hepatocellular carcinoma via miR-1287/PDK2 axis. Open Life Sci 2021; 16:69-83. [PMID: 33817300 PMCID: PMC7874672 DOI: 10.1515/biol-2021-0009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023] Open
Abstract
Several articles have indicated that circular RNAs are involved in pathogenesis of human cancers. Nevertheless, the role of circ_0091579 in hepatocellular carcinoma (HCC) progression remains to be revealed. Quantitative reverse transcriptase polymerase chain reaction was carried out to examine the expression of circ_0091579 and miR-1287. The proliferation of HCC cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry was performed to analyze cell cycle progression and apoptosis. Western blot assay was conducted to detect the protein expression of CyclinD1, Cleaved caspase3, and pyruvate dehydrogenase kinase 2 (PDK2). Cell glycolysis was evaluated by measuring the uptake of glucose, the production of lactate, and extracellular acidification rate. The target relationship between miR-1287 and circ_0091579 or PDK2 was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA-pull down assay. The enrichment of circ_0091579 was enhanced in HCC tissues (n = 77) and four HCC cell lines (HB611, Huh-7, MHCC97, and SNU423) compared with adjacent non-tumor tissues (n = 77) and normal human liver cell line THLE-2. Circ_0091579 mediated the promotion of proliferation and glycolysis and the suppression of apoptosis of HCC cells. MiR-1287 was a direct target of circ_0091579 in HCC cells. MiR-1287 knockdown reversed the effects caused by circ_0091579 interference on the functions of HCC cells. PDK2 could bind to miR-1287 in HCC cells. Circ_0091579 upregulated the enrichment of PDK2 by acting as a sponge of miR-1287 in HCC cells. The influence caused by circ_0091579 intervention on HCC cells was attenuated by overexpression of PDK2. Circ_0091579 interference impeded the progression of HCC in vivo. Circ_0091579 deteriorated HCC by promoting the proliferation and glycolytic metabolism and suppressing the apoptosis of HCC cells via miR-1287/PDK2 axis.
Collapse
Affiliation(s)
- Junwei Shu
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Jiayuan Du
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Futao Wang
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Yong Cheng
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Gangxin Chen
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Bing Xu
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Dianpeng Zhang
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Shuangjiang Chen
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| |
Collapse
|
40
|
Li F, Liu Z, Zhang B, Jiang S, Wang Q, Du L, Xue H, Zhang Y, Jin M, Zhu X, Brown MA, Wu J, Wang X. Circular RNA sequencing indicates circ-IQGAP2 and circ-ZC3H6 as noninvasive biomarkers of primary Sjögren's syndrome. Rheumatology (Oxford) 2021; 59:2603-2615. [PMID: 32250392 DOI: 10.1093/rheumatology/keaa163] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study aims to characterize the expression profiles of circRNAs in primary Sjogren's Syndrome (pSS) and examine the potential of noninvasive circular RNAs (circRNAs) as biomarkers of pSS. METHODS We performed RNA sequencing of minor salivary gland (MSG) biopsies from four pSS and four non-pSS individuals (subjects undergoing MSG biopsies but not meeting 2012 or 2016 ACR classification criteria for SS). Differentially expressed circRNAs were identified by DESeq2, and confirmed by quantitative real-time PCR in the MSGs as well as in plasma exosomes in 37 pSS and 14 non-pSS subjects. Discriminatory capacity testing using receiver operating characteristic analysis was used to evaluate the performance of circRNAs as diagnostic biomarkers for pSS. RESULTS Circ-IQGAP2 and circ-ZC3H6 had significantly upregulated expression in the MSGs of pSS patients, and this elevated expression was confirmed by quantitative real-time PCR of plasma exosome RNA. The expression of these circRNAs also showed significant correlation with both clinical features, serum IgG level and MSG focus scores. Receiver operating characteristic analysis showed that the indices comprised of both the two circRNAs and clinical features were better able to distinguish pSS from non-pSS subjects with high mean areas under the curve of 0.93 in the MSGs and 0.92 in the plasma exosomes. CONCLUSION This study indicated the potential roles of circ-IQGAP2 and circ-ZC3H6 as noninvasive biomarkers for the diagnosis of pSS.
Collapse
Affiliation(s)
- Fengxia Li
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Bing Zhang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Shan Jiang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Qiongdan Wang
- Institute of Genomic Medicine, Wenzhou Medical University.,Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University
| | - Lifeng Du
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Huangqi Xue
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Yu Zhang
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Mengmeng Jin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zhu
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Matthew A Brown
- Guy's & St Thomas NHS Foundation Trust and King's College London NIHR Biomedical Research Centre, London, UK.,Centre for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University
| | - Xiaobing Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Liu L, Chen X, Chen YH, Zhang K. Identification of Circular RNA hsa_Circ_0003391 in Peripheral Blood Is Potentially Associated With Alzheimer's Disease. Front Aging Neurosci 2020; 12:601965. [PMID: 33424579 PMCID: PMC7793744 DOI: 10.3389/fnagi.2020.601965] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) have recently been discovered as a novel type of endogenous non-coding RNA that may regulate gene expression in mammals. In the central nervous system (CNS), circRNAs are relevant to many neurological disorders such as Alzheimer's disease (AD). In this study, we attempted to identify an aberrant circRNA, hsa_circ_0003391, which is significantly downregulated in the peripheral blood of patients with AD, and to explore the relationship between hsa_circ_0003391 and the clinical manifestation of AD. The expression of hsa_circ_0003391 had a specific decrease in the peripheral blood of patients with AD compared to those with other types of dementia. To evaluate the potential diagnostic value of the circRNA, we performed a receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC) value was 0.7283 for hsa_circ_0003391, which was statistically significant. The natural form of hsa_circ_0003391 in the peripheral blood was a loop structure with good stability. We found a potential correlation between the expression of hsa_circ_0003391 and the clinical manifestations of AD. Bioinformatic analysis was carried out to predict the latent target microRNAs (miRNA) of hsa_circ_0003391. Furthermore, microRNAs targeted by hsa_circ_0003391 were successfully detected, and miR-574-5p had an expected elevation in the AD groups, suggesting that miR-574-5p might be a potential microRNA target for hsa_circ_0003391. Our results suggest that the downregulation of hsa_circ_0003391 in the peripheral blood has a potential relationship with AD. Our findings not only provide an important latent biomarker but also highlight an important perspective for the following study into AD pathogenesis. This may promote the process of novel therapeutics targeting non-coding RNA.
Collapse
Affiliation(s)
- Li Liu
- Department of Neurology, Shenyang Fifth People Hospital, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xi Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
42
|
Tsai CY, Shen CY, Liu CW, Hsieh SC, Liao HT, Li KJ, Lu CS, Lee HT, Lin CS, Wu CH, Kuo YM, Yu CL. Aberrant Non-Coding RNA Expression in Patients with Systemic Lupus Erythematosus: Consequences for Immune Dysfunctions and Tissue Damage. Biomolecules 2020; 10:biom10121641. [PMID: 33291347 PMCID: PMC7762297 DOI: 10.3390/biom10121641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease with heterogeneous clinical manifestations. A diverse innate and adaptive immune dysregulation is involved in the immunopathogenesis of SLE. The dysregulation of immune-related cells may derive from the intricate interactions among genetic, epigenetic, environmental, and immunological factors. Of these contributing factors, non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs), and long non-coding RNAs (lncRNAs) play critical roles in the post-transcriptional mRNA expression of cytokines, chemokines, and growth factors, which are essential for immune modulation. In the present review, we emphasize the roles of ncRNA expression in the immune-related cells and cell-free plasma, urine, and tissues contributing to the immunopathogenesis and tissue damage in SLE. In addition, the circular RNAs (circRNA) and their post-translational regulation of protein synthesis in SLE are also briefly described. We wish these critical reviews would be useful in the search for biomarkers/biosignatures and novel therapeutic strategies for SLE patients in the future.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Autoimmunity/genetics
- Chemokines/genetics
- Chemokines/immunology
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Gene Expression Regulation
- Humans
- Immunity, Innate/genetics
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neutrophils/immunology
- Neutrophils/pathology
- RNA, Circular/genetics
- RNA, Circular/immunology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Institute of Clinical Medicine, National Taiwan University School of Medicine, Taipei 10002, Taiwan
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Hui-Ting Lee
- Mackay Memorial Hospital and Mackay College of Medicine, Taipei 10449, Taiwan;
| | - Cheng-Sung Lin
- Department of Thoracic Surgery, Ministry of Health and Welfare Taipei Hospital, New Taipei City 24213, Taiwan;
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology, & Allergy, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan; (C.-Y.S.); (S.-C.H.); (K.-J.L.); (C.-S.L.); (C.-H.W.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
43
|
Li I, Chen YG. Emerging roles of circular RNAs in innate immunity. Curr Opin Immunol 2020; 68:107-115. [PMID: 33176221 DOI: 10.1016/j.coi.2020.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
The proper function of the innate immune system depends on an intricate network of regulation that promotes effective responses to pathogens while avoiding autoimmunity. Circular RNAs (circRNAs), a class of RNAs that lack 5' and 3' ends, have emerged as key actors in these networks. Recent studies have demonstrated that endogenous circRNAs in eukaryotes regulate the activation of innate immune proteins and cells through diverse modes of action. Some DNA viruses also encode circRNAs, and foreign circRNAs have been found to stimulate an innate immune response. This review summarizes recent investigations that reveal the critical roles that circRNAs play in innate immunity and points to future areas of study in this emerging field.
Collapse
Affiliation(s)
- Isabella Li
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
44
|
Chen Y, Yuan B, Chen G, Zhang L, Zhuang Y, Niu H, Zeng Z. Circular RNA RSF1 promotes inflammatory and fibrotic phenotypes of irradiated hepatic stellate cell by modulating miR-146a-5p. J Cell Physiol 2020; 235:8270-8282. [PMID: 31960423 DOI: 10.1002/jcp.29483] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
The role of circular RNA (circRNA) in radiation-induced liver disease (RILD) remains largely unknown. In this study, Ras-related C3 botulinum toxin substrate 1 (RAC1) was elevated in irradiated human hepatic stellate cell (HSC) line LX2, the important effector cell mediating RILD. Overexpression of RAC1 promotes cell proliferation, proinflammatory cytokines production, and α-smooth muscle actin expression, which were blocked by microRNA (miR)-146a-5p mimics. CircRNA RSF1 (circRSF1) was upregulated in irradiated LX2 cells and predicted to harbor binding site for miR-146a-5p. Biotinylated-RNA pull down and dual-luciferase reporter detection confirmed the direct interaction of circRSF1 and miR-146a-5p. Enforced expression of circRSF1 increased RAC1 expression by acting as miR-146a-5p sponge to inhibit miR-146a-5p activity, and thus enhanced the cell viability, and promoted inflammatory and fibrotic phenotype of irradiated LX2 cells. These findings indicate a functional regulatory axis composing of circRSF1, miR-146a-5p, and RAC1 in irradiated HSC, which may provide attractive therapeutic targets for RILD.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Mester-Tonczar J, Hašimbegović E, Spannbauer A, Traxler D, Kastner N, Zlabinger K, Einzinger P, Pavo N, Goliasch G, Gyöngyösi M. Circular RNAs in Cardiac Regeneration: Cardiac Cell Proliferation, Differentiation, Survival, and Reprogramming. Front Physiol 2020; 11:580465. [PMID: 33117197 PMCID: PMC7550749 DOI: 10.3389/fphys.2020.580465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are classified as long non-coding RNAs (lncRNAs) that are characterized by a covalent closed-loop structure. This closed-loop shape is the result of a backsplicing event in which the 3' and 5' splice sites are ligated. Through the lack of 3' poly(A) tails and 5' cap structures, circRNAs are more stable than linear RNAs because these adjustments make the circular loop less susceptible to exonucleases. The majority of identified circRNAs possess cell- and tissue-specific expression patterns. In addition, high-throughput RNA-sequencing combined with novel bioinformatics algorithms revealed that circRNA sequences are often conserved across different species suggesting a positive evolutionary pressure. Implicated as regulators of protein turnover, micro RNA (miRNA) sponges, or broad effectors in cell differentiation, proliferation, and senescence, research of circRNA has increased in recent years. Particularly in cardiovascular research, circRNA-related discoveries have opened the door for the development of potential diagnostic and therapeutic tools. Increasing evidence links deviating circRNA expression patterns to various cardiovascular diseases including ischemic heart failure. In this mini-review, we summarize the current state of knowledge on circRNAs in cardiac regeneration with a focus on cardiac cell proliferation, differentiation, cardiomyocyte survival, and cardiac reprogramming.
Collapse
Affiliation(s)
- Julia Mester-Tonczar
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Ena Hašimbegović
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Andreas Spannbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Nina Kastner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Patrick Einzinger
- Research Unit of Information and Software Engineering, Institute of Information Systems Engineering, Vienna University of Technology, Vienna, Austria
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Rahat B, Ali T, Sapehia D, Mahajan A, Kaur J. Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Front Genet 2020; 11:844. [PMID: 32849827 PMCID: PMC7431953 DOI: 10.3389/fgene.2020.00844] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-stranded nucleic acids, released into the blood plasma/serum by different tissues via apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from the hematopoietic system, whereas under various clinical scenarios, the concomitant tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA, microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial DNA/RNA, and act as potential biomarkers in various clinical conditions. These are associated with different epigenetic modifications, which show disease-related variations and so finding their role as epigenetic biomarkers in clinical settings. This field has recently emerged as the latest advance in precision medicine because of its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore, there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic biomarkers. This review focuses on the novel approaches for exploring ccfNAs as epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential as therapeutic targets and disease progression monitors, and reveals the tremendous potential that epigenetic biomarkers present to improve precision medicine. We explore the latest techniques for both quantitative and qualitative detection of epigenetic modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex and often milieu-specific posing challenges for its understanding. Artificial intelligence and deep networks are the novel approaches for decoding complex data and providing insight into the decision-making in precision medicine.
Collapse
Affiliation(s)
- Beenish Rahat
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Taqveema Ali
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divika Sapehia
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
47
|
Yin L, Zeng C, Yao J, Shen J. Emerging Roles for Noncoding RNAs in Autoimmune Thyroid Disease. Endocrinology 2020; 161:5818080. [PMID: 32270194 DOI: 10.1210/endocr/bqaa053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune thyroid disease (AITD) is one of the most frequent autoimmune disorders. However, the pathogenesis of AITD has not been fully elucidated. Recently, accumulating evidence has demonstrated that abnormal expression of noncoding RNAs (ncRNAs) is closely related to the etiopathogenesis of AITD. microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) are 3 major groups of ncRNAs that are attracting increasing attention. Herein, we summarized our present knowledge on the role of miRNAs, lncRNAs, and circRNAs in AITD. This review focused on the importance of ncRNAs in development of the most prevalent AITD, such as Hashimoto disease and Graves' diseases. Altogether, the main purpose of this review is to provide new insights in the pathogenesis of AITD and the possibility of developing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Yin
- Department of Endocrinology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Chong Zeng
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jie Yao
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jie Shen
- Department of Endocrinology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| |
Collapse
|
48
|
Sun Y, Wang W, Tang Y, Wang D, Li L, Na M, Jiang G, Li Q, Chen S, Zhou J. Microarray profiling and functional analysis of differentially expressed plasma exosomal circular RNAs in Graves' disease. Biol Res 2020; 53:32. [PMID: 32727578 PMCID: PMC7388456 DOI: 10.1186/s40659-020-00299-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Circulating RNA (circRNA) regulates various bioactivities in cells. A better understanding of the exosomal circRNA can provide novel insights into the pathogenesis and treatment of Graves’ disease (GD). We aimed to profile the differentially expressed circRNAs (DEcRs) in plasma exosomes of patients with GD and speculate and probe the functions of the DEcR by comprehensive bioinformatics analyses. Methods Serum exosomes were isolated from five primary GD patients and five healthy controls via ultracentrifugation. After verification with transmission electron microscopy, exosome samples were subjected to microarray profiling using human circRNA microarrays. Two up-regulated and two down-regulated DEcRs were selected for validation in plasma exosomes from 20 GD and 20 healthy control participants using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The circRNA/microRNA/mRNA interaction network was then assembled and the analysis of the Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways was utilized to predict the potential functions of the DEcR associated genes. Results There were 15 DEcRs revealed in primary GD cases. The intronic circRNA hsa_circRNA_000102 was confirmed as an up-regulated component in plasma exosomes from patients with GD. The circRNA/microRNA/mRNA interaction network unveiled the most potential targeting microRNAs of hsa_circRNA_000102 and its associated genes. The functional analyses predicted involvement of hsa_circRNA_000102 associated genes in pathways of immune system activation, such as viral infection and interferon-beta signaling. Conclusions hsa_circRNA_000102 is a differentially up-regulated plasma exosomal circRNA in patients with GD. Our study highlights multiple pathways, particularly virus infection and interferon-beta signaling, for mediating immune activation in Graves’ disease.
Collapse
Affiliation(s)
- Ying Sun
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Wei Wang
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Yuxiao Tang
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Daping Wang
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Liang Li
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Min Na
- Department of Radiology, Dalian Sixth People's Hospital, Dalian, Liaoning, China
| | - Guantong Jiang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qian Li
- Department of Scientific Research, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China.
| | - Shulin Chen
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Jin Zhou
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China.
| |
Collapse
|
49
|
Lodde V, Murgia G, Simula ER, Steri M, Floris M, Idda ML. Long Noncoding RNAs and Circular RNAs in Autoimmune Diseases. Biomolecules 2020; 10:E1044. [PMID: 32674342 PMCID: PMC7407480 DOI: 10.3390/biom10071044] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Immune responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled, autoimmune diseases can occur. Autoimmune diseases (ADs) are a family of disorders characterized by the body's immune response being directed against its own tissues, with consequent chronic inflammation and tissue damage. Despite enormous efforts to identify new drug targets and develop new therapies to prevent and ameliorate AD symptoms, no definitive solutions are available today. Additionally, while substantial progress has been made in drug development for some ADs, most treatments only ameliorate symptoms and, in general, ADs are still incurable. Hundreds of genetic loci have been identified and associated with ADs by genome-wide association studies. However, the whole list of molecular factors that contribute to AD pathogenesis is still unknown. Noncoding (nc)RNAs, such as microRNAs, circular (circ)RNAs, and long noncoding (lnc)RNAs, regulate gene expression at different levels in various diseases, including ADs, and serve as potential drug targets as well as biomarkers for disease progression and response to therapy. In this review, we will focus on the potential roles and genetic regulation of ncRNA in four autoimmune diseases-systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Giampaolo Murgia
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Elena Rita Simula
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, SS554 km 4,500, 09042 Monserrato-Cagliari, Italy;
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (V.L.); (G.M.); (E.R.S.); (M.F.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, SS554 km 4,500, 09042 Monserrato-Cagliari, Italy;
| | - Maria Laura Idda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Traversa La Crucca 3, 07100 Sassari, Italy
| |
Collapse
|
50
|
Li Z, Cheng Y, Wu F, Wu L, Cao H, Wang Q, Tang W. The emerging landscape of circular RNAs in immunity: breakthroughs and challenges. Biomark Res 2020; 8:25. [PMID: 32665846 PMCID: PMC7348111 DOI: 10.1186/s40364-020-00204-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently linked RNAs that exhibit individual strand with a closed-loop framework compared with a conserving, steady and abundant linear counterpart. In recent years, as high-throughput sequencing advancement has been developing, functional circRNAs have been increasingly recognized, and more extensive analyses expounded their effect on different diseases. However, the study on the function of circRNAs in the immune system remains insufficient. This study discusses the basic principles of circRNAs regulation and the systems involved in physiology-related and pathology-related processes. The effect of circRNAs on immune regulation is elucidated. The ongoing development of circRNAs and basic immunology has multiplied their potential in treating diseases. Such perspective will summarize the status and effect of circRNAs on various immune cells in cancer, autoimmune diseases and infections. Moreover, this study will primarily expound the system of circRNAs in T lymphocytes, macrophages and other immune cells, which creates a novel perspective and lay a theoretical basis for treating diseases.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Liangliang Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu China
| |
Collapse
|