1
|
Dotsenko V, Tewes B, Hils M, Pasternack R, Isola J, Taavela J, Popp A, Sarin J, Huhtala H, Hiltunen P, Zimmermann T, Mohrbacher R, Greinwald R, Lundin KEA, Schuppan D, Mäki M, Viiri K. Transcriptomic analysis of intestine following administration of a transglutaminase 2 inhibitor to prevent gluten-induced intestinal damage in celiac disease. Nat Immunol 2024; 25:1218-1230. [PMID: 38914866 PMCID: PMC11224021 DOI: 10.1038/s41590-024-01867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/13/2024] [Indexed: 06/26/2024]
Abstract
Transglutaminase 2 (TG2) plays a pivotal role in the pathogenesis of celiac disease (CeD) by deamidating dietary gluten peptides, which facilitates antigenic presentation and a strong anti-gluten T cell response. Here, we elucidate the molecular mechanisms underlying the efficacy of the TG2 inhibitor ZED1227 by performing transcriptional analysis of duodenal biopsies from individuals with CeD on a long-term gluten-free diet before and after a 6-week gluten challenge combined with 100 mg per day ZED1227 or placebo. At the transcriptome level, orally administered ZED1227 effectively prevented gluten-induced intestinal damage and inflammation, providing molecular-level evidence that TG2 inhibition is an effective strategy for treating CeD. ZED1227 treatment preserved transcriptome signatures associated with mucosal morphology, inflammation, cell differentiation and nutrient absorption to the level of the gluten-free diet group. Nearly half of the gluten-induced gene expression changes in CeD were associated with the epithelial interferon-γ response. Moreover, data suggest that deamidated gluten-induced adaptive immunity is a sufficient step to set the stage for CeD pathogenesis. Our results, with the limited sample size, also suggest that individuals with CeD might benefit from an HLA-DQ2/HLA-DQ8 stratification based on gene doses to maximally eliminate the interferon-γ-induced mucosal damage triggered by gluten.
Collapse
Affiliation(s)
- Valeriia Dotsenko
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | | | | | | | - Jorma Isola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Jilab Inc, Tampere, Finland
| | - Juha Taavela
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Alina Popp
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
- University of Medicine and Pharmacy 'Carol Davila' and National Institute for Mother and Child Health, Bucharest, Romania
| | | | - Heini Huhtala
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Pauliina Hiltunen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | | | | | | | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Detlef Schuppan
- Institute of Translational Immunology and Celiac Center, Medical Center, Johannes-Gutenberg University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Markku Mäki
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
2
|
Perez-Junkera G, Ruiz de Azua L, Vázquez-Polo M, Lasa A, Fernandez Gil MP, Txurruka I, Navarro V, Larretxi I. Global Approach to Follow-Up of Celiac Disease. Foods 2024; 13:1449. [PMID: 38790748 PMCID: PMC11119929 DOI: 10.3390/foods13101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Celiac disease, an autoimmune disorder induced by the ingestion of gluten, affects approximately 1.4% of the population. Gluten damages the villi of the small intestine, producing symptoms such as abdominal pain, bloating and a subsequent loss of nutrient absorption, causing destabilization of the nutritional status. Moreover, gluten can trigger extra intestinal symptoms, such as asthma or dermatitis, but also mental disorders such as depression or anxiety. Moreover, people suffering from celiac disease sometimes feel misunderstood by society, mainly due to the lack of knowledge about the disease and the gluten-free diet. Thus, the treatment and follow-up of patients with celiac disease should be approached from different perspectives, such as the following: (1) a clinical perspective: symptomatology and dietary adherence monitorization; (2) nutritional assessment: dietary balance achievement; (3) psychological assistance: mental disorders avoidance; and (4) social inclusion: educating society about celiac disease in order to avoid isolation of those with celiac disease. The aim of this narrative review is to gain deep insight into the different strategies that currently exist in order to work on each of these perspectives and to clarify how the complete approach of celiac disease follow-up should be undertaken so that the optimum quality of life of this collective is reached.
Collapse
Affiliation(s)
- Gesala Perez-Junkera
- GLUTEN3S Research Group, Department of Nutrition and Food Science, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain; (G.P.-J.); (L.R.d.A.); (M.V.-P.); (M.P.F.G.); (I.T.); (V.N.); (I.L.)
- Children’s National Hospital 111 Michigan Avenue NW, Washington, DC 20010, USA
- Bioaraba, Nutrición y Seguridad Alimentaria, 01006 Vitoria-Gasteiz, Spain
| | - Lorea Ruiz de Azua
- GLUTEN3S Research Group, Department of Nutrition and Food Science, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain; (G.P.-J.); (L.R.d.A.); (M.V.-P.); (M.P.F.G.); (I.T.); (V.N.); (I.L.)
| | - Maialen Vázquez-Polo
- GLUTEN3S Research Group, Department of Nutrition and Food Science, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain; (G.P.-J.); (L.R.d.A.); (M.V.-P.); (M.P.F.G.); (I.T.); (V.N.); (I.L.)
- Bioaraba, Nutrición y Seguridad Alimentaria, 01006 Vitoria-Gasteiz, Spain
| | - Arrate Lasa
- GLUTEN3S Research Group, Department of Nutrition and Food Science, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain; (G.P.-J.); (L.R.d.A.); (M.V.-P.); (M.P.F.G.); (I.T.); (V.N.); (I.L.)
- Bioaraba, Nutrición y Seguridad Alimentaria, 01006 Vitoria-Gasteiz, Spain
| | - María Pilar Fernandez Gil
- GLUTEN3S Research Group, Department of Nutrition and Food Science, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain; (G.P.-J.); (L.R.d.A.); (M.V.-P.); (M.P.F.G.); (I.T.); (V.N.); (I.L.)
| | - Itziar Txurruka
- GLUTEN3S Research Group, Department of Nutrition and Food Science, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain; (G.P.-J.); (L.R.d.A.); (M.V.-P.); (M.P.F.G.); (I.T.); (V.N.); (I.L.)
- Bioaraba, Nutrición y Seguridad Alimentaria, 01006 Vitoria-Gasteiz, Spain
| | - Virginia Navarro
- GLUTEN3S Research Group, Department of Nutrition and Food Science, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain; (G.P.-J.); (L.R.d.A.); (M.V.-P.); (M.P.F.G.); (I.T.); (V.N.); (I.L.)
- Bioaraba, Nutrición y Seguridad Alimentaria, 01006 Vitoria-Gasteiz, Spain
| | - Idoia Larretxi
- GLUTEN3S Research Group, Department of Nutrition and Food Science, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain; (G.P.-J.); (L.R.d.A.); (M.V.-P.); (M.P.F.G.); (I.T.); (V.N.); (I.L.)
- Bioaraba, Nutrición y Seguridad Alimentaria, 01006 Vitoria-Gasteiz, Spain
- Centro Integral de Atención a Mayores San Prudencio, Ayuntamiento de Vitoria-Gasteiz, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Peroxiredoxins and Hypoxia-Inducible Factor-1α in Duodenal Tissue: Emerging Factors in the Pathophysiology of Pediatric Celiac Disease Patients. Curr Issues Mol Biol 2023; 45:1779-1793. [PMID: 36826059 PMCID: PMC9954839 DOI: 10.3390/cimb45020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy. Peroxiredoxins (PRDXs) are powerful antioxidant enzymes having an important role in significant cellular pathways including cell survival, apoptosis, and inflammation. This study aimed at investigating the expression levels of all PRDX isoforms (1-6) and their possible relationships with a transcription factor, HIF-1α, in the small intestinal tissue samples of pediatric CD patients. The study groups consisted of first-diagnosed CD patients (n = 7) and non-CD patients with functional gastrointestinal tract disorders as the controls (n = 7). The PRDXs and HIF-1α expression levels were determined by using real-time PCR and Western blotting in duodenal biopsy samples. It was observed that the mRNA and protein expression levels of PRDX 5 were significantly higher in the CD patients, whereas the PRDX 1, -2, and -4 expressions were decreased in each case compared to the control group. No significant differences were detected in the PRDX 3 and PRDX 6 expressions. The expression of HIF-1α was also significantly elevated in CD patients. These findings indicate, for the first time, that PRDXs, particularly PRDX 5, may play a significant role in the pathogenesis of CD. Furthermore, our results suggest that HIF-1α may upregulate PRDX-5 transcription in the duodenal tissue of CD.
Collapse
|
4
|
Muthusami S, Ramachandran IK, Babu KN, Krishnamoorthy S, Guruswamy A, Queimado L, Chaudhuri G, Ramachandran I. Role of Inflammation in the Development of Colorectal Cancer. Endocr Metab Immune Disord Drug Targets 2020; 21:77-90. [PMID: 32901590 DOI: 10.2174/1871530320666200909092908] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Chronic inflammation can lead to the development of many diseases, including cancer. Inflammatory bowel disease (IBD) that includes both ulcerative colitis (UC) and Crohnmp's disease (CD) are risk factors for the development of colorectal cancer (CRC). Many cytokines produced primarily by the gut immune cells either during or in response to localized inflammation in the colon and rectum are known to stimulate the complex interactions between the different cell types in the gut environment resulting in acute inflammation. Subsequently, chronic inflammation, together with genetic and epigenetic changes, have been shown to lead to the development and progression of CRC. Various cell types present in the colon, such as enterocytes, Paneth cells, goblet cells, and macrophages, express receptors for inflammatory cytokines and respond to tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and other cytokines. Among the several cytokines produced, TNF-α and IL-1β are the key pro-inflammatory molecules that play critical roles in the development of CRC. The current review is intended to consolidate the published findings to focus on the role of pro-inflammatory cytokines, namely TNF-α and IL-1β, on inflammation (and the altered immune response) in the gut, to better understand the development of CRC in IBD, using various experimental model systems, preclinical and clinical studies. Moreover, this review also highlights the current therapeutic strategies available (monotherapy and combination therapy) to alleviate the symptoms or treat inflammation-associated CRC by using monoclonal antibodies or aptamers to block pro-inflammatory molecules, inhibitors of tyrosine kinases in the inflammatory signaling cascade, competitive inhibitors of pro-inflammatory molecules, and the nucleic acid drugs like small activating RNAs (saRNAs) or microRNA (miRNA) mimics to activate tumor suppressor or repress oncogene/pro-inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | | | - Kokelavani Nampalli Babu
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Akash Guruswamy
- University of Missouri- Kansas City, College of Medicine, Kansas City, MO 64110, United States
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Ilangovan Ramachandran
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
5
|
Vaquero L, Bernardo D, León F, Rodríguez-Martín L, Alvarez-Cuenllas B, Vivas S. Challenges to drug discovery for celiac disease and approaches to overcome them. Expert Opin Drug Discov 2019; 14:957-968. [DOI: 10.1080/17460441.2019.1642321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luis Vaquero
- Gastroenterology Unit, University Hospital of León, León, Spain
| | - David Bernardo
- Mucosal Immunology lab, IBGM (University of Valladolid-CSIC), Valladolid, Spain
- Gut Immunology Research Lab, Instituto de Investigación Sanitaria Princesa (IIS-IP) & Centro de Investigación Biomédica en Red de Enfermdades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | | | - Laura Rodríguez-Martín
- Gastroenterology Unit, University Hospital of León, León, Spain
- Institute of Biomedicina (IBIOMED), University of León, León, Spain
| | | | - Santiago Vivas
- Gastroenterology Unit, University Hospital of León, León, Spain
- Institute of Biomedicina (IBIOMED), University of León, León, Spain
| |
Collapse
|
6
|
Benedetti E, Viscido A, Castelli V, Maggiani C, d'Angelo M, Di Giacomo E, Antonosante A, Picarelli A, Frieri G. Mesalazine treatment in organotypic culture of celiac patients: Comparative study with gluten free diet. J Cell Physiol 2018; 233:4383-4390. [PMID: 29030981 DOI: 10.1002/jcp.26217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022]
Abstract
Given the central role of gluten in the pathogenesis of celiac disease (CD), a strict gluten-free diet (GFD) is the only validated treatment able to restore epithelium integrity and eliminate risks of complications. The risk of gluten contamination and the persistence of inflammation, even in patients strictly adhering to GFD, may render this treatment not always effective claiming the necessity of different new solutions. Oxidative and nitrosative stress have been indicated to play a pathophysiological role in CD. Mesalazine (5-ASA), a drug largely used in inflammatory bowel disease, has potent antinflammatory and antioxidant effects. In fact, mesalazine has been shown to decrease in vitro gluten induced cytokine response and it has been used in vivo in some refractory condition. However, its effect has never compared to that of GFD. The present study aimed to address this issue by comparing the ability of mesalazine and GFD in treating gluten-induced inflammation and oxidative stress. These effects were studied on duodenal mucosa biopsy cultures from newly diagnosed CD patients, treated or not in vitro with mesalazine, and CD biopsy cultures from patients on gluten-free diet for at least one year; and a cohort of controls constituted by healty subjects. On these models, the antioxidant cellular defences, the PPARγ, NF-kB and NOS2 proteins levels were studied. This study shows that mesalazine is as effective as GFD in reducing oxidative burst and inducing PPARγ expression; moreover it resulted more effective than GFD in decreasing NF-kB and NOS2 to the levels of controls.
Collapse
Affiliation(s)
- Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Maggiani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Erica Di Giacomo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Picarelli
- Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
7
|
Vaquero L, Rodríguez-Martín L, León F, Jorquera F, Vivas S. New coeliac disease treatments and their complications. GASTROENTEROLOGIA Y HEPATOLOGIA 2018; 41:191-204. [PMID: 29422237 DOI: 10.1016/j.gastrohep.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/28/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
The only accepted treatment for coeliac disease is strict adherence to a gluten-free diet. This type of diet may give rise to reduced patient quality of life with economic and social repercussions. For this reason, dietary transgressions are common and may elicit intestinal damage. Several treatments aimed at different pathogenic targets of coeliac disease have been developed in recent years: modification of gluten to produce non-immunogenic gluten, endoluminal therapies to degrade gluten in the intestinal lumen, increased gluten tolerance, modulation of intestinal permeability and regulation of the adaptive immune response. This review evaluates these coeliac disease treatment lines that are being researched and the treatments that aim to control disease complications like refractory coeliac disease.
Collapse
Affiliation(s)
- Luis Vaquero
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, León, España
| | | | | | - Francisco Jorquera
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, León, España; Instituto de Biomedicina (IBIOMED), Universidad de León, León, España
| | - Santiago Vivas
- Servicio de Aparato Digestivo, Complejo Asistencial Universitario de León, León, España; Instituto de Biomedicina (IBIOMED), Universidad de León, León, España.
| |
Collapse
|
8
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
9
|
Chander AM, Nair RG, Kaur G, Kochhar R, Dhawan DK, Bhadada SK, Mayilraj S. Genome Insight and Comparative Pathogenomic Analysis of Nesterenkonia jeotgali Strain CD08_7 Isolated from Duodenal Mucosa of Celiac Disease Patient. Front Microbiol 2017; 8:129. [PMID: 28210247 PMCID: PMC5288335 DOI: 10.3389/fmicb.2017.00129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/18/2017] [Indexed: 12/30/2022] Open
Abstract
Species of the genus Nesterenkonia have been isolated from different ecological niches, especially from saline habitats and reported as weak human pathogens causing asymptomatic bacteraemia. Here, for the first time we are reporting the genome sequence and pathogenomic analysis of a strain designated as CD08_7 isolated from the duodenal mucosa of a celiac disease patient, identified as Nesterenkonia jeotgali. To date, only five strains of the genus Nesterenkonia (N. massiliensis strain NP1T, Nesterenkonia sp. strain JCM 19054, Nesterenkonia sp. strain F and Nesterenkonia sp. strain AN1) have been whole genome sequenced and annotated. In the present study we have mapped and compared the virulence profile of N. jeotgali strain CD08_7 along with other reference genomes which showed some characteristic features that could contribute to pathogenicity. The RAST (Rapid Annotation using Subsystem Technology) based genome mining revealed more genes responsible for pathogenicity in strain CD08_7 when compared with the other four sequenced strains. The studied categories were resistance to antibiotic and toxic compounds, invasion and intracellular resistance, membrane transport, stress response, osmotic stress, oxidative stress, phages and prophages and iron acquisition. A total of 1431 protein-encoding genes were identified in the genome of strain CD08_7 among which 163 were predicted to contribute for pathogenicity. Out of 163 genes only 59 were common to other genome, which shows the higher levels of genetic richness in strain CD08_7 that may contribute to its functional versatility. This study provides a comprehensive analysis on genome of N. jeotgali strain CD08_7 and possibly indicates its importance as a clinical pathogen.
Collapse
Affiliation(s)
- Atul M Chander
- Department of Biophysics, Panjab UniversityChandigarh, India; Department of Endocrinology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Ramesan G Nair
- Microbial Type Culture Collection and Gene bank, CSIR-Institute of Microbial Technology Chandigarh, India
| | - Gurwinder Kaur
- Microbial Type Culture Collection and Gene bank, CSIR-Institute of Microbial Technology Chandigarh, India
| | - Rakesh Kochhar
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | | | - Sanjay K Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene bank, CSIR-Institute of Microbial Technology Chandigarh, India
| |
Collapse
|
10
|
Filipovich Y, Klein J, Zhou Y, Hirsch E. Maternal and fetal roles in bacterially induced preterm labor in the mouse. Am J Obstet Gynecol 2016; 214:386.e1-9. [PMID: 26478101 DOI: 10.1016/j.ajog.2015.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND The relative roles of the mother and fetus in signaling for labor remain poorly understood. OBJECTIVE We previously demonstrated using gene knockout (KO) mice that Escherichia coli-induced preterm delivery is completely dependent on MyD88, a toll-like receptor adaptor protein. Here we leveraged this finding to conduct a genetic experiment testing whether the mother, the fetus, or both signal for parturition in bacterially induced labor. STUDY DESIGN Six different maternal/fetal genotype combinations for MyD88 were studied: wild-type (WT) dams carrying one of the following: (1) WT or (2) MyD88 heterozygous (het) fetuses (generated by mating WT females with WT or MyD88-knockout [KO] males, respectively); (3) WT dams carrying MyD88-KO fetuses (generated by replacing the ovaries of WT females with MyD88-KO ovaries, followed by mating with MyD88-KO males); a similar strategy was used to generate MyD88-KO dams carrying (4) MyD88-KO, (5) MyD88 het, or (6) WT fetuses. On day 14.5 of gestation, mice received intrauterine injections of either 1 × 10(9) killed E coli or sterile medium. Delivery of ≥ 1 fetus within 48 hours was considered preterm. A separate group of similarly treated pregnant mice was euthanized 5 hours after surgery for gene expression and tissue analysis. RESULTS E coli-induced preterm delivery is dependent on maternal and not fetal genotype: > 95% of WT and < 5% of MyD88-KO dams deliver prematurely, regardless of fetal genotype (P = .0001). In contrast, fetal survival in utero is influenced by fetal genotype: in MyD88-KO dams, in which premature birth rarely occurs, only 81% of WT and 86% of MyD88-heterozygous fetuses were alive 48 hours after surgery compared with 100% of MyD88-KO fetuses (P < .01). Messenger ribonucleic acids for the inflammatory mediators interleukin-1β, tumor necrosis factor, interleukin-6, and cyclooxygenase-2 were elevated in uterine tissues only in WT mothers treated with E coli and were low or undetectable in the uteri of KO mothers or in animals treated with saline. Serum progesterone levels were lower in KO mothers with WT ovaries than in WT mothers with KO ovaries, but bacterial exposure did not have an impact on these levels. CONCLUSION In the murine E coli-induced labor model, preterm delivery and uterine expression of inflammatory mediators is determined by the mother and not the fetus and is not attributable to a decline in serum progesterone.
Collapse
|
11
|
Tapsas D, Fälth-Magnusson K, Högberg L, Forslund T, Sundqvist T, Hollén E. Urinary nitric oxide metabolites in children with celiac disease after long-term consumption of oats-containing gluten-free diet. Scand J Gastroenterol 2014; 49:1311-7. [PMID: 25263796 DOI: 10.3109/00365521.2014.946081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Oats are accepted in the gluten-free diet (GFD) for children with celiac disease (CD). Some reports have indicated, however, that not all celiac patients tolerate oats. We have previously shown that some children still have high levels of urinary nitric oxide (NO) metabolites as markers of intestinal inflammation after 1 year on GFD with oats. In this study, we measured urinary NO metabolites in CD children who had been consuming oats-containing GFD for an extended, 2-6-year period, also taking into consideration ordinary consumption of nitrite/nitrate-rich foods close to the urine sampling. MATERIALS AND METHODS Morning urinary nitrite/nitrate concentrations were measured in 188 pediatric CD patients. A questionnaire was used to elucidate factors possibly affecting the urinary levels, for example, dietary factors, asthma, or urinary tract infection. RESULTS Oats were consumed by 89.4% of the patients for a median time of 3 years. The median nitrite/nitrate level was 980 μM. The majority (70.2%) who consumed oats had low levels of urinary nitrite/nitrate, that is, <1400 μM, while 29.8% demonstrated high levels, that is, >1400 μM. Nitrite/nitrate-rich foods did not significantly influence the urinary concentrations. CONCLUSION The urinary levels of NO metabolites revealed two subpopulations, one with high and one with low levels. The high levels could be possibly due to poor adherence to the GFD, sensitivity to oats, or some unknown factor(s). Nitrate-rich foods, asthma, or urinary tract infection did not affect the result. The elevated levels of NO metabolites could indicate mucosal inflammation and pinpoint the need of careful follow-up of children on oats-containing GFD.
Collapse
Affiliation(s)
- Dimitrios Tapsas
- Department of Clinical and Experimental Medicine, Division of Paediatrics, Linköping University , Linköping , Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Agrawal V, Jaiswal MK, Ilievski V, Beaman KD, Jilling T, Hirsch E. Platelet-activating factor: a role in preterm delivery and an essential interaction with Toll-like receptor signaling in mice. Biol Reprod 2014; 91:119. [PMID: 25253732 DOI: 10.1095/biolreprod.113.116012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet-activating factor (PAF), a potent phospholipid activator of inflammation that signals through its cognate receptor (platelet-activating factor receptor, PTAFR), has been shown to induce preterm delivery in mice. Toll-like receptors (TLRs) are transmembrane receptors that mediate innate immunity. We have shown previously that Escherichia coli-induced preterm delivery in mice requires TLR signaling via the adaptor protein myeloid differentiation primary response gene 88 (MyD88), but not an alternative adaptor, Toll/IL-1 receptor domain-containing adapter protein-inducing interferon-beta (TRIF). In the present work, we analyzed the role of endogenously produced PAF in labor using mice lacking (knockout [KO]) PAF acetylhydrolase (PAF-AH; the key degrading enzyme for PAF). PAF-AH KO mice are more susceptible to E. coli-induced preterm delivery and inflammation than controls. In peritoneal macrophages, the PTAFR agonist carbamyl PAF induces production of inflammatory markers previously demonstrated to be upregulated during bacterially induced labor, including: inducible nitric oxide synthase (Nos2), the chemokine Ccl5 (RANTES), tumor necrosis factor (Tnf), and level of their end-products (NO, CCL5, TNF) in a process dependent upon both IkappaB kinase and calcium/calmodulin-dependent protein kinase II. Interestingly, this induced expression was completely eliminated not only in macrophages deficient in PTAFR, but also in those lacking either TLR4, MyD88, or TRIF. The dependence of PAF effects upon TLR pathways appears to be related to production of PTAFR itself: PAF-induced expression of Ptafr mRNA was eliminated completely in TLR4 KO and partially in MyD88 and TRIF KO macrophages. We conclude that PAF signaling plays an important role in bacterially induced preterm delivery. Furthermore, in addition to its cognate receptor, PAF signaling in peritoneal macrophages requires TLR4, MyD88, and TRIF.
Collapse
Affiliation(s)
- Varkha Agrawal
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois
| | - Mukesh Kumar Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Vladimir Ilievski
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Tamas Jilling
- Department of Pediatrics, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Gliadin activates arginase pathway in RAW264.7 cells and in human monocytes. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1364-71. [PMID: 24793417 DOI: 10.1016/j.bbadis.2014.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/10/2014] [Accepted: 04/25/2014] [Indexed: 11/21/2022]
Abstract
Celiac disease (CD) is an autoimmune enteropathy triggered in susceptible individuals by the ingestion of gliadin-containing grains. Recent studies have demonstrated that macrophages play a key role in the pathogenesis of CD through the release of inflammatory mediators such as cytokines and nitric oxide (NO). Since arginine is the obliged substrate of iNOS (inducible nitric oxide synthase), the enzyme that produces large amount of NO, the aim of this work is to investigate arginine metabolic pathways in RAW264.7 murine macrophages after treatment with PT-gliadin (PTG) in the absence and in the presence of IFNγ. Our results demonstrate that, besides strengthening the IFNγ-dependent activation of iNOS, gliadin is also an inducer of arginase, the enzyme that transforms arginine into ornithine and urea. Gliadin treatment increases, indeed, the expression and the activity of arginase, leading to the production of polyamines through the subsequent induction of ornithine decarboxylase. This effect is strengthened by IFNγ. The activation of these pathways takes advantage of the increased availability of arginine due to a decreased system y(+)l-mediated efflux, likely ascribable to a reduced expression of Slc7a6 transporter. A significant induction of arginase expression is also observed in human monocytes from healthy subject upon treatment with gliadin, thus demonstrating that gluten components trigger changes in arginine metabolism in monocyte/macrophage cells.
Collapse
|
14
|
Ortiz-Sánchez JP, Cabrera-Chávez F, Calderón de la Barca AM. Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients. Nutrients 2013; 5:4174-83. [PMID: 24152750 PMCID: PMC3820067 DOI: 10.3390/nu5104174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet.
Collapse
Affiliation(s)
- Juan P. Ortiz-Sánchez
- Department of Nutrition, Research Center for Food and Development (CIAD, A.C.), Carr. La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico; E-Mail:
| | - Francisco Cabrera-Chávez
- Nutrition Sciences and Gastronomy Unit, University of Sinaloa, Culiacan, Sinaloa 80019, Mexico; E-Mail:
| | - Ana M. Calderón de la Barca
- Department of Nutrition, Research Center for Food and Development (CIAD, A.C.), Carr. La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-662-289-2400 (ext. 288); Fax: +52-662-280-0094
| |
Collapse
|
15
|
Allegretti YL, Bondar C, Guzman L, Cueto Rua E, Chopita N, Fuertes M, Zwirner NW, Chirdo FG. Broad MICA/B expression in the small bowel mucosa: a link between cellular stress and celiac disease. PLoS One 2013; 8:e73658. [PMID: 24058482 PMCID: PMC3772809 DOI: 10.1371/journal.pone.0073658] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/19/2013] [Indexed: 01/15/2023] Open
Abstract
The MICA/B genes (MHC class I chain related genes A and B) encode for non conventional class I HLA molecules which have no role in antigen presentation. MICA/B are up-regulated by different stress conditions such as heat-shock, oxidative stress, neoplasic transformation and viral infection. Particularly, MICA/B are expressed in enterocytes where they can mediate enterocyte apoptosis when recognised by the activating NKG2D receptor present on intraepithelial lymphocytes. This mechanism was suggested to play a major pathogenic role in active celiac disease (CD). Due to the importance of MICA/B in CD pathogenesis we studied their expression in duodenal tissue from CD patients. By immunofluorescence confocal microscopy and flow cytometry we established that MICA/B was mainly intracellularly located in enterocytes. In addition, we identified MICA/B+ T cells in both the intraepithelial and lamina propria compartments. We also found MICA/B+ B cells, plasma cells and some macrophages in the lamina propria. The pattern of MICA/B staining in mucosal tissue in severe enteropathy was similar to that found in in vitro models of cellular stress. In such models, MICA/B were located in stress granules that are associated to the oxidative and ER stress response observed in active CD enteropathy. Our results suggest that expression of MICA/B in the intestinal mucosa of CD patients is linked to disregulation of mucosa homeostasis in which the stress response plays an active role.
Collapse
Affiliation(s)
- Yessica L. Allegretti
- Laboratorio de Investigación en el Sistema Inmune – LISIN, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Constanza Bondar
- Laboratorio de Investigación en el Sistema Inmune – LISIN, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luciana Guzman
- Servicio de Gastroenterología, Hospital de Niños “Sor María Ludovica,” La Plata, Argentina
| | - Eduardo Cueto Rua
- Servicio de Gastroenterología, Hospital de Niños “Sor María Ludovica,” La Plata, Argentina
| | - Nestor Chopita
- Servicio de Gastroenterología, Hospital San Martin La Plata, La Plata, Argentina
| | - Mercedes Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norberto W. Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernando G. Chirdo
- Laboratorio de Investigación en el Sistema Inmune – LISIN, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail:
| |
Collapse
|
16
|
Vörös P, Sziksz E, Himer L, Onody A, Pap D, Frivolt K, Szebeni B, Lippai R, Győrffy H, Fekete A, Brandt F, Molnár K, Veres G, Arató A, Tulassay T, Vannay A. Expression of PARK7 is increased in celiac disease. Virchows Arch 2013; 463:401-8. [PMID: 23832581 DOI: 10.1007/s00428-013-1443-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/14/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
Recently, it has been suggested that the gene called Parkinson's disease 7 (PARK7) might be an upstream activator of hypoxia-inducible factor (HIF)-1α, which plays a major role in sustaining intestinal barrier integrity. Furthermore, PARK7 has been proposed to participate in the Toll-like receptor (TLR)-dependent regulation of the innate immune system. Our aim was to investigate the involvement of PARK7 in the pathogenesis of coeliac disease (CD). Duodenal biopsy specimens were collected from 19 children with untreated CD, five children with treated CD (maintained on gluten-free diet), and ten children with histologically normal duodenal biopsies. PARK7 mRNA expression and protein level were determined by real-time polymerase chain reaction (PCR) and Western blot, respectively. Localization of PARK7 was visualized by immunofluorescence staining. Protein level of PARK7 increased in the duodenal mucosa of children with untreated CD compared to children with treated CD or to control biopsies (p <0.03). We detected intensive PARK7 staining in the epithelial cells and lamina propria of the duodenal mucosa of children with untreated CD compared with that in control biopsies. Our finding that mucosal expression of PARK7 is increased suggests that PARK7 is involved in the pathogenesis of gastrointestinal diseases, notably CD. Our results suggest that PARK7 may alter processes mediated by HIF-1α and TLR4, which supports a role for PARK7 in the maintenance of epithelial barrier integrity, immune homeostasis, or apoptosis.
Collapse
Affiliation(s)
- Péter Vörös
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ferretti G, Bacchetti T, Masciangelo S, Saturni L. Celiac disease, inflammation and oxidative damage: a nutrigenetic approach. Nutrients 2012; 4:243-57. [PMID: 22606367 PMCID: PMC3347005 DOI: 10.3390/nu4040243] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/02/2012] [Accepted: 03/16/2012] [Indexed: 01/04/2023] Open
Abstract
Celiac disease (CD), a common heritable chronic inflammatory condition of the small intestine caused by permanent intolerance to gluten/gliadin (prolamin), is characterized by a complex interplay between genetic and environmental factors. Developments in proteomics have provided an important contribution to the understanding of the biochemical and immunological aspects of the disease and the mechanisms involved in toxicity of prolamins. It has been demonstrated that some gliadin peptides resistant to complete proteolytic digestion may directly affect intestinal cell structure and functions by modulating gene expression and oxidative stress. In recent years, the creation of the two research fields Nutrigenomics and Nutrigenetics, has enabled the elucidation of some interactions between diet, nutrients and genes. Various dietary components including long chain ω-3 fatty acids, plant flavonoids, and carotenoids have been demonstrated to modulate oxidative stress, gene expression and production of inflammatory mediators. Therefore their adoption could preserve intestinal barrier integrity, play a protective role against toxicity of gliadin peptides and have a role in nutritional therapy of celiac disease.
Collapse
Affiliation(s)
- Gianna Ferretti
- Department of Odontostomatologic and Specialistic Clinics Sciences, Polytechnic University of Marche, via Ranieri 65, 60100 Ancona, Italy;
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Ranieri 65, 60100 Ancona, Italy; (T.B.); (S.M.)
| | - Simona Masciangelo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Ranieri 65, 60100 Ancona, Italy; (T.B.); (S.M.)
| | - Letizia Saturni
- Ibero-American University Foundation—FUNIBER, via Ranieri 65, 60100 Ancona, Italy
| |
Collapse
|
18
|
Meyerhoff RR, Nighot PK, Ali RA, Blikslager AT, Koci MD. Characterization of turkey inducible nitric oxide synthase and identification of its expression in the intestinal epithelium following astrovirus infection. Comp Immunol Microbiol Infect Dis 2011; 35:63-9. [PMID: 22118854 DOI: 10.1016/j.cimid.2011.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/25/2011] [Accepted: 10/31/2011] [Indexed: 11/20/2022]
Abstract
The inducible nitric oxide synthase (iNOS) enzyme has long been recognized as a key mediator of innate immune responses to infectious diseases across the phyla. Its role in killing or inactivating bacterial, parasitic, and viral pathogens has been documented in numerous host systems. iNOS, and its innate immune mediator NO has also been described to have negative consequence on host tissues as well; therefore understanding the pathogenesis of any infectious agent which induces iNOS expression requires a better understanding of the role iNOS and NO play in that disease. Previous studies in our laboratory and others have demonstrated evidence for increased levels of iNOS and activity of its innate immune mediator NO in the intestine of turkeys infected with astrovirus. To begin to characterize the role iNOS plays in the innate immune response to astrovirus infection, we identified, characterized, developed tkiNOS specific reagents, and demonstrated that the intestinal epithelial cells induce expression of iNOS following astrovirus infection. These data are the first to our knowledge to describe the tkiNOS gene, and demonstrate that astrovirus infection induces intestinal epithelial cells to express iNOS, suggesting these cells play a key role in the antiviral response to enteric infections.
Collapse
Affiliation(s)
- R Ryan Meyerhoff
- Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | | | | | | | | |
Collapse
|
19
|
Caputo I, Lepretti M, Secondo A, Martucciello S, Paolella G, Sblattero D, Barone MV, Esposito C. Anti-tissue transglutaminase antibodies activate intracellular tissue transglutaminase by modulating cytosolic Ca2+ homeostasis. Amino Acids 2011; 44:251-60. [PMID: 22038180 DOI: 10.1007/s00726-011-1120-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022]
Abstract
Anti-tissue transglutaminase (tTG) antibodies are specifically produced in the small-intestinal mucosa of celiac disease (CD) patients. It is now recognized that these antibodies, acting on cell-surface tTG, may play an active role in CD pathogenesis triggering an intracellular response via the activation of different signal transduction pathways. In this study, we report that anti-tTG antibodies, both commercial and from a CD patient, induce a rapid Ca(2+) mobilization from intracellular stores in Caco-2 cells. We characterized the mechanism of Ca(2+) release using thapsigargin and carbonylcyanide-p-trifluoromethoxyphenylhydrazone, which are able to deplete specifically endoplasmic reticulum and mitochondria of Ca(2+), respectively. Our data highlight that both pathways of calcium release were involved, thus indicating that the spectrum of cellular responses downstream can be very wide. In addition, we demonstrate that the increased Ca(2+) level in the cells evoked by anti-tTG antibodies was sufficient to activate tTG, which is normally present as a latent protein due to the presence of low Ca(2+) and to the inhibitory effect of GTP/GDP. Herein, we discuss the importance of intracellular tTG activation as central in the context of CD pathogenesis.
Collapse
Affiliation(s)
- Ivana Caputo
- Department of Chemistry and Biology, University of Salerno, via Ponte Don Melillo, 84084 Fisciano (Salerno), Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Högberg L, Webb C, Fälth-Magnusson K, Forslund T, Magnusson KE, Danielsson L, Ivarsson A, Sandström O, Sundqvist T. Children with screening-detected coeliac disease show increased levels of nitric oxide products in urine. Acta Paediatr 2011; 100:1023-7. [PMID: 21284717 DOI: 10.1111/j.1651-2227.2011.02186.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIM Increased concentration of nitric oxide (NO) metabolites, nitrite and nitrate, in the urine is a strong indication of ongoing small intestinal inflammation, which is a hallmark of the enteropathy of coeliac disease (CD). It has previously been shown that children with symptomatic, untreated CD have increased levels of NO oxidation products in their urine. The aim of this study was to investigate whether screening-detected, asymptomatic coeliac children display the same urinary nitrite/nitrate pattern. METHODS In a multicenter screening study, serum samples were collected from 7208 12-year-old children without previously diagnosed CD. Sera were analysed for anti-human tissue transglutaminase (tTG) of isotype IgA. Small bowel biopsy was performed in antibody-positive children, yielding 153 new cases of CD. In the screening-detected individuals, the sum of nitrite and nitrate concentrations in the urine was analysed and used as an indicator of NO production. For comparison, 73 children with untreated, symptomatic CD were studied. RESULTS The nitrite/nitrate levels in children with screening-detected CD and those with untreated symptomatic CD did not differ significantly. Both groups had significantly increased urinary nitrite/nitrate concentrations compared to the children with normal small bowel biopsy (p < 0.001). CONCLUSION Children with screening-detected CD have increased production of NO just as children with untreated symptomatic CD. High NO metabolite levels in the urine may indicate a pathogenetic feature of CD and be a marker of major clinical importance.
Collapse
Affiliation(s)
- L Högberg
- Pediatric Clinic, Norrköping Hospital, Norrköping, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the gut: The evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol 2011; 17:1261-6. [PMID: 21455324 PMCID: PMC3068260 DOI: 10.3748/wjg.v17.i10.1261] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Glial cells in the gut represent the morphological and functional equivalent of astrocytes and microglia in the central nervous system (CNS). In recent years, the role of enteric glial cells (EGCs) has extended from that of simple nutritive support for enteric neurons to that of being pivotal participants in the regulation of inflammatory events in the gut. Similar to the CNS astrocytes, the EGCs physiologically express the S100B protein that exerts either trophic or toxic effects depending on its concentration in the extracellular milieu. In the CNS, S100B overexpression is responsible for the initiation of a gliotic reaction by the release of pro-inflammatory mediators, which may have a deleterious effect on neighboring cells. S100B-mediated pro-inflammatory effects are not limited to the brain: S100B overexpression is associated with the onset and maintenance of inflammation in the human gut too. In this review we describe the major features of EGCs and S100B protein occurring in intestinal inflammation deriving from such.
Collapse
|
22
|
The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes. BMC DEVELOPMENTAL BIOLOGY 2008; 8:107. [PMID: 19000307 PMCID: PMC2621195 DOI: 10.1186/1471-213x-8-107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 11/10/2008] [Indexed: 11/19/2022]
Abstract
Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS), ornithine aminotransferase (OAT), argininosuccinate synthetase (ASS), arginase-1 (ARG1), arginase-2 (ARG2), and nitric-oxide synthase (NOS) were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.
Collapse
|
23
|
Bracken S, Byrne G, Kelly J, Jackson J, Feighery C. Altered gene expression in highly purified enterocytes from patients with active coeliac disease. BMC Genomics 2008; 9:377. [PMID: 18691394 PMCID: PMC2533024 DOI: 10.1186/1471-2164-9-377] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 08/08/2008] [Indexed: 02/07/2023] Open
Abstract
Background Coeliac disease is a multifactorial inflammatory disorder of the intestine caused by ingestion of gluten in genetically susceptible individuals. Genes within the HLA-DQ locus are considered to contribute some 40% of the genetic influence on this disease. However, information on other disease causing genes is sparse. Since enterocytes are considered to play a central role in coeliac pathology, the aim of this study was to examine gene expression in a highly purified isolate of these cells taken from patients with active disease. Epithelial cells were isolated from duodenal biopsies taken from five coeliac patients with active disease and five non-coeliac control subjects. Contaminating T cells were removed by magnetic sorting. The gene expression profile of the cells was examined using microarray analysis. Validation of significantly altered genes was performed by real-time RT-PCR and immunohistochemistry. Results Enterocyte suspensions of high purity (98–99%) were isolated from intestinal biopsies. Of the 3,800 genes investigated, 102 genes were found to have significantly altered expression between coeliac disease patients and controls (p < 0.05). Analysis of these altered genes revealed a number of biological processes that are potentially modified in active coeliac disease. These processes include events likely to contibute to coeliac pathology, such as altered cell proliferation, differentiation, survival, structure and transport. Conclusion This study provides a profile of the molecular changes that occur in the intestinal epithelium of coeliac patients with active disease. Novel candidate genes were revealed which highlight the contribution of the epithelial cell to the pathogenesis of coeliac disease.
Collapse
Affiliation(s)
- Suzanne Bracken
- Department of Immunology, St, James's Hospital, Dublin and Trinity College Dublin, Dublin Molecular Medicine Centre, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
24
|
Abstract
In susceptible individuals, the adaptive response, mediated by the activation of antigen-specific T lymphocytes, drives a proinflammatory response, which ends in an immune-mediated enteropathy characterized by villous atrophy, crypt hyperplasia, and recruitment of intraepithelial lymphocytes. In addition, some gluten peptides are able to induce an innate immune response in intestinal mucosa. The molecular mechanisms and the cells involved in the initial stages of the gluten-intestinal mucosa interaction are poorly understood to date. There is evidence of a direct toxic effect of gluten peptides in several biological models. However, the failure to control the inflammatory response may be one of the factors underlying gluten intolerance in these individuals. The cytokine network involved in celiac disease is characterized by abundant interferon-gamma in the intestinal mucosa. In addition, the production of interleukin (IL)-15, IL-18, and IL-21 is linked to gluten intake, which can drive the inflammatory response probably sustained by IL-18, IL-21, and perhaps IL-27 through STAT1 and STAT5 pathways, whereas neither IL-12 nor IL-23 plays a significant role in pathogenic mechanisms. Herein we describe the involvement of these activation pathways in the context of the pathogenesis of celiac disease.
Collapse
|
25
|
Esposito G, Cirillo C, Sarnelli G, De Filippis D, D'Armiento FP, Rocco A, Nardone G, Petruzzelli R, Grosso M, Izzo P, Iuvone T, Cuomo R. Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease. Gastroenterology 2007; 133:918-25. [PMID: 17678654 DOI: 10.1053/j.gastro.2007.06.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 05/31/2007] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Enteric glia participates to the homeostasis of the gastrointestinal tract. In the central nervous system, increased expression of astroglial-derived S100B protein has been associated with the onset and maintaining of inflammation. The role of enteric glial-derived S100B protein in gastrointestinal inflammation has never been investigated in humans. In this study, we evaluated the expression of S100B and its relationship with nitric oxide production in celiac disease. METHODS Duodenal biopsy specimens from untreated and on gluten-free diet patients with celiac disease and controls were respectively processed for S100B and inducible nitric oxide synthase (iNOS) protein expression and nitrite production. To evaluate the direct involvement of S100B in the inflammation, control biopsy specimens were exposed to exogenous S100B, and iNOS protein expression and nitrite production were measured. We also tested gliadin induction of S100B-dependent inflammation in cultured biopsy specimens deriving from on gluten-free diet patients in the absence or presence of the specific S100B antibody. RESULTS S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production were significantly increased in untreated patients but not in on gluten-free diet patients vs controls. Addition of S100B to control biopsy specimens resulted in a significant increase of iNOS protein expression and nitrite production. In celiac disease patients but not in controls biopsy specimens, gliadin challenge significantly increased S100B messenger RNA and protein expression, iNOS protein expression, and nitrite production, but these effects were completely inhibited by S100B antibody. CONCLUSIONS Enteric glial-derived S100B is increased in the duodenum of patients with celiac disease and plays a role in nitric oxide production.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Department of Experimental Pharmacology, University Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Beck PL, Li Y, Wong J, Chen CW, Keenan CM, Sharkey KA, McCafferty DM. Inducible nitric oxide synthase from bone marrow-derived cells plays a critical role in regulating colonic inflammation. Gastroenterology 2007; 132:1778-90. [PMID: 17449036 DOI: 10.1053/j.gastro.2007.01.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 12/22/2006] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Nitric oxide (NO) is an important mediator of intestinal inflammation. Inducible NO synthase (iNOS) is the main source of NO in inflammation. Because iNOS is ubiquitously expressed, our aim was to determine which cellular source(s) of iNOS plays the central role in mediating intestinal inflammation. METHODS Chimeric lines were produced via bone marrow (BM) transplantation following irradiation. Colitis was induced with dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). The severity of colitis and markers of inflammation were assessed in standard fashion. Leukocyte recruitment was assessed by intravital microscopy. RESULTS The irradiated chimeric lines with iNOS-/- BM-derived cells were markedly more resistant to both DSS- and TNBS-induced injury. Resistance to DSS-induced colitis was lost when wild-type (wt) BM was used to reconstitute iNOS-/- mice. Neutrophils were the main source of iNOS in DSS-induced colitis. iNOS-/- chimeric lines had decreased colonic macrophage inflammatory protein 1beta and tumor necrosis factor alpha expression and increased levels of the protective growth factor, keratinocyte growth factor. LPS-mediated leukocyte recruitment was reduced in iNOS-/- mice, and there were marked changes in the inflammatory cell infiltrates between the chimeric lines with iNOS-/- vs wt BM-derived cells. Furthermore, the lamina propria CD4 +ve cells from chimeric lines with iNOS-/- BM-derived cells had reduced intracellular cytokine expression. CONCLUSIONS iNOS produced by BM-derived cells plays a critical role in mediating the inflammatory response during colitis. Cell-specific regulation of iNOS may represent a novel form of therapy for patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Paul L Beck
- Gastrointestinal and Mucosal Inflammation Research Groups, Institute of Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
27
|
Malo MS, Biswas S, Abedrapo MA, Yeh L, Chen A, Hodin RA. The pro-inflammatory cytokines, IL-1beta and TNF-alpha, inhibit intestinal alkaline phosphatase gene expression. DNA Cell Biol 2007; 25:684-95. [PMID: 17233117 DOI: 10.1089/dna.2006.25.684] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
High levels of the pro-inflammatory cytokines, interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), are present in the gut mucosa of patients suffering form various diseases, most notably inflammatory bowel diseases (IBD). Since the inflammatory milieu can cause important alterations in epithelial cell function, we examined the cytokine effects on the expression of the enterocyte differentiation marker, intestinal alkaline phosphatase (IAP), a protein that detoxifies bacterial lipopolysaccharides (LPS) and limits fat absorption. Sodium butyrate (NaBu), a short-chain fatty acid and histone deacetylase (HDAC) inhibitor, was used to induce IAP expression in HT-29 cells and the cells were also treated +/- the cytokines. Northern blots confirmed IAP induction by NaBu, however, pretreatment (6 h) with either cytokine showed a dose-dependent inhibition of IAP expression. IAP Western analyses and alkaline phosphatase enzyme assays corroborated the Northern data and confirmed that the cytokines inhibit IAP induction. Transient transfections with a reporter plasmid carrying the human IAP promoter showed significant inhibition of NaBu-induced IAP gene activation by the cytokines (100 and 60% inhibition with IL-1beta and TNF-alpha, respectively). Western analyses showed that NaBu induced H4 and H3 histone acetylation, and pretreatment with IL-1beta or TNF-alpha did not change this global acetylation pattern. In contrast, chromatin immunoprecipitation showed that local histone acetylation of the IAP promoter region was specifically inhibited by either cytokine. We conclude that IL-1beta and TNF-alpha inhibit NaBu-induced IAP gene expression, likely by blocking the histone acetylation within its promoter. Cytokine-mediated IAP gene silencing may have important implications for gut epithelial function in the setting of intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Madhu S Malo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hollén E, Forslund T, Högberg L, Laurin P, Stenhammar L, Fälth-Magnusson K, Magnusson KE, Sundqvist T. Urinary nitric oxide during one year of gluten-free diet with or without oats in children with coeliac disease. Scand J Gastroenterol 2006; 41:1272-8. [PMID: 17060120 DOI: 10.1080/00365520600684563] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Although in both adults and children with coeliac disease (CD) it is now recommended that oats be added to their gluten-free diet, there is still some controversy concerning the possible harmful effects of oats in some individuals. In this study concentrations of nitric oxide metabolites were repeatedly measured in the urine of children under investigation for CD, when on a gluten-free diet with or without oats. MATERIAL AND METHODS The study included 116 children, randomized to a standard gluten-free diet (GFD-std) or a gluten-free diet supplemented with wheat-free oat products (GFD-oats), over a one-year period. Small-bowel biopsy was performed at the beginning and end of the study. Morning urine samples were collected from 87 children and urinary nitrite/nitrate concentrations were monitored at 0, 3, 6, 9 and 12 months. RESULTS All patients were in clinical remission after the study period. There was a rapid decline in urinary nitrite/nitrate concentrations in both groups as early as after 3 months. No differences were seen between the study groups at any of the checkpoints. However, at the end of the study, the nitrite/nitrate values of 9 children in the GFD-oats group and 8 children in the GFD-std group had not normalized. CONCLUSIONS Children with CD on a gluten-free diet with oats display a similar reduction in urinary nitrite/nitrate as those on a traditional gluten-free diet. Some children, however, still demonstrate high nitrite/nitrate excretion after one year on either diet, indicating that long-term follow-up studies of children on an oats-containing diet are needed.
Collapse
Affiliation(s)
- Elisabet Hollén
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Myers RR, Campana WM, Shubayev VI. The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today 2006; 11:8-20. [PMID: 16478686 DOI: 10.1016/s1359-6446(05)03637-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a proinflammatory cytokine-mediated process that can be provoked by systemic tissue injury but it is most often associated with direct injury to the nervous system. It involves neural-immune interactions that activate immune cells, glial cells and neurons and can lead to the debilitating pain state known as neuropathic pain. It occurs most commonly with injury to peripheral nerves and involves axonal injury with Wallerian degeneration mediated by hematogenous macrophages. Therapy is problematic but new trials with anti-cytokine agents, cytokine receptor antibodies, cytokine-signaling inhibitors, and glial and neuron stabilizers provide hope for future success in treating neuropathic pain.
Collapse
Affiliation(s)
- Robert R Myers
- Department of Anesthesiology (0629), University of California-San Diego, La Jolla, CA 92093-0629, USA.
| | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW This article primarily aims to review critically research in all aspects of celiac disease over the last year. As always, there has been a wealth of relevant papers. RECENT FINDINGS The role of genetics in disease susceptibility is slowly becoming more clearly defined and a more detailed understanding of the disease processes at the molecular level is paving the way towards the development of specific targeted therapies. SUMMARY Despite recent advances in our understanding of celiac disease, the gluten-free diet remains the only current viable therapy and even with advances in serological tests and markers, the duodenal biopsy remains the gold standard for diagnosis and monitoring of the response to therapy.
Collapse
Affiliation(s)
- Richard B Jones
- Department of Academic Medicine, St James's University Hospital, Leeds, UK.
| | | | | |
Collapse
|