1
|
Zhang T, Zhou W, Fan T, Yuan Y, Tang X, Zhang Q, Zou J, Li Y. Lactic acid metabolism: gynecological cancer's Achilles' heel. Discov Oncol 2025; 16:657. [PMID: 40314877 PMCID: PMC12048388 DOI: 10.1007/s12672-025-02364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Lactic acid is significantly expressed in many cancers, including gynecological cancer, and has become a key regulator of the proliferation, development, metastasis and invasion of these cancers. In clinical and experimental studies, the level of lactic acid in gynecological cancer is closely related to metastasis and invasion, tumor recurrence and poor prognosis. Lactic acid can regulate the internal metabolic pathway of gynecological cancer cells and drive the autonomous role of non-cancer cells in gynecological cancer. In addition to being used as a source of energy metabolism by gynecological cancer cells, lactic acid can also be transported from cancer cells to neighboring cancer cells, stroma and vascular endothelial cells (ECs) to further guide metabolic reprogramming. Lactic acid is also involved in promoting inflammation and angiogenesis in gynecologic tumors. Therefore, we reviewed the mechanisms and recent advances in the production and transport of lactic acid in gynecological cancer. These advances and evidence suggest that targeted lactic acid metabolism is a promising cancer treatment.
Collapse
Affiliation(s)
- Ting Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Wenchao Zhou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Tingyu Fan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Qunfeng Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
2
|
Zhang S, Xia J, He W, Zou Y, Liu W, Li L, Huang Z, Li Q, Qi Z, Liu W. From energy metabolism to mood regulation: The rise of lactate as a therapeutic target. J Adv Res 2025:S2090-1232(25)00262-0. [PMID: 40262720 DOI: 10.1016/j.jare.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Disruption of cerebral energy metabolism is increasingly recognized as a key factor in the pathophysiology of mood disorders. Lactate, beyond its role as a metabolic byproduct, is now understood to be a critical player in brain energy homeostasis and a modulator of neuronal function. Recent advances in understanding lactate shuttling between astrocytes and neurons have opened new avenues for exploring its multifaceted roles in mood regulation. Exercise, known to modulate brain lactate levels, further underscores the potential of lactate as a therapeutic target in mood disorders. AIM OF REVIEW This review delves into the alterations in cerebral lactate associated with mood disorders, emphasizing their implications for brain energy dynamics and signaling pathways. Additionally, we discuss the therapeutic potential of lactate in mood disorders, particularly through its capacity to remodel cerebral function. We conclude by assessing the promise of exercise-induced lactate production as a novel strategy for mood disorder treatment. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Alterations in brain lactate may contribute to the pathogenesis of mood disorders. In several studies, lactate is not only a substrate for brain energy metabolism, but also a molecule that triggers signaling cascades. Specifically, lactate is involved in the regulation of neurogenesis, neuroplasticity, endothelial cell function, and microglia lysosomal acidification, therefore improving mood disorders. Meanwhile, exercise as a low-risk intervention strategy can improve mood disorders through lactate regulation. Thus, the evidence from this review supports that lactate could be a potential therapeutic target for mood disorder, contributing to a deeper understanding of mood disorder pathogenesis and intervention.
Collapse
Affiliation(s)
- Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yong Zou
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; School of Physical Education, Shanxi University, Taiyuan, China
| | - Lingxia Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhuochun Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Qing Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Yan Y, Zhang Y, Liu J, Chen B, Wang Y. Emerging magic bullet: subcellular organelle-targeted cancer therapy. MEDICAL REVIEW (2021) 2025; 5:117-138. [PMID: 40224364 PMCID: PMC11987508 DOI: 10.1515/mr-2024-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 04/15/2025]
Abstract
The therapeutic efficacy of anticancer drugs heavily relies on their concentration and retention at the corresponding target site. Hence, merely increasing the cellular concentration of drugs is insufficient to achieve satisfactory therapeutic outcomes, especially for the drugs that target specific intracellular sites. This necessitates the implementation of more precise targeting strategies to overcome the limitations posed by diffusion distribution and nonspecific interactions within cells. Consequently, subcellular organelle-targeted cancer therapy, characterized by its exceptional precision, have emerged as a promising approach to eradicate cancer cells through the specific disruption of subcellular organelles. Owing to several advantages including minimized dosage and side effect, optimized efficacy, and reversal of multidrug resistance, subcellular organelle-targeted therapies have garnered significant research interest in recent years. In this review, we comprehensively summarize the distribution of drug targets, targeted delivery strategies at various levels, and sophisticated strategies for targeting specific subcellular organelles. Additionally, we highlight the significance of subcellular targeting in cancer therapy and present essential considerations for its clinical translation.
Collapse
Affiliation(s)
- Yue Yan
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yimeng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianxiong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
| |
Collapse
|
4
|
Zhao L, Deng H, Zhang J, Zamboni N, Yang H, Gao Y, Yang Z, Xu D, Zhong H, van Geest G, Bruggmann R, Zhou Q, Schmid RA, Marti TM, Dorn P, Peng RW. Lactate dehydrogenase B noncanonically promotes ferroptosis defense in KRAS-driven lung cancer. Cell Death Differ 2025; 32:632-645. [PMID: 39643712 PMCID: PMC11982314 DOI: 10.1038/s41418-024-01427-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Ferroptosis is an oxidative, non-apoptotic cell death frequently inactivated in cancer, but the underlying mechanisms in oncogene-specific tumors remain poorly understood. Here, we discover that lactate dehydrogenase (LDH) B, but not the closely related LDHA, subunits of active LDH with a known function in glycolysis, noncanonically promotes ferroptosis defense in KRAS-driven lung cancer. Using murine models and human-derived tumor cell lines, we show that LDHB silencing impairs glutathione (GSH) levels and sensitizes cancer cells to blockade of either GSH biosynthesis or utilization by unleashing KRAS-specific, ferroptosis-catalyzed metabolic synthetic lethality, culminating in increased glutamine metabolism, oxidative phosphorylation (OXPHOS) and mitochondrial reactive oxygen species (mitoROS). We further show that LDHB suppression upregulates STAT1, a negative regulator of SLC7A11, thereby reducing SLC7A11-dependent GSH metabolism. Our study uncovers a previously undefined mechanism of ferroptosis resistance involving LDH isoenzymes and provides a novel rationale for exploiting oncogene-specific ferroptosis susceptibility to treat KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Jingyi Zhang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology/ETH Zürich, Zurich, Switzerland
- PHRT Swiss Multi-Omics Center, smoc.ethz.ch, Zurich, Switzerland
| | - Haitang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Yang
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou City, Fujian, China
| | - Duo Xu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiqing Zhong
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Geert van Geest
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ralph A Schmid
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Thomas M Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Deng H, Zhao L, Ge H, Gao Y, Fu Y, Lin Y, Masoodi M, Losmanova T, Medová M, Ott J, Su M, Wang W, Peng RW, Dorn P, Marti TM. Ubiquinol-mediated suppression of mitochondria-associated ferroptosis is a targetable function of lactate dehydrogenase B in cancer. Nat Commun 2025; 16:2597. [PMID: 40090955 PMCID: PMC11911438 DOI: 10.1038/s41467-025-57906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Lactate dehydrogenase B (LDHB) fuels oxidative cancer cell metabolism by converting lactate to pyruvate. This study uncovers LDHB's role in countering mitochondria-associated ferroptosis independently of lactate's function as a carbon source. LDHB silencing alters mitochondrial morphology, causes lipid peroxidation, and reduces cancer cell viability, which is potentiated by the ferroptosis inducer RSL3. Unlike LDHA, LDHB acts in parallel with glutathione peroxidase 4 (GPX4) and dihydroorotate dehydrogenase (DHODH) to suppress mitochondria-associated ferroptosis by decreasing the ubiquinone (coenzyme Q, CoQ) to ubiquinol (CoQH2) ratio. Indeed, supplementation with mitoCoQH2 (mitochondria-targeted analogue of CoQH2) suppresses mitochondrial lipid peroxidation and cell death after combined LDHB silencing and RSL3 treatment, consistent with the presence of LDHB in the cell fraction containing the mitochondrial inner membrane. Addressing the underlying molecular mechanism, an in vitro NADH consumption assay with purified human LDHB reveals that LDHB catalyzes the transfer of reducing equivalents from NADH to CoQ and that the efficiency of this reaction increases by the addition of lactate. Finally, radiation therapy induces mitochondrial lipid peroxidation and reduces tumor growth, which is further enhanced when combined with LDHB silencing. Thus, LDHB-mediated lactate oxidation drives the CoQ-dependent suppression of mitochondria-associated ferroptosis, a promising target for combination therapies.
Collapse
Affiliation(s)
- Haibin Deng
- 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Liang Zhao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Huixiang Ge
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Yan Fu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Yantang Lin
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Tereza Losmanova
- Institute of Tissue Medicine and Pathology, ITMP, University of Bern, Bern, Switzerland
| | - Michaela Medová
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Julien Ott
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Min Su
- 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenxiang Wang
- 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Cheon SY, Kim YE, Yang ES, Lim YJ, Bae CH, Jin JS, Park W, Kim BS, Kim C, Cho H, Kim S, Lee SH, Ha KT. Synthesis of 1-Hydroxy(and 1-Alkoxy, 1-Acyloxy)-1H-indoles and evaluations of their suppressive activities against tumor growth through inhibiting lactate dehydrogenase A. Eur J Med Chem 2025; 283:117104. [PMID: 39642694 DOI: 10.1016/j.ejmech.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Inhibition of lactate dehydrogenase (LDH) has emerged as a promising cancer therapy strategy due to its essential role in the metabolic transformation of cancer cells. In this study, 53 derivatives of 1-hydroxy(and 1-alkoxy, 1-acyloxy)indoles were designed, synthesized, and biologically evaluated. Several multi-substituted 1-hydroxy(and 1-alkoxy, 1-acyloxy)indole compounds exhibited inhibitory activity against the LDH-A isoform (LDHA). We confirmed that the C(3)-substituent provided additional significant hydrogen bonding and hydrophobic interactions, which enhanced the LDHA inhibitory activity with high selectivity. Our results revealed that methyl 4-bromo-3-[(n-hexyloxy)methyl]-1-hydroxy-1H-indole-2-carboxylate (1g), selectively inhibited LDHA (IC50 = 25 ± 1.12 nM) without affecting the LDH-B isoform (LDHB). The compound exhibited potent cytotoxic activity in several cancer cell lines, including DLD-1 colorectal cancer cells (GI50 = 27 ± 1.2 μM). Compound 1g significantly inhibited cancer cell growth by activating apoptotic pathways in a xenograft cancer model, without causing weight loss or liver and kidney damage. Therefore, compound 1g may serve as a highly specific and promising candidate for the development of LDHA inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Se-Yun Cheon
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Ye Eun Kim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Eun-Sun Yang
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Yoo Jin Lim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Chang-Hwan Bae
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Jung-Sook Jin
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Wonyoung Park
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Bo-Sung Kim
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Chorong Kim
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Hyunsung Cho
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Seungtae Kim
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Sang Hyup Lee
- College of Pharmacy and Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea.
| | - Ki-Tae Ha
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea; Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
7
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
8
|
Wang X, Huang X, Zhang Y, Huo H, Zhou G, Shen L, Li L, He B. Hydrogen sulfide attenuates disturbed flow-induced vascular remodeling by inhibiting LDHB-mediated autophagic flux. Redox Biol 2025; 79:103456. [PMID: 39647238 PMCID: PMC11666931 DOI: 10.1016/j.redox.2024.103456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Disturbed flow (DF) plays a critical role in the development and progression of cardiovascular disease (CVD). Hydrogen sulfide (H2S) is involved in physiological processes within the cardiovascular system. However, its specific contribution to DF-induced vascular remodeling remains unclear. Here, we showed that the H2S donor, NaHS suppressed DF-induced vascular remodeling in mice. Further experiments demonstrated that NaHS inhibited the proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF), as well as the autophagy triggered by DF and PDGF. Mechanistically, RNA-Seq results revealed that NaHS counteracted the PDGF-induced upregulation of lactate dehydrogenase B (LDHB). Overexpression of LDHB abolished the protective effect of NaHS on DF-induced vascular remodeling. Furthermore, LDHB interacted with vacuolar-type proton ATPase catalytic subunit A (ATP6V1A), leading to lysosomal acidification, a process that was attenuated by NaHS treatment. The residues of leucine (Leu) 57 in ATP6V1A and serine (Ser) 269 in LDHB are critical for their interaction. Notably, the expression of LDHB was found to be elevated in vascular tissues from patients with abdominal aortic aneurysms (AAA) and thoracic aortic aneurysms (TAA). These data identify a molecular mechanism by which H2S attenuates DF-induced vascular remodeling by inhibiting LDHB and disrupting the interaction between LDHB and ATP6V1A, thereby impeding the autophagy process. Our findings provide insight that H2S or targeting LDHB has therapeutic potential for preventing and treating vascular remodeling.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiying Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yongya Zhang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Guo Zhou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Long Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
9
|
Sun M, Chen Q, Ren Y, Zhuo Y, Xu S, Rao H, Wu D, Feng B, Wang Y. CoNiCoNC tumor therapy by two-ways producing H 2O 2 to aggravate energy metabolism, chemokinetics, and ferroptosis. J Colloid Interface Sci 2025; 678:925-937. [PMID: 39270392 DOI: 10.1016/j.jcis.2024.09.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The effectiveness of chemokinetic therapy nanozymes is severely constrained because of the low H2O2 levels in the tumor microenvironment. Unlike other self-produced H2O2 nanozymes, the N-CNTs-encapsulated CoNi alloy (CoNiCoNC) with glucose oxidase and lactate oxidase activities has two ways to produce H2O2. It can facilitate the transformation of glucose and lactic acid into H2O2 simultaneously. First, the H2O2 generation pathway is favorable for aggravating energy metabolism. Second, some produced H2O2 can be decomposed by CoNiCoNC to H2O and O2 with the 4e- pathway to alleviate the TME hypoxia. Third, H2O2 can be catalyzed to form OH to enhance reactive oxygen species (ROS) content. Through proteomic analysis, nanozymes substantially impact the metabolic pathways of cancer cells because of their aggravating energy metabolism. The high levels of ROS can cause mitochondrial lipid peroxidation and cellular ferroptosis. Consequently, the two-way H2O2-selective nanoenzymatic platform realizes the synergistic effect of starvation therapy and chemokinetics.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Qiushu Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Yingying Ren
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
10
|
Colombo G, Monsorno K, Paolicelli RC. Metabolic control of microglia in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:143-159. [PMID: 40122622 DOI: 10.1016/b978-0-443-19104-6.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Metabolic states within cells are tightly linked to functional outcomes and finely regulated by nutrient availability. A growing body of the literature supports the idea that various metabolites can influence cellular functions, such as cell differentiation, migration, and proliferation in different contexts, with ample evidence coming from the immune system. Additionally, certain functional programs can trigger significant metabolic changes within cells, which are crucial not only to meet high energy demands, but also to produce intermediate metabolites necessary to support specific tasks. Microglia, the resident innate immune cells of the central nervous system, are constantly active, surveying the brain parenchyma and providing support to neighboring cells in the brain. They exhibit high metabolic flexibility, capable of quickly undergoing metabolic reprogramming based on nutrient availability and functional requirements. In this chapter, we will discuss the major metabolic pathways within cells and provide examples of how relevant enzymes and metabolites can impact microglial function in physiologic and pathologic contexts.
Collapse
Affiliation(s)
- Gloria Colombo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Ye W, Sun L, Fu C, Dong H, Zhou T. A Novel Lysosome-Related Gene Signature Predicts Lung Cancer Prognosis: A Bioinformatics-Driven Study. Health Sci Rep 2024; 7:e70236. [PMID: 39633837 PMCID: PMC11615650 DOI: 10.1002/hsr2.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Background and Aims The biological function of lysosomes has been increasingly appreciated in cancer. However, the relationship between lysosome and lung adenocarcinoma (LUAD) was not well understood. In this study, a lysosome-related signature was developed for LUAD risk stratification and prognosis prediction. Methods Download RNA-seq data of LUAD and clinical information of corresponding samples from the UCSC-Xena platform. GSE31210 databases is used as a validation cohort. The lysosome-related genes was obtained from molecular signature database. The differentially expressed genes (DEGs) as well as lysosome-associated prognosis signatures were identified by using univariate, multivariate cox, and Lasso regression. A nomogram was constructed and evaluated using ROC and DCA. Results A total of 109 lysosome-related DEGs were identified and 30 prognostic related DEGs were subsequently screened. Cluster analysis further divides the TCGA cohort into clusters 1 and 2. Patients in cluster 2 had a worse prognosis (p = 0.016), lower LYSOSOME score. Enrichment analysis showed that 21 significantly enriched gene sets in the cluster 2 were activated. And 10 pathways, such as E2F_TARGETS, G2M_CHECKPOINT were upregulated. Multivariate Cox regression analysis identified 17 best prognostic genes as risk signature. An independent prognostic factor, the risk signature, was identified. A prognostic nomogram including risk signature, age, TNM stage, and gender was constructed, and ROC and DCA curves proved its excellent performance. We examined CTSZ and AP3S2 protein expression in 48 stage 3-4 NSCLC samples. Low AP3S2 expression was associated with better prognosis (median overall survival: 37.87 vs. 8.53 months, p = 0.0211). Increased CTSZ expression also indicated better prognosis (median overall survival: 6.77 vs. 30.50 months, p = 0.0306). Conclusion We identified molecular subtypes and lysosomal-based prognostic signatures for LUAD patients, as well as 17 genes that serve as a biomarker for evaluating the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Wei Ye
- Department of OncologyChangzhou Tumor HospitalChangzhouChina
| | - Lin Sun
- Department of OncologyChangzhou Tumor HospitalChangzhouChina
| | - Cong Fu
- Department of OncologyChangzhou Tumor HospitalChangzhouChina
| | - Huajie Dong
- Department of OncologyChangzhou Tumor HospitalChangzhouChina
| | - Tong Zhou
- Department of OncologyChangzhou Tumor HospitalChangzhouChina
| |
Collapse
|
12
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
13
|
Sun K, Shen Y, Xiao X, Xu H, Zhang Q, Li M. Crosstalk between lactate and tumor-associated immune cells: clinical relevance and insight. Front Oncol 2024; 14:1506849. [PMID: 39678492 PMCID: PMC11638036 DOI: 10.3389/fonc.2024.1506849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Lactate, which was traditionally viewed as a metabolic byproduct of anaerobic glycolysis, has emerged as a significant signaling molecule involved in the development of tumors. Current studies highlight its dual function, where it not only fuels tumor development but also modulates immune responses. Lactate has an effect on various tumor-associated immune cells, promoting immunosuppressive conditions that facilitate tumor growth and immune evasion. This phenomenon is strongly associated with the Warburg effect, a metabolic shift observed in many cancers that favors glycolysis over oxidative phosphorylation, resulting in elevated lactate production. Exploring the complex interplay between lactate metabolism and tumor immunity provides a novel understanding regarding the mechanisms of tumor immune evasion and resistance to therapies. This review discusses the unique biology of lactate in the TME, its impact on immune cell dynamics, and its potential as a tumor treatment target.
Collapse
Affiliation(s)
- Kemin Sun
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Shen
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Xiang Xiao
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Xu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Quanli Zhang
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, China
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming Li
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Ge H, Malsiu F, Gao Y, Losmanova T, Blank F, Ott J, Medová M, Peng RW, Deng H, Dorn P, Marti TM. Inhibition of LDHB suppresses the metastatic potential of lung cancer by reducing mitochondrial GSH catabolism. Cancer Lett 2024; 611:217353. [PMID: 39615645 DOI: 10.1016/j.canlet.2024.217353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Metastasis, the leading cause of cancer death, is closely linked to lactate metabolism. Our study aimed to investigate the role of lactate dehydrogenase B (LDHB), which mainly catalyzes the conversion of lactate to pyruvate, in the metastatic potential of lung cancer. We found that LDHB silencing reduced the invasion and migration ability of lung cancer cells in vitro. On the molecular level, LDHB silencing decreased the total intracellular levels of the antioxidant glutathione (GSH). Surprisingly, LDHB silencing did not increase cellular or mitochondrial reactive oxygen species (ROS) levels. Furthermore, supplementation with GSH monoethyl ester (GSH-mee), a cell-permeable derivative of GSH, partially restored the reduced in vitro colony formation capacity, the oxygen consumption rate, and the invasion and migration capacity of lung cancer cells after LDHB silencing. Using metabolic inhibitors, we showed that the rescue of colony formation after silencing LDHB by GSH-mee was due to enhanced GSH catabolism by γ-L-Glutamyl transpeptidase (GGT), which was mainly present in the mitochondrial fraction of lung cancer cells. Furthermore, we observed that high GGT expression was a prerequisite for the rescue of migratory capacity by GSH-mee after LDHB silencing. Finally, our in vivo experiments demonstrated that targeting LDHB reduced the metastasis of human and mouse lung cancer cells in immunodeficient and immunocompetent mouse models, respectively. In conclusion, LDHB silencing decreases GSH catabolism mediated by GGT, which is primarily located in the mitochondria of cancer cells. Therefore, targeting LDHB is a promising therapeutic approach for the prevention and treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Huixiang Ge
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Fatlind Malsiu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tereza Losmanova
- Institute of Tissue Medicine and Pathology, ITMP, University of Bern, Bern, Switzerland
| | - Fabian Blank
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Julien Ott
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Michaela Medová
- Department for BioMedical Research, University of Bern, Bern, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Mandic M, Paunovic V, Vucicevic L, Kosic M, Mijatovic S, Trajkovic V, Harhaji-Trajkovic L. No energy, no autophagy-Mechanisms and therapeutic implications of autophagic response energy requirements. J Cell Physiol 2024; 239:e31366. [PMID: 38958520 DOI: 10.1002/jcp.31366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Autophagy is a lysosome-mediated self-degradation process of central importance for cellular quality control. It also provides macromolecule building blocks and substrates for energy metabolism during nutrient or energy deficiency, which are the main stimuli for autophagy induction. However, like most biological processes, autophagy itself requires ATP, and there is an energy threshold for its initiation and execution. We here present the first comprehensive review of this often-overlooked aspect of autophagy research. The studies in which ATP deficiency suppressed autophagy in vitro and in vivo were classified according to the energy pathway involved (oxidative phosphorylation or glycolysis). A mechanistic insight was provided by pinpointing the critical ATP-consuming autophagic events, including transcription/translation/interaction of autophagy-related molecules, autophagosome formation/elongation, autophagosome fusion with the lysosome, and lysosome acidification. The significance of energy-dependent fine-tuning of autophagic response for preserving the cell homeostasis, and potential implications for the therapy of cancer, autoimmunity, metabolic disorders, and neurodegeneration are discussed.
Collapse
Affiliation(s)
- Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Vucicevic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Srdjan Mijatovic
- Clinic for Emergency Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Baeken MW. Sirtuins and their influence on autophagy. J Cell Biochem 2024; 125:e30377. [PMID: 36745668 DOI: 10.1002/jcb.30377] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Sirtuins and autophagy are well-characterized agents that can promote longevity and protect individual organisms from age-associated diseases like neurodegenerative disorders. In recent years, more and more data has been obtained that discerned potential overlaps and crosstalk between Sirtuin proteins and autophagic activity. This review aims to summarize the advances within the field for each individual Sirtuin in mammalian systems. In brief, most Sirtuins have been implicated in promoting autophagy, with Sirtuin 1 and Sirtuin 6 showing the highest immediate involvement, while Sirtuin 4 and Sirtuin 5 only demonstrate occasional influence. The way Sirtuins regulate autophagy, however, is very diverse, as they have been shown to regulate gene expression of autophagy-associated genes and posttranslational modifications of proteins, with consequences for the activity and cellular localization of these proteins. They have also been shown to determine specific proteins for autophagic degradation. Overall, much data has been accumulated over recent years, yet many open questions remain. Especially although the dynamic between Sirtuin proteins and the immediate regulation of autophagic players like Light Chain 3B has been confirmed, many of these proteins have various orthologues in mammalian systems, and research so far has not exceeded the bona fide components of autophagy.
Collapse
Affiliation(s)
- Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
17
|
Al-Amodi HS, Kamel HF. Altered Metabolites in Hepatocellular Carcinoma (HCC) Paving the Road for Metabolomics Signature and Biomarkers for Early Diagnosis of HCC. Cureus 2024; 16:e71968. [PMID: 39569240 PMCID: PMC11576499 DOI: 10.7759/cureus.71968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/22/2024] Open
Abstract
Globally, hepatocellular carcinoma (HCC) is one of the most commonly encountered cancers. Because the current early diagnostic tests for HCC are not very sensitive, most cases of the disease are discovered late when it is in its terminal stage. Cellular metabolism changes during carcinogenesis to enable cancer cells to adapt to the hypoxic milieu, boost anabolic synthesis, promote survival, and evade apoptotic death signals. Omic techniques represent a breakthrough in the field of diagnostic technology. For example, Metabolomics analysis could be used to identify these metabolite alterations. Understanding the metabolic alterations linked to HCC is crucial for improving high-risk patients' surveillance and understanding the illness's biology. This review highlights the metabolic alterations linked to energy production in cancer cells, as well as the significantly altered metabolites and pathways associated with hepatocarcinogenesis, including acylcarnitines (ACs), amino acids, proteins, lipids, carbohydrates, glucose, and lactate, which reflect the anabolic and catabolic changes occurring in these cells. Additionally, it discusses the clinical implications of recent metabolomics that may serve as potential biomarkers for early diagnosis and monitoring of the progression of HCC.
Collapse
Affiliation(s)
| | - Hala F Kamel
- Biochemistry, Umm Al-Qura University, Makkah, SAU
- Medical Biochemistry and Molecular Biology, Ain Shams University, Cairo, EGY
| |
Collapse
|
18
|
Shou S, Li Y, Chen J, Zhang X, Zhang C, Jiang X, Liu F, Yi L, Zhang X, Geer E, Pu Z, Pang B. Understanding, diagnosing, and treating pancreatic cancer from the perspective of telomeres and telomerase. Cancer Gene Ther 2024; 31:1292-1305. [PMID: 38594465 PMCID: PMC11405285 DOI: 10.1038/s41417-024-00768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Telomerase is associated with cellular aging, and its presence limits cellular lifespan. Telomerase by preventing telomere shortening can extend the number of cell divisions for cancer cells. In adult pancreatic cells, telomeres gradually shorten, while in precancerous lesions of cancer, telomeres in cells are usually significantly shortened. At this time, telomerase is still in an inactive state, and it is not until before and after the onset of cancer that telomerase is reactivated, causing cancer cells to proliferate. Methylation of the telomerase reverse transcriptase (TERT) promoter and regulation of telomerase by lactate dehydrogenase B (LDHB) is the mechanism of telomerase reactivation in pancreatic cancer. Understanding the role of telomeres and telomerase in pancreatic cancer will help to diagnose and initiate targeted therapy as early as possible. This article reviews the role of telomeres and telomerase as biomarkers in the development of pancreatic cancer and the progress of research on telomeres and telomerase as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanliang Li
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqin Chen
- Department of Gastroenterology, Dongzhimen Hospital, Beijing, China
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Xu X, Pan X, Fan Z, Xia J, Ren X. Lactate dehydrogenase B as a metabolism-related marker for immunotherapy in head and neck squamous cell carcinoma. Cell Signal 2024; 120:111200. [PMID: 38719019 DOI: 10.1016/j.cellsig.2024.111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies. Lactate dehydrogenase family genes (LDHs) play a critical role in tumor metabolism, but their functions in HNSCC have not been investigated thoroughly. Thus, we aimed to explore the value of LDHs in HNSCC. METHODS The association between LDHs expression and mutations, methylation, copy number variations (CNVs), alternative splicing (AS) and competing endogenous RNA (ceRNA) was investigated in The Cancer Genome Atlas (TCGA). The expression level of LDHs in OSCC tissues and adjacent normal tissues was verified by qPCR. Algorithms, such as ssGSEA, ESTIMATE, xCell and TIDE were utilized to analyze the characteristics of immune infiltration. Pathway alternations were enriched by GO, GSEA and KEGG analysis. The Mantel test was employed to elucidate the correlation between metabolism and the tumor microenvironment (TME). Subsequently, MTT and colony formation assays were utilized to assess the impact of LDHB knockdown on cellular proliferation. Additionally, ATP and lactate assays were performed to examine metabolic alterations. Co-culture experiments further investigated the effect of LDHB knockdown on T cell differentiation. RESULTS LDHs were completely analyzed in multiple databases, among which LDHB was differentially expressed in HNSCC and significantly associated with prognosis. Low LDHB expression had better clinicopathological characteristics. Downregulated LDHB expression was associated with enhanced immune cell infiltration and could influence tumor metabolism. Despite having worse cytotoxic T lymphocyte dysfunction, the LDHBlow group was predicted to respond more favorably to immune checkpoint inhibitors (ICIs) therapy. Moreover, the correlation between metabolism and TME was depicted. In vitro, LDHB knockdown resulted in inhibited cell proliferation, increased lactate levels and decreased ATP levels, while promoted the Th1 differentiation of T cells. CONCLUSIONS Our study provided a comprehensive analysis of the LDHs and illustrated low LDHB expression could inhibit tumor cell proliferation and ATP production by influencing metabolism, with improved immune cell infiltration and better response to immunotherapy.
Collapse
Affiliation(s)
- Xun Xu
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China
| | - Xue Pan
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China
| | - Zhaona Fan
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China.
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, China; Guanghua School of Stomatology, Sun Yat-sen University, China.
| |
Collapse
|
20
|
Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of Hepatitis B virus-related hepatocellular carcinoma. Infect Agent Cancer 2024; 19:31. [PMID: 39010155 PMCID: PMC11247867 DOI: 10.1186/s13027-024-00593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Hepatitis B Virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans. Chronic hepatitis B (CHB) infection is associated with an increased risk of hepatic decompensation, cirrhosis, and hepatocellular carcinoma (HCC). Lactate level, as the end product of glycolysis, plays a substantial role in metabolism beyond energy production. Emerging studies indicate that lactate is linked to patient mortality rates, and HBV increases overall glucose consumption and lactate production in hepatocytes. Excessive lactate plays a role in regulating the tumor microenvironment (TME), immune cell function, autophagy, and epigenetic reprogramming. The purpose of this review is to gather and summarize the existing knowledge of the lactate's functions in the dysregulation of the immune system, which can play a crucial role in the development of HBV-related HCC. Therefore, it is reasonable to hypothesize that lactate with intriguing functions can be considered an immunomodulatory metabolite in immunotherapy.
Collapse
Affiliation(s)
- Sheida Behzadi Sheikhrobat
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ramezannia
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
21
|
Zhao J, Jin D, Huang M, Ji J, Xu X, Wang F, Zhou L, Bao B, Jiang F, Xu W, Lu X, Xiao M. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target. Front Cell Dev Biol 2024; 12:1416472. [PMID: 38933335 PMCID: PMC11199735 DOI: 10.3389/fcell.2024.1416472] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Even with sufficient oxygen, tumor cells use glycolysis to obtain the energy and macromolecules they require to multiply, once thought to be a characteristic of tumor cells known as the "Warburg effect". In fact, throughout the process of carcinogenesis, immune cells and stromal cells, two major cellular constituents of the tumor microenvironment (TME), also undergo thorough metabolic reprogramming, which is typified by increased glycolysis. In this review, we provide a full-scale review of the glycolytic remodeling of several types of TME cells and show how these TME cells behave in the acidic milieu created by glucose shortage and lactate accumulation as a result of increased tumor glycolysis. Notably, we provide an overview of putative targets and inhibitors of glycolysis along with the viability of using glycolysis inhibitors in combination with immunotherapy and chemotherapy. Understanding the glycolytic situations in diverse cells within the tumor immunological milieu will aid in the creation of subsequent treatment plans.
Collapse
Affiliation(s)
- Junpeng Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fei Wang
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lirong Zhou
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baijun Bao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaomin Lu
- Department of Oncology Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
22
|
Ng YS, Chen CY, Cheng SW, Tan YK, Lin SS, Senapin S, Sangsuriya P, Wang HC. WSSV early protein WSSV004 enhances viral replication by suppressing LDH activity. Int J Biol Macromol 2024; 271:132482. [PMID: 38763244 DOI: 10.1016/j.ijbiomac.2024.132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
White spot syndrome virus (WSSV) is known to upregulate glycolysis to supply biomolecules and energy for the virus's replication. At the viral genome replication stage, lactate dehydrogenase (LDH), a glycolytic enzyme, shows increased activity without any increase in expression. In the present study, yeast 2-hybrid screening was used to identify WSSV proteins that interacted with LvLDH isoform 1 and 2, and these included the WSSV early protein WSSV004. The interaction between WSSV004 and LvLDH1/2 was confirmed by co-immunoprecipitation. Immunofluorescence showed that WSSV004 co-localized with LvLDH1/2 in the cytoplasm. dsRNA silencing experiments showed that WSSV004 was crucial for WSSV replication. However, although WSSV004 silencing led to the suppression of total LvLDH gene expression during the viral late stage, there was nevertheless a significant increase in LvLDH activity at this time. We also used affinity purification-mass spectrometry to identify cellular proteins that interact with WSSV004, and found a total of 108 host proteins and 3 WSSV proteins with which it potentially interacts. Bioinformatics analysis revealed that WSSV004 and its interacting proteins might be responsible for various biological pathways during infection, including vesicular transport machinery and RNA-related functions. Collectively, our study suggests that WSSV004 serves as a multifunctional modulator to facilitate WSSV replication.
Collapse
Affiliation(s)
- Yen Siong Ng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Cong-Yan Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Cheng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu Kent Tan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Saengchan Senapin
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pakkakul Sangsuriya
- Aquatic Molecular Genetics and Biotechnology Research Team, BIOTEC, NSTDA, Pathum Thani, Thailand
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
23
|
Chen S, Xu Y, Zhuo W, Zhang L. The emerging role of lactate in tumor microenvironment and its clinical relevance. Cancer Lett 2024; 590:216837. [PMID: 38548215 DOI: 10.1016/j.canlet.2024.216837] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
In recent years, the significant impact of lactate in the tumor microenvironment has been greatly documented. Acting not only as an energy substance in tumor metabolism, lactate is also an imperative signaling molecule. It plays key roles in metabolic remodeling, protein lactylation, immunosuppression, drug resistance, epigenetics and tumor metastasis, which has a tight relation with cancer patients' poor prognosis. This review illustrates the roles lactate plays in different aspects of tumor progression and drug resistance. From the comprehensive effects that lactate has on tumor metabolism and tumor immunity, the therapeutic targets related to it are expected to bring new hope for cancer therapy.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yining Xu
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| | - Lu Zhang
- Department of Cell Biology and Department of Colorectal Surgery and Oncology, Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Jaiswal A, Singh R. A negative feedback loop underlies the Warburg effect. NPJ Syst Biol Appl 2024; 10:55. [PMID: 38789545 PMCID: PMC11126737 DOI: 10.1038/s41540-024-00377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Aerobic glycolysis, or the Warburg effect, is used by cancer cells for proliferation while producing lactate. Although lactate production has wide implications for cancer progression, it is not known how this effect increases cell proliferation and relates to oxidative phosphorylation. Here, we elucidate that a negative feedback loop (NFL) is responsible for the Warburg effect. Further, we show that aerobic glycolysis works as an amplifier of oxidative phosphorylation. On the other hand, quiescence is an important property of cancer stem cells. Based on the NFL, we show that both aerobic glycolysis and oxidative phosphorylation, playing a synergistic role, are required to achieve cell quiescence. Further, our results suggest that the cells in their hypoxic niche are highly proliferative yet close to attaining quiescence by increasing their NADH/NAD+ ratio through the severity of hypoxia. The findings of this study can help in a better understanding of the link among metabolism, cell cycle, carcinogenesis, and stemness.
Collapse
Affiliation(s)
- Alok Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Raghvendra Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
25
|
Ye Y, Yang F, Gu Z, Li W, Yuan Y, Liu S, Zhou L, Han B, Zheng R, Cao Z. Fibroblast growth factor pathway promotes glycolysis by activating LDHA and suppressing LDHB in a STAT1-dependent manner in prostate cancer. J Transl Med 2024; 22:474. [PMID: 38764020 PMCID: PMC11103983 DOI: 10.1186/s12967-024-05193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The initiation of fibroblast growth factor 1 (FGF1) expression coincident with the decrease of FGF2 expression is a well-documented event in prostate cancer (PCa) progression. Lactate dehydrogenase A (LDHA) and LDHB are essential metabolic products that promote tumor growth. However, the relationship between FGF1/FGF2 and LDHA/B-mediated glycolysis in PCa progression is not reported. Thus, we aimed to explore whether FGF1/2 could regulate LDHA and LDHB to promote glycolysis and explored the involved signaling pathway in PCa progression. METHODS In vitro studies used RT‒qPCR, Western blot, CCK-8 assays, and flow cytometry to analyze gene and protein expression, cell viability, apoptosis, and cell cycle in PCa cell lines. Glycolysis was assessed by measuring glucose consumption, lactate production, and extracellular acidification rate (ECAR). For in vivo studies, a xenograft mouse model of PCa was established and treated with an FGF pathway inhibitor, and tumor growth was monitored. RESULTS FGF1, FGF2, and LDHA were expressed at high levels in PCa cells, while LDHB expression was low. FGF1/2 positively modulated LDHA and negatively modulated LDHB in PCa cells. The depletion of FGF1, FGF2, or LDHA reduced cell proliferation, induced cell cycle arrest, and inhibited glycolysis. LDHB overexpression showed similar inhibitory effect on PCa cells. Mechanistically, we found that FGF1/2 positively regulated STAT1 and STAT1 transcriptionally activated LDHA expression while suppressed LDHB expression. Furthermore, the treatment of an FGF pathway inhibitor suppressed PCa tumor growth in mice. CONCLUSION The FGF pathway facilitates glycolysis by activating LDHA and suppressing LDHB in a STAT1-dependent manner in PCa.
Collapse
Affiliation(s)
- Yongkang Ye
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
| | - Fukan Yang
- Department of Urology, Guangdong Medical University, Graduate School, 524002, Zhanjiang, China
| | - Zhanhao Gu
- Department of Urology, Guangdong Medical University, Graduate School, 524002, Zhanjiang, China
| | - Wenxuan Li
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
| | - Yinjiao Yuan
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, 510510, Guangzhou, China
| | - Shaoqian Liu
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
| | - Le Zhou
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, 510510, Guangzhou, China
| | - Bo Han
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China
- The First School of Clinical Medicine, Southern Medical University, 510510, Guangzhou, China
| | - Ruinian Zheng
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China.
- The First School of Clinical Medicine, Southern Medical University, 510510, Guangzhou, China.
| | - Zhengguo Cao
- Department of Urology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), 523059, Dongguan, China.
| |
Collapse
|
26
|
Liu Y, Suhail Y, Novin A, Afzal J, Pant A, Kshitiz. Lactate in breast cancer cells is associated with evasion of hypoxia-induced cell cycle arrest and adverse patient outcome. Hum Cell 2024; 37:768-781. [PMID: 38478356 PMCID: PMC11256967 DOI: 10.1007/s13577-024-01046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/14/2024] [Indexed: 04/15/2024]
Abstract
Tumor hypoxia is a common microenvironmental factor in breast cancers, resulting in stabilization of Hypoxia-Inducible Factor 1 (HIF-1), the master regulator of hypoxic response in cells. Metabolic adaptation by HIF-1 results in inhibition of citric acid cycle, causing accumulation of lactate in large concentrations in hypoxic cancers. Lactate can therefore serve as a secondary microenvironmental factor influencing cellular response to hypoxia. Presence of lactate can alter the hypoxic response of breast cancers in many ways, sometimes in opposite manners. Lactate stabilizes HIF-1 in oxidative condition, as well as destabilizes HIF-1 in hypoxia, increases cellular acidification, and mitigates HIF-1-driven inhibition of cellular respiration. We therefore tested the effect of lactate in MDA-MB-231 under hypoxia, finding that lactate can activate pathways associated with DNA replication, and cell cycling, as well as tissue morphogenesis associated with invasive processes. Using a bioengineered nano-patterned stromal invasion assay, we also confirmed that high lactate and induced HIF-1α gene overexpression can synergistically promote MDA-MB-231 dissemination and stromal trespass. Furthermore, using The Cancer Genome Atlas, we also surprisingly found that lactate in hypoxia promotes gene expression signatures prognosticating low survival in breast cancer patients. Our work documents that lactate accumulation contributes to increased heterogeneity in breast cancer gene expression promoting cancer growth and reducing patient survival.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA
| | - Ashkan Novin
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
| | - Junaid Afzal
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Aditya Pant
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, USA.
- Center for Cell Analysis and Modeling, University of Connecticut Health, Farmington, CT, USA.
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- NEAG Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
27
|
Yang C, Pan RY, Guan F, Yuan Z. Lactate metabolism in neurodegenerative diseases. Neural Regen Res 2024; 19:69-74. [PMID: 37488846 PMCID: PMC10479854 DOI: 10.4103/1673-5374.374142] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 07/26/2023] Open
Abstract
Lactate, a byproduct of glycolysis, was thought to be a metabolic waste until the discovery of the Warburg effect. Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions. The Astrocyte-Neuron Lactate Shuttle has clarified that lactate plays a pivotal role in the central nervous system. Moreover, protein lactylation highlights the novel role of lactate in regulating transcription, cellular functions, and disease development. This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases, thus providing optimal perspectives for future research.
Collapse
Affiliation(s)
- Chaoguang Yang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rui-Yuan Pan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Huang N, Chen Z, Yang X, Gao Y, Zhong J, Li Y, Xiao F, Wang X, Shi Y, Zhang N. Upstream open reading frame-encoded MP31 disrupts the mitochondrial quality control process and inhibits tumorigenesis in glioblastoma. Neuro Oncol 2023; 25:1947-1962. [PMID: 37280112 PMCID: PMC10628964 DOI: 10.1093/neuonc/noad099] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Mitochondrial hyperpolarization achieved by the elevation of mitochondrial quality control (MQC) activity is a hallmark of glioblastoma (GBM). Therefore, targeting the MQC process to disrupt mitochondrial homeostasis should be a promising approach for GBM therapy. METHODS We used 2-photon fluorescence microscopy, Fluorescence-Activated Cell Sorting, and confocal microscopy with specific fluorescent dyes to detect the mitochondrial membrane potential (MMP) and mitochondrial structures. Mitophagic flux was measured with mKeima. RESULTS MP31, a phosphatase and tensin homolog (PTEN) uORF-translated and mitochondria-localized micropeptide, disrupted the MQC process and inhibited GBM tumorigenesis. Re-expression of MP31 in patient-derived GBM cells induced MMP loss to trigger mitochondrial fission but blocked mitophagic flux, leading to the accumulation of damaged mitochondria in cells, followed by reactive oxygen species production and DNA damage. Mechanistically, MP31 inhibited lysosome function and blocked lysosome fusion with mitophagosomes by competing with V-ATPase A1 for lactate dehydrogenase B (LDHB) binding to induce lysosomal alkalinization. Furthermore, MP31 enhanced the sensitivity of GBM cells to TMZ by suppressing protective mitophay in vitro and in vivo, but showed no side effects on normal human astrocytes or microglia cells (MG). CONCLUSIONS MP31 disrupts cancerous mitochondrial homeostasis and sensitizes GBM cells to current chemotherapy, without inducing toxicity in normal human astrocytes and MG. MP31 is a promising candidate for GBM treatment.
Collapse
Affiliation(s)
- Nunu Huang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Zhipeng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Xuesong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Yixin Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Yan Li
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Laboratory of Tumor Immunopathology of the Ministry of Education of China Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Chirumbolo S, Bertossi D, Magistretti P. Insights on the role of L-lactate as a signaling molecule in skin aging. Biogerontology 2023; 24:709-726. [PMID: 36708434 PMCID: PMC9883612 DOI: 10.1007/s10522-023-10018-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
L-lactate is a catabolite from the anaerobic metabolism of glucose, which plays a paramount role as a signaling molecule in various steps of the cell survival. Its activity, as a master tuner of many mechanisms underlying the aging process, for example in the skin, is still presumptive, however its crucial position in the complex cross-talk between mitochondria and the process of cell survival, should suggest that L-lactate may be not a simple waste product but a fine regulator of the aging/survival machinery, probably via mito-hormesis. Actually, emerging evidence is highlighting that ROS are crucial in the signaling of skin health, including mechanisms underlying wound repair, renewal and aging. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Physiological ROS levels are essential for cutaneous health and the wound repair process. Aberrant redox signaling activity drives chronic skin disease in elderly. On the contrary, impaired redox modulation, due to enhanced ROS generation and/or reduced levels of antioxidant defense, suppresses wound healing via promoting lymphatic/vascular endothelial cell apoptosis and death. This review tries to elucidate this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Unit of Human Anatomy, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Dario Bertossi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology-Unit of Maxillo-Facial Surgery, University of Verona, Verona, Italy
| | - Pierre Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
30
|
Vlasiou M, Nicolaidou V, Papaneophytou C. Targeting Lactate Dehydrogenase-B as a Strategy to Fight Cancer: Identification of Potential Inhibitors by In Silico Analysis and In Vitro Screening. Pharmaceutics 2023; 15:2411. [PMID: 37896171 PMCID: PMC10609963 DOI: 10.3390/pharmaceutics15102411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Lactate dehydrogenase (LDH) is an enzyme that catalyzes the reversible conversion of lactate to pyruvate while reducing NAD+ to NADH (or oxidizing NADH to NAD+). Due to its central role in the Warburg effect, LDH-A isoform has been considered a promising target for treating several types of cancer. However, research on inhibitors targeting LDH-B isoform is still limited, despite the enzyme's implication in the development of specific cancer types such as breast and lung cancer. This study aimed to identify small-molecule compounds that specifically inhibit LDH-B. Our in silico analysis identified eight commercially available compounds that may affect LDH-B activity. The best five candidates, namely tucatinib, capmatinib, moxidectin, rifampicin, and acetyldigoxin, were evaluated further in vitro. Our results revealed that two compounds, viz., tucatinib and capmatinib, currently used for treating breast and lung cancer, respectively, could also act as inhibitors of LDH-B. Both compounds inhibited LDH-B activity through an uncompetitive mechanism, as observed in in vitro experiments. Molecular dynamics studies further support these findings. Together, our results suggest that two known drugs currently being used to treat specific cancer types may have a dual effect and target more than one enzyme that facilitates the development of these types of cancers. Furthermore, the results of this study could be used as a new starting point for identifying more potent and specific LDH-B inhibitors.
Collapse
Affiliation(s)
- Manos Vlasiou
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Vicky Nicolaidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| |
Collapse
|
31
|
Lee SJ, Emery D, Vukmanic E, Wang Y, Lu X, Wang W, Fortuny E, James R, Kaplan HJ, Liu Y, Du J, Dean DC. Metabolic transcriptomics dictate responses of cone photoreceptors to retinitis pigmentosa. Cell Rep 2023; 42:113054. [PMID: 37656622 PMCID: PMC10591869 DOI: 10.1016/j.celrep.2023.113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Most mutations in retinitis pigmentosa (RP) arise in rod photoreceptors, but cone photoreceptors, responsible for high-resolution daylight and color vision, are subsequently affected, causing the most debilitating features of the disease. We used mass spectroscopy to follow 13C metabolites delivered to the outer retina and single-cell RNA sequencing to assess photoreceptor transcriptomes. The S cone metabolic transcriptome suggests engagement of the TCA cycle and ongoing response to ROS characteristic of oxidative phosphorylation, which we link to their histone modification transcriptome. Tumor necrosis factor (TNF) and its downstream effector RIP3, which drive ROS generation via mitochondrial dysfunction, are induced and activated as S cones undergo early apoptosis in RP. The long/medium-wavelength (L/M) cone transcriptome shows enhanced glycolytic capacity, which maintains their function as RP progresses. Then, as extracellular glucose eventually diminishes, L/M cones are sustained in long-term dormancy by lactate metabolism.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; Department of Ophthalmology, Kosin University College of Medicine, #262 Gamcheon-ro, Seo-gu, Busan 49267, Korea
| | - Douglas Emery
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Eric Vukmanic
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Yekai Wang
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaoqin Lu
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Enzo Fortuny
- Department of Neurosurgery, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Robert James
- Department of Neurosurgery, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology, St. Louis University School of Medicine, St. Louis MO 63110, USA
| | - Yongqing Liu
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Jianhai Du
- Departments of Ophthalmology and Visual Sciences and Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA.
| | - Douglas C Dean
- Department of Medicine, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA.
| |
Collapse
|
32
|
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, Mameli M, Paolicelli RC. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 2023; 14:5749. [PMID: 37717033 PMCID: PMC10505217 DOI: 10.1038/s41467-023-41502-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
Collapse
Affiliation(s)
- Katia Monsorno
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Kyllian Ginggen
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - An Buckinx
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Arnaud L Lalive
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Anna Tchenio
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Sam Benson
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Marc Vendrell
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Denver, CO, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luc Pellerin
- Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers Cedex, France
| | - Manuel Mameli
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
33
|
Wang Y, Ming G, Gao B. A potential prognostic prediction model for metastatic osteosarcoma based on bioinformatics analysis. Acta Orthop Belg 2023; 89:373-380. [PMID: 37935218 DOI: 10.52628/89.2.10491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Osteosarcoma (OS) is a malignant primary bone tumor with a high incidence. This study aims to construct a prognostic prediction model by screening the prognostic mRNA of metastatic OS. Data on four eligible expression profiles from the National Center for Biotechnology Information Gene Expression Omnibus repository were obtained based on inclusion criteria and defined as the training set or the validation set. The differentially expressed genres (DEGs) between meta- static and non-metastatic OS samples in the training set were first identified, and DEGs related to prognosis were screened by univariate Cox regression analysis. In total, 107 DEGs related to the prognosis of metastatic OS were identified. Then, 46 DEGs were isolated as the optimized prognostic gene signature, and a metastatic-OS discriminating classifier was constructed, which had a high accuracy in distinguishing metastatic from non-metastatic OS samples. Furthermore, four optimized prognostic gene signatures (ALOX5AP, COL21A1, HLA-DQB1, and LDHB) were further screened, and the prognostic prediction model for metastatic OS was constructed. This model possesses a relatively satisfying prediction ability both in the training set and validation set. The prognostic prediction model that was constructed based on the four prognostic mRNA signatures has a high predictive ability for the prognosis of metastatic OS.
Collapse
|
34
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
35
|
Zhang B, Wang Q, Lin Z, Zheng Z, Zhou S, Zhang T, Zheng D, Chen Z, Zheng S, Zhang Y, Lin X, Dong R, Chen J, Qian H, Hu X, Zhuang Y, Zhang Q, Jin Z, Jiang S, Ma Y. A novel glycolysis-related gene signature for predicting the prognosis of multiple myeloma. Front Cell Dev Biol 2023; 11:1198949. [PMID: 37333985 PMCID: PMC10272536 DOI: 10.3389/fcell.2023.1198949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Background: Metabolic reprogramming is an important hallmark of cancer. Glycolysis provides the conditions on which multiple myeloma (MM) thrives. Due to MM's great heterogeneity and incurability, risk assessment and treatment choices are still difficult. Method: We constructed a glycolysis-related prognostic model by Least absolute shrinkage and selection operator (LASSO) Cox regression analysis. It was validated in two independent external cohorts, cell lines, and our clinical specimens. The model was also explored for its biological properties, immune microenvironment, and therapeutic response including immunotherapy. Finally, multiple metrics were combined to construct a nomogram to assist in personalized prediction of survival outcomes. Results: A wide range of variants and heterogeneous expression profiles of glycolysis-related genes were observed in MM. The prognostic model behaved well in differentiating between populations with various prognoses and proved to be an independent prognostic factor. This prognostic signature closely coordinated with multiple malignant features such as high-risk clinical features, immune dysfunction, stem cell-like features, cancer-related pathways, which was associated with the survival outcomes of MM. In terms of treatment, the high-risk group showed resistance to conventional drugs such as bortezomib, doxorubicin and immunotherapy. The joint scores generated by the nomogram showed higher clinical benefit than other clinical indicators. The in vitro experiments with cell lines and clinical subjects further provided convincing evidence for our study. Conclusion: We developed and validated the utility of the MM glycolysis-related prognostic model, which provides a new direction for prognosis assessment, treatment options for MM patients.
Collapse
Affiliation(s)
- Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianyu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanru Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rujiao Dong
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Honglan Qian
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xudong Hu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianying Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouxiang Jin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, China
| |
Collapse
|
36
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
37
|
Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B, Ahmed N, Mraiche F, Mowat MR, Ghavami S. Regulation of Autophagy via Carbohydrate and Lipid Metabolism in Cancer. Cancers (Basel) 2023; 15:2195. [PMID: 37190124 PMCID: PMC10136996 DOI: 10.3390/cancers15082195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic changes are an important component of tumor cell progression. Tumor cells adapt to environmental stresses via changes to carbohydrate and lipid metabolism. Autophagy, a physiological process in mammalian cells that digests damaged organelles and misfolded proteins via lysosomal degradation, is closely associated with metabolism in mammalian cells, acting as a meter of cellular ATP levels. In this review, we discuss the changes in glycolytic and lipid biosynthetic pathways in mammalian cells and their impact on carcinogenesis via the autophagy pathway. In addition, we discuss the impact of these metabolic pathways on autophagy in lung cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Navjit Singh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 6C5, Canada;
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
| | - Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Fatima Mraiche
- College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar;
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michael R. Mowat
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada; (N.A.)
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada (S.L.)
- Research Institute of Oncology and Hematology, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
38
|
Lin Q, Sun Z, Yu L, Wang Q, Zhu P, Jiang Y, Sun Y, Yan W. Serum lactate dehydrogenase as a novel prognostic factor for patients with primary undifferentiated pleomorphic sarcomas. J Cancer Res Clin Oncol 2023; 149:1453-1463. [PMID: 35484360 DOI: 10.1007/s00432-022-04014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Among soft tissue sarcomas, undifferentiated pleomorphic sarcoma (UPS) has relatively higher potential of recurrence and metastasis. As serum lactate dehydrogenase (LDH) is associated with tumor progression and unfavorable outcomes in multiple malignancies, we designed this study to explore the relationship between preoperative serum LDH and prognosis in UPS patients. METHODS We extracted the data of UPS patients who underwent primary surgery in Shanghai Cancer Center, Fudan University. Receiver-operating characteristic (ROC) curve was used to figure out the best cutoff value of LDH to classify them into high- or low-expression groups. Univariate and multivariate analyses were performed using Cox proportional hazards regression to identify independent prognostic factors. Kaplan-Meier analysis was used to compare differences in overall survival (OS) and time to recurrence (TTR) between patients with high- or low-serum LDH. RESULTS Multivariate analyses demonstrated that preoperative serum LDH was an independent factor for OS. Kaplan-Meier curves showed that patients with relatively high-serum LDH (P = 0.0004) had poorer OS compared with those with low-serum LDH. There was a trend that patients with relatively high-serum LDH had poorer TTR than those without (P = 0.1249). In addition, there were obvious trends that patients with decreased serum LDH after surgery showed better OS (P = 0.0954) and TTR (P = 0.1720) than those with elevated serum LDH. Moreover, high preoperative serum LDH was associated with female patients (P = 0.0004), positive margin (P < 0.0001), worse survival (P = 0.0061), higher mitotic index (P = 0.0222) and necrosis (P = 0.0225). CONCLUSIONS Preoperative serum LDH is an independent factor for OS in UPS patients, and it correlates with future surgical margin.
Collapse
Affiliation(s)
- Qiaowei Lin
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200030, China
| | - Zhengwang Sun
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200030, China
| | - Lin Yu
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qifeng Wang
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ping Zhu
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yihan Jiang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200030, China.
| | - Wangjun Yan
- Department of Musculoskeletal Surgery, Shanghai Cancer Center, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
39
|
Unlu Yazici M, Marron JS, Bakir-Gungor B, Zou F, Yousef M. Invention of 3Mint for feature grouping and scoring in multi-omics. Front Genet 2023; 14:1093326. [PMID: 37007972 PMCID: PMC10050723 DOI: 10.3389/fgene.2023.1093326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Advanced genomic and molecular profiling technologies accelerated the enlightenment of the regulatory mechanisms behind cancer development and progression, and the targeted therapies in patients. Along this line, intense studies with immense amounts of biological information have boosted the discovery of molecular biomarkers. Cancer is one of the leading causes of death around the world in recent years. Elucidation of genomic and epigenetic factors in Breast Cancer (BRCA) can provide a roadmap to uncover the disease mechanisms. Accordingly, unraveling the possible systematic connections between-omics data types and their contribution to BRCA tumor progression is crucial. In this study, we have developed a novel machine learning (ML) based integrative approach for multi-omics data analysis. This integrative approach combines information from gene expression (mRNA), microRNA (miRNA) and methylation data. Due to the complexity of cancer, this integrated data is expected to improve the prediction, diagnosis and treatment of disease through patterns only available from the 3-way interactions between these 3-omics datasets. In addition, the proposed method bridges the interpretation gap between the disease mechanisms that drive onset and progression. Our fundamental contribution is the 3 Multi-omics integrative tool (3Mint). This tool aims to perform grouping and scoring of groups using biological knowledge. Another major goal is improved gene selection via detection of novel groups of cross-omics biomarkers. Performance of 3Mint is assessed using different metrics. Our computational performance evaluations showed that the 3Mint classifies the BRCA molecular subtypes with lower number of genes when compared to the miRcorrNet tool which uses miRNA and mRNA gene expression profiles in terms of similar performance metrics (95% Accuracy). The incorporation of methylation data in 3Mint yields a much more focused analysis. The 3Mint tool and all other supplementary files are available at https://github.com/malikyousef/3Mint/.
Collapse
Affiliation(s)
- Miray Unlu Yazici
- Department of Bioengineering, Abdullah Gül University, Kayseri, Türkiye
| | - J. S. Marron
- Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, United States
| | - Burcu Bakir-Gungor
- Department of Bioengineering, Abdullah Gül University, Kayseri, Türkiye
- Department of Computer Engineering, Abdullah Gul University, Kayseri, Türkiye
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat, Israel
- Galilee Digital Health Research Center, Zefat Academic College, Zefat, Israel
- *Correspondence: Malik Yousef,
| |
Collapse
|
40
|
Deng C, Wei C, Hou Y, Xiong M, Ni D, Huang Y, Wang M, Yang X, Chen K, Chen Z. Identification of Key Differentially Expressed mRNAs, miRNAs, lncRNAs, and circRNAs for Xp11 Translocation Renal Cell Carcinoma (RCC) Based on Whole-Transcriptome Sequencing. Genes (Basel) 2023; 14:genes14030723. [PMID: 36980995 PMCID: PMC10047933 DOI: 10.3390/genes14030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
We carried out whole transcriptome sequencing (WTS) on the tumor and the matching adjacent normal tissues from five patients having Xp11 translocation renal cell carcinoma (RCC). This was performed in terms of obtaining more understanding of the genomic panorama and molecular basis of this cancer. To examine gene-regulatory networks in XP11 translocation RCC, variance expression analysis was carried out, followed by functional enrichment analysis. Gene Expression Omnibus (GEO) of Xp11 translocation RCC data was used to validate the results. As per inclusion criteria, a total of 1886 differentially expressed mRNAs (DEmRNAs), 56 differentially expressed miRNAs (DEmiRNAs), 223 differentially expressed lncRNAs (DElncRNAs), and 1764 differentially expressed circRNAs (DEcircRNAs) were found. KEGG enrichment study of DEmiRNA, DElncRNA, and DEcircRNA target genes identified the function of protein processing in the endoplasmic reticulum, lysosome, and neutrophil-mediated immunity. Three subnetwork modules integrated from the PPI network also revealed the genes involved in protein processing in the endoplasmic reticulum, lysosome, and protein degradation processes, which may regulate the Xp11 translocation RCC process. The ceRNA complex network was created by Cytoscape, which included three upregulated circRNAs, five upregulated lncRNAs, 24 upregulated mRNAs, and two downregulated miRNAs (hsa-let-7d-5p and hsa-miR-433-3p). The genes as a prominent component of the complex ceRNA network may be key factors in the pathogenesis of Xp11 translocation RCC. Our findings clarified the genomic and transcriptional complexity of Xp11 translocation RCC while also pointing to possible new targets for Xp11 translocation RCC characterization.
Collapse
Affiliation(s)
- Changqi Deng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Chengcheng Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Correspondence: (K.C.); (Z.C.)
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Correspondence: (K.C.); (Z.C.)
| |
Collapse
|
41
|
Park BS, Jeon H, Chi SG, Kim T. Efficient prioritization of CRISPR screen hits by accounting for targeting efficiency of guide RNA. BMC Biol 2023; 21:45. [PMID: 36829149 PMCID: PMC9960226 DOI: 10.1186/s12915-023-01536-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND CRISPR-based screens are revolutionizing drug discovery as tools to identify genes whose ablation induces a phenotype of interest. For instance, CRISPR-Cas9 screening has been successfully used to identify novel therapeutic targets in cancer where disruption of genes leads to decreased viability of malignant cells. However, low-activity guide RNAs may give rise to variable changes in phenotype, preventing easy identification of hits and leading to false negative results. Therefore, correcting the effects of bias due to differences in guide RNA efficiency in CRISPR screening data can improve the efficiency of prioritizing hits for further validation. Here, we developed an approach to identify hits from negative CRISPR screens by correcting the fold changes (FC) in gRNA frequency by the actual, observed frequency of indel mutations generated by gRNA. RESULTS Each gRNA was coupled with the "reporter sequence" that can be targeted by the same gRNA so that the frequency of mutations in the reporter sequence can be used as a proxy for the endogenous target gene. The measured gRNA activity was used to correct the FC. We identified indel generation efficiency as the dominant factor contributing significant bias to screening results, and our method significantly removed such bias and was better at identifying essential genes when compared to conventional fold change analysis. We successfully applied our gRNA activity data to previously published gRNA screening data, and identified novel genes whose ablation could synergize with vemurafenib in the A375 melanoma cell line. Our method identified nicotinamide N-methyltransferase, lactate dehydrogenase B, and polypyrimidine tract-binding protein 1 as synergistic targets whose ablation sensitized A375 cells to vemurafenib. CONCLUSIONS We identified the variations in target cleavage efficiency, even in optimized sgRNA libraries, that pose a strong bias in phenotype and developed an analysis method that corrects phenotype score by the measured differences in the targeting efficiency among sgRNAs. Collectively, we expect that our new analysis method will more accurately identify genes that confer the phenotype of interest.
Collapse
Affiliation(s)
- Byung-Sun Park
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Heeju Jeon
- grid.35541.360000000121053345Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Sung-Gil Chi
- grid.222754.40000 0001 0840 2678Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841 Republic of Korea
| | - Tackhoon Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology, 5 Hwarangro-14-Gil, SeongbukGu, Seoul, 02792, Republic of Korea. .,Department of Biological Sciences, Korea University, 145 AnamRo, SeongbukGu, Seoul, 02841, Republic of Korea. .,Division of Bio-Medical Science and Technology, Korea University of Science and Technology, 217 GajeongRo YuseongGu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
42
|
Kang BS, Choi BY, Kho AR, Lee SH, Hong DK, Park MK, Lee SH, Lee CJ, Yang HW, Woo SY, Park SW, Kim DY, Park JB, Chung WS, Suh SW. Effects of Pyruvate Kinase M2 (PKM2) Gene Deletion on Astrocyte-Specific Glycolysis and Global Cerebral Ischemia-Induced Neuronal Death. Antioxidants (Basel) 2023; 12:491. [PMID: 36830049 PMCID: PMC9952809 DOI: 10.3390/antiox12020491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Ischemic stroke is caused by insufficient blood flow to the brain. Astrocytes have a role in bidirectionally converting pyruvate, generated via glycolysis, into lactate and then supplying it to neurons through astrocyte-neuron lactate shuttle (ANLS). Pyruvate kinase M2 (PKM2) is an enzyme that dephosphorylates phosphoenolpyruvate to pyruvate during glycolysis in astrocytes. We hypothesized that a reduction in lactate supply in astrocyte PKM2 gene deletion exacerbates neuronal death. Mice harboring a PKM2 gene deletion were established by administering tamoxifen to Aldh1l1-CreERT2; PKM2f/f mice. Upon development of global cerebral ischemia, mice were immediately injected with sodium l-lactate (250 mg/kg, i.p.). To verify our hypothesis, we compared oxidative damage, microtubule disruption, ANLS disruption, and neuronal death between the gene deletion and control subjects. We observed that PKM2 gene deletion increases the degree of neuronal damage and impairment of lactate metabolism in the hippocampal region after GCI. The lactate administration groups showed significantly reduced neuronal death and increases in neuron survival and cognitive function. We found that lactate supply via the ANLS in astrocytes plays a crucial role in maintaining energy metabolism in neurons. Lactate administration may have potential as a therapeutic tool to prevent neuronal damage following ischemic stroke.
Collapse
Affiliation(s)
- Beom-Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bo-Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - A-Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, College of Medicine, Johns Hopkins University School, Baltimore, MD 21205, USA
- Department of Neurology, College of Medicine, Johns Hopkins University School, Baltimore, MD 21205, USA
| | - Song-Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae-Ki Hong
- Department of Pathology and Laboratory Medicine, College of Medicine, Emory University School, Atlanta, GA 30322, USA
| | - Min-Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Si-Hyun Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chang-Juhn Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeun-Wook Yang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Seo-Young Woo
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Se-Wan Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dong-Yeon Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Chuncheon 24252, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34051, Republic of Korea
| | - Sang-Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
43
|
Tumor lactic acid: a potential target for cancer therapy. Arch Pharm Res 2023; 46:90-110. [PMID: 36729274 DOI: 10.1007/s12272-023-01431-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Tumor development is influenced by circulating metabolites and most tumors are exposed to substantially elevated levels of lactic acid and low levels of nutrients, such as glucose and glutamine. Tumor-derived lactic acid, the major circulating carbon metabolite, regulates energy metabolism and cancer cell signaling pathways, while also acting as an energy source and signaling molecule. Recent studies have yielded new insights into the pro-tumorigenic action of lactic acid and its metabolism. These insights suggest an anti-tumor therapeutic strategy targeting the oncometabolite lactic acid, with the aim of improving the efficacy and clinical safety of tumor metabolism inhibitors. This review describes the current understanding of the multifunctional roles of tumor lactic acid, as well as therapeutic approaches targeting lactic acid metabolism, including lactate dehydrogenase and monocarboxylate transporters, for anti-cancer therapy.
Collapse
|
44
|
Feng Q, Hao Y, Yang S, Yuan X, Chen J, Mei Y, Liu L, Chang J, Zhang Z, Wang L. A metabolic intervention strategy to break evolutionary adaptability of tumor for reinforced immunotherapy. Acta Pharm Sin B 2023; 13:775-786. [PMID: 36873182 PMCID: PMC9979089 DOI: 10.1016/j.apsb.2022.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
The typical hallmark of tumor evolution is metabolic dysregulation. In addition to secreting immunoregulatory metabolites, tumor cells and various immune cells display different metabolic pathways and plasticity. Harnessing the metabolic differences to reduce the tumor and immunosuppressive cells while enhancing the activity of positive immunoregulatory cells is a promising strategy. We develop a nanoplatform (CLCeMOF) based on cerium metal-organic framework (CeMOF) by lactate oxidase (LOX) modification and glutaminase inhibitor (CB839) loading. The cascade catalytic reactions induced by CLCeMOF generate reactive oxygen species "storm" to elicit immune responses. Meanwhile, LOX-mediated metabolite lactate exhaustion relieves the immunosuppressive tumor microenvironment, preparing the ground for intracellular regulation. Most noticeably, the immunometabolic checkpoint blockade therapy, as a result of glutamine antagonism, is exploited for overall cell mobilization. It is found that CLCeMOF inhibited glutamine metabolism-dependent cells (tumor cells, immunosuppressive cells, etc.), increased infiltration of dendritic cells, and especially reprogrammed CD8+ T lymphocytes with considerable metabolic flexibility toward a highly activated, long-lived, and memory-like phenotype. Such an idea intervenes both metabolite (lactate) and cellular metabolic pathway, which essentially alters overall cell fates toward the desired situation. Collectively, the metabolic intervention strategy is bound to break the evolutionary adaptability of tumors for reinforced immunotherapy.
Collapse
Affiliation(s)
- Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Yutong Hao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaiqi Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomin Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuying Mei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lanlan Liu
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Junbiao Chang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|
45
|
Li Z, Wang Q, Huang X, Yang M, Zhou S, Li Z, Fang Z, Tang Y, Chen Q, Hou H, Li L, Fei F, Wang Q, Wu Y, Gong A. Lactate in the tumor microenvironment: A rising star for targeted tumor therapy. Front Nutr 2023; 10:1113739. [PMID: 36875841 PMCID: PMC9978120 DOI: 10.3389/fnut.2023.1113739] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Metabolic reprogramming is one of fourteen hallmarks of tumor cells, among which aerobic glycolysis, often known as the "Warburg effect," is essential to the fast proliferation and aggressive metastasis of tumor cells. Lactate, on the other hand, as a ubiquitous molecule in the tumor microenvironment (TME), is generated primarily by tumor cells undergoing glycolysis. To prevent intracellular acidification, malignant cells often remove lactate along with H+, yet the acidification of TME is inevitable. Not only does the highly concentrated lactate within the TME serve as a substrate to supply energy to the malignant cells, but it also works as a signal to activate multiple pathways that enhance tumor metastasis and invasion, intratumoral angiogenesis, as well as immune escape. In this review, we aim to discuss the latest findings on lactate metabolism in tumor cells, particularly the capacity of extracellular lactate to influence cells in the tumor microenvironment. In addition, we examine current treatment techniques employing existing medications that target and interfere with lactate generation and transport in cancer therapy. New research shows that targeting lactate metabolism, lactate-regulated cells, and lactate action pathways are viable cancer therapy strategies.
Collapse
Affiliation(s)
- Zhangzuo Li
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Mengting Yang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengzou Fang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Qian Chen
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hanjin Hou
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Fei
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiaowei Wang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuqing Wu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
46
|
Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M, Kaithwas G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol 2023; 14:1108915. [PMID: 36891273 PMCID: PMC9986608 DOI: 10.3389/fphar.2023.1108915] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
47
|
Kshitiz, Afzal J, Suhail Y, Chang H, Hubbi ME, Hamidzadeh A, Goyal R, Liu Y, Sun P, Nicoli S, Dang CV, Levchenko A. Lactate-dependent chaperone-mediated autophagy induces oscillatory HIF-1α activity promoting proliferation of hypoxic cells. Cell Syst 2022; 13:1048-1064.e7. [PMID: 36462504 PMCID: PMC10012408 DOI: 10.1016/j.cels.2022.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/10/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
Response to hypoxia is a highly regulated process, but little is known about single-cell responses to hypoxic conditions. Using fluorescent reporters of hypoxia response factor-1α (HIF-1α) activity in various cancer cell lines and patient-derived cancer cells, we show that hypoxic responses in individual cancer cells can be highly dynamic and variable. These responses fall into three classes, including oscillatory activity. We identify a molecular mechanism that can account for all three response classes, implicating reactive-oxygen-species-dependent chaperone-mediated autophagy of HIF-1α in a subset of cells. Furthermore, we show that oscillatory response is modulated by the abundance of extracellular lactate in a quorum-sensing-like mechanism. We show that oscillatory HIF-1α activity rescues hypoxia-mediated inhibition of cell division and causes broad suppression of genes downregulated in cancers and activation of genes upregulated in many cancers, suggesting a mechanism for aggressive growth in a subset of hypoxic tumor cells.
Collapse
Affiliation(s)
- Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | - Junaid Afzal
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Hao Chang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA
| | - Maimon E Hubbi
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA; Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Archer Hamidzadeh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA
| | - Ruchi Goyal
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Peng Sun
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Stefania Nicoli
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Chi V Dang
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA; Ludwig Institute for Cancer Research, New York, NY 10016, USA; The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Systems Biology Institute, Yale University, Orange, CT 06477, USA.
| |
Collapse
|
48
|
Dong S, Li W, Li X, Wang Z, Chen Z, Shi H, He R, Chen C, Zhou W. Glucose metabolism and tumour microenvironment in pancreatic cancer: A key link in cancer progression. Front Immunol 2022; 13:1038650. [PMID: 36578477 PMCID: PMC9792100 DOI: 10.3389/fimmu.2022.1038650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Early and accurate diagnosis and treatment of pancreatic cancer (PC) remain challenging endeavors globally. Late diagnosis lag, high invasiveness, chemical resistance, and poor prognosis are unresolved issues of PC. The concept of metabolic reprogramming is a hallmark of cancer cells. Increasing evidence shows that PC cells alter metabolic processes such as glucose, amino acids, and lipids metabolism and require continuous nutrition for survival, proliferation, and invasion. Glucose metabolism, in particular, regulates the tumour microenvironment (TME). Furthermore, the link between glucose metabolism and TME also plays an important role in the targeted therapy, chemoresistance, radiotherapy ineffectiveness, and immunosuppression of PC. Altered metabolism with the TME has emerged as a key mechanism regulating PC progression. This review shed light on the relationship between TME, glucose metabolism, and various aspects of PC. The findings of this study provide a new direction in the development of PC therapy targeting the metabolism of cancer cells.
Collapse
Affiliation(s)
- Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wancheng Li
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhou Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Huaqing Shi
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ru He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chen Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
49
|
Kocianova E, Piatrikova V, Golias T. Revisiting the Warburg Effect with Focus on Lactate. Cancers (Basel) 2022; 14:cancers14246028. [PMID: 36551514 PMCID: PMC9776395 DOI: 10.3390/cancers14246028] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Rewired metabolism is acknowledged as one of the drivers of tumor growth. As a result, aerobic glycolysis, or the Warburg effect, is a feature of many cancers. Increased glucose uptake and glycolysis provide intermediates for anabolic reactions necessary for cancer cell proliferation while contributing sufficient energy. However, the accompanying increased lactate production, seemingly wasting glucose carbon, was originally explained only by the need to regenerate NAD+ for successive rounds of glycolysis by the lactate dehydrogenase (LDH) reaction in the cytosol. After the discovery of a mitochondrial LDH isoform, lactate oxidation entered the picture, and lactate was recognized as an important oxidative fuel. It has also been revealed that lactate serves a variety of signaling functions and helps cells adapt to the new environment. Here, we discuss recent findings on lactate metabolism and signaling in cancer while attempting to explain why the Warburg effect is adopted by cancer cells.
Collapse
Affiliation(s)
- Eva Kocianova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Viktoria Piatrikova
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Tereza Golias
- Department of Tumor Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
50
|
Xu JQ, Fu YL, Zhang J, Zhang KY, Ma J, Tang JY, Zhang ZW, Zhou ZY. Targeting glycolysis in non-small cell lung cancer: Promises and challenges. Front Pharmacol 2022; 13:1037341. [PMID: 36532721 PMCID: PMC9748442 DOI: 10.3389/fphar.2022.1037341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/04/2022] [Indexed: 08/17/2023] Open
Abstract
Metabolic disturbance, particularly of glucose metabolism, is a hallmark of tumors such as non-small cell lung cancer (NSCLC). Cancer cells tend to reprogram a majority of glucose metabolism reactions into glycolysis, even in oxygen-rich environments. Although glycolysis is not an efficient means of ATP production compared to oxidative phosphorylation, the inhibition of tumor glycolysis directly impedes cell survival and growth. This review focuses on research advances in glycolysis in NSCLC and systematically provides an overview of the key enzymes, biomarkers, non-coding RNAs, and signaling pathways that modulate the glycolysis process and, consequently, tumor growth and metastasis in NSCLC. Current medications, therapeutic approaches, and natural products that affect glycolysis in NSCLC are also summarized. We found that the identification of appropriate targets and biomarkers in glycolysis, specifically for NSCLC treatment, is still a challenge at present. However, LDHB, PDK1, MCT2, GLUT1, and PFKM might be promising targets in the treatment of NSCLC or its specific subtypes, and DPPA4, NQO1, GAPDH/MT-CO1, PGC-1α, OTUB2, ISLR, Barx2, OTUB2, and RFP180 might be prognostic predictors of NSCLC. In addition, natural products may serve as promising therapeutic approaches targeting multiple steps in glycolysis metabolism, since natural products always present multi-target properties. The development of metabolic intervention that targets glycolysis, alone or in combination with current therapy, is a potential therapeutic approach in NSCLC treatment. The aim of this review is to describe research patterns and interests concerning the metabolic treatment of NSCLC.
Collapse
Affiliation(s)
- Jia-Qi Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Li Fu
- Department of Oncology, Shenzhen (Fu Tian) Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai-Yu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Wei Zhang
- Department of Oncology, Shenzhen (Fu Tian) Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|