1
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Wang H, Liang L, Xie Y, Gong H, Fan F, Wen C, Jiang Y, Lei S, Qiu X, Peng H, Ye M, Xiao X, Liu J. Pseudokinase TRIB3 stabilizes SSRP1 via USP10-mediated deubiquitination to promote multiple myeloma progression. Oncogene 2025; 44:694-708. [PMID: 39653795 DOI: 10.1038/s41388-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 03/05/2025]
Abstract
Multiple myeloma (MM), the world's second most common hematologic malignancy, poses considerable clinical challenges due to its aggressive progression and resistance to therapy. Addressing these challenges requires a detailed understanding of the mechanisms driving MM initiation, progression, and therapeutic resistance. This study identifies the pseudokinase tribble homolog 3 (TRIB3) as a high-risk factor that promotes MM malignancy in vitro and in vivo. Mechanistically, TRIB3 directly interacts with structure-specific recognition protein 1 (SSRP1) and ubiquitin-specific peptidase 10 (USP10), facilitating the formation of a TRIB3/USP10/SSRP1 ternary complex. This complex stabilizes SSRP1 via USP10-mediated deubiquitination, thereby driving MM cell proliferation. Furthermore, a stapled peptide, SP-A, was developed, which effectively disrupts the TRIB3/USP10/SSRP1 complex, leading to a decrease in SSRP1 levels by inhibiting its stabilization through USP10. Notably, SP-A exhibits strong synergistic effects when combined with the proteasome inhibitor bortezomib. Given the critical role of the TRIB3/USP10/SSRP1 complex in MM pathophysiology, it represents a promising therapeutic target for MM treatment. In MM cells, TRIB3, USP10 and SSRP1 form a ternary complex and TRIB3 enhances the deubiquitinating effect of USP10 on SSRP1, leading to malignant progression of MM. In the case of drug intervention, SP-A attenuates the binding of SSRP1 and USP10 by inhibiting protein interactions between TRIB3 and SSRP1 and promoted SSRP1 protein degradation, leading to significant inhibition of MM development. Visual abstract created with Biorender.
Collapse
Affiliation(s)
- Haiqin Wang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Yifang Xie
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Han Gong
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Feifan Fan
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Chengcai Wen
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Yu Jiang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Shiying Lei
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Xili Qiu
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiaojuan Xiao
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Zhai PL, Chen MM, Wang Q, Zhao JJ, Tang XM, Lu CN, Liu J, Yang QX, Xiang ML, Tang QH, Gu B, Zhang SP, Tang SP, Fu D. Multi-omics analysis identifies a liquid-liquid phase separation-related subtypes in head and neck squamous cell carcinoma. Front Oncol 2025; 15:1509810. [PMID: 40078192 PMCID: PMC11897011 DOI: 10.3389/fonc.2025.1509810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Background Growing evidence indicates that abnormal liquid-liquid phase separation (LLPS) can disrupt biomolecular condensates, contributing to cancer development and progression. However, the influence of LLPS on the prognosis of head and neck squamous cell carcinoma (HNSCC) patients and its effects on the tumor immune microenvironment (TIME) are not yet fully understood. Therefore, we aimed to categorize patients with HNSCC based on LLPS-related genes and explored their multidimensional heterogeneity. Methods We integrated the transcriptomic data of 3,541 LLPS-related genes to assess the LLPS patterns in 501 patients with HNSCC within The Cancer Genome Atlas cohort. Subsequently, we explored the differences among the three LLPS subtypes using multi-omics analysis. We also developed an LLPS-related prognostic risk signature (LPRS) to facilitate personalized and integrative assessments and then screened and validated potential therapeutic small molecule compounds targeting HNSCC via experimental analyses. Result By analyzing the expression profiles of 85 scaffolds, 355 regulators, and 3,101 clients of LLPS in HNSCC, we identified three distinct LLPS subtypes: LS1, LS2, and LS3. We confirmed notable differences among these subtypes in terms of prognosis, functional enrichment, genomic alterations, TIME patterns, and responses to immunotherapy. Additionally, we developed the LPRS, a prognostic signature for personalized integrative assessments, which demonstrated strong predictive capability for HNSCC prognosis across multiple cohorts. The LPRS also showed significant correlations with the clinicopathological features and TIME patterns in HNSCC patients. Furthermore, the LPRS effectively predicted responses to immune checkpoint inhibitor therapy and facilitated the screening of potential small-molecule compounds for treating HNSCC patients. Conclusion This study presents a new classification system for HNSCC patients grounded in LLPS. The LPRS developed in this research offers improved personalized prognosis and could optimize immunotherapy strategies for HNSCC.
Collapse
Affiliation(s)
- Peng-Lei Zhai
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Min Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Jun Zhao
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Xiao-Mei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui-Ni Lu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-Xin Yang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Liang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, China
| | - Biao Gu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Shu-Ping Zhang
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Si-Ping Tang
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Da Fu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Vivarelli S, Sevim C, Giambò F, Fenga C. Integrated Computational Analysis Reveals Early Genetic and Epigenetic AML Susceptibility Biomarkers in Benzene-Exposed Workers. Int J Mol Sci 2025; 26:1138. [PMID: 39940906 PMCID: PMC11818736 DOI: 10.3390/ijms26031138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Benzene, a well-known carcinogenic airborne pollutant, poses significant health risks, particularly in industries such as petroleum, shoemaking, and painting. Despite strict regulations, chronic occupational exposure persists, contributing to the onset of acute myeloid leukemia (AML) and other malignancies. Benzene's carcinogenicity stems from its metabolic activation, leading to increased oxidative stress, DNA damage, and cancer transformation. While its toxicity is well-documented, the link between genetic and epigenetic alterations and cancer susceptibility in exposed workers remains underexplored. This study aims to identify early biomarkers of benzene exposure and AML risk by analyzing gene expression and DNA methylation datasets from GEO DataSets, integrated with molecular pathway analyses, as well as miRNA-target and protein-protein network evaluations. This multi-approach led to the identification of nine deregulated genes (CRK, CXCR6, GSPT1, KPNA1, MECP2, MELTF, NFKB1, TBC1D7, ZNF331) in workers exposed to benzene, with NFKB1 showing strong discriminatory potential. Also, dose-dependent DNA methylation changes were observed in CXCR6 and MELTF, while selected miRNAs such as let-7d-5p, miR-126-3p, and miR-361-5p emerged as key post-transcriptional regulators. Furthermore, functional enrichment linked these genes to immune response, inflammation, cell proliferation, and apoptosis pathways. While network analyses highlighted NFKB1, CRK, and CXCR6 as central to benzene-associated leukemogenesis. Altogether, these findings provide novel insights into an early biomarker fingerprint for benzene exposure and AML susceptibility, supporting the future development of biomolecular-based targeted occupational health monitoring and personalized preventive strategies for at-risk workers.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98124 Messina, Italy; (F.G.); (C.F.)
| | - Cigdem Sevim
- Department of Medical Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu 37150, Turkey;
| | - Federica Giambò
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98124 Messina, Italy; (F.G.); (C.F.)
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98124 Messina, Italy; (F.G.); (C.F.)
| |
Collapse
|
5
|
Zhang L, Huang W, Ma T, Shi X, Chen J, Hu YL, Liu YX, Liu ZX, Lu CH. Targeting CFTR restoring aggrephagy to suppress HSC activation and alleviate liver fibrosis. Int Immunopharmacol 2025; 145:113754. [PMID: 39667045 DOI: 10.1016/j.intimp.2024.113754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND AND AIMS Multiple studies have shown that hepatic fibrosis, a progressive condition that represents the endpoint of various chronic liver diseases, is primarily marked by the extensive activation of hepatic stellate cells (HSCs). However, the exact impact of cystic fibrosis transmembrane conductance regulator (CFTR) on HSCs during the development of hepatic fibrosis remains unclear. METHODS In our study, we measured CFTR levels in tissue samples and in HSCs activated by TGF-β stimulation. We established mouse models of liver fibrosis using carbon tetrachloride (CCl4) and bile duct ligation (BDL). In vitro, we investigated the specific mechanisms of CFTR action in HSCs by exploring aggrephagy. We employed co-immunoprecipitation (co-IP) experiments to identify potential downstream targets of CFTR. Finally, through rescue experiments, we examined the impact of GTPase-activating protein - binding protein 1 (G3BP1) on CFTR-mediated activation of hepatic stellate cells. RESULT In activated HSCs induced by TGF-β, the reduction of CFTR, various liver fibrosis models, and fibrotic tissue samples were identified. In vitro functional experiments confirmed that CFTR promoted the expression of fibrosis-related markers and aggrephagy in HSCs. Mechanistically, we found that CFTR directly interacts with G3BP1, thereby further promoting the TGF-β/Smad2/3 pathway. The inhibition of G3BP1 caused by CFTR knockdown reduced extracellular matrix deposition, contributing to alleviating liver fibrosis. CONCLUSION We emphasize that CFTR activates aggrephagy and promotes HSC activation and hepatic fibrosis by targeting G3BP1, participating in the TGF-β/Smad2/3 signaling pathway. Overall, CFTR has been identified as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Lu Zhang
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Wei Huang
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Tao Ma
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Xiang Shi
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Jing Chen
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China
| | - Yong-Xia Liu
- Department of Gastroenterology, Tongzhou District Traditional Chinese Medicine Hospital, Nantong, China
| | - Zhao-Xiu Liu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China.
| | - Cui-Hua Lu
- Department Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001 China.
| |
Collapse
|
6
|
Yang K, Li B, Xu X, Yu Z, Lyu X, Ren K, Liu X, Chen S, Li H. TRIB3 overexpression predicts malignant progression and poor prognosis in human solid tumors: bioinformatics validation and clinical significance. Expert Rev Mol Diagn 2024:1-12. [PMID: 39609944 DOI: 10.1080/14737159.2024.2436391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Overexpression of tribbles homolog 3 (TRIB3) has been reported in various cancers, yet its clinical significance remains contentious. This study aims to elucidate the association between TRIB3 overexpression and the progression and prognosis of solid tumors. METHODS A comprehensive analysis was conducted using data from published studies and The Cancer Genome Atlas (TCGA) up to May 2023. We evaluated the impact of high TRIB3 expression on tumor malignancy and survival outcomes across different cancer types. RESULTS Seventeen studies met the inclusion criteria. Our findings revealed that TRIB3 overexpression is significantly associated with increased distant metastasis (OR = 4.01, 95% CI: 2.36-6.74, p < 0.001) and advanced histological stage (OR = 2.68, 95% CI: 1.50-4.78, p < 0.001). Additionally, high TRIB3 expression significantly elevated the risk of reduced overall survival (OS) in cancer patients (HR = 1.52, 95% CI: 1.05-2.20, p < 0.001), indicating a poor prognosis. Analyses of TCGA data among various prognostic indicators corroborated these findings. CONCLUSIONS TRIB3 overexpression is significantly linked to malignant progression and unfavorable prognosis in diverse solid tumors. These results suggest that TRIB3 holds promise as a biomarker and therapeutic target in human cancers.
Collapse
Affiliation(s)
- Kangping Yang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical School, Nanchang University, Nanchang, PR China
| | - Benjie Li
- Queen Mary School, Jiangxi Medical School, Nanchang University, Nanchang, PR China
| | - Xuan Xu
- Huankui Academy, Jiangxi Medical School, Nanchang University, Nanchang, PR China
| | - Zilu Yu
- Queen Mary School, Jiangxi Medical School, Nanchang University, Nanchang, PR China
| | - Xinmeng Lyu
- School of Life Science, Ludong University, Yantai, PR China
| | - Kexin Ren
- Queen Mary School, Jiangxi Medical School, Nanchang University, Nanchang, PR China
| | - Xiangfei Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
- Fifth School of Clinical Medicine (Beijing Hospital), Peking University, Beijing, PR China
| | - Shen Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
- Fifth School of Clinical Medicine (Beijing Hospital), Peking University, Beijing, PR China
| | - Huizi Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical School, Nanchang University, Nanchang, PR China
| |
Collapse
|
7
|
Wu SH, Xiao MC, Liu F, Hong HY, Ding CH, Zhang X, Xie WF. Cell-permeated peptide P-T3H2 inhibits malignancy on hepatocellular carcinoma through stabilizing HNF4α protein. Discov Oncol 2024; 15:752. [PMID: 39638897 PMCID: PMC11621286 DOI: 10.1007/s12672-024-01661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES Hepatocyte nuclear factor 4α (HNF4α) is a key regulator of hepatocyte function and has a strong therapeutic effect on hepatocellular carcinoma (HCC) by inducing the differentiation of hepatoma cell into hepatocytes. Our previous study showed that Tribbles homolog 3 (TRIB3) directly interacts with and promotes the degradation of HNF4α in non-alcoholic fatty liver disease (NAFLD). Disrupting the TRIB3-HNF4α interaction by a cell-permeating peptide, called P-T3H2, stabilized HNF4α protein. This study aimed to assess the anti-tumor impact of P-T3H2 in HCC. METHODS The expression of TRIB3 and HNF4α was evaluated using western blot and immunohistochemistry (IHC). Hepatic functions and cellular senescence of HCC cells were evaluated through periodic acid-Schiff (PAS) staining, acetylated low-density lipoprotein (ac-LDL) uptake and senescence-associated β-galactosidase (SA-β-gal) activity staining, respectively. RNA-Seq analysis was performed to identify differentially expressed genes in Huh7 cells treated with P-T3H2. The impact of P-T3H2 on HCC malignancy was assessed in vitro and in vivo. RESULTS TRIB3 exhibited a negative correlation with HNF4α in both human and mouse HCC tissues. The administration of P-T3H2 significantly inhibited the malignancy of HCC cells. Additionally, P-T3H2 stabilized HNF4α protein and facilitated the restoration of hepatic functions and the cellular senescence in HCC cells. RNA-Seq analysis demonstrated that P-T3H2 enhanced the transcriptional activity of HNF4α in HCC. Furthermore, P-T3H2 effectively suppressed the carcinogenesis and progression of HCC in mice. CONCLUSION P-T3H2 suppressed HCC progression through the stabilization of HNF4α protein and may be a promising therapeutic candidate for clinical application in the treatment of HCC.
Collapse
Affiliation(s)
- Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Meng-Chao Xiao
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huan-Yu Hong
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
8
|
Wang H, Li K, Cui B, Yan H, Wu S, Wang K, Yang G, Jiang J, Li Y. Tribbles pseudokinase 3 promotes enterovirus A71 infection via dual mechanisms. Emerg Microbes Infect 2024; 13:2307514. [PMID: 38240287 PMCID: PMC10829831 DOI: 10.1080/22221751.2024.2307514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Enterovirus A71 (EV-A71) is the main pathogen causing hand, foot and mouth disease (HFMD) in children and occasionally associated with neurological diseases such as aseptic meningitis, brainstem encephalitis (BE) and acute flaccid paralysis. We report here that cellular pseudokinase tribbles 3 (TRIB3) facilitates the infection of EV-A71 via dual mechanisms. In one hand, TRIB3 maintains the metabolic stability of scavenger receptor class B member 2 (SCARB2), the bona fide receptor of EV-A71, to enhance the infectious entry and spreading of the virus. On the other hand, TRIB3 facilitates the replication of EV-A71 RNA in a SCARB2-independent manner. The critical role of TRIB3 in EV-A71 infection and pathogenesis was further demonstrated in vivo in mice. In comparison to wild-type C57BL/6 mice, EV-A71 infection in TRIB3 knockdown mice (Trib3+/-) resulted in significantly lower viral loads in muscular tissues and reduced lethality and severity of clinical scores and tissue pathology. In addition, TRIB3 also promoted the replication of coxsackievirus B3 (CVB3) and coxsackievirus A16 (CVA16) in vitro. In conclusion, our results suggest that TRIB3 is one of key host cellular proteins required for the infection and pathogenesis of EV-A71 and some other human enteroviruses and may thus be a potential therapeutic target for combating the infection of those viruses.
Collapse
Affiliation(s)
- Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ke Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Boming Cui
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Haiyan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Kun Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ge Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Tao Y, Jiang Z, Wang H, Li J, Li X, Ni J, Liu J, Xiang H, Guan C, Cao W, Li D, He K, Wang L, Hu J, Jin Y, Liao B, Zhang T, Wu X. Pseudokinase STK40 promotes T H1 and T H17 cell differentiation by targeting FOXO transcription factors. SCIENCE ADVANCES 2024; 10:eadp2919. [PMID: 39565845 PMCID: PMC11578171 DOI: 10.1126/sciadv.adp2919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Inappropriate CD4+ T helper (TH) cell differentiation leads to progression of inflammatory and autoimmune diseases, yet the regulatory mechanisms governing stability and activity of transcription factors controlling TH cell differentiation remain elusive. Here, we describe how pseudokinase serine threonine kinase 40 (STK40) facilitates TH1/TH17 differentiation under pathological conditions. STK40 in T cells is dispensable for immune homeostasis in resting mice. However, mice with T cell-specific deletion of STK40 exhibit attenuated symptoms of experimental autoimmune encephalomyelitis and colitis, accompanied by diminished TH1 and TH17 cell differentiation. Mechanistically, STK40 facilitates K48-linked polyubiquitination and proteasomal degradation of FOXO1/4 through promoting their interaction with E3 ligase COP1. Inhibition of FOXO4 or FOXO1, respectively, restores differentiation potential of STK40-deficient TH1/TH17 cells. Together, our data suggest a crucial role of STK40 in TH1 and TH17 cell differentiation, thereby enabling better understanding of the molecular regulatory network of CD4+ T cell differentiation and providing effective targets for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yuexiao Tao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyan Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huizi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongrui Xiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Guan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyang Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke He
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Hu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Liao
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Yuan TM, Liu BH, Huang CJ, Huang YC, Chuang SM. TRIB3 as a biomarker of gastric cancer cell sensitivity to chemotherapeutic agents running title: A protective role of TRIB3 on chemotherapy. SAGE Open Med 2024; 12:20503121241292673. [PMID: 39483625 PMCID: PMC11526226 DOI: 10.1177/20503121241292673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Abstract
Objectives Understanding the role of TRIB3 in cellular chemotherapy responsiveness and survival could facilitate its development as a prognostic marker that could be used to improve chemotherapeutic efficiency against specific tumors. Therefore, the role of TRIB3 to reflect the cytotoxic abilities of chemotherapeutic agents was clarified in the tested gastric cancer cell lines. Methods We have comprehensively investigated the protein expression of TRIB3 in three gastric cancer cell lines AGS, TMK-1, and MKN-45 cells treated with the anticancer drugs, 5-fluorouracil, cisplatin, and docetaxel. The Cell Count kit-8 was used to evaluate cell viability. Immunoblotting was performed to assay protein levels after drug treatment. Flow cytometry was carried out to evaluate the levels of sub-G1 cell population. Results Treatment of the tested gastric cancer cell lines dose-dependently decreased cell viability and protein levels of TRIB3 while increasing apoptosis. Overexpression of TRIB3 protects MKN-45 cells from endoplasmic reticulum stress-induced apoptosis but does not influence the induction of autophagy by anticancer drugs. In addition, overexpression of TRIB3 also rescued paroxetine-induced apoptosis and endoplasmic reticulum stress. Conclusions Our previous and present results indicate that TRIB3 can protect gastric cancer cells against anticancer drug treatment and that downregulating TRIB3 may increase these cells' sensitivity to anticancer drugs. We thus suggest that the capability of anticancer drugs to downregulate TRIB3 can indicate tumors' potential susceptibility to these drugs.
Collapse
Affiliation(s)
- Tein-Ming Yuan
- Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Bang-Hung Liu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Jou Huang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ching Huang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Law, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
11
|
Karim A, Qaisar R, Suresh S, Jagal J, Rawas-Qalaji M. Nanoparticle-delivered quercetin exhibits enhanced efficacy in eliminating iron-overloaded senescent chondrocytes. Nanomedicine (Lond) 2024; 19:2159-2170. [PMID: 39229808 PMCID: PMC11485748 DOI: 10.1080/17435889.2024.2393074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: The therapeutic potential of senolytic drugs in osteoarthritis (OA) is poorly known. Quercetin, a senolytic agent exhibits promising potential to treat OA, having limited bioavailability. We investigated the effects of Quercetin-loaded nanoparticles (Q-NP) with enhanced bioavailability in human chondrocytes mimicking OA phenotype.Materials & methods: The C-20/A4 chondrocytes were exposed to ferric ammonium citrate to induce OA phenotype, followed by treatment with free Quercetin/Q-NP for 24 and 48-h. Q-NP were synthesized by nanoprecipitation method. Following treatment chondrocytes were assessed for drug cellular bioavailability, viability, cell cycle, apoptosis, oxidative stress and expression of key senescence markers.Results: Q-NP exhibited 120.1 ± 1.2 nm particle size, 81 ± 2.4% encapsulation efficiency, increased cellular bioavailability and selective apoptosis of senescent chondrocytes compared with free Quercetin. Q-NP treatment also induced oxidative stress and reduced the expressions of senescence markers, including TRB3, p16, p62 and p21 suggesting their ability to eliminate senescent cells. Last, Q-NP arrested the cell cycle in the sub-G0 phase, potentially creating a beneficial environment for tissue repair.Conclusion: Q-NP propose a promising delivery system for treating OA by eliminating senescent chondrocytes through apoptosis. Furthermore, their enhanced cellular bioavailability and capacity to modify cell cycle and senescent pathways warrant further investigations.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Iron Biology Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Savitha Suresh
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
12
|
Wei Z, Su L, Gao S. The roles of ubiquitination in AML. Ann Hematol 2024; 103:3413-3428. [PMID: 37603061 DOI: 10.1007/s00277-023-05415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneously malignant disorder resulting in poor prognosis. Ubiquitination, a major post-translational modification (PTM), plays an essential role in regulating various cellular processes and determining cell fate. Despite these initial insights, the precise role of ubiquitination in AML pathogenesis and treatment remains largely unknown. In order to address this knowledge gap, we explore the relationship between ubiquitination and AML from the perspectives of signal transduction, cell differentiation, and cell cycle control; and try to find out how this relationship can be utilized to inform new therapeutic strategies for AML patients.
Collapse
Affiliation(s)
- Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Chen H, Lu J, Wang Z, Wu S, Zhang S, Geng J, Hou C, He P, Lu X. Unlocking reproducible transcriptomic signatures for acute myeloid leukaemia: Integration, classification and drug repurposing. J Cell Mol Med 2024; 28:e70085. [PMID: 39267259 PMCID: PMC11392829 DOI: 10.1111/jcmm.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/25/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, which lead to various findings in transcriptomic research. This study addresses these challenges by integrating 34 datasets, including 26 control groups, 6 prognostic datasets and 2 single-cell RNA sequencing (scRNA-seq) datasets to identify 10,000 AML-related genes (ARGs). We focused on genes with low variability and high consistency and successfully discovered 191 AML signatures (ASs). Leveraging machine learning techniques, specifically the XGBoost model and our custom framework, we classified AML subtypes with both scRNA-seq and bulk RNA-seq data, complementing the ELN2022 classification approach. Our research also identified promising treatments for AML through drug repurposing, with solasonine showing potential efficacy for high-risk AML patients, supported by molecular docking and transcriptomic analyses. To enhance reproducibility and customizability, we developed CSAMLdb, a user-friendly database platform. It facilitates the reuse and personalized analysis of nearly all results obtained in this research, including single-gene prognostics, multi-gene scoring, enrichment analysis, machine learning risk assessment, drug repositioning analysis and literature abstract named entity recognition. CSAMLdb is available at http://www.csamldb.com.
Collapse
Affiliation(s)
- Haoran Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- School of Management, Shanxi Medical University, Taiyuan, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Jinqi Lu
- Department of Computer Science, Boston University, Boston, Massachusetts, USA
| | - Zining Wang
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Shengnan Wu
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi, China
| | - Jie Geng
- Basic Medicine College, Shanxi Medical University, Taiyuan, China
| | - Chuandong Hou
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Xuechun Lu
- School of Management, Shanxi Medical University, Taiyuan, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| |
Collapse
|
14
|
Lei S, Sun J, Xie Y, Xiao X, He X, Lin S, Zhang H, Huang Z, Wang H, Wu X, Peng H, Liu J. Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target. Carcinogenesis 2024; 45:527-542. [PMID: 38902892 DOI: 10.1093/carcin/bgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.
Collapse
Affiliation(s)
- Shiying Lei
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajun Sun
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yifang Xie
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Huifang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zineng Huang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haiqin Wang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| |
Collapse
|
15
|
Xiao MC, Jiang N, Chen LL, Liu F, Liu SQ, Ding CH, Wu SH, Wang KQ, Luo YY, Peng Y, Yan FZ, Zhang X, Qian H, Xie WF. TRIB3-TRIM8 complex drives NAFLD progression by regulating HNF4α stability. J Hepatol 2024; 80:778-791. [PMID: 38237865 DOI: 10.1016/j.jhep.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum (ER) stress of hepatocytes plays a causative role in non-alcoholic fatty liver disease (NAFLD). Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. Whether ER stress regulates HNF4α expression remains unknown. The aim of this study was to delineate the machinery of HNF4α protein degradation and explore a therapeutic strategy based on protecting HNF4α stability during NAFLD progression. METHODS Correlation of HNF4α and tribbles homologue 3 (TRIB3), an ER stress sensor, was evaluated in human and mouse NAFLD tissues. RNA-sequencing, mass spectrometry analysis, co-immunoprecipitation, in vivo and in vitro ubiquitination assays were used to elucidate the mechanisms of TRIB3-mediated HNF4α degradation. Molecular docking and co-immunoprecipitation analyses were performed to identify a cell-penetrating peptide that ablates the TRIB3-HNF4α interaction. RESULTS TRIB3 directly interacts with HNF4α and mediates ER stress-induced HNF4α degradation. TRIB3 recruits tripartite motif containing 8 (TRIM8) to form an E3 ligase complex that catalyzes K48-linked polyubiquitination of HNF4α on lysine 470. Abrogating the degradation of HNF4α attenuated the effect of TRIB3 on a diet-induced NAFLD model. Moreover, the TRIB3 gain-of-function variant p.Q84R is associated with NAFLD progression in patients, and induces lower HNF4α levels and more severe hepatic steatosis in mice. Importantly, disrupting the TRIB3-HNF4α interaction using a cell-penetrating peptide restores HNF4α levels and ameliorates NAFLD progression in mice. CONCLUSIONS Our findings unravel the machinery of HNF4α protein degradation and indicate that targeting TRIB3-TRIM8 E3 complex-mediated HNF4α polyubiquitination may be an ideal strategy for NAFLD therapy. IMPACT AND IMPLICATIONS Reduced expression of hepatic nuclear factor 4α (HNF4α) is a critical event in the pathogenesis of NAFLD and other liver diseases. However, the mechanism of HNF4α protein degradation remains unknown. Herein, we reveal that TRIB3-TRIM8 E3 ligase complex is responsible for HNF4α degradation during NAFLD. Inhibiting the TRIB3-HNF4α interaction effectively stabilized HNF4α protein levels and transcription factor activity in the liver and ameliorated TRIB3-mediated NAFLD progression. Our findings demonstrate that disturbing the TRIM8-TRIB3-HNF4α interaction may provide a novel approach to treat NAFLD and even other liver diseases by stabilizing the HNF4α protein.
Collapse
Affiliation(s)
- Meng-Chao Xiao
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Nan Jiang
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li-Lin Chen
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fang Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shu-Qing Liu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Si-Han Wu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke-Qi Wang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Yuan Luo
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu Peng
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Fang-Zhi Yan
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hui Qian
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China.
| |
Collapse
|
16
|
Wu J, Yi T, Zhuo C, Wang D, Zhang M, Hu R, Wu D, Hou G, Xing Y. m 6A-induced TRIB3 regulates Hippo pathway through interacting with LATS1 to promote the progression of lung adenocarcinoma. J Cell Physiol 2024; 239:e31220. [PMID: 38372068 DOI: 10.1002/jcp.31220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Recent studies have indicated that dysregulation of the Hippo/Yes-associated protein (YAP) axis is associated with tumor progression and therapy resistance in various cancer types, including lung adenocarcinoma (LUAD). Understanding the regulation of Hippo signaling in LUAD is of great significance. Elevated levels of TRIB3, a pseudo kinase, have been observed in certain lung malignancies and are associated with an unfavorable prognosis. Our research aims to investigate whether increased TRIB3 levels enhance the malignant characteristics of LUAD cells and tumor progression through its interaction with the Hippo signaling pathway. In this study, we reported a positive correlation between elevated expression of TRIB3 and LUAD progression. Additionally, TRIB3 has the ability to enhance TEAD luciferase function and suppress Hippo pathway activity. Moreover, TRIB3 increases total YAP protein levels and promotes YAP nuclear localization. Mechanistic experiments revealed that TRIB3 directly interacts with large tumor suppressor kinase 1 (LATS1), thereby suppressing Hippo signaling. Moreover, the decrease in METTL3-mediated N6-methyladenosine modification of TRIB3 results in a substantial elevation of its expression levels in LUAD cells. Collectively, our research unveils a novel discovery that TRIB3 enhances the growth and invasion of LUAD cells by interacting with LATS1 and inhibiting the Hippo signaling pathway. TRIB3 may serve as a potential biomarker for an unfavorable prognosis and a target for novel treatments in YAP-driven lung cancer.
Collapse
Affiliation(s)
- Jiamei Wu
- Department of Basic Medical Science, Baicheng Medical College, Baicheng, Jilin, P. R. China
| | - Tingzhuang Yi
- Department of Oncology, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, Guangxi, P. R. China
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi, P. R. China
| | - Chenyi Zhuo
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, Guangxi, P. R. China
| | - Duanduan Wang
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| | - Ming Zhang
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| | - Dan Wu
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| | - Guoxin Hou
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yutong Xing
- Department of Cardiothoracic Surgery, The Fifth Hospital of Xiamen, Xiamen, China
| |
Collapse
|
17
|
Li J, Zhang Q, Guan Y, Liao D, Chen H, Xiong H, Sheng Y, Chen X, Pang J. TRIB3 promotes the progression of renal cell carcinoma by upregulating the lipid droplet-associated protein PLIN2. Cell Death Dis 2024; 15:240. [PMID: 38561354 PMCID: PMC10985002 DOI: 10.1038/s41419-024-06627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Abnormal lipid metabolism and lipid accumulation are characteristic hallmarks of renal cell carcinoma (RCC). While there is prior evidence closely linking such lipid accumulation within RCC cells and consequent tumorigenesis, the mechanisms underlying this process remain incompletely understood. In this study, a series of bioinformatics analyses were initially performed by screening RCC databases and gene sets, ultimately leading to the identification of TRIB3 as an oncogene that functions as a central regulator of lipid metabolism. TRIB3 overexpression was observed in both RCC patient tumor tissues and cell lines, and this upregulation was correlated with a worse RCC patient prognosis. When TRIB3 was knocked down, this resulted in a reduction in lipid accumulation and the consequent induction of endoplasmic reticulum (ER) stress-related apoptotic cell death. At the molecular level, interactions between TRIB3 and PLIN2 were found to abrogate TEB4-mediated PLIN2 ubiquitination and consequent degradation, thus maintaining higher PLIN2 expression levels. This simultaneously helps facilitate the accumulation of lipids while preserving ER homeostasis, thus driving accelerated RCC tumor progression. This TRIB3-PLIN2 axis thus represents a promising new target for efforts to treat RCC.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qian Zhang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yupeng Guan
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dingzhun Liao
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Huikun Chen
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haiyun Xiong
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yiyu Sheng
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xianju Chen
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
18
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
19
|
Kalinin A, Zubkova E, Menshikov M. Integrated Stress Response (ISR) Pathway: Unraveling Its Role in Cellular Senescence. Int J Mol Sci 2023; 24:17423. [PMID: 38139251 PMCID: PMC10743681 DOI: 10.3390/ijms242417423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cellular senescence is a complex process characterized by irreversible cell cycle arrest. Senescent cells accumulate with age, promoting disease development, yet the absence of specific markers hampers the development of selective anti-senescence drugs. The integrated stress response (ISR), an evolutionarily highly conserved signaling network activated in response to stress, globally downregulates protein translation while initiating the translation of specific protein sets including transcription factors. We propose that ISR signaling plays a central role in controlling senescence, given that senescence is considered a form of cellular stress. Exploring the intricate relationship between the ISR pathway and cellular senescence, we emphasize its potential as a regulatory mechanism in senescence and cellular metabolism. The ISR emerges as a master regulator of cellular metabolism during stress, activating autophagy and the mitochondrial unfolded protein response, crucial for maintaining mitochondrial quality and efficiency. Our review comprehensively examines ISR molecular mechanisms, focusing on ATF4-interacting partners, ISR modulators, and their impact on senescence-related conditions. By shedding light on the intricate relationship between ISR and cellular senescence, we aim to inspire future research directions and advance the development of targeted anti-senescence therapies based on ISR modulation.
Collapse
Affiliation(s)
- Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| |
Collapse
|
20
|
Salokas K, Dashi G, Varjosalo M. Decoding Oncofusions: Unveiling Mechanisms, Clinical Impact, and Prospects for Personalized Cancer Therapies. Cancers (Basel) 2023; 15:3678. [PMID: 37509339 PMCID: PMC10377698 DOI: 10.3390/cancers15143678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer-associated gene fusions, also known as oncofusions, have emerged as influential drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromosomal translocations, deletions, and inversions, leading to the fusion of previously separate genes. Due to the drastic nature of these mutations, they often result in profound alterations of cellular behavior. The identification of oncofusions has revolutionized cancer research, with advancements in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace. Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that regulate processes such as proliferation, differentiation, and survival. Extensive investigations have been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas. Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling the landscape of oncofusions by characterizing a vast number of cancer samples across different tumor types. While validating the functional relevance of oncofusions remains a challenge, even non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated potential value in the context of immunotherapy through the production of neoantigens. Their clinical importance has been observed in both treatment and diagnostic settings, with specific fusion events serving as therapeutic targets or diagnostic markers. However, despite the progress made, there is still considerable untapped potential within the field of oncofusions. Further research and validation efforts are necessary to understand their effects on a functional basis and to exploit the new targeted treatment avenues offered by oncofusions. Through further functional and clinical studies, oncofusions will enable the advancement of precision medicine and the drive towards more effective and specific treatments for cancer patients.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
21
|
Dai B, Wang F, Wang Y, Zhu J, Li Y, Zhang T, Zhao L, Wang L, Gao W, Li J, Zhu H, Li K, Hu J. Targeting HDAC3 to overcome the resistance to ATRA or arsenic in acute promyelocytic leukemia through ubiquitination and degradation of PML-RARα. Cell Death Differ 2023; 30:1320-1333. [PMID: 36894687 PMCID: PMC10154408 DOI: 10.1038/s41418-023-01139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is driven by the oncoprotein PML-RARα, which recruits corepressor complexes, including histone deacetylases (HDACs), to suppress cell differentiation and promote APL initiation. All-trans retinoic acid (ATRA) combined with arsenic trioxide (ATO) or chemotherapy highly improves the prognosis of APL patients. However, refractoriness to ATRA and ATO may occur, which leads to relapsed disease in a group of patients. Here, we report that HDAC3 was highly expressed in the APL subtype of AML, and the protein level of HDAC3 was positively associated with PML-RARα. Mechanistically, we found that HDAC3 deacetylated PML-RARα at lysine 394, which reduced PIAS1-mediated PML-RARα SUMOylation and subsequent RNF4-induced ubiquitylation. HDAC3 inhibition promoted PML-RARα ubiquitylation and degradation and reduced the expression of PML-RARα in both wild-type and ATRA- or ATO-resistant APL cells. Furthermore, genetic or pharmacological inhibition of HDAC3 induced differentiation, apoptosis, and decreased cellular self-renewal of APL cells, including primary leukemia cells from patients with resistant APL. Using both cell line- and patient-derived xenograft models, we demonstrated that treatment with an HDAC3 inhibitor or combination of ATRA/ATO reduced APL progression. In conclusion, our study identifies the role of HDAC3 as a positive regulator of the PML-RARα oncoprotein by deacetylating PML-RARα and suggests that targeting HDAC3 could be a promising strategy to treat relapsed/refractory APL.
Collapse
Affiliation(s)
- Bo Dai
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Ying Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
- Department of Hematology, Tong Ji Hospital, Tong Ji University School of Medicine, No 389 Xincun Road, Shanghai, 200065, China
| | - Jiayan Zhu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Yunxuan Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Tingting Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Luyao Zhao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China
| | - Lining Wang
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Wenhui Gao
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Junmin Li
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, and Institute of Hematology, Zhejiang University, Zhejiang, 310003, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Tian Tan Xi Li, Beijing, 100050, China.
| | - Jiong Hu
- Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, Collaborative Innovation Center of Hematology, Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025, China.
| |
Collapse
|
22
|
Zhang X, Chen Y, Yang B, Shao X, Ying M. Driving the degradation of oncofusion proteins for targeted cancer therapy. Drug Discov Today 2023; 28:103584. [PMID: 37061213 DOI: 10.1016/j.drudis.2023.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Oncofusion proteins drive the development of about 16.5% of human cancers {AuQ: Edit OK?}, functioning as the unique pathogenic factor in some cancers. The targeting of oncofusion proteins is an attractive strategy to treat malignant tumors. Recently, triggering the degradation of oncofusion proteins has been shown to hold great promise as a therapeutic strategy. Here, we review the recent findings on the mechanisms that maintain the high stability of oncofusion proteins. Then, we summarize strategies to target the degradation of oncofusion proteins through the ubiquitin-proteasome pathway, the autophagy-lysosomal pathway, and the caspase-dependent pathway. By examining oncofusion protein degradation in cancer, we not only gain better insight into the carcinogenic mechanisms that involve oncofusion proteins, but also raise the possibility of treating oncofusion-driven cancer.
Collapse
Affiliation(s)
- Xingya Zhang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqian Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Xuejing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Arif A, Alameri AA, Tariq UB, Ansari SA, Sakr HI, Qasim MT, Aljoborae FFM, Ramírez-Coronel AA, Jabbar HS, Gabr GA, Mirzaei R, Karampoor S. The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
Affiliation(s)
- Anam Arif
- Department of Government DHQ hospital Narowal, Gujranwala medical college, Gujranwala, Pakistan
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | - Shakeel Ahmed Ansari
- Department of Biochemistry, Batterjee Medical College for Science and Technology, Jeddah, Saudi Arabia
| | - Hader Ibrahim Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt; Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Fadhil F M Aljoborae
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
TRIB3 promotes pulmonary fibrosis through inhibiting SLUG degradation by physically interacting with MDM2. Acta Pharm Sin B 2023; 13:1631-1647. [PMID: 37139431 PMCID: PMC10150180 DOI: 10.1016/j.apsb.2023.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 01/12/2023] Open
Abstract
Pulmonary fibrosis (PF) is the pathological structure of incurable fibroproliferative lung diseases that are attributed to the repeated lung injury-caused failure of lung alveolar regeneration (LAR). Here, we report that repetitive lung damage results in a progressive accumulation of the transcriptional repressor SLUG in alveolar epithelial type II cells (AEC2s). The abnormal increased SLUG inhibits AEC2s from self-renewal and differentiation into alveolar epithelial type I cells (AEC1s). We found that the elevated SLUG represses the expression of the phosphate transporter SLC34A2 in AEC2s, which reduces intracellular phosphate and represses the phosphorylation of JNK and P38 MAPK, two critical kinases supporting LAR, leading to LAR failure. TRIB3, a stress sensor, interacts with the E3 ligase MDM2 to suppress SLUG degradation in AEC2s by impeding MDM2-catalyzed SLUG ubiquitination. Targeting SLUG degradation by disturbing the TRIB3/MDM2 interaction using a new synthetic staple peptide restores LAR capacity and exhibits potent therapeutic efficacy against experimental PF. Our study reveals a mechanism of the TRIB3-MDM2-SLUG-SLC34A2 axis causing the LAR failure in PF, which confers a potential strategy for treating patients with fibroproliferative lung diseases.
Collapse
|
25
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
26
|
Gong X, Kong P, Yu T, Xiao X, Wang L, Sang Y, Li X, Zhang B, Tao Z, Liu W. Adefovir dipivoxil inhibits APL progression through degradation of the oncoprotein PML-RARA. Exp Hematol Oncol 2022; 11:103. [DOI: 10.1186/s40164-022-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/22/2022] [Indexed: 11/21/2022] Open
Abstract
AbstractAcute promyelocytic leukemia (APL) is highly aggressive and is frequently associated with disseminated intravascular coagulation and high early death rates. Although all-trans retinoic acid (RA) induces complete remission in a high proportion of patients with APL, there are limited treatments for APL patients with RA resistance. Here we report an atypical APL patient, with an APL-like disease that developed very slowly without anti-leukemia therapy for nearly 2 years. During that time, the patient only intermittently received anti-HBV drugs, i.e., the combination of adefovir dipivoxil (ADV) and entecavir (ETV), leading us to hypothesize that ADV and/or ETV could inhibit APL progression. Our results showed that anti-HBV drugs ADV and ETV both exhibited significantly inhibitory effects on APL cells, and ADV indicated a much greater cytotoxic effect than ETV on APL cells. We further found that ADV significantly promoted APL cell differentiation and apoptosis, thereby restraining the progression of APL. Most importantly, our study uncovered a novel mechanism of ADV prohibiting APL progression, which was mediated, at least in part, by inhibition of TRIB3 and degradation of the oncoprotein PML-RARA, therefore leading to APL cell differentiation and apoptosis. Taken together, our study demonstrated that ADV, an anti-HBV drug, had significantly inhibitory effects on APL, and provided a novel therapeutic strategy for APL patients with RA resistance.
Collapse
|
27
|
TRIB3 Interacts with STAT3 to Promote Cancer Angiogenesis. Curr Med Sci 2022; 42:932-940. [PMID: 36245025 DOI: 10.1007/s11596-022-2655-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis, which is a hallmark of cancer that promotes cancer growth and metastasis. It is of great significance to find new intervention targets and related regulatory mechanisms of VEGFA related angiogenesis for the treatment of tumors. This study focuses on the role of tribbles pseudokinase 3 (TRIB3)/signal transducer and activator of transcription 3 (STAT3)/VEGFA signaling axis in colon cancer angiogenesis. METHODS This study investigated the expression level of TRIB3 in colon cancer through database analysis and tissue microarray analysis. The effect of TRIB3 on proliferation, migration and tube formation ability of human umbilical vein endothelial cells (HUVECs) was further confirmed by CCK8 assay, scratch-wound assay/migration assay and tube formation assay respectively. The regulatory relationship of TRIB3/VEGFA signaling axis was identified by qPCR and Western blotting, which was further confirmed through animal experiments, and the specific regulatory mechanism was explored by immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) with colon cancer cell lines. RESULTS TRIB3 was increased in colon cancer tissues compared to normal tissues, and elevated TRIB3 expression indicated a poor prognosis in colon cancer patients. Moreover, it was found that silencing TRIB3 could inhibit cancer angiogenesis, whereas overexpressing TRIB3 promoted cancer angiogenesis in vitro and in vivo. Mechanistically, TRIB3 physically interacted with STAT3 and enhanced STAT3-mediated transcriptional activity. Furthermore, the function of TRIB3 in cancer angiogenesis was through cooperating with STAT3 to increase the VEGFA expression. CONCLUSION Our study provides insights into cancer angiogenesis and offers a potential therapeutic strategy for TRIB3-overexpressed cancer.
Collapse
|
28
|
Kumar S, Tchounwou PB. p53 as a unique target of action of cisplatin in acute leukaemia cells. J Cell Mol Med 2022; 26:4727-4739. [PMID: 35946055 PMCID: PMC9443951 DOI: 10.1111/jcmm.17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022] Open
Abstract
Acute promyelocytic leukaemia (APL) occurs in approximately 10% of acute myeloid leukaemia patients. Arsenic trioxide (ATO) has been for APL chemotherapy, but recently several ATO-resistant cases have been reported worldwide. Cisplatin (CDDP) enhances the toxicity of ATO in ovarian, lung cancer, chronic myelogenous leukaemia, and HL-60 cells. Hence, the goal of this study was to investigate a novel target of CDDP action in APL cells, as an alternate option for the treatment of ATO-resistant APL patients. We applied biochemical, molecular, confocal microscopy and advanced gene editing (CRISPR-Cas9) techniques to elucidate the novel target of CDDP action and its functional mechanism in APL cells. Our main findings revealed that CDDP activated p53 in APL cells through stress signals catalysed by ATM and ATR protein kinases, CHK1 and CHK2 phosphorylation at Ser 345 and Thr68 residues, and downregulation and dissociation of MDM2-DAXX-HAUSP complex. Our functional studies confirmed that CDDP-induced repression of MDM2-DAXX-HAUSP complex was significantly reversed in both nutilin-3-treated KG1a and p53-knockdown NB4 cells. Our findings also showed that CDDP stimulated an increased number of promyelocytes with dense granules, activated p53 expression, and downregulated MDM2 in liver and bone marrow of APL mice. Principal conclusion of our study highlights a novel mode of action of CDDP targeting p53 expression which may provide a basis for designing new anti-leukaemic compounds for treatment of APL patients.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD‐RCMI Center for Health Disparities ResearchJackson State UniversityJacksonMississippiUSA
- Department of life Sciences, School of Earth, Biological, and Environmental SciencesCentral University South BiharGayaIndia
| | - Paul B. Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD‐RCMI Center for Health Disparities ResearchJackson State UniversityJacksonMississippiUSA
| |
Collapse
|
29
|
Zhang HB, Sun ZK, Zhong FM, Yao FY, Liu J, Zhang J, Zhang N, Lin J, Li SQ, Li MY, Jiang JY, Cheng Y, Xu S, Cheng XX, Huang B, Wang XZ. A novel fatty acid metabolism-related signature identifies features of the tumor microenvironment and predicts clinical outcome in acute myeloid leukemia. Lipids Health Dis 2022; 21:79. [PMID: 36002858 PMCID: PMC9404605 DOI: 10.1186/s12944-022-01687-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is the most common malignancy of the hematological system, and there are currently a number of studies regarding abnormal alterations in energy metabolism, but fewer reports related to fatty acid metabolism (FAM) in AML. We therefore analyze the association of FAM and AML tumor development to explore targets for clinical prognosis prediction and identify those with potential therapeutic value. Methods The identification of AML patients with different fatty acid metabolism characteristics was based on a consensus clustering algorithm. The CIBERSORT algorithm was used to calculate the proportion of infiltrating immune cells. We used Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis to construct a signature for predicting the prognosis of AML patients. The Genomics of Drug Sensitivity in Cancer database was used to predict the sensitivity of patient samples in high- and low-risk score groups to different chemotherapy drugs. Results The consensus clustering approach identified three molecular subtypes of FAM that exhibited significant differences in genomic features such as immunity, metabolism, and inflammation, as well as patient prognosis. The risk-score model we constructed accurately predicted patient outcomes, with area under the receiver operating characteristic curve values of 0.870, 0.878, and 0.950 at 1, 3, and 5 years, respectively. The validation cohort also confirmed the prognostic evaluation performance of the risk score. In addition, higher risk scores were associated with stronger fatty acid metabolisms, significantly higher expression levels of immune checkpoints, and significantly increased infiltration of immunosuppressive cells. Immune functions, such as inflammation promotion, para-inflammation, and type I/II interferon responses, were also significantly activated. These results demonstrated that immunotherapy targeting immune checkpoints and immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) and M2 macrophages, are more suitable for patients with high-risk scores. Finally, the prediction results of chemotherapeutic drugs showed that samples in the high-risk score group had greater treatment sensitivity to four chemotherapy drugs in vitro. Conclusions The analysis of the molecular patterns of FAM effectively predicted patient prognosis and revealed various tumor microenvironment (TME) characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01687-x.
Collapse
Affiliation(s)
- Hai-Bin Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhuo-Kai Sun
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Fang-Min Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Fang-Yi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nan Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qi Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Yong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun-Yao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Shuai Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Xin Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Xiao-Zhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China. .,School of Public Health, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
30
|
Huang X, Yang Y, Zhu D, Zhao Y, Wei M, Li K, Zhu HH, Zheng X. PRMT5-mediated RNF4 methylation promotes therapeutic resistance of APL cells to As 2O 3 by stabilizing oncoprotein PML-RARα. Cell Mol Life Sci 2022; 79:319. [PMID: 35622143 PMCID: PMC11072021 DOI: 10.1007/s00018-022-04358-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Acute promyelocytic leukemia (APL) is a hematological malignancy driven by the oncoprotein PML-RARα, which can be treated with arsenic trioxide (As2O3) or/and all-trans retinoic acid. The protein arginine methyltransferase 5 (PRMT5) is involved in tumorigenesis. However, little is known about the biological function and therapeutic potential of PRMT5 in APL. Here, we show that PRMT5 is highly expressed in APL patients. PRMT5 promotes APL by interacting with PML-RARα and suppressing its ubiquitination and degradation. Mechanistically, PRMT5 attenuates the interaction between PML-RARα and its ubiquitin E3 ligase RNF4 by methylating RNF4 at Arg164. Notably, As2O3 treatment triggers the dissociation of PRMT5 from PML nuclear bodies, attenuating RNF4 methylation and promoting RNF4-mediated PML-RARα ubiquitination and degradation. Moreover, knockdown of PRMT5 and pharmacological inhibition of PRMT5 with the specific inhibitor EPZ015666 significantly inhibit APL cells growth. The combination of EPZ015666 with As2O3 shows synergistic effects on As2O3-induced differentiation of bone marrow cells from APL mice, as well as on apoptosis and differentiation of primary APL cells from APL patients. These findings provide mechanistic insight into the function of PRMT5 in APL pathogenesis and demonstrate that inhibition of PRMT5, alone or in combination with As2O3, might be a promising therapeutic strategy against APL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Arsenic Trioxide/pharmacology
- Arsenic Trioxide/therapeutic use
- Cell Line, Tumor/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/physiology
- Humans
- Isoquinolines/pharmacology
- Isoquinolines/therapeutic use
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Methylation
- Mice
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/therapeutic use
- Protein-Arginine N-Methyltransferases/antagonists & inhibitors
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Xinping Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yongfeng Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Dan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Min Wei
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Hu Zhu
- Department of Hematology and Institute of Hematology, Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
31
|
Wang C, Zhang Y, Shi L, Yang S, Chang J, Zhong Y, Li Q, Xing D. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J Enzyme Inhib Med Chem 2022; 37:1437-1453. [PMID: 35589670 PMCID: PMC9122363 DOI: 10.1080/14756366.2022.2074414] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lingyu Shi
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Shanbo Yang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Jing Chang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Wu XQ, Tian X, Xu FJ, Wang Y, Xu WH, Su JQ, Qu YY, Zhao JY, Zhang HL, Ye DW. Increased expression of tribbles homolog 3 predicts poor prognosis and correlates with tumor immunity in clear cell renal cell carcinoma: a bioinformatics study. Bioengineered 2022; 13:14000-14012. [PMID: 35726370 PMCID: PMC9275882 DOI: 10.1080/21655979.2022.2086380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tribbles homolog 3 (TRIB3), a pseudokinase that regulates multiple intracellular signaling pathways, has been reported to promote the growth of multiple tumors. However, its role in clear cell renal cell carcinoma (ccRCC) remains unelucidated. We evaluated the role of TRIB3 in ccRCC using publicly available data from The Cancer Genome Atlas and analyzed its relationship with the tumor microenvironment; moreover, we used gene knockout and overexpression techniques to detect the effects of TRIB3 on the biological behavior of ccRCC cells. RT-qPCR and western blotting were used to detect transfection efficiency, and the invasiveness of ccRCC cells was determined by Transwell migration assays. We found that TRIB3 overexpression was significantly associated with increased grade, stage, and distant metastasis, positively correlated with ccRCC invasiveness, and also an independent risk factor for overall survival (OS). In addition, 361 differentially expressed genes (DEGs) related to TRIB3 were identified. Functional enrichment analysis showed that DEGs were mainly enriched in humoral immune responses, collagen-containing extracellular matrix, and serine hydrolase activity. Immune landscape characterization revealed that TRIB3 expression was significantly and negatively associated with CD8+ T and hematopoietic stem cells, whereas it was positively associated with NK T and macrophage M1 cells. Single-cell sequencing showed that localization and binding targets of TRIB3 mainly involved monocytes/macrophages and CD4+ and CD8+ T cells. Overall, our study revealed that elevated TRIB3 expression represents a promising prognostic marker for ccRCC patients and may play a key role in tumor microenvironment modulation.
Collapse
Affiliation(s)
- Xin-Qiang Wu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fu-Jiang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Jia-Qi Su
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Jian-Yuan Zhao
- Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineInstitute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai, Shanghai, China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
33
|
Shao X, Chen Y, Wang W, Du W, Zhang X, Cai M, Bing S, Cao J, Xu X, Yang B, He Q, Ying M. Blockade of deubiquitinase YOD1 degrades oncogenic PML/RARα and eradicates acute promyelocytic leukemia cells. Acta Pharm Sin B 2022; 12:1856-1870. [PMID: 35847510 PMCID: PMC9279643 DOI: 10.1016/j.apsb.2021.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
In most acute promyelocytic leukemia (APL) cells, promyelocytic leukemia (PML) fuses to retinoic acid receptor α (RARα) due to chromosomal translocation, thus generating PML/RARα oncoprotein, which is a relatively stable oncoprotein for degradation in APL. Elucidating the mechanism regulating the stability of PML/RARα may help to degrade PML/RARα and eradicate APL cells. Here, we describe a deubiquitinase (DUB)-involved regulatory mechanism for the maintenance of PML/RARα stability and develop a novel pharmacological approach to degrading PML/RARα by inhibiting DUB. We utilized a DUB siRNA library to identify the ovarian tumor protease (OTU) family member deubiquitinase YOD1 as a critical DUB of PML/RARα. Suppression of YOD1 promoted the degradation of PML/RARα, thus inhibiting APL cells and prolonging the survival time of APL cell-bearing mice. Subsequent phenotypic screening of small molecules allowed us to identify ubiquitin isopeptidase inhibitor I (G5) as the first YOD1 pharmacological inhibitor. As expected, G5 notably degraded PML/RARα protein and eradicated APL, particularly drug-resistant APL cells. Importantly, G5 also showed a strong killing effect on primary patient-derived APL blasts. Overall, our study not only reveals the DUB-involved regulatory mechanism on PML/RARα stability and validates YOD1 as a potential therapeutic target for APL, but also identifies G5 as a YOD1 inhibitor and a promising candidate for APL, particularly drug-resistant APL treatment.
Collapse
|
34
|
Kapadia B, Shetty AC, Bollino D, Bhandary B, Lapidus RG, Mahmood K, Mahurkar A, Gartenhaus RB, Eckert RL, Emadi A. Translatome changes in acute myeloid leukemia cells post-exposure to pegcrisantaspase and venetoclax. Exp Hematol 2022; 108:55-63. [PMID: 35104581 DOI: 10.1016/j.exphem.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
Abstract
The clinical outcomes of patients with AML treated with available therapy remains unsatisfactory. We recently reported that the BCL-2 inhibitor, venetoclax, synergized with pegcrisantaspase (PegC) and demonstrated remarkable in vivo efficacy in a preclinical model of AML with complex karyotype. Ven-PegC combination blocks synthesis of proteins in AML cells by inhibiting cap-dependent translation of mRNA. To further explore the impact of Ven-PegC on protein translation, we used polysome profiling and high-throughput RNA-seq to characterize Ven-PegC dependent changes to the translatome. Here we report that the translation of five mRNAs, including two microRNAs, one rRNA, and two mitochondrial genes was altered after exposure to all three treatments (Ven, PegC and Ven-PegC). We focused our translatome validation studies on six additional genes related to translational efficiency that were modified by Ven-PegC. Notably, Ven-PegC treatment increased the RNA translation and protein level of Tribbles homolog 3 (TRIB3), eukaryotic translation initiation factor 3 subunit C (eIF3C), doublesex and mab-3 related transcription factor 1 (DMRT1), salt inducible kinase 1 (SIK1). We validated the observed changes in gene/protein expression in vitro and confirmed our cell line-based studies in the bone marrow of an AML PDX model after Ven-PegC treatment. These results support examining alterations in the translatome post-chemotherapy to offer insight into drug mechanism of action and to inform future therapeutic decisions.
Collapse
Affiliation(s)
- Bandish Kapadia
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Amol C Shetty
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD; University of Maryland Institute of Genome Sciences, Baltimore, MD
| | - Dominique Bollino
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD; University of Maryland School of Medicine Department of Medicine, Baltimore, MD
| | - Binny Bhandary
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Rena G Lapidus
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD; University of Maryland School of Medicine Department of Medicine, Baltimore, MD
| | - Kanwal Mahmood
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Anup Mahurkar
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD; University of Maryland Institute of Genome Sciences, Baltimore, MD
| | - Ronald B Gartenhaus
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD; University of Maryland Institute of Genome Sciences, Baltimore, MD
| | - Richard L Eckert
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD; University of Maryland School of Medicine Department of Biochemistry and Molecular Biology
| | - Ashkan Emadi
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD; University of Maryland School of Medicine Department of Medicine, Baltimore, MD; University of Maryland School of Medicine Department of Pharmacology, Baltimore, MD.
| |
Collapse
|
35
|
Dan W, Zhong L, Yu L, Xiong L, Li J, Ye J, Luo X, Liu C, Chu X, Liu B. Skp2 promotes APL progression through the stabilization of oncoprotein PML-RARα and the inhibition of JunB expression. Life Sci 2022; 289:120231. [PMID: 34921867 DOI: 10.1016/j.lfs.2021.120231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
AIMS To investigate the role of Skp2 and JunB on acute promyelocytic leukemia (APL) progression and the related mechanism. MATERIALS AND METHODS The expression of Skp2 in NB4 cell line was depleted to explore its effect on proliferation and differentiation both in vitro and in vivo assays. Western blot and quantitative RT-PCR analysis were performed to explore Skp2-regulated downstream target genes. Luciferase and co-immunoprecipitation analysis indicated that PML-RARα inhibited the transactivation of JunB by interacting with the PU.1 protein. The western blot analysis confirmed that Skp2 could maintain the stability of PML-RARα. KEY FINDINGS We report that the progression of APL and the attenuation of APL sensitivity to ATRA are positively associated with Skp2. Elevated Skp2 expression promotes APL progression by decreasing the expression of lncRNA HOTAIRM1 and inactivation of GSK3β, causing autophagy inhibition followed by the suppression of PML-RARα ubiquitylation and degradation, which represses JunB transcriptional activation through PU.1/PML-RARα transcriptional complex to block cell differentiation. Coupled with ATRA or GSK3β inhibitor treatment, genetic or pharmacological inhibition of Skp2 strikingly induces JunB expression by accelerating the degradation of PML-RARα, which contributes to the eradication of APL. Additionally, the expressions of Skp2 and JunB are negatively correlated in mice subcutaneous leukemia xenograft tumors. SIGNIFICANCE Collectively, this study uncovers the roles of Skp2 in PML-RARα stabilization and in APL oncogenic functions. We reveal a novel mechanism of PML-RARα degradation and JunB regulation that constitute an important signaling network of Skp2-GSK3β-PML/RARα-JunB.
Collapse
MESH Headings
- Animals
- Gene Expression Regulation, Leukemic
- HEK293 Cells
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Stability
- S-Phase Kinase-Associated Proteins/genetics
- S-Phase Kinase-Associated Proteins/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcriptional Activation
- U937 Cells
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wenran Dan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lihua Yu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Ling Xiong
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Jian Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiao Ye
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xu Luo
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chen Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuan Chu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, China; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
36
|
Shang S, Yang YW, Chen F, Yu L, Shen SH, Li K, Cui B, Lv XX, Zhang C, Yang C, Liu J, Yu JJ, Zhang XW, Li PP, Zhu ST, Zhang HZ, Hua F. TRIB3 reduces CD8 + T cell infiltration and induces immune evasion by repressing the STAT1-CXCL10 axis in colorectal cancer. Sci Transl Med 2022; 14:eabf0992. [PMID: 34985967 DOI: 10.1126/scitranslmed.abf0992] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shuang Shang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yu-Wei Yang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Fei Chen
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Liang Yu
- Department of Colorectal Surgery, State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Shuo-Hao Shen
- Department of Colorectal Surgery, State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Bing Cui
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Xiao-Xi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Cheng Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Chen Yang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jing Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jiao-Jiao Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Xiao-Wei Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Ping-Ping Li
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Sheng-Tao Zhu
- Beijing Digestive Diseases Center, Beijing Friendship Hospital, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing 100050, P.R. China
| | - Hai-Zeng Zhang
- Department of Colorectal Surgery, State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
37
|
Liu S, Ni C, Li Y, Yin H, Xing C, Yuan Y, Gong Y. The Involvement of TRIB3 and FABP1 and Their Potential Functions in the Dynamic Process of Gastric Cancer. Front Mol Biosci 2021; 8:790433. [PMID: 34957220 PMCID: PMC8696077 DOI: 10.3389/fmolb.2021.790433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Dysregulated expression of TRIB3 and FABP1 have been previously observed in human cancer tissues. However, there are little information as to their expression change in dynamic gastric diseases and the functional roles. Methods: Tissues from a total of 479 patients, including 89 GS, 102 IM-GA, 144 EGC, and 144 AGC were collected. The protein expressions of TRIB3 and FABP1 were detected by immunohistochemical staining. Meanwhile, the potential functions of TRIB3 and FABP1 in GC were further analyzed by R software and some internet public databases, such as TCGA and DAVID. Results: During this multi-stage process that go through GS to EGC, the expression trend of TRIB3 and FABP1 protein was GS > IM-GA > EGC. Besides, the expression of TRIB3 protein continued to decrease in AGC, while the expression of FABP1 was abnormally increased. Hp infection was significantly associated with the decreased expression of TRIB3 and FABP1. In addition, the diagnostic efficiency of the combination of these two indicators to diagnose EGC was higher than that of a single indicator. Survival analysis showed that higher expression of TRIB3 or FABP1 could indicate a better prognosis of GC. The protein expressions of TRIB3 and FABP1 were significantly positively correlated. Moreover, CEACAM5 and PRAP1 were positively correlated with both TRIB3 and FABP1 expressions, while GABRP and THBS4 were negatively correlated. The macrophages M0 infiltration was positively correlated with both TRIB3 and FABP1 expressions. Conclusion: The protein expressions of TRIB3 and FABP1 gradually decreased with the gastric disease progress, and was positively correlated. Hp infection may reduce the protein expression of TRIB3 and FABP1. Combing TRIB3 and FABP1 expressions can improve the diagnostic efficiency for EGC. Either a high expression of TRIB3 or FABP1 indicates a better prognosis for GC. TRIB3 and FABP1 may interact with CEACAM5, PRAP1, GABRP and THBS4, and affect tumor immune microenvironment by regulating immune cells, and participate in the development and progression of GC.
Collapse
Affiliation(s)
- Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Chuxuan Ni
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yizhi Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Hernández-Quiles M, Baak R, Borgman A, den Haan S, Sobrevals Alcaraz P, van Es R, Kiss-Toth E, Vos H, Kalkhoven E. Comprehensive Profiling of Mammalian Tribbles Interactomes Implicates TRIB3 in Gene Repression. Cancers (Basel) 2021; 13:6318. [PMID: 34944947 PMCID: PMC8699236 DOI: 10.3390/cancers13246318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
The three human Tribbles (TRIB) pseudokinases have been implicated in a plethora of signaling and metabolic processes linked to cancer initiation and progression and can potentially be used as biomarkers of disease and prognosis. While their modes of action reported so far center around protein-protein interactions, the comprehensive profiling of TRIB interactomes has not been reported yet. Here, we have developed a robust mass spectrometry (MS)-based proteomics approach to characterize Tribbles' interactomes and report a comprehensive assessment and comparison of the TRIB1, -2 and -3 interactomes, as well as domain-specific interactions for TRIB3. Interestingly, TRIB3, which is predominantly localized in the nucleus, interacts with multiple transcriptional regulators, including proteins involved in gene repression. Indeed, we found that TRIB3 repressed gene transcription when tethered to DNA in breast cancer cells. Taken together, our comprehensive proteomic assessment reveals previously unknown interacting partners and functions of Tribbles proteins that expand our understanding of this family of proteins. In addition, our findings show that MS-based proteomics provides a powerful tool to unravel novel pseudokinase biology.
Collapse
Affiliation(s)
- Miguel Hernández-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Rosalie Baak
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Anouska Borgman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Suzanne den Haan
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Paula Sobrevals Alcaraz
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Robert van Es
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, UK;
| | - Harmjan Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| |
Collapse
|
39
|
Liu S, Lv X, Wei X, Liu C, Li Q, Min J, Hua F, Zhang X, Li K, Li P, Xiao Y, Hu Z, Cui B. TRIB3‒GSK-3 β interaction promotes lung fibrosis and serves as a potential therapeutic target. Acta Pharm Sin B 2021; 11:3105-3119. [PMID: 34729304 PMCID: PMC8546892 DOI: 10.1016/j.apsb.2021.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/15/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, fatal interstitial lung disease with limited available therapeutic strategies. We recently reported that the protein kinase glycogen synthase kinase-3β (GSK-3β) interacts with and inactivates the ubiquitin-editing enzyme A20 to suppress the degradation of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) in alveolar macrophages (AMs), resulting in a profibrotic phenotype of AMs and promoting the development of PF. Here, we showed that chronic lung injury upregulated the stress response protein tribbles homolog 3 (TRIB3), which interacted with GSK-3β and stabilized GSK-3β from ubiquitination and degradation. Elevated GSK-3β expression phosphorylated A20 to inhibit its ubiquitin-editing activity, causing the accumulation of C/EBPβ and the production of several profibrotic factors in AMs and promoting PF development. Activated C/EBPβ, in turn, increased the transcription of TRIB3 and GSK-3β, thereby establishing a positive feedback loop in AMs. The knockdown of TRIB3 expression or the pharmacologic disruption of the TRIB3‒GSK-3β interaction was an effective PF treatment. Our study reveals an intact profibrotic axis of TRIB3‒GSK-3β‒A20‒C/EBPβ in AMs, which represents a target that may provide a promising treatment strategy for PF.
Collapse
|
40
|
Zhang X, Zhang B, Zhang C, Sun G, Sun X. Current Progress in Delineating the Roles of Pseudokinase TRIB1 in Controlling Human Diseases. J Cancer 2021; 12:6012-6020. [PMID: 34539875 PMCID: PMC8425202 DOI: 10.7150/jca.51627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Tribbles homolog 1 (TRIB1) is a member of the tribbles family of pseudoprotein kinases and is widely expressed in numerous tissues, such as bone marrow, skeletal muscle, liver, heart, and adipose tissue. It is closely associated with acute myeloid leukemia, prostate cancer, and tumor drug resistance, and can interfere with the hematopoietic stem cell cycle, promote tumor cell proliferation, and inhibit apoptosis. Recent studies have shown that TRIB1 can regulate acute and chronic inflammation by affecting the secretion of inflammatory factors, which is closely related to the occurrence of hyperlipidemia and cardiovascular diseases. Given the important biological functions of TRIB1, the reviews published till now are not sufficiently comprehensive. Therefore, this paper reviews the progress in TRIB1 research aimed at exploring its roles in cancer, hyperlipidemia, and cardiovascular disease, and providing a theoretical basis for further studies on the biological roles of TRIB1.
Collapse
Affiliation(s)
- Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| |
Collapse
|
41
|
Zhang X, Yu W. RBCK1-TRIB3 decelerated the progression of acute promyelocytic leukemia. Hematol Oncol 2021; 39:567-569. [PMID: 34310740 DOI: 10.1002/hon.2901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/05/2021] [Accepted: 07/09/2021] [Indexed: 11/12/2022]
Abstract
Under the differentiation induction therapy with all-trans retinoic acid and arsenic trioxide, nearly 95% of typical acute promyelocyte leukemia (APL), which is characterized by the presence of PML-RARA, patients can be cured. Though its good prognosis, if left untreated, the natural survival duration of typical APL patients is only 1 month, but some exceptional cases also exist. Occasionally, we have observed the entire natural clinical course of one extremely indolent APL patient, who developed from pre-APL stage (<20% promyelocytes in bone marrow) to overt-APL stage (≥20% promyelocytes in bone marrow) with one nearly 2-year latency. Strikingly, we identified one novel fusion RBCK1-TRIB3 in the pre-APL stage but not overt-APL stage sample. It has been reported that TRIB3 stabilized PML-RARA to driver APL progression, while RBCK1-TRIB3 partially disrupted TRIB3WT expression, so it contributed to the deceleration of APL progression in this patient.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Bao XY, Sun M, Peng TT, Han DM. TRIB3 promotes proliferation, migration, and invasion of retinoblastoma cells by activating the AKT/mTOR signaling pathway. Cancer Biomark 2021; 31:307-315. [PMID: 33896816 DOI: 10.3233/cbm-200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tribbles pseudokinase 3 (TRIB3) is a member of the tribbles-related family, which has been determined in various cancers, including renal cell carcinoma, acute promyelocytic leukemia, colorectal cancer, endometrial cancer, and glioma. However, its role in retinoblastoma (RB) has not yet been explored. METHODS The expression level of TRIB3 was detected in RB tissues and cell lines using qRT-PCR. The effects of TRIB3 on cell proliferation and invasion capacities were analyzed with MTT, crystal violet, and transwell assays. Western blot and rescue assays were conducted to explore the underlying mechanism. RESULTS This study found that TRIB3 was upregulated in human RB tissues compared to adjacent normal tissues both at the mRNA and protein levels. Overexpression of TRIB3 significantly promoted cell proliferation and invasion of RB cells, while TRIB3 knockdown inhibited these processes. Moreover, the mechanism deciphering experiments showed that TRIB3 overexpression can increase AKT and mTOR phosphorylation. Conversely, TRIB3 knockdown decreased the phosphorylation of AKT and mTOR. Additionally, MK2206, a potent AKT inhibitor, blocked the promotive effects of TRIB3 in RB cells. CONCLUSION This study demonstrated that TRIB3 acts as an oncogene and plays a crucial role in the proliferation and invasion of RB cells via regulating the AKT/mTOR signaling pathway. Therefore, TRIB3 may serve as a potential target in the diagnosis and/or treatment of RB.
Collapse
Affiliation(s)
- Xian-Yi Bao
- Department of Cataract, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Sun
- Department of Cataract, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ting-Ting Peng
- Department of Cataract, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Mei Han
- Department of Fundus Disease, Huainan Chenguang Eye Hospital, Huainan, Anhui, China
| |
Collapse
|
43
|
Wang XJ, Li FF, Zhang YJ, Jiang M, Ren WH. TRIB3 promotes hepatocellular carcinoma growth and predicts poor prognosis. Cancer Biomark 2021; 29:307-315. [PMID: 32716348 DOI: 10.3233/cbm-201577] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tribbles pseudokinase 3 (TRIB3) is a member of the tribbles-related family, which is involved a lot of cellular processes and multiple cancers, such as breast cancer, colorectal cancer, renal cell carcinomas, and lung cancer. However, the expression pattern and biological function of TRIB3 in hepatocellular carcinoma (HCC) has not yet been completely elucidated. METHODS The expression of TRIB3 and clinicopathological characteristics were evaluated by HCC tissue microarray and qPCR analysis. Lentivirus packaging and transfection were employed to establish cell lines with TRIB3 overexpression or knockdown. The biological functions of TRIB3 in the growth of HCC were determined using MTT and crystal violet assays. Tumor growth was monitored in a xenograft model in vivo. RESULTS The expression of TRIB3 was upregulated in HCC tissue samples compared to paired normal tissues in 45 patients examined by qPCR assay. TRIB3 expression was significantly correlated with HCC tumor size and prognosis in postoperative patients by analysis of the TRIB3 expression data and HCC clinical features. Forced expression of TRIB3 significantly promoted HCC growth in vitro. In contrast, downregulation of TRIB3 inhibited cell growth in vitro. Moreover, knockdown of TRIB3 suppressed tumorigenesis of HCC cells in vivo. CONCLUSION TRIB3 promotes growth abilities of HCC cells both in vitro and in vivo and predicts poor prognosis of HCC patients, which serves as a prognostic marker and might provide a potential therapeutic candidate for patients with HCC.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- Department of Geriatrics, Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Geriatrics, Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fei-Fei Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Geriatrics, Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi-Jing Zhang
- Department of Geriatrics, Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Man Jiang
- Department of Geriatrics, Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wan-Hua Ren
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
44
|
Ahmed J, Meszaros A, Lazar T, Tompa P. DNA-binding domain as the minimal region driving RNA-dependent liquid-liquid phase separation of androgen receptor. Protein Sci 2021; 30:1380-1392. [PMID: 33938068 PMCID: PMC8197421 DOI: 10.1002/pro.4100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Androgen receptor (AR) is a nuclear hormone receptor that regulates the transcription of genes involved in the development of testis, prostate and the nervous system. Misregulation of AR is a major driver of prostate cancer (PC). The primary agonist of full-length AR is testosterone, whereas its splice variants, for example, AR-v7 implicated in cancer may lack a ligand-binding domain and are thus devoid of proper hormonal control. Recently, it was demonstrated that full-length AR, but not AR-v7, can undergo liquid-liquid phase separation (LLPS) in a cellular model of PC. In a detailed bioinformatics and deletion analysis, we have analyzed which AR region is responsible for LLPS. We found that its DNA-binding domain (DBD) can bind RNA and can undergo RNA-dependent LLPS. RNA regulates its LLPS in a reentrant manner, that is, it has an inhibitory effect at higher concentrations. As RNA binds DBD more weakly than DNA, while both RNA and DNA localizes into AR droplets, its LLPS depends on the relative concentration of the two nucleic acids. The region immediately preceding DBD has no effect on the LLPS propensity of AR, whereas the functional part of its long N-terminal disordered transactivation domain termed activation function 1 (AF1) inhibits AR-v7 phase separation. We suggest that the resulting diminished LLPS tendency of AR-v7 may contribute to the misregulation of the transcription function of AR in prostate cancer.
Collapse
Affiliation(s)
- Junaid Ahmed
- VIB‐VUB Center for Structural Biology, Vlaams Instituut voor BiotechnologyBrusselsBelgium
- Structural Biology Brussels (SBB), Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Attila Meszaros
- VIB‐VUB Center for Structural Biology, Vlaams Instituut voor BiotechnologyBrusselsBelgium
- Structural Biology Brussels (SBB), Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Tamas Lazar
- VIB‐VUB Center for Structural Biology, Vlaams Instituut voor BiotechnologyBrusselsBelgium
- Structural Biology Brussels (SBB), Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Peter Tompa
- VIB‐VUB Center for Structural Biology, Vlaams Instituut voor BiotechnologyBrusselsBelgium
- Structural Biology Brussels (SBB), Bioengineering Sciences DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
45
|
He L, Yan R, Yang Z, Zhang Y, Liu X, Yang J, Liu X, Liu X, Xia L, Wang Y, Wu J, Wu X, Shan L, Yang X, Liang J, Shang Y, Sun L. SCF JFK is functionally linked to obesity and metabolic syndrome. EMBO Rep 2021; 22:e52036. [PMID: 34114325 DOI: 10.15252/embr.202052036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of lipid metabolism could lead to the development of metabolic disorders. We report here that the F-box protein JFK promotes excessive lipid accumulation in adipose tissue and contributes to the development of metabolic syndrome. JFK transgenic mice develop spontaneous obesity, accompanied by dyslipidemia, hyperglycemia, and insulin resistance, phenotypes that are further exacerbated under high-fat diets. In contrast, Jfk knockout mice are lean and resistant to diet-induced metabolic malfunctions. Liver-specific reconstitution of JFK expression in Jfk knockout mice leads to hepatic lipid accumulation resembling human hepatic steatosis and nonalcoholic fatty liver disease. We show that JFK interacts with and destabilizes ING5 through assembly of the SCF complex. Integrative transcriptomic and genomic analysis reveals that the SCFJFK -ING5 axis interferes with AMPK activity and fatty acid β-oxidation, leading to the suppression of hepatic lipid catabolism. Significantly, JFK is upregulated and AMPKα1 is down-regulated in liver tissues from NAFLD patients. These results reveal that SCFJFK is a bona fide E3 ligase for ING5 and link the SCFJFK -ING5 axis to the development of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruorong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Ziran Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Yue Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xujun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
46
|
Ferreira BI, Santos B, Link W, De Sousa-Coelho AL. Tribbles Pseudokinases in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112825. [PMID: 34198908 PMCID: PMC8201230 DOI: 10.3390/cancers13112825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022] Open
Abstract
The Tribbles family of pseudokinases controls a wide number of processes during cancer on-set and progression. However, the exact contribution of each of the three family members is still to be defined. Their function appears to be context-dependent as they can act as oncogenes or tumor suppressor genes. They act as scaffolds modulating the activity of several signaling pathways involved in different cellular processes. In this review, we discuss the state-of-knowledge for TRIB1, TRIB2 and TRIB3 in the development and progression of colorectal cancer. We take a perspective look at the role of Tribbles proteins as potential biomarkers and therapeutic targets. Specifically, we chronologically systematized all available articles since 2003 until 2020, for which Tribbles were associated with colorectal cancer human samples or cell lines. Herein, we discuss: (1) Tribbles amplification and overexpression; (2) the clinical significance of Tribbles overexpression; (3) upstream Tribbles gene and protein expression regulation; (4) Tribbles pharmacological modulation; (5) genetic modulation of Tribbles; and (6) downstream mechanisms regulated by Tribbles; establishing a comprehensive timeline, essential to better consolidate the current knowledge of Tribbles' role in colorectal cancer.
Collapse
Affiliation(s)
- Bibiana I. Ferreira
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bruno Santos
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Serviço de Anatomia Patológica, Centro Hospital Universitário do Algarve (CHUA), 8000-386 Faro, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Correspondence: (W.L.); (A.L.D.S.-C.)
| | - Ana Luísa De Sousa-Coelho
- Centre for Biomedical Research (CBMR), Campus of Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (B.I.F.); (B.S.)
- Algarve Biomedical Center (ABC), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: (W.L.); (A.L.D.S.-C.)
| |
Collapse
|
47
|
Yan HY, Wang HQ, Zhong M, Wu S, Yang L, Li K, Li YH. PML Suppresses Influenza Virus Replication by Promoting FBXW7 Expression. Virol Sin 2021; 36:1154-1164. [PMID: 34046815 DOI: 10.1007/s12250-021-00399-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza A viruses (IAV) are responsible for seasonal flu epidemics, which can lead to high morbidity and mortality each year. Like other viruses, influenza virus can hijack host cellular machinery for its replication. Host cells have evolved diverse cellular defense to resist the invasion of viruses. As the main components of promyelocytic leukemia protein nuclear bodies (PML-NBs), PML can inhibit the replication of many medically important viruses including IAV. However, the mechanism of PML against IAV is unclear. In the present study, we found PML was induced in response to IAV infection and ectopic expression of PML could inhibit IAV replication, whereas knockdown of endogenous PML expression could enhance IAV replication. Further studies showed that PML increased the expression of FBXW7 by inhibiting its K48-linked ubiquitination and enhanced the interaction between FBXW7 and SHP2, which negatively regulated IAV replication during infection. Moreover, PML stabilized RIG-I to promote the production of type I IFN. Collectively, these data indicated that PML inhibited IAV replication by enhancing FBXW7 expression in the antiviral immunity against influenza virus and extended the mechanism of PML in antiviral immunity.
Collapse
Affiliation(s)
- Hai-Yan Yan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Qiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ming Zhong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lu Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, China.
| | - Yu-Huan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China. .,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
48
|
Yang J, Lin J, An J, Zhao Y, Jing S, Yu M, Zhu Y, Yao Y. TRIB3 Promotes the Malignant Progression of Bladder Cancer: An Integrated Analysis of Bioinformatics and in vitro Experiments. Front Genet 2021; 12:649208. [PMID: 33841505 PMCID: PMC8033215 DOI: 10.3389/fgene.2021.649208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Background Bladder cancer is a common malignant tumor characterized by high mortality and high management costs; however, it lacks useful molecular prognostic markers. Tribbles pseudokinase 3 (TRIB3) is a pseudokinase that participates in cell tumor progression and metabolism and whose function in bladder cancer is not precisely known. Main Methods We downloaded transcriptome data and clinical data of bladder cancer from associated databases and extracted the expression matrix of TRIB3 for multiple bioinformatics analysis. RT-PCR detected the expression of TRIB3 in bladder cancer cells. After knockdown of TRIB3 with siRNA, we investigated TRIB3 function using CCK8, Cell Cycle and Transwell assays. Key Findings Kaplan–Meier analysis of TRIB3 in the four cohorts showed that high expression of TRIB3 correlated with poor outcome. Expression of TRIB3 positively correlated with stage and grade and down-regulation of TRIB3 expression significantly inhibited proliferation, migration and cell cycle of bladder cancer cells. Significance TRIB3 is a potential prognostic marker and therapeutic target. It can be used to individualize the treatment of bladder cancer.
Collapse
Affiliation(s)
- Jieping Yang
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Jiaxing Lin
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Jun An
- Department of Urology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yongkang Zhao
- Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University and Northeastern University, Northeastern University, Shenyang, China
| | - Siyang Jing
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yao
- Department of Physiology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
49
|
Warma A, Lussier JG, Ndiaye K. Tribbles Pseudokinase 2 (TRIB2) Regulates Expression of Binding Partners in Bovine Granulosa Cells. Int J Mol Sci 2021; 22:ijms22041533. [PMID: 33546420 PMCID: PMC7913596 DOI: 10.3390/ijms22041533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Members of the Tribbles (TRIB) family of pseudokinases are critical components of intracellular signal transduction pathways in physiological and pathological processes. TRIBs, including TRIB2, have been previously shown as signaling mediators and scaffolding proteins regulating numerous cellular events such as proliferation, differentiation and cell death through protein stability and activity. However, the signaling network associated with TRIB2 and its binding partners in granulosa cells during ovarian follicular development is not fully defined. We previously reported that TRIB2 is differentially expressed in growing dominant follicles while downregulated in ovulatory follicles following the luteinizing hormone (LH) surge or human chorionic gonadotropin (hCG) injection. In the present study, we used the yeast two-hybrid screening system and in vitro coimmunoprecipitation assays to identify and confirm TRIB2 interactions in granulosa cells (GCs) of dominant ovarian follicles (DFs), which yielded individual candidate binding partners including calmodulin 1 (CALM1), inhibin subunit beta A (INHBA), inositol polyphosphate phosphatase-like 1 (INPPL1), 5'-nucleotidase ecto (NT5E), stearoyl-CoA desaturase (SCD), succinate dehydrogenase complex iron sulfur subunit B (SDHB) and Ras-associated protein 14 (RAB14). Further analyses showed that all TRIB2 binding partners are expressed in GCs of dominant follicles but are differentially regulated throughout the different stages of follicular development. CRISPR/Cas9-driven inhibition along with pQE-driven overexpression of TRIB2 showed that TRIB2 differently regulates expression of binding partners, which reveals the importance of TRIB2 in the control of gene expression linked to various biological processes such as proliferation, differentiation, cell migration, apoptosis, calcium signaling and metabolism. These data provide a larger view of potential TRIB2-regulated signal transduction pathways in GCs and provide strong evidence that TRIB2 may act as a regulator of target genes during ovarian follicular development.
Collapse
|
50
|
Shen P, Zhang TY, Wang SY. TRIB3 promotes oral squamous cell carcinoma cell proliferation by activating the AKT signaling pathway. Exp Ther Med 2021; 21:313. [PMID: 33717256 PMCID: PMC7885083 DOI: 10.3892/etm.2021.9744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Tribbles pseudokinase 3 (TRIB3), a member of the tribbles-related family, has biological roles such as by acting as an oncogene or tumor suppressor gene, in various types of cancer, including colorectal cancer, breast cancer, lung cancer and renal cell carcinoma. However, the role of TRIB3 in oral squamous cell carcinoma (OSCC) is remains unclear. The current was aimed to determine the biological function of TRIB3 in OSCC progression. TRIB3 expression was examined in OSCC surgical specimens using reverse transcription-quantitative PCR and the role of TRIB3 in the proliferation capacities of OSCC cell lines was examined using crystal violet and MTT assays in vitro and tumorigenicity assays in vivo. The underlying mechanism by which TRIB3 exerts its function was investigated using western blotting. The results demonstrated that the mRNA and protein expression levels of TRIB3 were higher in human OSCC tissues compared with normal tissues. The role of TRIB3 in cell proliferation was also determined. TRIB3 overexpression significantly promoted OSCC cell proliferation, whereas TRIB3 knockdown inhibited OSCC cell proliferation compared with control cells. TRIB3 knockdown also suppressed tumor growth and decreased tumor volume in vivo compared with control cells. Moreover, the results suggested that TRIB3 overexpression increased the phosphorylation of protein kinase B (AKT) and mammalian target of rapamycin (mTOR), whereas TRIB3 knockdown decreased the phosphorylation of AKT and mTOR compared with control cells. To summarize, the present study indicated that TRIB3 promoted OSCC cell proliferation by activating the AKT signaling pathway; therefore, TRIB3 may serve as a potential target for the diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Peng Shen
- Department of Stomatology, Clinical Center of Spaceport, the Northern Medical District, Chinese People's Liberation Army General Hospital, Beijing 100094, P.R. China
| | - Tian-Yang Zhang
- The 7th Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100700, P.R. China
| | - Shu-Yan Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|