1
|
Hentsch A, Guberman M, Radetzki S, Kaushik S, Huizenga M, He Y, Contzen J, Kuhn B, Benz J, Schippers M, Paul J, Leibrock L, Collin L, Wittwer M, Topp A, O’Hara F, Heer D, Hochstrasser R, Blaising J, von Kries JP, Mu L, van der Stelt M, Mergenthaler P, Lipstein N, Grether U, Nazaré M. Highly Specific Miniaturized Fluorescent Monoacylglycerol Lipase Probes Enable Translational Research. J Am Chem Soc 2025; 147:10188-10202. [PMID: 40063733 PMCID: PMC11951083 DOI: 10.1021/jacs.4c15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/27/2025]
Abstract
Monoacylglycerol lipase (MAGL) is the pivotal catabolic enzyme responsible for signal termination in the endocannabinoid system. Inhibition of MAGL offers unique advantages over the direct activation of cannabinoid receptors in treating cancer, metabolic disorders, and inflammatory diseases. Although specific fluorescent molecular imaging probes are commonly used for the real-time analysis of the localization and distribution of drug targets in cells, they are almost invariably composed of a linker connecting the pharmacophore with a large fluorophore. In this study, we have developed miniaturized fluorescent probes targeting MAGL by incorporating a highly fluorescent boron-dipyrromethene (BODIPY) moiety into the inhibitor structure that interacts with the MAGL active site. These miniaturized fluorescent probes exhibit favorable drug-like properties such as high solubility and permeability, picomolar potency for MAGL across various species, and high cell selectivity and specificity. A range of translational investigations were conducted, including cell-free fluorescence polarization assays, fluorescence-activated cell sorting analysis, and confocal fluorescence microscopy of live cancer cells, live primary neurons, and human-induced pluripotent stem cell-derived brain organoids. Furthermore, the application of red-shifted analogs or 18F positron emission labeling illustrated the significant versatility and adaptability of the fluorescent ligands in various experimental contexts.
Collapse
Affiliation(s)
- Axel Hentsch
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Mónica Guberman
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Silke Radetzki
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Sofia Kaushik
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Mirjam Huizenga
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Yingfang He
- ETH Zürich, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Jörg Contzen
- Charité—Universitätsmedizin
Berlin, Center for Stroke
Research, 10117 Berlin, Germany
- Charité—Universitätsmedizin
Berlin, Dept. of Neurology with Experimental
Neurology, 10117 Berlin, Germany
| | - Bernd Kuhn
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Maria Schippers
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Jerome Paul
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Lea Leibrock
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Ludovic Collin
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Matthias Wittwer
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Andreas Topp
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Fionn O’Hara
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Dominik Heer
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | | | - Julie Blaising
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Jens P. von Kries
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Linjing Mu
- ETH Zürich, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Mario van der Stelt
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Philipp Mergenthaler
- Charité—Universitätsmedizin
Berlin, Center for Stroke
Research, 10117 Berlin, Germany
- Charité—Universitätsmedizin
Berlin, Dept. of Neurology with Experimental
Neurology, 10117 Berlin, Germany
- University
of Oxford, Radcliffe Department of Medicine, OX3 9DU Oxford, United Kingdom
| | - Noa Lipstein
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Uwe Grether
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Marc Nazaré
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| |
Collapse
|
2
|
Hentsch A, Guberman M, Radetzki S, Kaushik S, Huizenga M, Paul J, Schippers M, Benz J, Kuhn B, Heer D, Topp A, Esteves Gloria L, Walter A, Hochstrasser R, Wittwer MB, von Kries JP, Collin L, Blaising J, van der Stelt M, Lipstein N, Grether U, Nazaré M. A Highly Selective and Versatile Probe Platform for Visualization of Monoacylglycerol Lipase. Angew Chem Int Ed Engl 2025; 64:e202413405. [PMID: 39916545 DOI: 10.1002/anie.202413405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 03/05/2025]
Abstract
Monoacylglycerol lipase (MAGL) is a key enzyme for signal termination in the endocannabinoid system (ECS). MAGL inhibition results in indirect activation of the cannabinoid receptors, which offers unique advantages for the treatment of, e.g., multiple sclerosis, epilepsy, and other neurological disorders. Molecular imaging techniques are valuable tools to overcome the current poor understanding of MAGL's distribution and role in patho- and physiological processes within ECS signaling. Herein, we report the design, synthesis, and validation of highly selective versatile fluorescent and click-chemistry probes for MAGL. Structure-based design combined with a reverse-design approach allowed the development of a structural unit that selectively and effectively recognizes MAGL while offering a versatile platform to attach different fluorophores and further reporter units. In this way, labeled probes with sub-nanomolar potency carrying diverse fluorescent dyes were obtained. Probe affinity and selectivity remained invariant to changes in the fluorophore subunit, showing the remarkable robustness of this platform in delivering tailor-made probes. Highly consistent inhibition across species supports pharmacological model translatability. Extensive profiling and validation in various cellular systems shows the ability of these highly potent and selective probes to elucidate the complex role of MAGL in ECS cellular signaling, inflammatory processes, and disease progression.
Collapse
Affiliation(s)
- Axel Hentsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, GER
| | - Mónica Guberman
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, GER
| | - Silke Radetzki
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, GER
| | - Sofia Kaushik
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, GER
| | - Mirjam Huizenga
- Leiden Institute of Chemistry (LIC), Universiteit Leiden, Einsteinweg 55, 2333 CC, Leiden, NL
| | - Jerome Paul
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, GER
| | - Maria Schippers
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Jörg Benz
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Bernd Kuhn
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Dominik Heer
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Andreas Topp
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Ludivine Esteves Gloria
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Alexander Walter
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Remo Hochstrasser
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Matthias B Wittwer
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Jens Peter von Kries
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, GER
| | - Ludovic Collin
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Julie Blaising
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Mario van der Stelt
- Leiden Institute of Chemistry (LIC), Universiteit Leiden, Einsteinweg 55, 2333 CC, Leiden, NL
| | - Noa Lipstein
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, GER
| | - Uwe Grether
- Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, CH
| | - Marc Nazaré
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, GER
| |
Collapse
|
3
|
Tsuji Y, Ninomiya-Tsuji J, Shen MYF, DiFrancesco BR. Modulation of iron metabolism by new chemicals interacting with the iron regulatory system. Redox Biol 2025; 79:103444. [PMID: 39674082 PMCID: PMC11699616 DOI: 10.1016/j.redox.2024.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024] Open
Abstract
Despite the vital role of iron and vulnerability of iron metabolism in disease states, it remains largely unknown whether chemicals interacting with cellular proteins are responsible for perturbation of iron metabolism. We previously demonstrated that cisplatin was an inhibitor of the iron regulatory system by blocking IRP2 (iron regulatory protein 2) binding to an iron-responsive element (IRE) located in the 3'- or 5'-UTR (untranslated region) of key iron metabolism genes such as transferrin receptor 1 (TfR1) and ferritin mRNAs. To guide the development of new chemical probes to modulate the IRP-IRE regulatory system, we used an artificial intelligence (AI)-based ligand design and screened a chemical library composed of cysteine-reactive warheads. Using wild type and mutant IRE-luciferase reporter cells, we identified new IRP-IRE inhibitors such as V004-0872 harboring chloroacetamide, while its analog V011-6261 with chloropropanamide completely lost the inhibitory activity. V004-0872 inhibited the human IRP2 via Cys512 and caused decreased iron levels through reciprocal TfR1 downregulation and ferritin upregulation. V004-0872 increased production of mitochondrial reactive oxygen species (ROS) and exhibited cytotoxicity that was inhibited by N-acetyl cysteine but not the ferroptosis inhibitor ferrostatin-1. Furthermore, we found that widely used haloketone protease inhibitors and acetamide herbicides inhibit the IRP-IRE system. Since IRP2 overexpression is responsible for iron excess conditions to promote growth of several cancers and exacerbation of iron-overload diseases, these results and new compounds lay the groundwork for new reagents and strategies to limit the availability of iron and oxidative stress in iron-overloaded disease conditions.
Collapse
Affiliation(s)
- Yoshiaki Tsuji
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Campus Box 7633, Raleigh, NC, 27695-7633, USA.
| | - Jun Ninomiya-Tsuji
- Department of Biological Sciences, Toxicology Program, North Carolina State University, Campus Box 7633, Raleigh, NC, 27695-7633, USA
| | - Maurice Y F Shen
- Cyclica Inc., 207 Queens Quay W Suite 420, Toronto, ON, M5J 1A7, Canada
| | | |
Collapse
|
4
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
5
|
Biggs GS, Cawood EE, Vuorinen A, McCarthy WJ, Wilders H, Riziotis IG, van der Zouwen AJ, Pettinger J, Nightingale L, Chen P, Powell AJ, House D, Boulton SJ, Skehel JM, Rittinger K, Bush JT. Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics. Nat Commun 2025; 16:73. [PMID: 39746958 PMCID: PMC11697256 DOI: 10.1038/s41467-024-55057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge. We report a versatile, label-free quantification proteomics platform for competitive profiling of cysteine-reactive fragments against the native proteome. This high-throughput platform combines SP4 plate-based sample preparation with rapid chromatographic gradients. Data-independent acquisition performed on a Bruker timsTOF Pro 2 consistently identified ~23,000 cysteine sites per run, with a total of ~32,000 cysteine sites profiled in HEK293T and Jurkat lysate. Crucially, this depth in cysteinome coverage is met with high data completeness, enabling robust identification of liganded proteins. In this study, 80 reactive fragments were screened in two cell lines identifying >400 ligand-protein interactions. Hits were validated through concentration-response experiments and the platform was utilised for hit expansion and live cell experiments. This label-free platform represents a significant step forward in high-throughput proteomics to evaluate ligandability of cysteines across the human proteome.
Collapse
Affiliation(s)
- George S Biggs
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Emma E Cawood
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Aini Vuorinen
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - William J McCarthy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Harry Wilders
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- University of Strathclyde, Pure and Applied Chemistry, Glasgow, UK
| | - Ioannis G Riziotis
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
- Software Engineering and AI, The Francis Crick Institute, London, UK
| | | | - Jonathan Pettinger
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Luke Nightingale
- Software Engineering and AI, The Francis Crick Institute, London, UK
| | - Peiling Chen
- GSK Chemical Biology, GSK, Collegeville, PA, USA
| | - Andrew J Powell
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - David House
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, UK.
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK.
| |
Collapse
|
6
|
Bissegger L, Constantin TA, Keles E, Raguž L, Barlow-Busch I, Orbegozo C, Schaefer T, Borlandelli V, Bohnacker T, Sriramaratnam R, Schäfer A, Gstaiger M, Burke JE, Borsari C, Wymann MP. Rapid, potent, and persistent covalent chemical probes to deconvolute PI3Kα signaling. Chem Sci 2024; 15:20274-20291. [PMID: 39568927 PMCID: PMC11575505 DOI: 10.1039/d4sc05459h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024] Open
Abstract
Chemical probes have gained importance in the elucidation of signal transduction in biology. Insufficient selectivity and potency, lack of cellular activity and inappropriate use of chemical probes has major consequences on interpretation of biological results. The catalytic subunit of phosphoinositide 3-kinase α (PI3Kα) is one of the most frequently mutated genes in cancer, but fast-acting, high-quality probes to define PI3Kα's specific function to clearly separate it from other class I PI3K isoforms, are not available. Here, we present a series of novel covalent PI3Kα-targeting probes with optimized intracellular target access and kinetic parameters. On-target TR-FRET and off-target assays provided relevant kinetic parameters (k chem, k inact and K i) to validate our chemical probes. Additional intracellular nanoBRET tracer displacement measurements showed rapid diffusion across the cell membrane and extremely fast target engagement, while investigations of signaling downstream of PI3Kα via protein kinase B (PKB/Akt) and forkhead box O (FOXO) revealed blunted pathway activity in cancer cell lines with constitutively activated PI3Kα lasting for several days. In contrast, persistent PI3Kα inhibition was rapidly bypassed by other class I PI3K isoforms in cells lacking functional phosphatase and tensin homolog (PTEN). Comparing the rapidly-diffusing, fast target-engaging chemical probe 9 to clinical reversible PI3Kα-selective inhibitors alpelisib, inavolisib and 9r, a reversible analogue of 9, revealed 9's superior potency to inhibit growth (up to 600-fold) associated with sustained suppression of PI3Kα signaling in breast cancer cell lines. Finally, using a simple washout protocol, the utility of the highly-selective covalent PI3Kα probe 9 was demonstrated by the quantification of the coupling of insulin, EGF and CXCL12 receptors to distinct PI3K isoforms for signal transduction in response to ligand-dependent activation. Collectively, these findings along with the novel covalent chemical probes against PI3Kα provide insights into isoform-specific functions in cancer cells and highlight opportunities to achieve improved selectivity and long-lasting efficacy.
Collapse
Affiliation(s)
- Lukas Bissegger
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Theodora A Constantin
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Erhan Keles
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Luka Raguž
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria Victoria British Columbia V8W 2Y2 Canada
| | - Clara Orbegozo
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Thorsten Schaefer
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Valentina Borlandelli
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Thomas Bohnacker
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Alexander Schäfer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich Otto-Stern-Weg 3 8093 Zürich Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich Otto-Stern-Weg 3 8093 Zürich Switzerland
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria Victoria British Columbia V8W 2Y2 Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Chiara Borsari
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland +41 61 207 5046
| |
Collapse
|
7
|
Mantilla BS, White JS, Mosedale WRT, Gomm A, Nelson A, Smith TK, Wright MH. Discovery of Trypanosoma brucei inhibitors enabled by a unified synthesis of diverse sulfonyl fluorides. Commun Chem 2024; 7:237. [PMID: 39427042 PMCID: PMC11490619 DOI: 10.1038/s42004-024-01327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Sets of electrophilic probes are generally prepared using a narrow toolkit of robust reactions, which tends to limit both their structural and functional diversity. A unified synthesis of skeletally-diverse sulfonyl fluorides was developed that relied upon photoredox-catalysed dehydrogenative couplings between hetaryl sulfonyl fluorides and hydrogen donor building blocks. A set of 32 diverse probes was prepared, and then screened against Trypanosoma brucei. Four of the probes were found to have sub-micromolar anti-trypanosomal activity. A chemical proteomic approach, harnessing an alkynylated analogue and broad-spectrum fluorophosphonate tools, provided insights into the observed anti-trypanosomal activity, which likely stems from covalent modification of multiple protein targets. It is envisaged that the unified diversity-oriented approach may enable the discovery of electrophilic probes that have value in the elucidation of biological and biomedical mechanisms.
Collapse
Affiliation(s)
- Brian S Mantilla
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jack S White
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - William R T Mosedale
- Schools of Biology and Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Andrew Gomm
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Nelson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Terry K Smith
- Schools of Biology and Chemistry, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Megan H Wright
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
8
|
Bos PH, Ranalli F, Flood E, Watts S, Inoyama D, Knight JL, Clark AJ, Placzeck A, Wang J, Gerasyuto AI, Silvergleid S, Yin W, Sun S, Abel R, Bhat S. AutoDesigner - Core Design, a De Novo Design Algorithm for Chemical Scaffolds: Application to the Design and Synthesis of Novel Selective Wee1 Inhibitors. J Chem Inf Model 2024; 64:7513-7524. [PMID: 39360587 DOI: 10.1021/acs.jcim.4c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The hit identification stage of a drug discovery program generally involves the design of novel chemical scaffolds with desired biological activity against the target(s) of interest. One common approach is scaffold hopping, which is the manual design of novel scaffolds based on known chemical matter. One major limitation of this approach is narrow chemical space exploration, which can lead to difficulties in maintaining or improving biological activity, selectivity, and favorable property space. Another limitation is the lack of preliminary structure-activity relationship (SAR) data around these designs, which could lead to selecting suboptimal scaffolds to advance lead optimization. To address these limitations, we propose AutoDesigner - Core Design (CoreDesign), a de novo scaffold design algorithm. Our approach is a cloud-integrated, de novo design algorithm for systematically exploring and refining chemical scaffolds against biological targets of interest. The algorithm designs, evaluates, and optimizes a vast range, from millions to billions, of molecules in silico, following defined project parameters encompassing structural novelty, physicochemical attributes, potency, and selectivity using active-learning FEP. To validate CoreDesign in a real-world drug discovery setting, we applied it to the design of novel, potent Wee1 inhibitors with improved selectivity over PLK1. Starting from a single known ligand and receptor structure, CoreDesign rapidly explored over 23 billion molecules to identify 1,342 novel chemical series with a mean of 4 compounds per scaffold. To rapidly analyze this large amount of data and prioritize chemical scaffolds for synthesis, we utilize t-Distributed Stochastic Neighbor Embedding (t-SNE) plots of in silico properties. The chemical space projections allowed us to rapidly identify a structurally novel 5-5 fused core meeting all the hit-identification requirements. Several compounds were synthesized and assayed from the scaffold, displaying good potency against Wee1 and excellent PLK1 selectivity. Our results suggest that CoreDesign can significantly speed up the hit-identification process and increase the probability of success of drug discovery campaigns by allowing teams to bring forward high-quality chemical scaffolds derisked by the availability of preliminary SAR.
Collapse
Affiliation(s)
- Pieter H Bos
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Fabio Ranalli
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Emelie Flood
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Shawn Watts
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Daigo Inoyama
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Jennifer L Knight
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Anthony J Clark
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Andrew Placzeck
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Jiashi Wang
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Aleksey I Gerasyuto
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Sarah Silvergleid
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Wu Yin
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Shaoxian Sun
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| | - Sathesh Bhat
- Schrödinger, Inc., 1540 Broadway, 24th floor, New York, New York 10036, United States
| |
Collapse
|
9
|
Wang Q, Du T, Zhang Z, Zhang Q, Zhang J, Li W, Jiang JD, Chen X, Hu HY. Target fishing and mechanistic insights of the natural anticancer drug candidate chlorogenic acid. Acta Pharm Sin B 2024; 14:4431-4442. [PMID: 39525590 PMCID: PMC11544177 DOI: 10.1016/j.apsb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 11/16/2024] Open
Abstract
Chlorogenic acid (CGA) is a natural product that effectively inhibits tumor growth, demonstrated in many preclinical models, and phase II clinical trials for patients with glioma. However, its direct proteomic targets and anticancer molecular mechanisms remain unknown. Herein, we developed a novel bi-functional photo-affinity probe PAL/CGA and discovered mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) was one of the main target proteins of CGA by using affinity-based protein profiling (AfBPP) chemical proteomic approach. We performed in-depth studies on ACAT1/CGA interactions via multiple assays including SPR, ITC, and cryo-EM. Importantly, we demonstrated that CGA impaired cancer cell proliferation by inhibiting the phosphorylation of tetrameric ACAT1 on Y407 residue through a novel mode of action in vitro and in vivo. Our study highlights the use of AfBPP platforms in uncovering unique druggable modalities accessed by natural products. And identifying the molecular target of CGA sheds light on the future clinical application of CGA for cancer therapy.
Collapse
Affiliation(s)
- Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhihui Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jie Zhang
- Sichuan Jiuzhang Biological Science and Technology Co., Ltd., Chengdu 610041, China
| | - Wenbin Li
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Connell W, Garcia K, Goodarzi H, Keiser MJ. Learning chemical sensitivity reveals mechanisms of cellular response. Commun Biol 2024; 7:1149. [PMID: 39278951 PMCID: PMC11402971 DOI: 10.1038/s42003-024-06865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
Chemical probes interrogate disease mechanisms at the molecular level by linking genetic changes to observable traits. However, comprehensive chemical screens in diverse biological models are impractical. To address this challenge, we develop ChemProbe, a model that predicts cellular sensitivity to hundreds of molecular probes and drugs by learning to combine transcriptomes and chemical structures. Using ChemProbe, we infer the chemical sensitivity of cancer cell lines and tumor samples and analyze how the model makes predictions. We retrospectively evaluate drug response predictions for precision breast cancer treatment and prospectively validate chemical sensitivity predictions in new cellular models, including a genetically modified cell line. Our model interpretation analysis identifies transcriptome features reflecting compound targets and protein network modules, identifying genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that allows researchers to measure cellular response to diverse compounds, facilitating research into molecular mechanisms of chemical sensitivity.
Collapse
Affiliation(s)
- William Connell
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Manen-Freixa L, Antolin AA. Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery. Expert Opin Drug Discov 2024; 19:1043-1069. [PMID: 39004919 DOI: 10.1080/17460441.2024.2376643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology. AREAS COVERED This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples. EXPERT OPINION Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.
Collapse
Affiliation(s)
- Leticia Manen-Freixa
- Oncobell Division, Bellvitge Biomedical Research Institute (IDIBELL) and ProCURE Department, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Albert A Antolin
- Oncobell Division, Bellvitge Biomedical Research Institute (IDIBELL) and ProCURE Department, Catalan Institute of Oncology (ICO), Barcelona, Spain
- Center for Cancer Drug Discovery, The Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
12
|
Cawood EE, Baker E, Edwards TA, Woolfson DN, Karamanos TK, Wilson AJ. Understanding β-strand mediated protein-protein interactions: tuning binding behaviour of intrinsically disordered sequences by backbone modification. Chem Sci 2024; 15:10237-10245. [PMID: 38966365 PMCID: PMC11220606 DOI: 10.1039/d4sc02240h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024] Open
Abstract
A significant challenge in chemical biology is to understand and modulate protein-protein interactions (PPIs). Given that many PPIs involve a folded protein domain and a peptide sequence that is intrinsically disordered in isolation, peptides represent powerful tools to understand PPIs. Using the interaction between small ubiquitin-like modifier (SUMO) and SUMO-interacting motifs (SIMs), here we show that N-methylation of the peptide backbone can effectively restrict accessible peptide conformations, predisposing them for protein recognition. Backbone N-methylation in appropriate locations results in faster target binding, and thus higher affinity, as shown by relaxation-based NMR experiments and computational analysis. We show that such higher affinities occur as a consequence of an increase in the energy of the unbound state, and a reduction in the entropic contribution to the binding and activation energies. Thus, backbone N-methylation may represent a useful modification within the peptidomimetic toolbox to probe β-strand mediated interactions.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Emily Baker
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- College of Biomedical Sciences, Larkin University 18301 N Miami Ave #1 Miami FL 33169 USA
| | - Derek N Woolfson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
13
|
Liu Y, Liang J, Zhu R, Yang Y, Wang Y, Wei W, Li H, Chen L. Application of PROTACs in Target Identification and Target Validation. ACTA MATERIA MEDICA 2024; 3:72-87. [PMID: 39373008 PMCID: PMC11452161 DOI: 10.15212/amm-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
PROTAC, as a novel therapeutic drug model, has received widespread attention from the academic and pharmaceutical industries. At the same time, PROTAC technology has led many researchers to focus on developing chemical biology tool properties due to its unique operating mechanism and protein dynamic regulatory properties. In recent years, the rapid development of PROTAC technology has gradually made it an essential tool for target identification and target validation. To further promote the application of PROTAC tools in drug discovery and basic medical sciences research, this review distinguished between target identification and target validation concepts. It summarized the research progress of PROTAC technology in these aspects.
Collapse
Affiliation(s)
- Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Rui Zhu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yali Wang
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Fujian Key Laboratory of Chinese Materia Medica, Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
14
|
Bradley E, Fusani L, Chung CW, Craggs PD, Demont EH, Humphreys PG, Mitchell DJ, Phillipou A, Rioja I, Shah RR, Wellaway CR, Prinjha RK, Palmer DS, Kerr WJ, Reid M, Wall ID, Cookson R. Structure-Guided Design of a Domain-Selective Bromodomain and Extra Terminal N-Terminal Bromodomain Chemical Probe. J Med Chem 2023; 66:15728-15749. [PMID: 37967462 PMCID: PMC10726358 DOI: 10.1021/acs.jmedchem.3c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.
Collapse
Affiliation(s)
- Erin Bradley
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Lucia Fusani
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Chun-wa Chung
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Peter D. Craggs
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | | | | | | | - Alex Phillipou
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Inmaculada Rioja
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Rishi R. Shah
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | | | - Rab K. Prinjha
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - David S. Palmer
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - William J. Kerr
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Marc Reid
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Ian D. Wall
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Rosa Cookson
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| |
Collapse
|
15
|
Riege D, Herschel S, Fenkl T, Schade D. Small-Molecule Probes as Pharmacological Tools for the Bone Morphogenetic Protein Signaling Pathway. ACS Pharmacol Transl Sci 2023; 6:1574-1599. [PMID: 37974621 PMCID: PMC10644459 DOI: 10.1021/acsptsci.3c00170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
The bone morphogenetic protein (BMP) pathway is highly conserved and plays central roles in health and disease. The quality and quantity of its signaling outputs are regulated at multiple levels, offering pharmacological options for targeted modulation. Both target-centric and phenotypic drug discovery (PDD) approaches were applied to identify small-molecule BMP inhibitors and stimulators. In this Review, we accumulated and systematically classified the different reported chemotypes based on their targets as well as modes-of-action, and herein we illustrate the discovery history of selected candidates. A comprehensive summary of available biochemical, cellular, and in vivo activities is provided for the most relevant BMP modulators, along with recommendations on their preferred use as chemical probes to study BMP-related (patho)physiological processes. There are a number of high-quality probes used as BMP inhibitors that potently and selectively interrogate the kinase activities of distinct type I (16 chemotypes available) and type II receptors (3 chemotypes available). In contrast, only a few high-quality BMP stimulator modalities have been introduced to the field due to a lack of profound target knowledge. FK506-derived macrolides such as calcineurin-sparing FKBP12 inhibitors currently represent the best-characterized chemical tools for direct activation of BMP-SMAD signaling at the receptor level. However, several PDD campaigns succeeded in expanding the druggable space of BMP stimulators. Albeit the majority of them do not entirely fulfill the strict chemical probe criteria, many chemotypes exhibit unique and unrecognized mechanisms as pathway potentiators or synergizers, serving as valuable pharmacological tools for BMP perturbation.
Collapse
Affiliation(s)
- Daniel Riege
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Sven Herschel
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Teresa Fenkl
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Dennis Schade
- Department
of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner
Site Kiel, DZHK, German Center for Cardiovascular
Research, 24105 Kiel, Germany
| |
Collapse
|
16
|
Abbott KL, Ali A, Casalena D, Do BT, Ferreira R, Cheah JH, Soule CK, Deik A, Kunchok T, Schmidt DR, Renner S, Honeder SE, Wu M, Chan SH, Tseyang T, Stoltzfus AT, Michel SLJ, Greaves D, Hsu PP, Ng CW, Zhang CJ, Farsidjani A, Kent JR, Madariaga MLL, Gramatikov IMT, Matheson NJ, Lewis CA, Clish CB, Rees MG, Roth JA, Griner LM, Muir A, Auld DS, Vander Heiden MG. Screening in serum-derived medium reveals differential response to compounds targeting metabolism. Cell Chem Biol 2023; 30:1156-1168.e7. [PMID: 37689063 PMCID: PMC10581593 DOI: 10.1016/j.chembiol.2023.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.
Collapse
Affiliation(s)
- Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dominick Casalena
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Raphael Ferreira
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jaime H Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christian K Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel R Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Sophie E Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michelle Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Tenzin Tseyang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Daniel Greaves
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA
| | - Christopher W Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chelsea J Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Farsidjani
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Johnathan R Kent
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | | | - Iva Monique T Gramatikov
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nicholas J Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Douglas S Auld
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Croft D, Lodhia P, Lourenco S, MacKay C. Effectively utilizing publicly available databases for cancer target evaluation. NAR Cancer 2023; 5:zcad035. [PMID: 37457379 PMCID: PMC10346432 DOI: 10.1093/narcan/zcad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The majority of compounds designed against cancer drug targets do not progress to become approved drugs, mainly due to lack of efficacy and/or unmanageable toxicity. Robust target evaluation is therefore required before progressing through the drug discovery process to reduce the high attrition rate. There are a wealth of publicly available databases that can be mined to generate data as part of a target evaluation. It can, however, be challenging to learn what databases are available, how and when they should be used, and to understand the associated limitations. Here, we have compiled and present key, freely accessible and easy-to-use databases that house informative datasets from in vitro, in vivo and clinical studies. We also highlight comprehensive target review databases that aim to bring together information from multiple sources into one-stop portals. In the post-genomics era, a key objective is to exploit the extensive cell, animal and patient characterization datasets in order to deliver precision medicine on a patient-specific basis. Effective utilization of the highlighted databases will go some way towards supporting the cancer research community achieve these aims.
Collapse
Affiliation(s)
- Daniel Croft
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Puja Lodhia
- Cancer Research Horizons, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sofia Lourenco
- Cancer Research Horizons, The Francis Crick Institute, London, NW1 1AT, UK
| | - Craig MacKay
- Cancer Research Horizons, The Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| |
Collapse
|
18
|
Patel U, Smalley JP, Hodgkinson JT. PROTAC chemical probes for histone deacetylase enzymes. RSC Chem Biol 2023; 4:623-634. [PMID: 37654508 PMCID: PMC10467623 DOI: 10.1039/d3cb00105a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Over the past three decades, we have witnessed the progression of small molecule chemical probes designed to inhibit the catalytic active site of histone deacetylase (HDAC) enzymes into FDA approved drugs. However, it is only in the past five years we have witnessed the emergence of proteolysis targeting chimeras (PROTACs) capable of promoting the proteasome mediated degradation of HDACs. This is a field still in its infancy, however given the current progress of PROTACs in clinical trials and the fact that FDA approved HDAC drugs are already in the clinic, there is significant potential in developing PROTACs to target HDACs as therapeutics. Beyond therapeutics, PROTACs also serve important applications as chemical probes to interrogate fundamental biology related to HDACs via their unique degradation mode of action. In this review, we highlight some of the key findings to date in the discovery of PROTACs targeting HDACs by HDAC class and HDAC isoenzyme, current gaps in PROTACs to target HDACs and future outlooks.
Collapse
Affiliation(s)
- Urvashi Patel
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester Leicester LE1 7RH UK
| | - Joshua P Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester Leicester LE1 7RH UK
| | - James T Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester Leicester LE1 7RH UK
| |
Collapse
|
19
|
Connell W, Garcia K, Goodarzi H, Keiser MJ. Learning chemical sensitivity reveals mechanisms of cellular response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554851. [PMID: 37693536 PMCID: PMC10491110 DOI: 10.1101/2023.08.26.554851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Chemical probes interrogate disease mechanisms at the molecular level by linking genetic changes to observable traits. However, comprehensive chemical screens in diverse biological models are impractical. To address this challenge, we developed ChemProbe, a model that predicts cellular sensitivity to hundreds of molecular probes and drugs by learning to combine transcriptomes and chemical structures. Using ChemProbe, we inferred the chemical sensitivity of cancer cell lines and tumor samples and analyzed how the model makes predictions. We retrospectively evaluated drug response predictions for precision breast cancer treatment and prospectively validated chemical sensitivity predictions in new cellular models, including a genetically modified cell line. Our model interpretation analysis identified transcriptome features reflecting compound targets and protein network modules, identifying genes that drive ferroptosis. ChemProbe is an interpretable in silico screening tool that allows researchers to measure cellular response to diverse compounds, facilitating research into molecular mechanisms of chemical sensitivity.
Collapse
Affiliation(s)
- William Connell
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michael J. Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Pan S, Ding A, Li Y, Sun Y, Zhan Y, Ye Z, Song N, Peng B, Li L, Huang W, Shao H. Small-molecule probes from bench to bedside: advancing molecular analysis of drug-target interactions toward precision medicine. Chem Soc Rev 2023; 52:5706-5743. [PMID: 37525607 DOI: 10.1039/d3cs00056g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.
Collapse
Affiliation(s)
- Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yisi Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaxin Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yueqin Zhan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Zhenkun Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Ning Song
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
21
|
Wang X, Zhou N, Wang B. Bacterial synthetic biology: tools for novel drug discovery. Expert Opin Drug Discov 2023; 18:1087-1097. [PMID: 37482696 DOI: 10.1080/17460441.2023.2239704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Bacterial synthetic biology has provided powerful tools to revolutionize the drug discovery process. These tools can be harnessed to generate bacterial novel pharmaceutical compounds with enhanced bioactivity and selectivity or to create genetically modified microorganisms as living drugs. AREAS COVERED This review provides a current overview of the state-of-the-art in bacterial synthetic biology tools for novel drug discovery. The authors discuss the application of these tools including bioinformatic tools, CRISPR tools, engineered bacterial transcriptional regulators, and synthetic biosensors for novel drug discovery. Additionally, the authors present the recent progress on reprogramming bacteriophages as living drugs to fight against antibiotic-resistant pathogens. EXPERT OPINION The field of using bacterial synthetic biology tools for drug discovery is rapidly advancing. However, challenges remain in developing reliable and robust methods to engineer bacteria. Further advancements in synthetic biology hold promise to speed up drug discovery, facilitating the development of novel therapeutics against various diseases.
Collapse
Affiliation(s)
- Xiyan Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Nan Zhou
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Research Center of Biological Computation, Zhejiang Laboratory, Hangzhou, China
| |
Collapse
|
22
|
Sterling J, Baker JR, McCluskey A, Munoz L. Systematic literature review reveals suboptimal use of chemical probes in cell-based biomedical research. Nat Commun 2023; 14:3228. [PMID: 37270653 PMCID: PMC10239480 DOI: 10.1038/s41467-023-38952-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Chemical probes have reached a prominent role in biomedical research, but their impact is governed by experimental design. To gain insight into the use of chemical probes, we conducted a systematic review of 662 publications, understood here as primary research articles, employing eight different chemical probes in cell-based research. We summarised (i) concentration(s) at which chemical probes were used in cell-based assays, (ii) inclusion of structurally matched target-inactive control compounds and (iii) orthogonal chemical probes. Here, we show that only 4% of analysed eligible publications used chemical probes within the recommended concentration range and included inactive compounds as well as orthogonal chemical probes. These findings indicate that the best practice with chemical probes is yet to be implemented in biomedical research. To achieve this, we propose 'the rule of two': At least two chemical probes (either orthogonal target-engaging probes, and/or a pair of a chemical probe and matched target-inactive compound) to be employed at recommended concentrations in every study.
Collapse
Affiliation(s)
- Jayden Sterling
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jennifer R Baker
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Adam McCluskey
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lenka Munoz
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
23
|
Tredup C, Ndreshkjana B, Schneider NS, Tjaden A, Kemas AM, Youhanna S, Lauschke VM, Berger BT, Krämer A, Berger LM, Röhm S, Knapp S, Farin HF, Müller S. Deep Annotation of Donated Chemical Probes (DCP) in Organotypic Human Liver Cultures and Patient-Derived Organoids from Tumor and Normal Colorectum. ACS Chem Biol 2023; 18:822-836. [PMID: 36944371 PMCID: PMC10127199 DOI: 10.1021/acschembio.2c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Well-characterized small molecules are essential tools for studying the biology and therapeutic relevance of a target protein. However, many compounds reported in the literature and routinely studied in biomedical research lack the potency and selectivity required for mechanistic cellular studies on the function of a given protein. Furthermore, commercially available compounds often do not include useful tools developed by industry as part of their research and development efforts, as they frequently remain proprietary. The freely available donated chemical probe (DCP) library, fueled by generous donations of compounds from industry and academia, enables easy access to a steadily growing collection of these valuable and well-characterized tools. Here, we provide a systematic description of the current DCP library collection and their associated comprehensive characterization data, including a variety of in vitro and cellular assays. Of note, we characterized the set in relevant human primary models by employing hepatotoxicity screening in primary human liver spheroids and viability screening in patient-derived colorectal cancer organoids and matched normal-adjacent epithelium. Taken together, the DCP library represents a well-annotated, openly available collection of tool compounds for studying a wide range of targets, including kinases, G-protein-coupled receptors, and ion channels. As such, it represents a unique resource for the biomedical research community.
Collapse
Affiliation(s)
- Claudia Tredup
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Benardina Ndreshkjana
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596Frankfurt am Main, Germany
| | - Natalie S Schneider
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376Stuttgart, Germany
- University of Tübingen, 72074Tübingen, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main60596, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Sandra Röhm
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main60596, Germany
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main60596, Germany
- German Cancer Consortium (DKTK), Heidelberg69120, Germany
- German Cancer Research Center (DKFZ), 69120Heidelberg, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| |
Collapse
|
24
|
Abbott KL, Ali A, Casalena D, Do BT, Ferreira R, Cheah JH, Soule CK, Deik A, Kunchok T, Schmidt DR, Renner S, Honeder SE, Wu M, Chan SH, Tseyang T, Greaves D, Hsu PP, Ng CW, Zhang CJ, Farsidjani A, Gramatikov IMT, Matheson NJ, Lewis CA, Clish CB, Rees MG, Roth JA, Griner LM, Muir A, Auld DS, Heiden MGV. Screening in serum-derived medium reveals differential response to compounds targeting metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.529972. [PMID: 36909640 PMCID: PMC10002634 DOI: 10.1101/2023.02.25.529972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A challenge for screening new candidate drugs to treat cancer is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels to propagate cells. Which nutrients are available can influence how cancer cells use metabolism to proliferate and impact sensitivity to some drugs, but a general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To enable screening of compounds to determine how the nutrient environment impacts drug efficacy, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We used this system to screen several small molecule libraries and found that compounds targeting metabolic enzymes were enriched as having differential efficacy in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.
Collapse
Affiliation(s)
- Keene L. Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dominick Casalena
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Brian T. Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | | | - Jaime H. Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christian K. Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel R. Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Sophie E. Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michelle Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Tenzin Tseyang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel Greaves
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peggy P. Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA
| | - Christopher W. Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chelsea J. Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Farsidjani
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Iva Monique T. Gramatikov
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicholas J. Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew G. Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Lesley Mathews Griner
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA
| | - Douglas S. Auld
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
25
|
Moloney A, Maple HJ. Developing, Choosing, and Using the Chemical Toolbox for Infectious Diseases Research. ACS Infect Dis 2023; 9:2-4. [PMID: 36511756 DOI: 10.1021/acsinfecdis.2c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scientific progress is built on "what went before". As research in a field or discipline progresses, laying strong and scientifically correct foundations for each incremental discovery ultimately accelerates progress. The importance of "research tools" (e.g., chemical probes, antibodies, assays) that underpin researchers' efforts to probe and understand biological systems and pathways should therefore not be underestimated. Appropriate validation, protocol development, and ultimately availability of research tools are critical, in parallel with education on the appropriate selection and use of these tools.
Collapse
Affiliation(s)
- Alex Moloney
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol BS11 9QD, U.K
| | - Hannah J Maple
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Bristol BS11 9QD, U.K
| |
Collapse
|
26
|
Chaikuad A, Merk D. An Introduction to Chemogenomics. Methods Mol Biol 2023; 2706:1-10. [PMID: 37558937 DOI: 10.1007/978-1-0716-3397-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Chemogenomics is an innovative approach in chemical biology that synergizes combinatorial chemistry and genomic and proteomic biology to systematically study the response of a biological system to a set of compounds, which can aid the identification and validation of biological targets as well as biologically active small-molecule agents responsible for a phenotypic outcome. Central to this strategy is a collection of chemically diverse compounds, a so-called chemogenomics library. Selection and annotation of vastly available chemogenomic compound candidates for an inclusion in such set present a challenge, but optimal compound selection is critical for success of chemogenomics. The library can be used in a wide variety of research applications from biological mechanism deconvolution to drug discovery. However, phenotypic screening methods are typically required to be high-throughput and equipped with a systematic analysis of complex biological-chemical interactions. This chapter provides a general outline to the chemogenomics approach, including concept and critical steps in all stages of this innovative chemical biology strategy.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
27
|
Antolin AA, Sanfelice D, Crisp A, Villasclaras Fernandez E, Mica IL, Chen Y, Collins I, Edwards A, Müller S, Al-Lazikani B, Workman P. The Chemical Probes Portal: an expert review-based public resource to empower chemical probe assessment, selection and use. Nucleic Acids Res 2022; 51:D1492-D1502. [PMID: 36268860 PMCID: PMC9825478 DOI: 10.1093/nar/gkac909] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 01/30/2023] Open
Abstract
We describe the Chemical Probes Portal (https://www.chemicalprobes.org/), an expert review-based public resource to empower chemical probe assessment, selection and use. Chemical probes are high-quality small-molecule reagents, often inhibitors, that are important for exploring protein function and biological mechanisms, and for validating targets for drug discovery. The publication, dissemination and use of chemical probes provide an important means to accelerate the functional annotation of proteins, the study of proteins in cell biology, physiology, and disease pathology, and to inform and enable subsequent pioneering drug discovery and development efforts. However, the widespread use of small-molecule compounds that are claimed as chemical probes but are lacking sufficient quality, especially being inadequately selective for the desired target or even broadly promiscuous in behaviour, has resulted in many erroneous conclusions in the biomedical literature. The Chemical Probes Portal was established as a public resource to aid the selection and best-practice use of chemical probes in basic and translational biomedical research. We describe the background, principles and content of the Portal and its technical development, as well as examples of its applications and use. The Chemical Probes Portal is a community resource and we therefore describe how researchers can be involved in its content and development.
Collapse
Affiliation(s)
- Albert A Antolin
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Domenico Sanfelice
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Alisa Crisp
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Eloy Villasclaras Fernandez
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Ioan L Mica
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Yi Chen
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Department of Data Science, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK,Centre for Cancer Drug Discovery, The Institute of Cancer Research, London, SM2 5NG, UK,Chemical Probes Portal, www.chemicalprobes.org
| | - Aled Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada,Chemical Probes Portal, www.chemicalprobes.org
| | | | | | - Paul Workman
- To whom correspondence should be addressed. Tel: +44 2087224580;
| |
Collapse
|
28
|
Clopper KC, Taatjes DJ. Chemical inhibitors of transcription-associated kinases. Curr Opin Chem Biol 2022; 70:102186. [PMID: 35926294 PMCID: PMC10676000 DOI: 10.1016/j.cbpa.2022.102186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Transcription by RNA polymerase II (pol II) is regulated by kinases. In recent years, many selective and potent inhibitors of pol II transcription-associated kinases have been developed, and these molecules have advanced understanding of kinase function in mammalian cells. Here, we focus on chemical inhibitors of the transcription-associated kinases CDK7, CDK8, CDK9, CDK12, CDK13, and CDK19. We provide a brief overview of the function of these kinases and common activation mechanisms. We then highlight the advantages of kinase inhibitors compared with other basic research methods, and describe the caveats associated with non-selective compounds (e.g. flavopiridol). We conclude with strategies and recommendations for implementation of chemical inhibitors for experimental analysis of transcription-associated kinases.
Collapse
Affiliation(s)
- Kevin C Clopper
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
29
|
Němec V, Schwalm MP, Müller S, Knapp S. PROTAC degraders as chemical probes for studying target biology and target validation. Chem Soc Rev 2022; 51:7971-7993. [PMID: 36004812 DOI: 10.1039/d2cs00478j] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule degraders such as PROTACs (PROteolysis TArgeting Chimeras) have emerged as new promising pharmacological modalities and the first PROTAC drug candidates are now studied clinically. The catalytic properties of PROTACs, acting as chemical degraders of a protein of interest (POI), represent an attractive new strategy for drug development. The development and characterization of PROTACs requires an array of additional assay systems that track the degradation pathway leading ultimately to degradation of the POI, identifying critical steps for PROTAC optimization. In addition to their exciting translational potential, PROTACs represent versatile chemical tools that considerably expanded our chemical biology toolbox and significantly enlarged the proteome that can be modulated by small molecules. Similar to conventional chemical probes, PROTACs used as chemical probes in target validation require comprehensive characterization. As a consequence, PROTAC-specific quality criteria should be defined by the chemical biology community. These criteria need to comprise additional or alternative parameters compared to those for conventional occupancy-driven chemical probes, such as the maximum level of target degradation (Dmax), confirmation of a proteasome dependent degradation mechanism and, importantly, also kinetic parameters of POI degradation. The kinetic aspects are particularly relevant for PROTACs that harbor covalent binding moieties. Here, we review recent progress in the development of assay systems for PROTAC characterization and suggest a set of criteria for PROTACs as high quality chemical probes.
Collapse
Affiliation(s)
- Václav Němec
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK site Frankfurt-Mainz, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Pauzaite T, Tollitt J, Sopaci B, Caprani L, Iwanowytsch O, Thacker U, Hardy JG, Allinson SL, Copeland NA. Dbf4-Cdc7 (DDK) Inhibitor PHA-767491 Displays Potent Anti-Proliferative Effects via Crosstalk with the CDK2-RB-E2F Pathway. Biomedicines 2022; 10:biomedicines10082012. [PMID: 36009559 PMCID: PMC9405858 DOI: 10.3390/biomedicines10082012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Precise regulation of DNA replication complex assembly requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK) activities to activate the replicative helicase complex and initiate DNA replication. Chemical probes have been essential in the molecular analysis of DDK-mediated regulation of MCM2-7 activation and the initiation phase of DNA replication. Here, the inhibitory activity of two distinct DDK inhibitor chemotypes, PHA-767491 and XL-413, were assessed in cell-free and cell-based proliferation assays. PHA-767491 and XL-413 show distinct effects at the level of cellular proliferation, initiation of DNA replication and replisome activity. XL-413 and PHA-767491 both reduce DDK-specific phosphorylation of MCM2 but show differential potency in prevention of S-phase entry. DNA combing and DNA replication assays show that PHA-767491 is a potent inhibitor of the initiation phase of DNA replication but XL413 has weak activity. Importantly, PHA-767491 decreased E2F-mediated transcription of the G1/S regulators cyclin A2, cyclin E1 and cyclin E2, and this effect was independent of CDK9 inhibition. Significantly, the enhanced inhibitory profile of PHA-767491 is mediated by potent inhibition of both DDK and the CDK2-Rb-E2F transcriptional network, that provides the molecular basis for its increased anti-proliferative effects in RB+ cancer cell lines.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - James Tollitt
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Betul Sopaci
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Louise Caprani
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Olivia Iwanowytsch
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Urvi Thacker
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YB, UK
| | - Sarah L. Allinson
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Nikki A. Copeland
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
- Materials Science Institute, Lancaster University, Lancaster LA1 4YW, UK
- Correspondence:
| |
Collapse
|
31
|
Frosi Y, Lin YC, Shimin J, Ramlan SR, Hew K, Engman AH, Pillai A, Yeung K, Cheng YX, Cornvik T, Nordlund P, Goh M, Lama D, Gates ZP, Verma CS, Thean D, Lane DP, Asial I, Brown CJ. Engineering an autonomous VH domain to modulate intracellular pathways and to interrogate the eIF4F complex. Nat Commun 2022; 13:4854. [PMID: 35982046 PMCID: PMC9388512 DOI: 10.1038/s41467-022-32463-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
An attractive approach to target intracellular macromolecular interfaces and to model putative drug interactions is to design small high-affinity proteins. Variable domains of the immunoglobulin heavy chain (VH domains) are ideal miniproteins, but their development has been restricted by poor intracellular stability and expression. Here we show that an autonomous and disufhide-free VH domain is suitable for intracellular studies and use it to construct a high-diversity phage display library. Using this library and affinity maturation techniques we identify VH domains with picomolar affinity against eIF4E, a protein commonly hyper-activated in cancer. We demonstrate that these molecules interact with eIF4E at the eIF4G binding site via a distinct structural pose. Intracellular overexpression of these miniproteins reduce cellular proliferation and expression of malignancy-related proteins in cancer cell lines. The linkage of high-diversity in vitro libraries with an intracellularly expressible miniprotein scaffold will facilitate the discovery of VH domains suitable for intracellular applications.
Collapse
Affiliation(s)
- Yuri Frosi
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore
- Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Yen-Chu Lin
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore
- Insilico Medicine Taiwan Ltd., Taipei City, 110208, Taiwan
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei City, 112304, Taiwan
| | - Jiang Shimin
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore
- Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Siti Radhiah Ramlan
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore
- Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Kelly Hew
- DotBio Pte. Ltd., 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Alf Henrik Engman
- DotBio Pte. Ltd., 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Anil Pillai
- DotBio Pte. Ltd., 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Kit Yeung
- DotBio Pte. Ltd., 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Yue Xiang Cheng
- DotBio Pte. Ltd., 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Tobias Cornvik
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Par Nordlund
- DotBio Pte. Ltd., 1 Research Link, Singapore, 117604, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Megan Goh
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum Quarter 7B-C Solnavägen 9, 17165, Solna, Sweden
| | - Zachary P Gates
- Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), A*STAR, 8 A Biomedical Grove, #07-01 Neuros Building, 138665, Singapore, Singapore
| | - Chandra S Verma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore, Singapore
| | - Dawn Thean
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore
| | - David P Lane
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore
| | - Ignacio Asial
- DotBio Pte. Ltd., 1 Research Link, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore.
| | - Christopher J Brown
- p53 Laboratory (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore.
- Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore.
| |
Collapse
|
32
|
Chemical biology and pharmacology of histone lysine methylation inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194840. [PMID: 35753676 DOI: 10.1016/j.bbagrm.2022.194840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/20/2022]
Abstract
Histone lysine methylation is a post-translational modification that plays a key role in the epigenetic regulation of a broad spectrum of biological processes. Moreover, the dysregulation of histone lysine methyltransferases (KMTs) has been implicated in the pathogenesis of several diseases particularly cancer. Due to their pathobiological importance, KMTs have garnered immense attention over the last decade as attractive therapeutic targets. These endeavors have culminated in tens of chemical probes that have been used to interrogate many aspects of histone lysine methylation. Besides, over a dozen inhibitors have been advanced to clinical trials, including the EZH2 inhibitor tazemetostat approved for the treatment of follicular lymphoma and advanced epithelioid sarcoma. In this Review, we highlight the chemical biology and pharmacology of KMT inhibitors and targeted protein degraders focusing on the clinical development of EZH1/2, DOT1L, Menin-MLL, and WDR5-MLL inhibitors. We also briefly discuss the pharmacologic targeting of other KMTs.
Collapse
|
33
|
Call for Manuscripts for ACS Pharmacology & Translational Science Review Series on Recommended Tool Compounds. ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE 2022; 5:516-517. [DOI: 10.1021/acsptsci.2c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
|
35
|
Abdul Sisak MA, Louis F, Miyao T, Lee SH, Chang YT, Matsusaki M. Mechanism assay of interaction between blood vessels-near infrared probe and cell surface marker proteins of endothelial cells. Mater Today Bio 2022; 15:100332. [PMID: 35795137 PMCID: PMC9251809 DOI: 10.1016/j.mtbio.2022.100332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/11/2022] Open
Abstract
In vivo blood vessels imaging is crucial to study blood vessels related diseases in real-time. For this purpose, fluorescent based imaging is one of the utmost techniques for imaging a living system. The discovery of a new near-infrared probe (CyA-B2) by screening chemical probe library in our previous report which showed the most specific binding on the blood capillaries of the 3D-tissue models give us interest to study more about the binding site of this probe to the surface of endothelial cells main component cell of blood capillaries. By studying the competition assays of CyA-B2 using several potential surface markers of endothelial cells found through the chemical database (ChEMBL) and manually selected, CD133 gave the lowest IC50 (half maximal inhibitory concentration) value. Hence, CD133 protein which is expressed on the endothelial cell membrane was postulated to be the binding site due to the suppression of CyA-B2 on the blood capillaries by the competition assays. Since, CD133 is also expressed on many types of cancer cells, it would be useful to use CyA-B2 as a bioprobe to monitor or diagnostic tumor growth.
Collapse
|
36
|
Gazzi T, Brennecke B, Atz K, Korn C, Sykes D, Forn-Cuni G, Pfaff P, Sarott RC, Westphal MV, Mostinski Y, Mach L, Wasinska-Kalwa M, Weise M, Hoare BL, Miljuš T, Mexi M, Roth N, Koers EJ, Guba W, Alker A, Rufer AC, Kusznir EA, Huber S, Raposo C, Zirwes EA, Osterwald A, Pavlovic A, Moes S, Beck J, Nettekoven M, Benito-Cuesta I, Grande T, Drawnel F, Widmer G, Holzer D, van der Wel T, Mandhair H, Honer M, Fingerle J, Scheffel J, Broichhagen J, Gawrisch K, Romero J, Hillard CJ, Varga ZV, van der Stelt M, Pacher P, Gertsch J, Ullmer C, McCormick PJ, Oddi S, Spaink HP, Maccarrone M, Veprintsev DB, Carreira EM, Grether U, Nazaré M. Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe. Chem Sci 2022; 13:5539-5545. [PMID: 35694350 PMCID: PMC9116301 DOI: 10.1039/d1sc06659e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/22/2022] [Indexed: 12/16/2022] Open
Abstract
Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.
Collapse
Affiliation(s)
- Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Benjamin Brennecke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Kenneth Atz
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Claudia Korn
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - David Sykes
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | | | - Patrick Pfaff
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Roman C Sarott
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Matthias V Westphal
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Malgorzata Wasinska-Kalwa
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Marie Weise
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Bradley L Hoare
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Tamara Miljuš
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Maira Mexi
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Nicolas Roth
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London London EC1M 6BQ England UK
| | - Eline J Koers
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - André Alker
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Arne C Rufer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Eric A Kusznir
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Sylwia Huber
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Catarina Raposo
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Elisabeth A Zirwes
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Anja Osterwald
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Anto Pavlovic
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Svenja Moes
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jennifer Beck
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Matthias Nettekoven
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Irene Benito-Cuesta
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Faye Drawnel
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Gabriella Widmer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Daniela Holzer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University 2333 CC Leiden the Netherlands
| | - Harpreet Mandhair
- Institute of Biochemistry and Molecular Medicine, University of Bern 3012 Bern Switzerland
| | - Michael Honer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jürgen Fingerle
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Berlin Germany
- Allergology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP Berlin Germany
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Klaus Gawrisch
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Zoltan V Varga
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University 1085 Budapest Hungary
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University 2333 CC Leiden the Netherlands
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern 3012 Bern Switzerland
| | - Christoph Ullmer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London London EC1M 6BQ England UK
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo 64100 Teramo European Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation 00179 Rome Italy
| | - Herman P Spaink
- Leiden University Einsteinweg 55 2333 CC Leiden the Netherlands
| | - Mauro Maccarrone
- European Center for Brain Research (CERC), Santa Lucia Foundation 00179 Rome Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila 67100 L'Aquila Italy
| | - Dmitry B Veprintsev
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| |
Collapse
|
37
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
38
|
Abstract
Wnt signaling pathways have been extensively studied in the context of several diseases, including cancer, coronary artery disease, and age-related disorders. β-Catenin plays a central role in the most studied Wnt pathways, the Wnt/β-catenin signaling pathway, commonly referred to as the canonical Wnt signaling pathway. β-catenin is a substrate of glycogen synthase kinase 3β (GSK-3β), and the phosphorylated β-catenin by GSK-3β can be degraded by the proteasome through ubiquitination. Thus, GSK-3β inhibitors have become a widely used chemical biology tool to study the canonical Wnt signaling pathway. Among the varied GSK-3β inhibitors, a compound known as CHIR-99021 is one of the most widely used. Although these inhibitors contribute greatly to our understanding of the canonical Wnt pathway, certain pitfalls associated with such an approach may have been overlooked. In many published studies, micromolar concentrations of CHIR-99021 are used to activate the canonical Wnt pathway. Although CHIR-99021 is a specific GSK-3β inhibitor, it specifically inhibits the kinase at the nanomolar level. Therefore, caution is required when micromolar levels of CHIR-99021 are used for the purpose of activating the canonical Wnt signaling pathway.
Collapse
|
39
|
Vu V, Szewczyk MM, Nie DY, Arrowsmith CH, Barsyte-Lovejoy D. Validating Small Molecule Chemical Probes for Biological Discovery. Annu Rev Biochem 2022; 91:61-87. [PMID: 35363509 DOI: 10.1146/annurev-biochem-032620-105344] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada;
| | - David Y Nie
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada; .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Daniels MH, Malojcic G, Clugston SL, Williams B, Coeffet-Le Gal M, Pan-Zhou XR, Venkatachalan S, Harmange JC, Ledeboer M. Discovery and Optimization of Highly Selective Inhibitors of CDK5. J Med Chem 2022; 65:3575-3596. [PMID: 35143203 DOI: 10.1021/acs.jmedchem.1c02069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic human disease, but to date, only one therapy (tolvaptan) is approved to treat kidney cysts in ADPKD patients. Cyclin-dependent kinase 5 (CDK5), an atypical member of the cyclin-dependent kinase family, has been implicated as a target for treating ADPKD. However, no compounds have been disclosed to date that selectively inhibit CDK5 while sparing the broader CDK family members. Herein, we report the discovery of CDK5 inhibitors, including GFB-12811, that are highly selective over the other tested kinases. In cellular assays, our compounds demonstrate CDK5 target engagement while avoiding anti-proliferative effects associated with inhibiting other CDKs. In addition, we show that the compounds in this series exhibit promising in vivo PK profiles, enabling their use as tool compounds for interrogating the role of CDK5 in ADPKD and other diseases.
Collapse
Affiliation(s)
- Matthew H Daniels
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Goran Malojcic
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Susan L Clugston
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Brett Williams
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | - Xin-Ru Pan-Zhou
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | | | - Mark Ledeboer
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
41
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Gummer JP, Olasz B, Nambiar S, Hope DE, Casey TH, Lee YCG, Leslie C, Nealon G, Shackleford DM, Powell AK, Grimaldi M, Balaguer P, Zemek RM, Bosco A, Piggott MJ, Vrielink A, Lake RA, Lesterhuis WJ. PPARα and PPARγ activation is associated with pleural mesothelioma invasion but therapeutic inhibition is ineffective. iScience 2022; 25:103571. [PMID: 34984327 PMCID: PMC8692993 DOI: 10.1016/j.isci.2021.103571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.
Collapse
Affiliation(s)
- M. Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Catherine A. Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, WA 6009, Australia
| | - Emma de Jong
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | | | - Joel P.A. Gummer
- School of Science, Department of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bence Olasz
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Shabarinath Nambiar
- School of Veterinary and Life Science, Murdoch University, Murdoch, WA 6150, Australia
| | - Danika E. Hope
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Thomas H. Casey
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Y. C. Gary Lee
- Institute for Respiratory Health, Nedlands, WA 6009, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Andrew K. Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Matthew J. Piggott
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Richard A. Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - W. Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| |
Collapse
|
42
|
Mondal M, Conole D, Nautiyal J, Tate EW. UCHL1 as a novel target in breast cancer: emerging insights from cell and chemical biology. Br J Cancer 2022; 126:24-33. [PMID: 34497382 PMCID: PMC8727673 DOI: 10.1038/s41416-021-01516-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer has the highest incidence and death rate among cancers in women worldwide. In particular, metastatic estrogen receptor negative (ER-) breast cancer and triple-negative breast cancer (TNBC) subtypes have very limited treatment options, with low survival rates. Ubiquitin carboxyl terminal hydrolase L1 (UCHL1), a ubiquitin C-terminal hydrolase belonging to the deubiquitinase (DUB) family of enzymes, is highly expressed in these cancer types, and several key reports have revealed emerging and important roles for UCHL1 in breast cancer. However, selective and potent small-molecule UCHL1 inhibitors have been disclosed only very recently, alongside chemical biology approaches to detect regulated UHCL1 activity in cancer cells. These tools will enable novel insights into oncogenic mechanisms driven by UCHL1, and identification of substrate proteins deubiquitinated by UCHL1, with the ultimate goal of realising the potential of UCHL1 as a drug target in breast cancer.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Chemistry, Imperial College London, London, UK
| | - Daniel Conole
- Department of Chemistry, Imperial College London, London, UK
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London, UK.
| |
Collapse
|
43
|
Sacilotto N, Dessanti P, Lufino MMP, Ortega A, Rodríguez-Gimeno A, Salas J, Maes T, Buesa C, Mascaró C, Soliva R. Comprehensive in Vitro Characterization of the LSD1 Small Molecule Inhibitor Class in Oncology. ACS Pharmacol Transl Sci 2021; 4:1818-1834. [PMID: 34927013 DOI: 10.1021/acsptsci.1c00223] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 01/10/2023]
Abstract
Lysine-specific demethylase 1 (LSD1 or KDM1A) is a chromatin modifying enzyme playing a key role in the cell cycle and cell differentiation and proliferation through the demethylation of histones and nonhistone substrates. In addition to its enzymatic activity, LSD1 plays a fundamental scaffolding role as part of transcription silencing complexes such as rest co-repressor (CoREST) and nucleosome remodeling and deacetylase (NuRD). A host of classical amine oxidase inhibitors such as tranylcypromine, pargyline, and phenelzine together with LSD1 tool compounds such as SP-2509 and GSK-LSD1 have been extensively utilized in LSD1 mechanistic cancer studies. Additionally, several optimized new chemical entities have reached clinical trials in oncology such as ORY-1001 (iadademstat), GSK2879552, SP-2577 (seclidemstat), IMG-7289 (bomedemstat), INCB059872, and CC-90011 (pulrodemstat). Despite this, no single study exists that characterizes them all under the same experimental conditions, preventing a clear interpretation of published results. Herein, we characterize the whole LSD1 small molecule compound class as inhibitors of LSD1 catalytic activity, disruptors of SNAIL/GFI1 (SNAG)-scaffolding protein-protein interactions, inducers of cell differentiation, and potential anticancer treatments for hematological and solid tumors to yield an updated, unified perspective of this field. Our results highlight significant differences in potency and selectivity among the clinical compounds with iadademstat being the most potent and reveal that most of the tool compounds have very low activity and selectivity, suggesting some conclusions derived from their use should be taken with caution.
Collapse
Affiliation(s)
- Natalia Sacilotto
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Paola Dessanti
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Michele M P Lufino
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Alberto Ortega
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | | | - Jordi Salas
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Tamara Maes
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Carlos Buesa
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Cristina Mascaró
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| | - Robert Soliva
- Oryzon Genomics S.A., Carrer Sant Ferran 74, Cornellà de Llobregat, 08940 Barcelona, Spain
| |
Collapse
|
44
|
Bonnet C, González S, Roberts JS, Robertson SYT, Ruiz M, Zheng J, Deng SX. Human limbal epithelial stem cell regulation, bioengineering and function. Prog Retin Eye Res 2021; 85:100956. [PMID: 33676006 PMCID: PMC8428188 DOI: 10.1016/j.preteyeres.2021.100956] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
The corneal epithelium is continuously renewed by limbal stem/progenitor cells (LSCs), a cell population harbored in a highly regulated niche located at the limbus. Dysfunction and/or loss of LSCs and their niche cause limbal stem cell deficiency (LSCD), a disease that is marked by invasion of conjunctival epithelium into the cornea and results in failure of epithelial wound healing. Corneal opacity, pain, loss of vision, and blindness are the consequences of LSCD. Successful treatment of LSCD depends on accurate diagnosis and staging of the disease and requires restoration of functional LSCs and their niche. This review highlights the major advances in the identification of potential LSC biomarkers and components of the LSC niche, understanding of LSC regulation, methods and regulatory standards in bioengineering of LSCs, and diagnosis and staging of LSCD. Overall, this review presents key points for researchers and clinicians alike to consider in deepening the understanding of LSC biology and improving LSCD therapies.
Collapse
Affiliation(s)
- Clémence Bonnet
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA; Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014, Paris, France
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - JoAnn S Roberts
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sarah Y T Robertson
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Maxime Ruiz
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jie Zheng
- Basic Science Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sophie X Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
45
|
Antolin AA, Clarke PA, Collins I, Workman P, Al-Lazikani B. Evolution of kinase polypharmacology across HSP90 drug discovery. Cell Chem Biol 2021; 28:1433-1445.e3. [PMID: 34077750 PMCID: PMC8550792 DOI: 10.1016/j.chembiol.2021.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
Most small molecules interact with several target proteins but this polypharmacology is seldom comprehensively investigated or explicitly exploited during drug discovery. Here, we use computational and experimental methods to identify and systematically characterize the kinase cross-pharmacology of representative HSP90 inhibitors. We demonstrate that the resorcinol clinical candidates ganetespib and, to a lesser extent, luminespib, display unique off-target kinase pharmacology as compared with other HSP90 inhibitors. We also demonstrate that polypharmacology evolved during the optimization to discover luminespib and that the hit, leads, and clinical candidate all have different polypharmacological profiles. We therefore recommend the computational and experimental characterization of polypharmacology earlier in drug discovery projects to unlock new multi-target drug design opportunities.
Collapse
Affiliation(s)
- Albert A Antolin
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| | - Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| | - Bissan Al-Lazikani
- Department of Data Science, The Institute of Cancer Research, London SM2 5NG, UK; Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
46
|
Tang C, Niu Q, Cicka D, Du Y, Mo X, Fu H. A time-resolved fluorescence resonance energy transfer screening assay for discovery of protein-protein interaction modulators. STAR Protoc 2021; 2:100804. [PMID: 34527960 PMCID: PMC8433285 DOI: 10.1016/j.xpro.2021.100804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein-protein interactions (PPIs) have emerged as promising yet challenging therapeutic targets. A robust bioassay is required for rapid PPI modulator discovery. Here, we present a time-resolved Förster's (fluorescence) resonance energy transfer assay protocol for PPI modulator screening in a 1536-well plate format. We use hypomorph SMAD4R361H-SMAD3 PPI as an example to illustrate the application of the protocol for screening of variant-directed PPI inducers. This platform can be readily adapted for the discovery of both small-molecule PPI inducers and inhibitors. For complete details on the use and execution of this protocol, please refer to Tang et al. (2020).
Collapse
Affiliation(s)
- Cong Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shannxi 710061, P.R. China
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Danielle Cicka
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
47
|
Clegg MA, Theodoulou NH, Bamborough P, Chung CW, Craggs PD, Demont EH, Gordon LJ, Liwicki GM, Phillipou A, Tomkinson NCO, Prinjha RK, Humphreys PG. Optimization of Naphthyridones into Selective TATA-Binding Protein Associated Factor 1 (TAF1) Bromodomain Inhibitors. ACS Med Chem Lett 2021; 12:1308-1317. [PMID: 34413961 DOI: 10.1021/acsmedchemlett.1c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
Bromodomain containing proteins and the acetyl-lysine binding bromodomains contained therein are increasingly attractive targets for the development of novel epigenetic therapeutics. To help validate this target class and unravel the complex associated biology, there has been a concerted effort to develop selective small molecule bromodomain inhibitors. Herein we describe the structure-based efforts and multiple challenges encountered in optimizing a naphthyridone template into selective TAF1(2) bromodomain inhibitors which, while unsuitable as chemical probes themselves, show promise for the future development of small molecules to interrogate TAF1(2) biology. Key to this work was the introduction and modulation of the basicity of a pendant amine which had a substantial impact on not only bromodomain selectivity but also cellular target engagement.
Collapse
Affiliation(s)
- Michael A. Clegg
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Natalie H. Theodoulou
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Paul Bamborough
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Chun-wa Chung
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter D. Craggs
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | | | - Laurie J. Gordon
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Gemma M. Liwicki
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Alex Phillipou
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Nicholas C. O. Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rab K. Prinjha
- GlaxoSmithKline R&D, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | | |
Collapse
|
48
|
Conformational plasticity of the ULK3 kinase domain. Biochem J 2021; 478:2811-2823. [PMID: 34190988 DOI: 10.1042/bcj20210257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/11/2023]
Abstract
The human protein kinase ULK3 regulates the timing of membrane abscission, thus being involved in exosome budding and cytokinesis. Herein, we present the first high-resolution structures of the ULK3 kinase domain. Its unique features are explored against the background of other ULK kinases. An inhibitor fingerprint indicates that ULK3 is highly druggable and capable of adopting a wide range of conformations. In accordance with this, we describe a conformational switch between the active and an inactive ULK3 conformation, controlled by the properties of the attached small-molecule binder. Finally, we discuss a potential substrate-recognition mechanism of the full-length ULK3 protein.
Collapse
|
49
|
Bhattacharjee D, Balabhaskararao K, Jain N. Mutant IDH1 inhibitors activate pSTAT3-Y705 leading to an increase in BCAT1 and YKL-40 levels in mutant IDH1-expressing cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119114. [PMID: 34329662 DOI: 10.1016/j.bbamcr.2021.119114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/01/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
IDH1 mutations are frequent and early events in gliomas. Mutant IDH1 produces D-2HG that causes epigenetic changes by increasing histone and DNA methylations, thereby contributing to tumor growth. Mutant IDH1 rewires metabolism and endows a few therapeutic vulnerabilities in cells. But, mutant IDH1 inhibitor(s) treatments reverse these therapeutic vulnerabilities by increasing cell growth. Nevertheless, it is unclear how mutant IDH1 inhibitor(s) increases cell growth. As mutant IDH1 inhibitor(s) increase cell growth, therefore we asked whether mutant IDH1 inhibitor(s) activate oncogenes in mutant IDH1-expressing cells. To answer this question, we used allosteric mutant IDH1 inhibitors to treat mutant IDH1-expressing HT1080 cells, and examined for activation of oncogenes by assessing the levels of our read-outs: BCAT1 and YKL-40. We found that mutant IDH1 inhibitors' treatments increased BCAT1 and YKL-40 levels in HT1080 cells. Next, we observed that mutant IDH1 inhibitors activated STAT3 by phosphorylation at Tyr-705 position (pSTAT3-Y705) and its nuclear translocation. Upon examining the molecular mechanism of pSTAT3-Y705 activation in mutant IDH1 inhibitor-treated cells, we found that mutant IDH1 strongly bound STAT3, but mutant IDH1 inhibitor treatment decreased mutant IDH1-STAT3 binding. Furthermore, we observed that STAT3-knockdown and pharmacological inhibition of STAT3 attenuated the mutant IDH1 inhibitor-mediated increase in BCAT1 and YKL-40 levels, whereas STAT3 overexpression and Interleukin-6 (STAT3 activator) treatments increased BCAT1 and YKL-40 levels. We conclude that mutant IDH1 inhibitors activate the oncogenic transcription factor-STAT3 leading to an increase in BCAT1 and YKL-40 levels in mutant IDH1-expressing cells.
Collapse
Affiliation(s)
- Debanjan Bhattacharjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kancharana Balabhaskararao
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
50
|
Transcriptomics-Based Phenotypic Screening Supports Drug Discovery in Human Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13153780. [PMID: 34359681 PMCID: PMC8345128 DOI: 10.3390/cancers13153780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) remains a particularly challenging cancer, with an aggressive phenotype and few promising treatment options. Future therapy will rely heavily on diagnosing and targeting aggressive GBM cellular phenotypes, both before and after drug treatment, as part of personalized therapy programs. Here, we use a genome-wide drug-induced gene expression (DIGEX) approach to define the cellular drug response phenotypes associated with two clinical drug candidates, the phosphodiesterase 10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib. We identify genes encoding specific drug targets, some of which we validate as effective antiproliferative agents and combination therapies in human GBM cell models, including HMGCoA reductase (HMGCR), salt-inducible kinase 1 (SIK1), bradykinin receptor subtype B2 (BDKRB2), and Janus kinase isoform 2 (JAK2). Individual, personalized treatments will be essential if we are to address and overcome the pharmacological plasticity that GBM exhibits, and DIGEX will play a central role in validating future drugs, diagnostics, and possibly vaccine candidates for this challenging cancer. Abstract We have used three established human glioblastoma (GBM) cell lines—U87MG, A172, and T98G—as cellular systems to examine the plasticity of the drug-induced GBM cell phenotype, focusing on two clinical drugs, the phosphodiesterase PDE10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib, using genome-wide drug-induced gene expression (DIGEX) to examine the drug response. Both drugs upregulate genes encoding specific growth factors, transcription factors, cellular signaling molecules, and cell surface proteins, while downregulating a broad range of targetable cell cycle and apoptosis-associated genes. A few upregulated genes encode therapeutic targets already addressed by FDA approved drugs, but the majority encode targets for which there are no approved drugs. Amongst the latter, we identify many novel druggable targets that could qualify for chemistry-led drug discovery campaigns. We also observe several highly upregulated transmembrane proteins suitable for combined drug, immunotherapy, and RNA vaccine approaches. DIGEX is a powerful way of visualizing the complex drug response networks emerging during GBM drug treatment, defining a phenotypic landscape which offers many new diagnostic and therapeutic opportunities. Nevertheless, the extreme heterogeneity we observe within drug-treated cells using this technique suggests that effective pan-GBM drug treatment will remain a significant challenge for many years to come.
Collapse
|