1
|
Yao Y, Liu Y, Lu B, Ji G, Wang L, Dong K, Zhao Z, Lyu D, Wei M, Tu S, Lyu X, Li Y, Huang R, Zhou W, Xu G, Pan X, Cui X. Construction and validation of a regulatory T cells-based classification of renal cell carcinoma: an integrated bioinformatic analysis and clinical cohort study. Cell Oncol (Dordr) 2025; 48:591-615. [PMID: 39714755 PMCID: PMC12119669 DOI: 10.1007/s13402-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 12/24/2024] Open
Abstract
PURPOSE Renal cell carcinoma (RCC), exhibiting remarkable heterogeneity, can be highly infiltrated by regulatory T cells (Tregs). However, the relationship between Treg and the heterogeneity of RCC remains to be explored. METHODS We acquired single-cell RNA-seq profiles and 537 bulk RNA-seq profiles of TCGA-KIRC cohort. Through clustering, monocle2 pseudotime and prognostic analyses, we identified Treg states-related prognostic genes (TSRPGs), then constructing the RCC Treg states-related prognostic classification (RCC-TSC). We also explored its prognostic significance and multi-omics landmarks. Additionally, we utilized correlation analysis to establish regulatory networks, and predicted candidate inhibitors. More importantly, in Xinhua cohort of 370 patients with kidney neoplasm, we used immunohistochemical (IHC) staining for classification, then employing statistical analyses including Chi-square tests and multivariate Cox proportional hazards regression analysis to explore its clinical relevance. RESULTS We defined 44 TSRPGs in four different monocle states, and identified high immune infiltration RCC (HIRC, LAG3+, Mki67+) as the highly exhausted subtype with the worst prognosis in RCC-TSC (p < 0.001). BATF-LAG3-immune cells axis might be its underlying metastasis-related mechanism. Immunotherapy and inhibitors including sunitinib potentially conferred best therapeutic effects for HIRC. Furthermore, we successfully validated HIRC subtype as an independent prognostic factor within the Xinhua cohort (OS, HR = 16.68, 95% CI = 1.88-148.1, p = 0.011; PFS, HR = 4.43, 95% CI = 1.55-12.6, p = 0.005). CONCLUSION Through integrated bioinformatics analysis and a large-sample retrospective clinical study, we successfully established RCC-TSC and a diagnostic kit, which could stratify RCC patients with different prognosis and to guide personalized treatment.
Collapse
Affiliation(s)
- Yuntao Yao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guo Ji
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Keqin Dong
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zihui Zhao
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Donghao Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maodong Wei
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Siqi Tu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xukun Lyu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yuanan Li
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Guofeng Xu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Mahyari E, Boggy GJ, McElfresh GW, Kaza M, Benjamin S, Varco-Merth B, Ojha S, Feltham S, Goodwin W, Nkoy C, Duell D, Selseth A, Bennett T, Barber-Axthelm A, Smedley JV, Labriola CS, Axthelm MK, Reeves RK, Okoye AA, Hansen SG, Picker LJ, Bimber BN. Enhanced interpretation of immune cell phenotype and function through a rhesus macaque single-cell atlas. CELL GENOMICS 2025; 5:100849. [PMID: 40233746 DOI: 10.1016/j.xgen.2025.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/17/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) allows cell classification using genome-wide transcriptional state; however, high-dimensional transcriptomic profiles, and the unsupervised analyses employed to interpret them, provide a systematically different view of biology than well-established functional/lineage definitions of immunocytes. Understanding these differences and limits is essential for accurate interpretation of these rich data. We present the Rhesus Immune Reference Atlas (RIRA), the first immune-focused macaque single-cell multi-tissue atlas. We contrasted transcriptional profiles against immune lineages, using surface protein and marker genes as ground truth. While the pattern of clustering can align with cell type, this is not always true. Especially within T and natural killer (NK) cells, many functionally distinct subsets lack defining markers, and strong shared expression programs, such as cytotoxicity, result in systematic intermingling by unsupervised clustering. We identified gene programs with high discriminatory/diagnostic value, including multi-gene signatures that model T/NK cell maturation. Directly measuring these diagnostic programs complements unsupervised analyses.
Collapse
Affiliation(s)
- Eisa Mahyari
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Gregory J Boggy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - G W McElfresh
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Maanasa Kaza
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sebastian Benjamin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Benjamin Varco-Merth
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sohita Ojha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Shana Feltham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - William Goodwin
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Candice Nkoy
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Derick Duell
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Andrea Selseth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Tyler Bennett
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Aaron Barber-Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jeremy V Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Caralyn S Labriola
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Afam A Okoye
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Louis J Picker
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
3
|
Coyle KM, Dreval K, Hodson DJ, Morin RD. Audit of B-cell cancer genes. Blood Adv 2025; 9:2019-2031. [PMID: 39853274 PMCID: PMC12034075 DOI: 10.1182/bloodadvances.2022009461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
ABSTRACT Comprehensive genetic analysis of tumors with exome or whole-genome sequencing has enabled the identification of the genes that are recurrently mutated in cancer. This has stimulated a series of exciting advances over the past 15 years, guiding us to new molecular biomarkers and therapeutic targets among the common mature B-cell neoplasms. In particular, diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL), and Burkitt lymphoma (BL) have each been the subject of considerable attention in this field. Currently, >850 genes have been reported as targets of protein-coding mutations in at least 1 of these entities. To reduce this to a manageable size, we describe a systematic approach to prioritize and categorize these genes, based on the quality and type of supporting data. For each entity, we provide a list of candidate driver genes categorized into Tier 1 (high-confidence genes), Tier 2 (candidate driver genes), or Tier 3 (lowest-confidence genes). Collectively, this reduces the number of high-confidence genes for these 3 lymphomas to a mere 144. This further affirms the substantial overlap between the genes relevant in DLBCL and each of FL and BL. These highly curated and annotated gene lists will continue to be maintained as a resource to the community. These results emphasize the extent of the knowledge gap regarding the role of each of these genes in lymphomagenesis. We offer our perspective on how to accelerate the experimental confirmation of drivers using a variety of model systems, using these lists as a guide for prioritizing genes.
Collapse
Affiliation(s)
- Krysta M. Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kostiantyn Dreval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Daniel J. Hodson
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
4
|
Nix MN, Gourisankar S, Sarott RC, Dwyer BG, Nettles SA, Martinez MM, Abuzaid H, Yang H, Wang Y, Simanauskaite JM, Romero BA, Jones HM, Krokhotin A, Lowensohn TN, Chen L, Low C, Davis MM, Fernandez D, Zhang T, Green MR, Hinshaw SM, Gray NS, Crabtree GR. A Bivalent Molecular Glue Linking Lysine Acetyltransferases to Oncogene-induced Cell Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643404. [PMID: 40166243 PMCID: PMC11956963 DOI: 10.1101/2025.03.14.643404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Developing cancer therapies that induce robust death of the malignant cell is critical to prevent relapse. Highly effective strategies, such as immunotherapy, exemplify this observation. Here we provide the structural and molecular underpinnings for an approach that leverages chemical induced proximity to produce specific cell killing of diffuse large B cell lymphoma, the most common non-Hodgkin's lymphoma. We develop KAT-TCIPs (lysine acetyltransferase transcriptional/epigenetic chemical inducers of proximity) that redirect p300 and CBP to activate programmed cell death genes normally repressed by the oncogenic driver, BCL6. Acute treatment rapidly reprograms the epigenome to initiate apoptosis and repress c-MYC. The crystal structure of the chemically induced p300-BCL6 complex reveals how chance interactions between the two proteins can be systematically exploited to produce the exquisite potency and selectivity of KAT-TCIPs. Thus, the malignant function of an oncogenic driver can be co-opted to activate robust cell death, with implications for precision epigenetic therapies.
Collapse
Affiliation(s)
- Meredith N. Nix
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Roman C. Sarott
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Brendan G. Dwyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | - Michael M. Martinez
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hind Abuzaid
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Haopeng Yang
- Department of Lymphoma- & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanlan Wang
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Bryan A. Romero
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hannah M. Jones
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | | | - Lei Chen
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Cara Low
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Daniel Fernandez
- Macromolecular Structure, Nucleus at Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Michael R. Green
- Department of Lymphoma- & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen M. Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Gerald R. Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Chen Z, Zeng C, Yang L, Che Y, Chen M, Sau L, Wang B, Zhou K, Chen Y, Qing Y, Shen C, Zhang T, Wunderlich M, Wu D, Li W, Wang K, Leung K, Sun M, Tang T, He X, Zhang L, Swaminathan S, Mulloy JC, Müschen M, Huang H, Weng H, Xiao G, Deng X, Chen J. YTHDF2 promotes ATP synthesis and immune evasion in B cell malignancies. Cell 2025; 188:331-351.e30. [PMID: 39694037 DOI: 10.1016/j.cell.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/21/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
Long-term durable remission in patients with B cell malignancies following chimeric antigen receptor (CAR)-T cell immunotherapy remains unsatisfactory, often due to antigen escape. Malignant B cell transformation and oncogenic growth relies on efficient ATP synthesis, although the underlying mechanisms remain unclear. Here, we report that YTHDF2 facilitates energy supply and antigen escape in B cell malignancies, and its overexpression alone is sufficient to cause B cell transformation and tumorigenesis. Mechanistically, YTHDF2 functions as a dual reader where it stabilizes mRNAs as a 5-methylcytosine (m5C) reader via recruiting PABPC1, thereby enhancing their expression and ATP synthesis. Concomitantly, YTHDF2 also promotes immune evasion by destabilizing other mRNAs as an N6-methyladenosine (m6A) reader. Small-molecule-mediated targeting of YTHDF2 suppresses aggressive B cell malignancies and sensitizes them to CAR-T cell therapy.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA.
| | - Chengwu Zeng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA; Jinan University Institute of Hematology, and Department of Hematology, The Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou 510700, China
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Yuan Che
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Meiling Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA; Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Lillian Sau
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Bintao Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Yu Chen
- Molecular Instrumentation Center, University of California, Los Angeles, CA 90095, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Tingjian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Miao Sun
- Keck School of Medicine, University of Southern California, and Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tingting Tang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Xin He
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lianjun Zhang
- Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, and Department of Immunobiology, Yale University, New Haven, CT 06511, USA
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Hengyou Weng
- Guangzhou Laboratory, Guangzhou, Guangdong 510005, China
| | - Gang Xiao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Center for RNA Biology and Therapeutics, City of Hope Beckman Research Institute, Duarte, CA 91010, USA.
| |
Collapse
|
6
|
Ji Y, Li B, Lin R, Yuan J, Han Y, Du Y, Zhao Y. Super-enhancers in tumors: unraveling recent advances in their role in Oncogenesis and the emergence of targeted therapies. J Transl Med 2025; 23:98. [PMID: 39838405 PMCID: PMC11753147 DOI: 10.1186/s12967-025-06098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Super enhancers are a unique class of enhancers that possess a distinct structure and mechanism, which enable them to exhibit stronger gene transcription regulatory function than classical enhancers, thereby regulating cellular activities. In tumor samples, super enhancers have been identified as crucial players in the development and progression of tumor cells, opening up new avenues for cancer research and treatment. This review provides a concise overview of various models regarding super enhancer assembly and activation, examining the mechanisms through which tumor cells acquire or activate these enhancers and regulate carcinogenic transcription programs. Furthermore, we discuss the current landscape and challenges in developing cancer therapeutic drugs that target super enhancers.
Collapse
Affiliation(s)
- Yumeng Ji
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baixue Li
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rongjin Lin
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yang Han
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuping Du
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| | - Yang Zhao
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, P.R. China.
| |
Collapse
|
7
|
Inge M, Miller R, Hook H, Bray D, Keenan J, Zhao R, Gilmore T, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. Nucleic Acids Res 2024; 52:10276-10296. [PMID: 39166482 PMCID: PMC11417405 DOI: 10.1093/nar/gkae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here, we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced histone 3 lysine 27 acetylation (H3K27ac). Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data support clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- Melissa M Inge
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Rebekah Miller
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - David Bray
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Jessica L Keenan
- Department of Biology, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Rose Zhao
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| |
Collapse
|
8
|
Yu C, Shen Q, Holmes AB, Mo T, Tosato A, Soni RK, Corinaldesi C, Koul S, Pasqualucci L, Hussein S, Forouhar F, Dalla-Favera R, Basso K. MEF2B C-terminal mutations enhance transcriptional activity and stability to drive B cell lymphomagenesis. Nat Commun 2024; 15:7195. [PMID: 39179580 PMCID: PMC11343756 DOI: 10.1038/s41467-024-51644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The myocyte enhancer factor 2B (MEF2B) transcription factor is frequently mutated in germinal center (GC)-derived B-cell lymphomas. Its ammino (N)-terminal mutations drive lymphomagenesis by escaping interaction with transcriptional repressors, while the function of carboxy (C)-terminal mutations remains to be elucidated. Here, we show that MEF2B C-tail is physiologically phosphorylated at specific residues and phosphorylation at serine (S)324 is impaired by lymphoma-associated mutations. Lack of phosphorylation at S324 enhances the interaction of MEF2B with the SWI/SNF chromatin remodeling complex, leading to higher transcriptional activity. In addition, these mutants show an increased protein stability due to impaired interaction with the CUL3/KLHL12 ubiquitin complex. Mice expressing a phosphorylation-deficient lymphoma-associated MEF2B mutant display GC enlargement and develop GC-derived lymphomas, when crossed with Bcl2 transgenic mice. These results unveil converging mechanisms of action for a diverse spectrum of MEF2B mutations, all leading to its dysregulation and GC B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Qiong Shen
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Tongwei Mo
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Anna Tosato
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Sanjay Koul
- Department of Biological Sciences & Geology, Queensborough Community College, City University of New York, Bayside, New York, NY, USA
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Shafinaz Hussein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, NY, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
- Departments of Microbiology & Immunology, Genetics & Development, Columbia University, New York, NY, USA.
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Hoang NM, Liu Y, Bates PD, Heaton AR, Lopez AF, Liu P, Zhu F, Chen R, Kondapelli A, Zhang X, Selberg PE, Ngo VN, Skala MC, Capitini CM, Rui L. Targeting DNMT3A-mediated oxidative phosphorylation to overcome ibrutinib resistance in mantle cell lymphoma. Cell Rep Med 2024; 5:101484. [PMID: 38554704 PMCID: PMC11031386 DOI: 10.1016/j.xcrm.2024.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib achieves a remarkable clinical response in mantle cell lymphoma (MCL). Acquired drug resistance, however, is significant and affects long-term survival of MCL patients. Here, we demonstrate that DNA methyltransferase 3A (DNMT3A) is involved in ibrutinib resistance. We find that DNMT3A expression is upregulated upon ibrutinib treatment in ibrutinib-resistant MCL cells. Genetic and pharmacological analyses reveal that DNMT3A mediates ibrutinib resistance independent of its DNA-methylation function. Mechanistically, DNMT3A induces the expression of MYC target genes through interaction with the transcription factors MEF2B and MYC, thus mediating metabolic reprogramming to oxidative phosphorylation (OXPHOS). Targeting DNMT3A with low-dose decitabine inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting DNMT3A-mediated metabolic reprogramming to OXPHOS with decitabine provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory MCL.
Collapse
Affiliation(s)
- Nguyet-Minh Hoang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul D Bates
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Alexa R Heaton
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Angelica F Lopez
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706, USA
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Fen Zhu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Ruoyu Chen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Apoorv Kondapelli
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Xiyu Zhang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul E Selberg
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Vu N Ngo
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Melissa C Skala
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706, USA
| | - Christian M Capitini
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
10
|
Layden HM, Ellis JD, Bomber ML, Bartlett LN, Hiebert SW, Stengel KR. Mutant FOXO1 controls an oncogenic network via enhancer accessibility. CELL GENOMICS 2024; 4:100537. [PMID: 38604128 PMCID: PMC11019358 DOI: 10.1016/j.xgen.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/21/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Transcriptional dysregulation is a hallmark of diffuse large B cell lymphoma (DLBCL), as transcriptional regulators are frequently mutated. However, our mechanistic understanding of how normal transcriptional programs are co-opted in DLBCL has been hindered by a lack of methodologies that provide the temporal resolution required to separate direct and indirect effects on transcriptional control. We applied a chemical-genetic approach to engineer the inducible degradation of the transcription factor FOXO1, which is recurrently mutated (mFOXO1) in DLBCL. The combination of rapid degradation of mFOXO1, nascent transcript detection, and assessment of chromatin accessibility allowed us to identify the direct targets of mFOXO1. mFOXO1 was required to maintain accessibility at specific enhancers associated with multiple oncogenes, and mFOXO1 degradation impaired RNA polymerase pause-release at some targets. Wild-type FOXO1 appeared to weakly regulate many of the same targets as mFOXO1 and was able to complement the degradation of mFOXO1 in the context of AKT inhibition.
Collapse
Affiliation(s)
- Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacob D Ellis
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Luke N Bartlett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA.
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY, USA.
| |
Collapse
|
11
|
Inge MM, Miller R, Hook H, Bray D, Keenan JL, Zhao R, Gilmore TD, Siggers T. Rapid profiling of transcription factor-cofactor interaction networks reveals principles of epigenetic regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588333. [PMID: 38617258 PMCID: PMC11014505 DOI: 10.1101/2024.04.05.588333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Transcription factor (TF)-cofactor (COF) interactions define dynamic, cell-specific networks that govern gene expression; however, these networks are understudied due to a lack of methods for high-throughput profiling of DNA-bound TF-COF complexes. Here we describe the Cofactor Recruitment (CoRec) method for rapid profiling of cell-specific TF-COF complexes. We define a lysine acetyltransferase (KAT)-TF network in resting and stimulated T cells. We find promiscuous recruitment of KATs for many TFs and that 35% of KAT-TF interactions are condition specific. KAT-TF interactions identify NF-κB as a primary regulator of acutely induced H3K27ac. Finally, we find that heterotypic clustering of CBP/P300-recruiting TFs is a strong predictor of total promoter H3K27ac. Our data supports clustering of TF sites that broadly recruit KATs as a mechanism for widespread co-occurring histone acetylation marks. CoRec can be readily applied to different cell systems and provides a powerful approach to define TF-COF networks impacting chromatin state and gene regulation.
Collapse
Affiliation(s)
- M M Inge
- Department of Biology, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - R Miller
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- These authors contributed equally
| | - H Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - D Bray
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - J L Keenan
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - R Zhao
- Department of Biology, Boston University, Boston, MA, USA
| | - T D Gilmore
- Department of Biology, Boston University, Boston, MA, USA
| | - T Siggers
- Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Amarnani A, Lopez-Ocasio M, Dilshat R, Anumukonda K, Davila J, Malakhov N, Huan C, Magnusdottir E, Steingrimsson E, Roman CA. Mitf regulates gene expression networks implicated in B cell homeostasis, germinal center responses, and tolerance. Front Immunol 2024; 15:1339325. [PMID: 38444862 PMCID: PMC10912573 DOI: 10.3389/fimmu.2024.1339325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction The microphthalmia transcription factor Mitf has been shown to regulate B cell activation and tolerance. However, the underlying B cell-specific mechanisms responsible, and those that distinguish Mitf from closely related Mitf/TFE (MiT) transcription factors Tfe3, Tfeb, and Tfec, remain obscure. Methods Two complementary mouse models of Mitf and MiT deficiency were used: the Mitfmi-vga9/mi-vga9 systemic loss-of-function mutation, and B-cell specific MiT family inactivation via transgenic expression of a trans-dominant negative (TDN) protein (TDN-B). These models were employed to identify MiT family candidate target genes and pathways. Results Both models displayed spontaneous splenomegaly coincident with elevated plasma cell numbers, autoantibody titers, and proteinuria. These abnormalities appeared dependent on T helper cells, but independent of other non-B cell intrinsic effects of systemic Mitf inactivation. MiT inactivation in B cells augmented aspects of lupus-like autoimmune disease on the C57BL/6-Faslpr/lpr background. In both models, RNAseq of ex vivo resting B cells showed transcriptional upregulation of genes that control cell cycle, germinal center responses, and plasma cell differentiation. Among the genes strongly upregulated in both models were Socs6, Isp53 (Baiap1), S1pR2, and IgG2b/c. Mitf null B cells, but not TDN-B cells, showed evidence of type I interferon dysregulation. Discussion These studies clarify Mitf's role as 1) a key regulator of a B cell intrinsic germinal center program that influences self-tolerance through novel target genes, and 2) a regulator of systemic inflammatory processes that can impact the B cell microenvironment. This distinction of Mitf's function from that of related MiT transcription factors advances our understanding of B cell regulation and autoimmunity.
Collapse
Affiliation(s)
- Abhimanyu Amarnani
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- School of Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Medicine, Division of Rheumatology, New York University Langone Health, New York, NY, United States
| | - Maria Lopez-Ocasio
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Kamala Anumukonda
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Anuko Tech Inc., Hillsborough, NJ, United States
| | - Jonathan Davila
- School of Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Urology, Northwell Health, Staten Island, NY, United States
| | - Nikita Malakhov
- School of Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Hematology and Oncology, NewYork-Presbyterian-Weill Cornell Medical Center, New York, NY, United States
| | - Chongmin Huan
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Erna Magnusdottir
- Department of Anatomy, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Christopher A. Roman
- Program in Molecular and Cellular Biology, School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- School of Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
13
|
Zhou R, Guo J, Feng X, Zhou W. Mechanisms of the role of proto-oncogene activation in promoting malignant transformation of mature B cells. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:113-121. [PMID: 38615172 PMCID: PMC11017026 DOI: 10.11817/j.issn.1672-7347.2024.230304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 04/15/2024]
Abstract
Malignant tumors continue to pose a significant threat to human life and safety and their development is primarily due to the activation of proto-oncogenes and the inactivation of suppressor genes. Among these, the activation of proto-oncogenes possesses greater potential to drive the malignant transformation of cells. Targeting oncogenes involved in the malignant transformation of tumor cells has provided a novel approach for the development of current antitumor drugs. Several preclinical and clinical studies have revealed that the development pathway of B cells, and the malignant transformation of mature B cells into tumors have been regulated by oncogenes and their metabolites. Therefore, summarizing the key oncogenes involved in the process of malignant transformation of mature B cells and elucidating the mechanisms of action in tumor development hold significant importance for the clinical treatment of malignant tumors.
Collapse
Affiliation(s)
- Ruiqi Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| | - Jiaojiao Guo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410006, China
| | - Wen Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410078.
| |
Collapse
|
14
|
Dai D, Gu S, Han X, Ding H, Jiang Y, Zhang X, Yao C, Hong S, Zhang J, Shen Y, Hou G, Qu B, Zhou H, Qin Y, He Y, Ma J, Yin Z, Ye Z, Qian J, Jiang Q, Wu L, Guo Q, Chen S, Huang C, Kottyan LC, Weirauch MT, Vinuesa CG, Shen N. The transcription factor ZEB2 drives the formation of age-associated B cells. Science 2024; 383:413-421. [PMID: 38271512 PMCID: PMC7616037 DOI: 10.1126/science.adf8531] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Age-associated B cells (ABCs) accumulate during infection, aging, and autoimmunity, contributing to lupus pathogenesis. In this study, we screened for transcription factors driving ABC formation and found that zinc finger E-box binding homeobox 2 (ZEB2) is required for human and mouse ABC differentiation in vitro. ABCs are reduced in ZEB2 haploinsufficient individuals and in mice lacking Zeb2 in B cells. In mice with toll-like receptor 7 (TLR7)-driven lupus, ZEB2 is essential for ABC formation and autoimmune pathology. ZEB2 binds to +20-kb myocyte enhancer factor 2b (Mef2b)'s intronic enhancer, repressing MEF2B-mediated germinal center B cell differentiation and promoting ABC formation. ZEB2 also targets genes important for ABC specification and function, including Itgax. ZEB2-driven ABC differentiation requires JAK-STAT (Janus kinase-signal transducer and activator of transcription), and treatment with JAK1/3 inhibitor reduces ABC accumulation in autoimmune mice and patients. Thus, ZEB2 emerges as a driver of B cell autoimmunity.
Collapse
Affiliation(s)
- Dai Dai
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaxia Han
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yang Jiang
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoou Zhang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Yao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Soonmin Hong
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinsong Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yiwei Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guojun Hou
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Bo Qu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Haibo Zhou
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yuting Qin
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Yuke He
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Jianyang Ma
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Jie Qian
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Jiang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Lihua Wu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Qiang Guo
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leah C. Kottyan
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew T. Weirauch
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carola G. Vinuesa
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
- Francis Crick Institute, London, UK
| | - Nan Shen
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Centre for Personalised Immunology (CACPI), Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Tabatabai A, Arora A, Höfmann S, Jauch M, von Tresckow B, Hansen J, Flümann R, Jachimowicz RD, Klein S, Reinhardt HC, Knittel G. Mouse models of diffuse large B cell lymphoma. Front Immunol 2023; 14:1313371. [PMID: 38124747 PMCID: PMC10731046 DOI: 10.3389/fimmu.2023.1313371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a genetically highly heterogeneous disease. Yet, to date, the vast majority of patients receive standardized frontline chemo-immune-therapy consisting of an anthracycline backbone. Using these regimens, approximately 65% of patients can be cured, whereas the remaining 35% of patients will face relapsed or refractory disease, which, even in the era of CAR-T cells, is difficult to treat. To systematically tackle this high medical need, it is important to design, generate and deploy suitable in vivo model systems that capture disease biology, heterogeneity and drug response. Recently published, large comprehensive genomic characterization studies, which defined molecular sub-groups of DLBCL, provide an ideal framework for the generation of autochthonous mouse models, as well as an ideal benchmark for cell line-derived or patient-derived mouse models of DLBCL. Here we discuss the current state of the art in the field of mouse modelling of human DLBCL, with a particular focus on disease biology and genetically defined molecular vulnerabilities, as well as potential targeting strategies.
Collapse
Affiliation(s)
- Areya Tabatabai
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Aastha Arora
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Svenja Höfmann
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Maximilian Jauch
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Julia Hansen
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ruth Flümann
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ron D. Jachimowicz
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Sebastian Klein
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Gero Knittel
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
16
|
Brauge B, Dessauge E, Creusat F, Tarte K. Modeling the crosstalk between malignant B cells and their microenvironment in B-cell lymphomas: challenges and opportunities. Front Immunol 2023; 14:1288110. [PMID: 38022603 PMCID: PMC10652758 DOI: 10.3389/fimmu.2023.1288110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
B-cell lymphomas are a group of heterogeneous neoplasms resulting from the clonal expansion of mature B cells arrested at various stages of differentiation. Specifically, two lymphoma subtypes arise from germinal centers (GCs), namely follicular lymphoma (FL) and GC B-cell diffuse large B-cell lymphoma (GCB-DLBCL). In addition to recent advances in describing the genetic landscape of FL and GCB-DLBCL, tumor microenvironment (TME) has progressively emerged as a central determinant of early lymphomagenesis, subclonal evolution, and late progression/transformation. The lymphoma-supportive niche integrates a dynamic and coordinated network of immune and stromal cells defining microarchitecture and mechanical constraints and regulating tumor cell migration, survival, proliferation, and immune escape. Several questions are still unsolved regarding the interplay between lymphoma B cells and their TME, including the mechanisms supporting these bidirectional interactions, the impact of the kinetic and spatial heterogeneity of the tumor niche on B-cell heterogeneity, and how individual genetic alterations can trigger both B-cell intrinsic and B-cell extrinsic signals driving the reprogramming of non-malignant cells. Finally, it is not clear whether these interactions might promote resistance to treatment or, conversely, offer valuable therapeutic opportunities. A major challenge in addressing these questions is the lack of relevant models integrating tumor cells with specific genetic hits, non-malignant cells with adequate functional properties and organization, extracellular matrix, and biomechanical forces. We propose here an overview of the 3D in vitro models, xenograft approaches, and genetically-engineered mouse models recently developed to study GC B-cell lymphomas with a specific focus on the pros and cons of each strategy in understanding B-cell lymphomagenesis and evaluating new therapeutic strategies.
Collapse
Affiliation(s)
- Baptiste Brauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Elise Dessauge
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Florent Creusat
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
| | - Karin Tarte
- UMR 1236, Univ Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue, Rennes, France
- SITI Laboratory, Centre Hospitalier Universitaire (CHU) Rennes, Etablissement Français du sang, Univ Rennes, Rennes, France
| |
Collapse
|
17
|
Hou P, Luo Y, Wu N. TCL1A+ B cells predict prognosis in triple-negative breast cancer through integrative analysis of single-cell and bulk transcriptomic data. Open Life Sci 2023; 18:20220707. [PMID: 37791059 PMCID: PMC10543705 DOI: 10.1515/biol-2022-0707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and high mortality rates. It remains a prevailing clinical need to distinguish whether the patient can benefit from therapy, such as chemotherapy. By integrating single-cell and global transcriptome data, we have for the first time identified TCL1A+ B cell functions that are prognostically relevant in TNBC. This finding broadens the perspective of traditional tumor-infiltrating lymphocytes in predicting survival, especially the potential value of B cells in TNBC. Single-cell RNA-seq data from five TNBC patients were collected to identify the association between immune cell populations and clinical outcomes. Functional analysis was according to gene set enrichment analysis using pathways from MsigDB. Subsequently, the gene signature of TCL1A+ B cells based on differential expression genes of TCL1A+ B cells versus other immune cells was used to explore the correlation with tumor microenvironment (TME) and construct a prognostic signature using a non-parametric and unsupervised method. We identified TCL1A+ B cells as a cluster of B cells associated with clinical outcomes in TNBC. Functional analysis demonstrated its function in B cell activation and regulation of immune response. The highly enriched TCL1A+ B cell population was found to be associated with a thermal TME with anti-tumor effects. A high abundance of TCL1A+ B cell population is positively correlated with a favorable therapeutic outcome, as indicated by longer overall survival. The present study suggests that TCL1A+ B cells play a key role in the treatment and prognostic prediction of TNBC, although further studies are needed to validate our findings. Moreover, the integration of transcriptome data at various resolutions provides a viable approach for the discovery of novel prognostic markers.
Collapse
Affiliation(s)
- Peifeng Hou
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, 350000, China
- Fujian Medical University Stem Cell Research Institute, Fuzhou, Fujian, 350000, China
| | - Yang Luo
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Ningzi Wu
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| |
Collapse
|
18
|
Pouliou M, Koutsi MA, Champezou L, Giannopoulou AI, Vatsellas G, Piperi C, Agelopoulos M. MYCN Amplifications and Metabolic Rewiring in Neuroblastoma. Cancers (Basel) 2023; 15:4803. [PMID: 37835497 PMCID: PMC10571721 DOI: 10.3390/cancers15194803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is a disease caused by (epi)genomic and gene expression abnormalities and characterized by metabolic phenotypes that are substantially different from the normal phenotypes of the tissues of origin. Metabolic reprogramming is one of the key features of tumors, including those established in the human nervous system. In this work, we emphasize a well-known cancerous genomic alteration: the amplification of MYCN and its downstream effects in neuroblastoma phenotype evolution. Herein, we extend our previous computational biology investigations by conducting an integrative workflow applied to published genomics datasets and comprehensively assess the impact of MYCN amplification in the upregulation of metabolism-related transcription factor (TF)-encoding genes in neuroblastoma cells. The results obtained first emphasized overexpressed TFs, and subsequently those committed in metabolic cellular processes, as validated by gene ontology analyses (GOs) and literature curation. Several genes encoding for those TFs were investigated at the mechanistic and regulatory levels by conducting further omics-based computational biology assessments applied on published ChIP-seq datasets retrieved from MYCN-amplified- and MYCN-enforced-overexpression within in vivo systems of study. Hence, we approached the mechanistic interrelationship between amplified MYCN and overexpression of metabolism-related TFs in neuroblastoma and showed that many are direct targets of MYCN in an amplification-inducible fashion. These results illuminate how MYCN executes its regulatory underpinnings on metabolic processes in neuroblastoma.
Collapse
Affiliation(s)
- Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Marianna A. Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| |
Collapse
|
19
|
Cousu C, Mulot E, De Smet A, Formichetti S, Lecoeuche D, Ren J, Muegge K, Boulard M, Weill JC, Reynaud CA, Storck S. Germinal center output is sustained by HELLS-dependent DNA-methylation-maintenance in B cells. Nat Commun 2023; 14:5695. [PMID: 37709749 PMCID: PMC10502085 DOI: 10.1038/s41467-023-41317-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
HELLS/LSH (Helicase, Lymphoid Specific) is a SNF2-like chromatin remodelling protein involved in DNA methylation. Its loss-of-function in humans causes humoral immunodeficiency, called ICF4 syndrome (Immunodeficiency, Centromeric Instability, Facial anomalies). Here we show by our newly generated B-cell-specific Hells conditional knockout mouse model that HELLS plays a pivotal role in T-dependent B-cell responses. HELLS deficiency induces accelerated decay of germinal center (GC) B cells and impairs the generation of high affinity memory B cells and circulating antibodies. Mutant GC B cells undergo dramatic DNA hypomethylation and massive de-repression of evolutionary recent retrotransposons, which surprisingly does not directly affect their survival. Instead, they prematurely upregulate either memory B cell markers or the transcription factor ATF4, which is driving an mTORC1-dependent metabolic program typical of plasma cells. Treatment of wild type mice with a DNMT1-specific inhibitor phenocopies the accelerated kinetics, thus pointing towards DNA-methylation maintenance by HELLS being a crucial mechanism to fine-tune the GC transcriptional program and enable long-lasting humoral immunity.
Collapse
Affiliation(s)
- Clara Cousu
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Eléonore Mulot
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Annie De Smet
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sara Formichetti
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
- Joint PhD degree program, European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Damiana Lecoeuche
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Jianke Ren
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
- NHC Key Lab of Reproduction Regulation,Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA
| | - Matthieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015, Monterotondo, Italy
| | - Jean-Claude Weill
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Sébastien Storck
- Université Paris Cité, CNRS UMR 8253, INSERM U1151, Institut Necker Enfants Malades, F-75015, Paris, France.
| |
Collapse
|
20
|
Yap J, Yuan J, Ng WH, Chen GB, Sim YRM, Goh KC, Teo J, Lim TYH, Goay SM, Teo JHJ, Lao Z, Lam P, Sabapathy K, Hu J. BRAF(V600E) mutation together with loss of Trp53 or pTEN drives the origination of hairy cell leukemia from B-lymphocytes. Mol Cancer 2023; 22:125. [PMID: 37543582 PMCID: PMC10403926 DOI: 10.1186/s12943-023-01817-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/04/2023] [Indexed: 08/07/2023] Open
Abstract
Hairy cell leukemia (HCL) is a B-lymphoma induced by BRAF(V600E) mutation. However, introducing BRAF(V600E) in B-lymphocytes fails to induce hematological malignancy, suggesting that BRAF(V600E) needs concurrent mutations to drive HCL ontogeny. To resolve this issue, here we surveyed human HCL genomic sequencing data. Together with previous reports, we speculated that the tumor suppressor TP53, P27, or PTEN restrict the oncogenicity of BRAF(V600E) in B-lymphocytes, and therefore that their loss-of-function facilitates BRAF(V600E)-driven HCL ontogeny. Using genetically modified mouse models, we demonstrate that indeed BRAF(V600E)KI together with Trp53KO or pTENKO in B-lymphocytes induces chronic lymphoma with pathological features of human HCL. To further understand the cellular programs essential for HCL ontogeny, we profiled the gene expression of leukemic cells isolated from BRAF(V600E)KI and Trp53KO or pTENKO mice, and found that they had similar but different gene expression signatures that resemble that of M2 or M1 macrophages. In addition, we examined the expression signature of transcription factors/regulators required for germinal center reaction and memory B cell versus plasma cell differentiation in these leukemic cells and found that most transcription factors/regulators essential for these programs were severely inhibited, illustrating why hairy cells are arrested at a transitional stage between activated B cells and memory B cells. Together, our study has uncovered concurrent mutations required for HCL ontogeny, revealed the B cell origin of hairy cells and investigated the molecular basis underlying the unique pathological features of the disease, with important implications for HCL research and treatment.
Collapse
Affiliation(s)
- Jiajun Yap
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Jimin Yuan
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
- Department of Urology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Geriatric Department, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Wan Hwa Ng
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Gao Bin Chen
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Yuen Rong M Sim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Kah Chun Goh
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Joey Teo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Trixie Y H Lim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Shee Min Goay
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Jia Hao Jackie Teo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Zhentang Lao
- Department of Hematology, Singapore General Hospital, Blk7 Outram Road, 169608, Singapore, Singapore
| | - Paula Lam
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
- Department of Physiology, National University of Singapore, 2 Medical Drive, 117597, Singapore, Singapore
- Cellvec Pte. Ltd, 100 Pasir Panjang Road, 118518, Singapore, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore.
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| |
Collapse
|
21
|
Zhou RW, Parsons RE. Etiology of super-enhancer reprogramming and activation in cancer. Epigenetics Chromatin 2023; 16:29. [PMID: 37415185 DOI: 10.1186/s13072-023-00502-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Super-enhancers are large, densely concentrated swaths of enhancers that regulate genes critical for cell identity. Tumorigenesis is accompanied by changes in the super-enhancer landscape. These aberrant super-enhancers commonly form to activate proto-oncogenes, or other genes upon which cancer cells depend, that initiate tumorigenesis, promote tumor proliferation, and increase the fitness of cancer cells to survive in the tumor microenvironment. These include well-recognized master regulators of proliferation in the setting of cancer, such as the transcription factor MYC which is under the control of numerous super-enhancers gained in cancer compared to normal tissues. This Review will cover the expanding cell-intrinsic and cell-extrinsic etiology of these super-enhancer changes in cancer, including somatic mutations, copy number variation, fusion events, extrachromosomal DNA, and 3D chromatin architecture, as well as those activated by inflammation, extra-cellular signaling, and the tumor microenvironment.
Collapse
Affiliation(s)
- Royce W Zhou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Molecular Medicine Program, University of California San Francisco Internal Medicine Residency, San Francisco, CA, USA
| | - Ramon E Parsons
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Ignacio BJ, Dijkstra J, Mora N, Slot EFJ, van Weijsten MJ, Storkebaum E, Vermeulen M, Bonger KM. THRONCAT: metabolic labeling of newly synthesized proteins using a bioorthogonal threonine analog. Nat Commun 2023; 14:3367. [PMID: 37291115 PMCID: PMC10250548 DOI: 10.1038/s41467-023-39063-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Profiling the nascent cellular proteome and capturing early proteomic changes in response to external stimuli provides valuable insights into cellular physiology. Existing metabolic protein labeling approaches based on bioorthogonal methionine- or puromycin analogs allow for the selective visualization and enrichment of newly synthesized proteins. However, their applications are limited as they often require methionine-free conditions, auxotrophic cells and/or are toxic to cells. Here, we introduce THRONCAT, a threonine-derived non-canonical amino acid tagging method based on the bioorthogonal threonine analog β-ethynylserine (βES) that enables efficient labeling of the nascent proteome in complete growth media within minutes. We use THRONCAT for the visualization and enrichment of nascent proteins in bacteria, mammalian cells and Drosophila melanogaster. We profile immediate proteome dynamics of B-cells in response to B-cell receptor activation simply by adding βES to the culture medium, demonstrating the ease-of-use of the method and its potential to address diverse biological questions. In addition, using a Drosophila model of Charcot-Marie-Tooth peripheral neuropathy, we show that THRONCAT enables visualization and quantification of relative protein synthesis rates in specific cell types in vivo.
Collapse
Affiliation(s)
- Bob J Ignacio
- Department of Synthetic Organic Chemistry, Chemical Biology Lab, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Jelmer Dijkstra
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalia Mora
- Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Erik F J Slot
- Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Margot J van Weijsten
- Department of Synthetic Organic Chemistry, Chemical Biology Lab, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Erik Storkebaum
- Molecular Neurobiology Laboratory, Donders Center for Neuroscience, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Chemical Biology Lab, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Pasqualucci L. The germinal center in the pathogenesis of B cell lymphomas. Hematol Oncol 2023; 41 Suppl 1:62-69. [PMID: 37294970 DOI: 10.1002/hon.3141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The adaptive immune system has evolved to allow effective responses against a virtually unlimited number of invading pathogens. This process requires the transient formation of germinal centers (GC), a dynamic environment that ensures the generation and selection of B cells capable to produce antibodies with high antigen affinity, or to maintain the memory of that antigen for life. However, this comes at a cost, as the unique events accompanying the GC reaction pose a significant risk to the genome of B cells, which must endure elevated levels of replication stress, while proliferating at high rates and undergoing DNA breaks introduced by somatic hypermutation and class switch recombination. Indeed, the genetic/epigenetic disruption of programs implicated in normal GC biology has emerged as a hallmark of most B cell lymphomas. This improved understanding provides a conceptual framework for the identification of cellular pathways that could be exploited for precision medicine approaches.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| |
Collapse
|
24
|
Kim YJ, Oh J, Jung S, Kim CJ, Choi J, Jeon YK, Kim HJ, Kim JW, Suh CH, Lee Y, Im SH, Crotty S, Choi YS. The transcription factor Mef2d regulates B:T synapse-dependent GC-T FH differentiation and IL-21-mediated humoral immunity. Sci Immunol 2023; 8:eadf2248. [PMID: 36961907 PMCID: PMC10311795 DOI: 10.1126/sciimmunol.adf2248] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/15/2023] [Indexed: 03/26/2023]
Abstract
Communication between CD4 T cells and cognate B cells is key for the former to fully mature into germinal center-T follicular helper (GC-TFH) cells and for the latter to mount a CD4 T cell-dependent humoral immune response. Although this interaction occurs in a B:T synapse-dependent manner, how CD4 T cells transcriptionally regulate B:T synapse formation remains largely unknown. Here, we report that Mef2d, an isoform of the myocyte enhancer factor 2 (Mef2) transcription factor family, is a critical regulator of this process. In CD4 T cells, Mef2d negatively regulates expression of Sh2d1a, which encodes SLAM-associated protein (SAP), a critical regulator of B:T synapses. We found that Mef2d regulates Sh2d1a expression via DNA binding-dependent transcriptional repression, inhibiting SAP-dependent B:T synapse formation and preventing antigen-specific CD4 T cells from differentiating into GC-TFH cells. Mef2d also impeded IL-21 production by CD4 T cells, an important B cell help signaling molecule, via direct repression of the Il21 gene. In contrast, CD4 T cell-specific disruption of Mef2d led to a substantial increase in GC-TFH differentiation in response to protein immunization, concurrent with enhanced SAP expression. MEF2D mRNA expression inversely correlates with human systemic lupus erythematosus (SLE) patient autoimmune parameters, including circulating TFH-like cell frequencies, autoantibodies, and SLEDAI scores. These findings highlight Mef2d as a pivotal rheostat in CD4 T cells for controlling GC formation and antibody production by B cells.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jeein Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Soohan Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Jinyong Choi
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, Gyeonggi-do, Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Gyeonggi-do, Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
- ImmunoBiome Inc., Pohang, Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Korea
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- University of California San Diego, Department of Medicine, Division of Infectious Diseases and Global Public Health, La Jolla, CA, USA
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
- Transplantation Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
25
|
Ma A, Wang X, Li J, Wang C, Xiao T, Liu Y, Cheng H, Wang J, Li Y, Chang Y, Li J, Wang D, Jiang Y, Su L, Xin G, Gu S, Li Z, Liu B, Xu D, Ma Q. Single-cell biological network inference using a heterogeneous graph transformer. Nat Commun 2023; 14:964. [PMID: 36810839 PMCID: PMC9944243 DOI: 10.1038/s41467-023-36559-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Single-cell multi-omics (scMulti-omics) allows the quantification of multiple modalities simultaneously to capture the intricacy of complex molecular mechanisms and cellular heterogeneity. Existing tools cannot effectively infer the active biological networks in diverse cell types and the response of these networks to external stimuli. Here we present DeepMAPS for biological network inference from scMulti-omics. It models scMulti-omics in a heterogeneous graph and learns relations among cells and genes within both local and global contexts in a robust manner using a multi-head graph transformer. Benchmarking results indicate DeepMAPS performs better than existing tools in cell clustering and biological network construction. It also showcases competitive capability in deriving cell-type-specific biological networks in lung tumor leukocyte CITE-seq data and matched diffuse small lymphocytic lymphoma scRNA-seq and scATAC-seq data. In addition, we deploy a DeepMAPS webserver equipped with multiple functionalities and visualizations to improve the usability and reproducibility of scMulti-omics data analysis.
Collapse
Affiliation(s)
- Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoying Wang
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Jingxian Li
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yuntao Liu
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Hao Cheng
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Juexin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yuzhou Chang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jinpu Li
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Li Su
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shaopeng Gu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, China.
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Betzler AC, Ushmorov A, Brunner C. The transcriptional program during germinal center reaction - a close view at GC B cells, Tfh cells and Tfr cells. Front Immunol 2023; 14:1125503. [PMID: 36817488 PMCID: PMC9936310 DOI: 10.3389/fimmu.2023.1125503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The germinal center (GC) reaction is a key process during an adaptive immune response to T cell specific antigens. GCs are specialized structures within secondary lymphoid organs, in which B cell proliferation, somatic hypermutation and antibody affinity maturation occur. As a result, high affinity antibody secreting plasma cells and memory B cells are generated. An effective GC response needs interaction between multiple cell types. Besides reticular cells and follicular dendritic cells, particularly B cells, T follicular helper (Tfh) cells as well as T follicular regulatory (Tfr) cells are a key player during the GC reaction. Whereas Tfh cells provide help to GC B cells in selection processes, Tfr cells, a specialized subset of regulatory T cells (Tregs), are able to suppress the GC reaction maintaining the balance between immune activation and tolerance. The formation and function of GCs is regulated by a complex network of signals and molecules at multiple levels. In this review, we highlight recent developments in GC biology by focusing on the transcriptional program regulating the GC reaction. This review focuses on the transcriptional co-activator BOB.1/OBF.1, whose important role for GC B, Tfh and Tfr cell differentiation became increasingly clear in recent years. Moreover, we outline how deregulation of the GC transcriptional program can drive lymphomagenesis.
Collapse
Affiliation(s)
- Annika C. Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Alexey Ushmorov
- Ulm University, Institute of Physiological Chemistry, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany,*Correspondence: Cornelia Brunner,
| |
Collapse
|
27
|
Heimli M, Flåm ST, Hjorthaug HS, Trinh D, Frisk M, Dumont KA, Ribarska T, Tekpli X, Saare M, Lie BA. Multimodal human thymic profiling reveals trajectories and cellular milieu for T agonist selection. Front Immunol 2023; 13:1092028. [PMID: 36741401 PMCID: PMC9895842 DOI: 10.3389/fimmu.2022.1092028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/22/2023] Open
Abstract
To prevent autoimmunity, thymocytes expressing self-reactive T cell receptors (TCRs) are negatively selected, however, divergence into tolerogenic, agonist selected lineages represent an alternative fate. As thymocyte development, selection, and lineage choices are dependent on spatial context and cell-to-cell interactions, we have performed Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-seq) and spatial transcriptomics on paediatric human thymus. Thymocytes expressing markers of strong TCR signalling diverged from the conventional developmental trajectory prior to CD4+ or CD8+ lineage commitment, while markers of different agonist selected T cell populations (CD8αα(I), CD8αα(II), T(agonist), Treg(diff), and Treg) exhibited variable timing of induction. Expression profiles of chemokines and co-stimulatory molecules, together with spatial localisation, supported that dendritic cells, B cells, and stromal cells contribute to agonist selection, with different subsets influencing thymocytes at specific developmental stages within distinct spatial niches. Understanding factors influencing agonist T cells is needed to benefit from their immunoregulatory effects in clinical use.
Collapse
Affiliation(s)
- Marte Heimli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Siri Tennebø Flåm
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Don Trinh
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Karl-Andreas Dumont
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Teodora Ribarska
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Mario Saare
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Benedicte Alexandra Lie
- Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, Norway,*Correspondence: Benedicte Alexandra Lie,
| |
Collapse
|
28
|
McLachlan T, Matthews WC, Jackson ER, Staudt DE, Douglas AM, Findlay IJ, Persson ML, Duchatel RJ, Mannan A, Germon ZP, Dun MD. B-cell Lymphoma 6 (BCL6): From Master Regulator of Humoral Immunity to Oncogenic Driver in Pediatric Cancers. Mol Cancer Res 2022; 20:1711-1723. [PMID: 36166198 PMCID: PMC9716245 DOI: 10.1158/1541-7786.mcr-22-0567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/15/2023]
Abstract
B-cell lymphoma 6 (BCL6) is a protooncogene in adult and pediatric cancers, first identified in diffuse large B-cell lymphoma (DLBCL) where it acts as a repressor of the tumor suppressor TP53, conferring survival, protection, and maintenance of lymphoma cells. BCL6 expression in normal B cells is fundamental in the regulation of humoral immunity, via initiation and maintenance of the germinal centers (GC). Its role in B cells during the production of high affinity immunoglobins (that recognize and bind specific antigens) is believed to underpin its function as an oncogene. BCL6 is known to drive the self-renewal capacity of leukemia-initiating cells (LIC), with high BCL6 expression in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and glioblastoma (GBM) associated with disease progression and treatment resistance. The mechanisms underpinning BCL6-driven therapy resistance are yet to be uncovered; however, high activity is considered to confer poor prognosis in the clinical setting. BCL6's key binding partner, BCL6 corepressor (BCOR), is frequently mutated in pediatric cancers and appears to act in concert with BCL6. Using publicly available data, here we show that BCL6 is ubiquitously overexpressed in pediatric brain tumors, inversely to BCOR, highlighting the potential for targeting BCL6 in these often lethal and untreatable cancers. In this review, we summarize what is known of BCL6 (role, effect, mechanisms) in pediatric cancers, highlighting the two sides of BCL6 function, humoral immunity, and tumorigenesis, as well as to review BCL6 inhibitors and highlight areas of opportunity to improve the outcomes of patients with pediatric cancer.
Collapse
Affiliation(s)
- Tabitha McLachlan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - William C. Matthews
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Evangeline R. Jackson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alicia M. Douglas
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Izac J. Findlay
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ryan J. Duchatel
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Abdul Mannan
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zacary P. Germon
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Matthew D. Dun
- University of Newcastle, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing, Callaghan, New South Wales, Australia.,Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Corresponding Author: Matthew D. Dun, Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Level 3, Life Sciences Bldg, Callaghan, NSW 2308, Australia. Phone: 612-4921-5693; E-mail:
| |
Collapse
|
29
|
Yang Y, Zhang M, Wang Y. The roles of histone modifications in tumorigenesis and associated inhibitors in cancer therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:277-290. [PMID: 39036551 PMCID: PMC11256729 DOI: 10.1016/j.jncc.2022.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Histone modifications are key factors in chromatin packaging, and are responsible for gene regulation during cell fate determination and development. Abnormal alterations in histone modifications potentially affect the stability of the genome and disrupt gene expression patterns, leading to many diseases, including cancer. In recent years, mounting evidence has shown that various histone modifications altered by aberrantly expressed modifier enzymes contribute to tumor development and metastasis through the induction of epigenetic, transcriptional, and phenotypic changes. In this review, we will discuss the existing histone modifications, both well-studied and rare ones, and their roles in solid tumors and hematopoietic cancers, to identify the molecular pathways involved and investigate targeted therapeutic drugs to reorganize the chromatin and enhance cancer treatment efficiency. Finally, clinical inhibitors of histone modifications are summarized to better understand the developmental stage of cancer therapy in using these drugs to inhibit the histone modification enzymes.
Collapse
Affiliation(s)
| | | | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Single-cell profiling reveals a memory B cell-like subtype of follicular lymphoma with increased transformation risk. Nat Commun 2022; 13:6772. [PMID: 36351924 PMCID: PMC9646774 DOI: 10.1038/s41467-022-34408-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Follicular lymphoma (FL) is an indolent cancer of mature B-cells but with ongoing risk of transformation to more aggressive histology over time. Recurrent mutations associated with transformation have been identified; however, prognostic features that can be discerned at diagnosis could be clinically useful. We present here comprehensive profiling of both tumor and immune compartments in 155 diagnostic FL biopsies at single-cell resolution by mass cytometry. This revealed a diversity of phenotypes but included two recurrent patterns, one which closely resembles germinal center B-cells (GCB) and another which appears more related to memory B-cells (MB). GCB-type tumors are enriched for EZH2, TNFRSF14, and MEF2B mutations, while MB-type tumors contain increased follicular helper T-cells. MB-type and intratumoral phenotypic diversity are independently associated with increased risk of transformation, supporting biological relevance of these features. Notably, a reduced 26-marker panel retains sufficient information to allow phenotypic profiling of future cohorts by conventional flow cytometry.
Collapse
|
31
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
32
|
Zhu Y, Lei C, Jiang Q, Yu Q, Qiu L. DSF/Cu induces antitumor effect against diffuse large B-cell lymphoma through suppressing NF-κB/BCL6 pathways. Cancer Cell Int 2022; 22:236. [PMID: 35883106 PMCID: PMC9317061 DOI: 10.1186/s12935-022-02661-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background The B-cell lymphoma 6 (BCL6) oncogene is required for the survival of diffuse large B-cell lymphoma (DLBCL), which is incurable using conventional chemotherapy. Thus, it is imperative to improve the survival of patients with DLBCL. Disulfide (DSF) has been shown to have anticancer effects, but its effect on DLBCL remains unclear. Methods Four DLBCL cell lines (OCI-LY1, OCI-LY7, OCI-LY10 and U2932) and primary DLBCL cells from eight newly diagnosed DLBCL patients were pretreated with DSF alone or in combination with Cu. Cell morphology was observed under microscope. Flow cytometry was performed to evaluate the cell apoptosis, cell cycle, the mitochondrial membrane potential and the intracellular accumulation of reactive oxygen species (ROS). The protein expression was respectively measured by flow cytometry and western blotting. Results DSF or DSF/Cu exhibited a marked inhibitory effect on the growth of DLBCL cells, accompanied by cell cycle arrest at the G0/G1 phase. Meanwhile, DSF or DSF/Cu significantly induced DLBCL cells apoptosis. Further study revealed that DSF or DSF/Cu promoted apoptosis by inhibiting NF-κB signaling pathway. Interestingly, DSF/Cu significantly reduced BCL6 and AIP levels. In addition, DSF significantly up-regulate p53 protein in OCI-LY7 and OCI-LY10 while down-regulate p53 protein in OCI-LY1 and U2932. Conclusion These results provided evidence for the anti-lymphoma effects of DSF on DLBCL and suggested that DSF has therapeutic potential to DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02661-4.
Collapse
Affiliation(s)
- Yunying Zhu
- Department of Clinical Laboratory, College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310014, Zhejiang, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Chenshuang Lei
- Department of Clinical Laboratory, College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310014, Zhejiang, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Qian Jiang
- Department of Clinical Laboratory, College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310014, Zhejiang, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Qinhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Liannv Qiu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
33
|
Grenov A, Hezroni H, Lasman L, Hanna JH, Shulman Z. YTHDF2 suppresses the plasmablast genetic program and promotes germinal center formation. Cell Rep 2022; 39:110778. [PMID: 35508130 PMCID: PMC9108551 DOI: 10.1016/j.celrep.2022.110778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Antibody-mediated immunity is initiated by B cell differentiation into multiple cell subsets, including plasmablast, memory, and germinal center (GC) cells. B cell differentiation trajectories are determined by transcription factors, yet very few mechanisms that specifically determine early B cell fates have been described. Here, we report a post-transcriptional mechanism that suppresses the plasmablast genetic program and promotes GC B cell fate commitment. Single-cell RNA-sequencing analysis reveals that antigen-specific B cell precursors at the pre-GC stage upregulate YTHDF2, which enhances the decay of methylated transcripts. Ythdf2-deficient B cells exhibit intact proliferation and activation, whereas differentiation into GC B cells is blocked. Mechanistically, B cells require YTHDF2 to attenuate the plasmablast genetic program during GC seeding, and transcripts of key plasmablast-regulating genes are methylated and bound by YTHDF2. Collectively, this study reveals how post-transcriptional suppression of gene expression directs appropriate B cell fate commitment during initiation of the adaptive immune response. scRNA-seq of antigen-specific B cells reveals differentiation trajectories YTHDF2 is expressed by early-responding B cells and facilitates germinal center seeding YTHDF2 binds mRNAs of plasma cell-associated genes and suppresses their expression Germinal center formation does not depend on YTHDF1 and YTHDF3
Collapse
Affiliation(s)
- Amalie Grenov
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Hezroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Lasman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
34
|
Yoshino S, Suzuki HI. The molecular understanding of super-enhancer dysregulation in cancer. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:216-229. [PMID: 35967935 PMCID: PMC9350580 DOI: 10.18999/nagjms.84.2.216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Abnormalities in the regulation of gene expression are associated with various pathological conditions. Among the distal regulatory elements in the genome, the activation of target genes by enhancers plays a central role in the formation of cell type-specific gene expression patterns. Super-enhancers are a subclass of enhancers that frequently contain multiple enhancer-like elements and are characterized by dense binding of master transcription factors and Mediator complexes and high signals of active histone marks. Super-enhancers have been studied in detail as important regulatory regions that control cell identity and contribute to the pathogenesis of diverse diseases. In cancer, super-enhancers have multifaceted roles by activating various oncogenes and other cancer-related genes and shaping characteristic gene expression patterns in cancer cells. Alterations in super-enhancer activities in cancer involve multiple mechanisms, including the dysregulation of transcription factors and the super-enhancer-associated genomic abnormalities. The study of super-enhancers could contribute to the identification of effective biomarkers and the development of cancer therapeutics targeting transcriptional addiction. In this review, we summarize the roles of super-enhancers in cancer biology, with a particular focus on hematopoietic malignancies, in which multiple super-enhancer alteration mechanisms have been reported.
Collapse
Affiliation(s)
- Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
35
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
36
|
Weber T, Schmitz R. Molecular Subgroups of Diffuse Large B Cell Lymphoma: Biology and Implications for Clinical Practice. Curr Oncol Rep 2022; 24:13-21. [PMID: 35060000 PMCID: PMC8831345 DOI: 10.1007/s11912-021-01155-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Purpose of Review Genomic analyses have immensely advanced our conception of the heterogeneity of diffuse large B cell lymphoma (DLBCL), resulting in subgroups with distinct molecular profiles. In this review, we summarize our current knowledge of the biology of DLBCL complexity and discuss the potential implications for precision medicine. Recent Findings During the last two decades, gene expression profiling, copy number analysis, and high throughput sequencing enabled the identification of molecular subclasses of DLBCL that are biologically and clinically meaningful. The resulting classifications provided novel prospects of diagnosis, prognostication, and therapeutic strategies for this aggressive disease. Summary The molecular characterization of DLBCL offers unprecedented insights into the biology of these lymphomas that can guide precision medicine. The knowledge of the molecular setup of an individual DLBCL patients enables prognostication of patients and will be useful to stratify patients in clinical trials. Future direction should focus to implement the molecular classifications of DLBCL in the clinical practice to evaluate their significance and scope using real-world data.
Collapse
|
37
|
Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, Liu B, Niu L, Sun X, Yu X, Wang Y, Chang Q, Gong T, Guan X, Hu T, Qian T, Xu B, Ma F, Zhang Z, Liu Z. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 2021; 39:1578-1593.e8. [PMID: 34653365 DOI: 10.1016/j.ccell.2021.09.010] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
In triple-negative breast cancer (TNBC), the benefit of combining chemotherapy with checkpoint inhibitors is still not very clear. We utilize single-cell RNA- and ATAC-sequencing to examine the immune cell dynamics in 22 patients with advanced TNBC treated with paclitaxel or its combination with the anti-PD-L1 atezolizumab. We demonstrate that high levels of baseline CXCL13+ T cells are linked to the proinflammatory features of macrophages and can predict effective responses to the combination therapy. In responsive patients, lymphoid tissue inducer (LTi) cells, follicular B (Bfoc) cells, CXCL13+ T cells, and conventional type 1 dendritic cells (cDC1) concertedly increase following the combination therapy, but instead decrease after paclitaxel monotherapy. Our data highlight the importance of CXCL13+ T cells in effective responses to anti-PD-L1 therapies and suggest that their reduction by paclitaxel regimen may compromise the clinical outcomes of accompanying atezolizumab for TNBC treatment.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongnan Mo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xueda Hu
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China
| | - Ranran Gao
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Baolin Liu
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China
| | - Lijuan Niu
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoying Sun
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing 100005, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Chang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ting Hu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyi Qian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zemin Zhang
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
38
|
Heinrichs M, Ashour D, Siegel J, Büchner L, Wedekind G, Heinze KG, Arampatzi P, Saliba AE, Cochain C, Hofmann U, Frantz S, Campos Ramos G. The healing myocardium mobilizes a distinct B-cell subset through a CXCL13-CXCR5-dependent mechanism. Cardiovasc Res 2021; 117:2664-2676. [PMID: 34048536 DOI: 10.1093/cvr/cvab181] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Recent studies have revealed that B cells and antibodies can influence inflammation and remodelling following a myocardial infarction (MI) and culminating in heart failure-but the mechanisms underlying these observations remain elusive. We therefore conducted in mice a deep phenotyping of the post-MI B-cell responses in infarcted hearts and mediastinal lymph nodes, which drain the myocardium. Thereby, we sought to dissect the mechanisms controlling B-cell mobilization and activity in situ. METHODS AND RESULTS Histological, flow cytometry, and single-cell RNA-sequencing (scRNA-seq) analyses revealed a rapid accumulation of diverse B-cell subsets in infarcted murine hearts, paralleled by mild clonal expansion of germinal centre B cells in the mediastinal lymph nodes. The repertoire of cardiac B cells was largely polyclonal and showed no sign of antigen-driven clonal expansion. Instead, it included a distinct subset exclusively found in the heart, herein termed 'heart-associated B cells' (hB) that expressed high levels of Cd69 as an activation marker, C-C-chemokine receptor type 7 (Ccr7), CXC-chemokine receptor type 5 (Cxcr5), and transforming growth factor beta 1 (Tgfb1). This distinct signature was not shared with any other cell population in the healing myocardium. Moreover, we detected a myocardial gradient of CXC-motif chemokine ligand 13 (CXCL13, the ligand of CXCR5) on Days 1 and 5 post-MI. When compared with wild-type controls, mice treated with a neutralizing CXCL13-specific antibody as well as CXCR5-deficient mice showed reduced post-MI infiltration of B cells and reduced local Tgfb1 expression but no differences in contractile function nor myocardial morphology were observed between groups. CONCLUSION Our study reveals that polyclonal B cells showing no sign of antigen-specificity readily infiltrate the heart after MI via the CXCL13-CXCR5 axis and contribute to local TGF-ß1 production. The local B-cell responses are paralleled by mild antigen-driven germinal centre reactions in the mediastinal lymph nodes that might ultimately lead to the production of specific antibodies.
Collapse
Affiliation(s)
- Margarete Heinrichs
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - DiyaaElDin Ashour
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Johanna Siegel
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Lotte Büchner
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Georg Wedekind
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Centre for Integrative and Translational Bioimaging, University of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Panagiota Arampatzi
- Core Unit Systems Medicine, University of Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Clement Cochain
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
- Institute of Experimental Biomedicine, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Gustavo Campos Ramos
- Department of Internal Medicine I, University Hospital Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
- Comprehensive Heart Failure Centre, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| |
Collapse
|
39
|
Zhong X, Wang T, Xie Y, Wang M, Zhang W, Dai L, Lai J, Nie X, He X, Madhusudhan T, Zeng H, Wang H. Activated Protein C Ameliorates Diabetic Cardiomyopathy via Modulating OTUB1/YB-1/MEF2B Axis. Front Cardiovasc Med 2021; 8:758158. [PMID: 34778410 PMCID: PMC8585767 DOI: 10.3389/fcvm.2021.758158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Aims: The pathogenesis of diabetic cardiomyopathy (DCM) is complex and the detailed mechanism remains unclear. Coagulation protease activated Protein C (aPC) has been reported to have a protective effect in diabetic microvascular disease. Here, we investigated whether aPC could play a protective role in the occurrence and development of major diabetic complication DCM, and its underlying molecular mechanism. Methods and Results: In a mouse model of streptozotocin (STZ) induced DCM, endogenous aPC levels were reduced. Restoring aPC levels by exogenous administration of zymogen protein C (PC) improved cardiac function of diabetic mice measured by echocardiography and invasive hemodynamics. The cytoprotective effect of aPC in DCM is mediated by transcription factor Y-box binding protein-1 (YB-1). Mechanistically, MEF2B lies downstream of YB-1 and YB-1/MEF2B interaction restrains deleterious MEF2B promoter activity in DCM. The regulation of YB-1 on MEF2B transcription was analyzed by dual-luciferase and chromatin immunoprecipitation assays. In diabetic mice, aPC ameliorated YB-1 degradation via reducing its K48 ubiquitination through deubiquitinating enzyme otubain-1 (OTUB1) and improving the interaction between YB-1 and OTUB1. Using specific agonists and blocking antibodies, PAR1 and EPCR were identified as crucial receptors for aPC's dependent cytoprotective signaling. Conclusion: These data identify that the cytoprotective aPC signaling via PAR1/EPCR maintains YB-1 levels by preventing the ubiquitination and subsequent proteasomal degradation of YB-1 via OTUB1. By suppressing MEF2B transcription, YB-1 can protect against DCM. Collectively, the current study uncovered the important role of OTUB1/YB-1/MEF2B axis in DCM and targeting this pathway might offer a new therapeutic strategy for DCM. Translational Perspective: DCM is emerging at epidemic rate recently and the underlying mechanism remains unclear. This study explored the protective cell signaling mechanisms of aPC in mouse models of DCM. As a former FDA approved anti-sepsis drug, aPC along with its derivatives can be applied from bench to bed and can be explored as a new strategy for personalized treatment for DCM. Mechanistically, OTUB1/YB-1/MEF2B axis plays a critical role in the occurrence and development of DCM and offers a potential avenue for therapeutic targeting of DCM.
Collapse
Affiliation(s)
- Xiaodan Zhong
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Tao Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yang Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Mengwen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Wenjun Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jinsheng Lai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xingwei He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Hesong Zeng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
40
|
Vaccine-elicited CD4 T cells prevent the deletion of antiviral B cells in chronic infection. Proc Natl Acad Sci U S A 2021; 118:2108157118. [PMID: 34772811 DOI: 10.1073/pnas.2108157118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)-driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called "decimation," of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I-driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell-intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell-mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell-based vaccination against persistent viral diseases.
Collapse
|
41
|
Limited access to antigen drives generation of early B cell memory while restraining the plasmablast response. Immunity 2021; 54:2005-2023.e10. [PMID: 34525339 PMCID: PMC7612941 DOI: 10.1016/j.immuni.2021.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/26/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023]
Abstract
Cell fate decisions during early B cell activation determine the outcome of responses to pathogens and vaccines. We examined the early B cell response to T-dependent antigen in mice by single-cell RNA sequencing. Early after immunization, a homogeneous population of activated precursors (APs) gave rise to a transient wave of plasmablasts (PBs), followed a day later by the emergence of germinal center B cells (GCBCs). Most APs rapidly exited the cell cycle, giving rise to non-GC-derived early memory B cells (eMBCs) that retained an AP-like transcriptional profile. Rapid decline of antigen availability controlled these events; provision of excess antigen precluded cell cycle exit and induced a new wave of PBs. Fate mapping revealed a prominent contribution of eMBCs to the MBC pool. Quiescent cells with an MBC phenotype dominated the early response to immunization in primates. A reservoir of APs/eMBCs may enable rapid readjustment of the immune response when failure to contain a threat is manifested by increased antigen availability.
Collapse
|
42
|
Wu P, Ding L, Li X, Liu S, Cheng F, He Q, Xiao M, Wu P, Hou H, Jiang M, Long P, Wang H, Liu L, Qu M, Shi X, Jiang Q, Mo T, Ding W, Fu Y, Han S, Huo X, Zeng Y, Zhou Y, Zhang Q, Ke J, Xu X, Ni W, Shao Z, Wang J, Liu P, Li Z, Jin Y, Zheng F, Wang F, Liu L, Li W, Liu K, Peng R, Xu X, Lin Y, Gao H, Shi L, Geng Z, Mu X, Yan Y, Wang K, Wu D, Hao X, Cheng S, Qiu G, Guo H, Li K, Chen G, Sun Z, Lin X, Jin X, Wang F, Sun C, Wang C. Trans-ethnic genome-wide association study of severe COVID-19. Commun Biol 2021; 4:1034. [PMID: 34465887 PMCID: PMC8408224 DOI: 10.1038/s42003-021-02549-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has caused numerous infections with diverse clinical symptoms. To identify human genetic variants contributing to the clinical development of COVID-19, we genotyped 1457 (598/859 with severe/mild symptoms) and sequenced 1141 (severe/mild: 474/667) patients of Chinese ancestry. We further incorporated 1401 genotyped and 948 sequenced ancestry-matched population controls, and tested genome-wide association on 1072 severe cases versus 3875 mild or population controls, followed by trans-ethnic meta-analysis with summary statistics of 3199 hospitalized cases and 897,488 population controls from the COVID-19 Host Genetics Initiative. We identified three significant signals outside the well-established 3p21.31 locus: an intronic variant in FOXP4-AS1 (rs1853837, odds ratio OR = 1.28, P = 2.51 × 10-10, allele frequencies in Chinese/European AF = 0.345/0.105), a frameshift insertion in ABO (rs8176719, OR = 1.19, P = 8.98 × 10-9, AF = 0.422/0.395) and a Chinese-specific intronic variant in MEF2B (rs74490654, OR = 8.73, P = 1.22 × 10-8, AF = 0.004/0). These findings highlight an important role of the adaptive immunity and the ABO blood-group system in protection from developing severe COVID-19.
Collapse
Affiliation(s)
- Peng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaodong Li
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fanjun Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing He
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Mingzhong Xiao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Ping Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinpin Long
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Minghan Qu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Jiang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Mo
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencheng Ding
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Han
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xixiang Huo
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yingchun Zeng
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yana Zhou
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Qing Zhang
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jia Ke
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xi Xu
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Wei Ni
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Zuoyu Shao
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Jingzhi Wang
- Hepatic Disease Institute, Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Panhong Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zilong Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Jin
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Lei Liu
- The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wending Li
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Peng
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuedan Xu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Lin
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gao
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limei Shi
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyue Geng
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuanwen Mu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Degang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaokun Qiu
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xihong Lin
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Jin
- School of Medicine, South China University of Technology, Guangzhou, China.
| | - Feng Wang
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China.
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China.
| | - Chaolong Wang
- National Medical Center for Major Public Health Events, Huazhong University of Science and Technology, Wuhan, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Meyer SN, Koul S, Pasqualucci L. Mouse Models of Germinal Center Derived B-Cell Lymphomas. Front Immunol 2021; 12:710711. [PMID: 34456919 PMCID: PMC8387591 DOI: 10.3389/fimmu.2021.710711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
Over the last decades, the revolution in DNA sequencing has changed the way we understand the genetics and biology of B-cell lymphomas by uncovering a large number of recurrently mutated genes, whose aberrant function is likely to play an important role in the initiation and/or maintenance of these cancers. Dissecting how the involved genes contribute to the physiology and pathology of germinal center (GC) B cells -the origin of most B-cell lymphomas- will be key to advance our ability to diagnose and treat these patients. Genetically engineered mouse models (GEMM) that faithfully recapitulate lymphoma-associated genetic alterations offer a valuable platform to investigate the pathogenic roles of candidate oncogenes and tumor suppressors in vivo, and to pre-clinically develop new therapeutic principles in the context of an intact tumor immune microenvironment. In this review, we provide a summary of state-of-the art GEMMs obtained by accurately modelling the most common genetic alterations found in human GC B cell malignancies, with a focus on Burkitt lymphoma, follicular lymphoma, and diffuse large B-cell lymphoma, and we discuss how lessons learned from these models can help guide the design of novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Stefanie N. Meyer
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
| | - Sanjay Koul
- Department of Biological Sciences & Geology, Queensborough Community College (City University of New York), Bayside, NY, United States
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY, United States
- Department of Pathology & Cell Biology, Columbia University, New York, NY, United States
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, United States
| |
Collapse
|
44
|
Correlation Analysis Between the Expression of MEF2B, and Germinal Center and Nongerminal Center Markers in Diffuse Large B-Cell Lymphoma. Appl Immunohistochem Mol Morphol 2021; 28:e63-e64. [PMID: 31850910 DOI: 10.1097/pai.0000000000000813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Mossadegh-Keller N, Brisou G, Beyou A, Nadel B, Roulland S. Human B Lymphomas Reveal Their Secrets Through Genetic Mouse Models. Front Immunol 2021; 12:683597. [PMID: 34335584 PMCID: PMC8323519 DOI: 10.3389/fimmu.2021.683597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Lymphomas are cancers deriving from lymphocytes, arising preferentially in secondary lymphoid organs, and represent the 6th cancer worldwide and the most frequent blood cancer. The majority of B cell Non-Hodgkin lymphomas (B-NHL) develop from germinal center (GC) experienced mature B cells. GCs are transient structures that form in lymphoid organs in response to antigen exposure of naive B cells, and where B cell receptor (BCR) affinity maturation occurs to promote B cell differentiation into memory B and plasma cells producing high-affinity antibodies. Genomic instability associated with the somatic hypermutation (SHM) and class-switch recombination (CSR) processes during GC transit enhance susceptibility to malignant transformation. Most B cell differentiation steps in the GC are at the origin of frequent B cell malignant entities, namely Follicular Lymphoma (FL) and GCB diffuse large B cell lymphomas (GCB-DLBCL). Over the past decade, large sequencing efforts have provided a great boost in the identification of candidate oncogenes and tumor suppressors involved in FL and DLBCL oncogenesis. Mouse models have been instrumental to accurately mimic in vivo lymphoma-specific mutations and interrogate their normal function in the GC context and their oncogenic function leading to lymphoma onset. The limited access of biopsies during the initiating steps of the disease, the cellular and (epi)genetic heterogeneity of individual tumors across and within patients linked to perturbed dynamics of GC ecosystems make the development of genetically engineered mouse models crucial to decipher lymphomagenesis and disease progression and eventually to test the effects of novel targeted therapies. In this review, we provide an overview of some of the important genetically engineered mouse models that have been developed to recapitulate lymphoma-associated (epi)genetic alterations of two frequent GC-derived lymphoma entities: FL and GCB-DLCBL and describe how those mouse models have improved our knowledge of the molecular processes supporting GC B cell transformation.
Collapse
Affiliation(s)
| | - Gabriel Brisou
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Department of Hematology, Institut Paoli-Calmettes, Marseille, France
| | - Alicia Beyou
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Bertrand Nadel
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | |
Collapse
|
46
|
Di Giorgio E, Wang L, Xiong Y, Christensen LM, Akimova T, Han R, Samanta A, Trevisanut M, Brancolini C, Beier UH, Hancock WW. A Biological Circuit Involving Mef2c, Mef2d, and Hdac9 Controls the Immunosuppressive Functions of CD4+Foxp3+ T-Regulatory Cells. Front Immunol 2021; 12:703632. [PMID: 34290714 PMCID: PMC8287581 DOI: 10.3389/fimmu.2021.703632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The Mads/Mef2 (Mef2a/b/c/d) family of transcription factors (TFs) regulates differentiation of muscle cells, neurons and hematopoietic cells. By functioning in physiological feedback loops, Mef2 TFs promote the transcription of their repressor, Hdac9, thereby providing temporal control of Mef2-driven differentiation. Disruption of this feedback is associated with the development of various pathologic states, including cancer. Beside their direct involvement in oncogenesis, Mef2 TFs indirectly control tumor progression by regulating antitumor immunity. We recently reported that in CD4+CD25+Foxp3+ T-regulatory (Treg) cells, Mef2d is required for the acquisition of an effector Treg (eTreg) phenotype and for the activation of an epigenetic program that suppresses the anti-tumor immune responses of conventional T and B cells. We now report that as with Mef2d, the deletion of Mef2c in Tregs switches off the expression of Il10 and Icos and leads to enhanced antitumor immunity in syngeneic models of lung cancer. Mechanistically, Mef2c does not directly bind the regulatory elements of Icos and Il10, but its loss-of-function in Tregs induces the expression of the transcriptional repressor, Hdac9. As a consequence, Mef2d, the more abundant member of the Mef2 family, is converted by Hdac9 into a transcriptional repressor on these loci. This leads to the impairment of Treg suppressive properties in vivo and to enhanced anti-cancer immunity. These data further highlight the central role played by the Mef2/Hdac9 axis in the regulation of CD4+Foxp3+ Treg function and adds a new level of complexity to the analysis and study of Treg biology.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Medicine, University of Udine, Udine, Italy
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yan Xiong
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Lanette M Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rongxiang Han
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arabinda Samanta
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Matteo Trevisanut
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
47
|
Regulation of humoral immune response by HIF-1α-dependent metabolic reprogramming of the germinal center reaction. Cell Immunol 2021; 367:104409. [PMID: 34246872 DOI: 10.1016/j.cellimm.2021.104409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the regulation of many genes responsible for aerobic glycolysis; however, the role of HIF-1α in B-cell metabolism has not been well defined. Here, we analyzed patterns of gene expression and oxygen consumption rates in B-cell subpopulations from humans and mice and described a model of HIF-1α-mediated B-cell metabolic reprogramming during the germinal center (GC) reaction. Importantly, we found that HIF-1α was highly expressed in GC B-cells, and HIF-1α deficiency in B-cells impaired a functional GC reaction, resulting in defective class-switch recombination and generation of high-affinity plasma cells. These results identified an important role of HIF-1α in regulating humoral immunity through metabolic reprogramming during the GC response. This newly discovered metabolic character of GC B-cells will advance our understanding of GC biology and B-cell lymphomagenesis.
Collapse
|
48
|
An Overview on Diffuse Large B-Cell Lymphoma Models: Towards a Functional Genomics Approach. Cancers (Basel) 2021; 13:cancers13122893. [PMID: 34207773 PMCID: PMC8226720 DOI: 10.3390/cancers13122893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Lymphoma research is a paradigm of integrating basic and applied research within the fields of molecular marker-based diagnosis and therapy. In recent years, major advances in next-generation sequencing have substantially improved the understanding of the genomics underlying diffuse large B-cell lymphoma (DLBCL), the most frequent type of B-cell lymphoma. This review addresses the various approaches that have helped unveil the biology and intricate alterations in this pathology, from cell lines to more sophisticated last-generation experimental models, such as organoids. We also provide an overview of the most recent findings in the field, their potential relevance for designing targeted therapies and the corresponding applicability to personalized medicine. Abstract Lymphoma research is a paradigm of the integration of basic and clinical research within the fields of diagnosis and therapy. Clinical, phenotypic, and genetic data are currently used to predict which patients could benefit from standard treatment. However, alternative therapies for patients at higher risk from refractoriness or relapse are usually empirically proposed, based on trial and error, without considering the genetic complexity of aggressive B-cell lymphomas. This is primarily due to the intricate mosaic of genetic and epigenetic alterations in lymphomas, which are an obstacle to the prediction of which drug will work for any given patient. Matching a patient’s genes to drug sensitivity by directly testing live tissues comprises the “precision medicine” concept. However, in the case of lymphomas, this concept should be expanded beyond genomics, eventually providing better treatment options for patients in need of alternative therapeutic approaches. We provide an overview of the most recent findings in diffuse large B-cell lymphomas genomics, from the classic functional models used to study tumor biology and the response to experimental treatments using cell lines and mouse models, to the most recent approaches with spheroid/organoid models. We also discuss their potential relevance and applicability to daily clinical practice.
Collapse
|
49
|
Rodrigues JM, Porwit A, Hassan M, Ek S, Jerkeman M. Targeted genomic investigations in a population-based cohort of mantle cell lymphoma reveal novel clinically relevant targets. Leuk Lymphoma 2021; 62:2637-2647. [PMID: 34080947 DOI: 10.1080/10428194.2021.1933480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell neoplasm that follows a heterogeneous clinical course. Recurrent mutations have been described, but their applicability in the clinical setting is currently limited. The main reasons are challenges in the sequencing of DNA retrieved from formalin-fixed tissue commonly used for tissue collection in clinical biobanks. In this study, we sequenced 77 samples from a population-based de novo MCL cohort to investigate the utility of targeted sequencing in guiding personalized treatment approaches. Tumors were genetically variable, and a similar genetic landscape as previous studies using non-formalin fixed samples was identified, with recurrent mutations including ATM, KMT2D, and TP53. Novel alterations that can be considered actionable and/or indicative of treatment response were also identified. Our approach shows the potential benefits of using target sequencing of formalin fixed samples to facilitate treatment selection and individualized clinical decisions in MCL.
Collapse
Affiliation(s)
| | - Anna Porwit
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - May Hassan
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Mats Jerkeman
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
50
|
Biology of Germinal Center B Cells Relating to Lymphomagenesis. Hemasphere 2021; 5:e582. [PMID: 34095765 PMCID: PMC8171379 DOI: 10.1097/hs9.0000000000000582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The germinal center (GC) reaction is a key feature of adaptive humoral immunity. GCs represent the site where mature B cells refine their B-cell receptor (BCR) and are selected based on the newly acquired affinity for the antigen. In the GC, B cells undergo multiple cycles of proliferation, BCR remodeling by immunoglobulin somatic hypermutation (SHM), and affinity-based selection before emerging as effector memory B cells or antibody-secreting plasma cells. At least 2 histologically and functionally distinct compartments are identified in the GC: the dark zone (DZ) and the light zone (LZ). The proliferative burst and immunoglobulin remodeling by SHM occur prevalently in the DZ compartment. In the LZ, GC B cells undergo an affinity-based selection process that requires the interaction with the antigen and accessory cells. GC B cells are also targeted by class switch recombination, an additional mechanism of immunoglobulin remodeling that ensures the expression of diverse isotype classes. These processes are regulated by a complex network of transcription factors, epigenetic modifiers, and signaling pathways that act in concert with mechanisms of intra-GC B-cell trafficking. The same mechanisms underlying the unique ability of GC B cells to generate high affinity antibodies and ensure immunological memory are hijacked during lymphomagenesis and become powerful weapons for malignant transformation. This review will summarize the main processes and transcriptional networks that drive GC B-cell development and are relevant for human B-cell lymphomagenesis.
Collapse
|