1
|
Hu Y, Chen C, Lin K, Tong X, Huang T, Qiu T, Chen X, Xu J, Xie W, Sun X, Feng S, Lu M, Zhao Z, Chen X, Xue X, Shen X. NSUN2 promotes colorectal cancer progression and increases lapatinib sensitivity by enhancing CUL4B/ErbB-STAT3 signalling in a non-m5C manner. Clin Transl Med 2025; 15:e70282. [PMID: 40156167 PMCID: PMC11953055 DOI: 10.1002/ctm2.70282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025] Open
Abstract
NSUN2, a major methyltransferase that catalyzes m5C methylation in eukaryotes, is known to be implicated in the development of multiple cancers. However, its role in colorectal cancer (CRC) and the related molecular mechanisms have yet to be sufficiently determined. Here, we conducted an analysis of public database (722 CRC patients) and two distinct cohorts from our centre (1559 CRC patients), which revealed that NSUN2 is upregulated in CRC and correlates with unfavourable prognosis. Our analyses also showed that NSUN2 promotes the proliferation and metastasis capabilities of CRC cells. Intriguingly, NSUN2 was found to promote CRC via an m5C-independent mechanism, which has not been previously reported. Overexpression of both wild-type and m5C enzymatic-dead mutant NSUN2 upregulated and activated the ErbB-STAT3 signalling pathway. We also found that both wild-type and the m5C enzymatic-dead mutant NSUN2 closely interacted with CUL4B. Silencing of CUL4B effectively inhibited the m5C-independent function of NSUN2. Moreover, overexpression of NSUN2 enhanced the sensitivity of CRC cells to lapatinib. Taken together, our findings revealed a novel m5C-independent mechanism for NSUN2 in the malignancy and lapatinib sensitivity of CRC via activation of the CUL4B/ErbB-STAT3 pathway, which provides a potential therapeutic strategy for patients with CRC. HIGHLIGHTS: NSUN2 is upregulated in CRC and associated with poor prognosis of CRC patients. NSUN2 promotes CRC malignancy independently of its m5C-enzymatic activity, a mechanism that has not been previously reported. The non-m5C carcinogenic roles of NSUN2 may be mediated through interactions with CUL4B, thereby activating the ErbB-STAT3 signalling pathway. NSUN2-mediated upregulation of ErbB-STAT3 pathway enhances the sensitivity of CRC to lapatinib treatment.
Collapse
Affiliation(s)
- Yuanbo Hu
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of General SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Chenbin Chen
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Kezhi Lin
- Experiemtial Center of Basic Medicine, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xinya Tong
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Tingting Huang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
- Department of Obstetrics and Gynecology, Maternal and Child Care Service HospitalYueqingChina
| | - Tianle Qiu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xietao Chen
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Jun Xu
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Wangkai Xie
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xiangwei Sun
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Shiyu Feng
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Mingdong Lu
- Department of General SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhiguang Zhao
- Department of PathologyThe Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaodong Chen
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiangyang Xue
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
| | - Xian Shen
- Department of General SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of General SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
2
|
Petrohilos C, Peel E, Batley KC, Fox S, Hogg CJ, Belov K. No Evidence for Distinct Transcriptomic Subgroups of Devil Facial Tumor Disease (DFTD). Evol Appl 2025; 18:e70091. [PMID: 40177324 PMCID: PMC11961399 DOI: 10.1111/eva.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Contagious cancers represent one of the least understood types of infections in wildlife. Devil Facial Tumor Disease (comprised of two different contagious cancers, DFT1 and DFT2) has led to an 80% decline in the Tasmanian devil (Sarcophilus harrisii ) population at the regional level since it was first observed in 1996. There are currently no treatment options for the disease, and research efforts are focused on vaccine development. Although DFT1 is clonal, phylogenomic studies have identified different genetic variants of the pathogen. We postulated that different genetic strains may have different gene expression profiles and would therefore require different vaccine components. Here, we aimed to test this hypothesis by applying two types of unsupervised clustering (hierarchical and k-means) to 35 DFT1 transcriptomes selected from the disease's four major phylogenetic clades. The two algorithms produced conflicting results, and there was low support for either method individually. Validation metrics, such as the Gap statistic method, the Elbow method, and the Silhouette method, were ambiguous, contradictory, or indicated that our dataset only consisted of a single cluster. Collectively, our results show that the different phylogenetic clades of DFT1 all have similar gene expression profiles. Previous studies have suggested that transcriptomic differences exist between tumours from different locations. However, our study differs in that it considers both tumor purity and genotypic clade when analysing differences between DFTD biopsies. These results have important implications for therapeutic development, as they indicate that a single vaccine or treatment approach has the potential to be effective for a large cross-section of DFT1 tumors. As one of the largest studies to use transcriptomics to investigate phenotypic variation within a single contagious cancer, it also provides novel insight into this unique group of diseases.
Collapse
Affiliation(s)
- Cleopatra Petrohilos
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Emma Peel
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Kimberley C. Batley
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Samantha Fox
- Save the Tasmanian Devil ProgramDepartment of Natural Resources and EnvironmentHobartTasmaniaAustralia
| | - Carolyn J. Hogg
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Katherine Belov
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Kang Q, Jia J, Dean ED, Yuan H, Dai C, Li Z, Jiang F, Zhang XK, Powers AC, Chen W, Li M. ErbB3 is required for hyperaminoacidemia-induced pancreatic α cell hyperplasia. J Biol Chem 2024; 300:107499. [PMID: 38944125 PMCID: PMC11326907 DOI: 10.1016/j.jbc.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 07/01/2024] Open
Abstract
Blood amino acid levels are maintained in a narrow physiological range. The pancreatic α cells have emerged as the primary aminoacidemia regulator through glucagon secretion to promote hepatic amino acid catabolism. Interruption of glucagon signaling disrupts the liver-α cells axis leading to hyperaminoacidemia, which triggers a compensatory rise in glucagon secretion and α cell hyperplasia. The mechanisms of hyperaminoacidemia-induced α cell hyperplasia remain incompletely understood. Using a mouse α cell line and in vivo studies in zebrafish and mice, we found that hyperaminoacidemia-induced α cell hyperplasia requires ErbB3 signaling. In addition to mechanistic target of rapamycin complex 1, another ErbB3 downstream effector signal transducer and activator of transcription 3 also plays a role in α cell hyperplasia. Mechanistically, ErbB3 may partner with ErbB2 to stimulate cyclin D2 and suppress p27 via mechanistic target of rapamycin complex 1 and signal transducer and activator of transcription 3. Our study identifies ErbB3 as a new regulator for hyperaminoacidemia-induced α cell proliferation and a critical component of the liver-α cells axis that regulates aminoacidemia.
Collapse
Affiliation(s)
- Qi Kang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jianxin Jia
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - E Danielle Dean
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hang Yuan
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chunhua Dai
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zhehui Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Alvin C Powers
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Wenbiao Chen
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Mingyu Li
- School of Pharmaceutical Sciences and School of Life Sciences, Xiamen University, Xiamen, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Fan J, Zhang Z, Chen H, Chen D, Yuan W, Li J, Zeng Y, Zhou S, Zhang S, Zhang G, Xiong J, Zhou L, Xu J, Liu W, Xu Y. Zinc finger protein 831 promotes apoptosis and enhances chemosensitivity in breast cancer by acting as a novel transcriptional repressor targeting the STAT3/Bcl2 signaling pathway. Genes Dis 2024; 11:430-448. [PMID: 37588209 PMCID: PMC10425751 DOI: 10.1016/j.gendis.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence suggested that zinc finger protein 831 (ZNF831) was associated with immune activity and stem cell regulation in breast cancer. Whereas, the roles and molecular mechanisms of ZNF831 in oncogenesis remain unclear. ZNF831 expression was significantly diminished in breast cancer which was associated with promoter CpG methylation but not mutation. Ectopic over-expression of ZNF831 suppressed breast cancer cell proliferation and colony formation and promoted apoptosis in vitro, while knockdown of ZNF831 resulted in an opposite phenotype. Anti-proliferation effect of ZNF831 was verified in vivo. Bioinformatic analysis of public databases and transcriptome sequencing both showed that ZNF831 could enhance apoptosis through transcriptional regulation of the JAK/STAT pathway. ChIP and luciferase report assays demonstrated that ZNF831 could directly bind to one specific region of STAT3 promoter and induce the transcriptional inhibition of STAT3. As a result, the attenuation of STAT3 led to a restraint of the transcription of Bcl2 and thus accelerated the apoptotic progression. Augmentation of STAT3 diminished the apoptosis-promoting effect of ZNF831 in breast cancer cell lines. Furthermore, ZNF831 could ameliorate the anti-proliferation effect of capecitabine and gemcitabine in breast cancer cell lines. Our findings demonstrate for the first time that ZNF831 is a novel transcriptional suppressor through inhibiting the expression of STAT3/Bcl2 and promoting the apoptosis process in breast cancer, suggesting ZNF831 as a novel biomarker and potential therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dongjiao Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wenbo Yuan
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jingzhi Li
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shimeng Zhou
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shu Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Gang Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jiashen Xiong
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Lu Zhou
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jing Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| |
Collapse
|
5
|
Harvey E, Mifsud JCO, Holmes EC, Mahar JE. Divergent hepaciviruses, delta-like viruses, and a chu-like virus in Australian marsupial carnivores (dasyurids). Virus Evol 2023; 9:vead061. [PMID: 37941997 PMCID: PMC10630069 DOI: 10.1093/ve/vead061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Although Australian marsupials are characterised by unique biology and geographic isolation, little is known about the viruses present in these iconic wildlife species. The Dasyuromorphia are an order of marsupial carnivores found only in Australia that include both the extinct Tasmanian tiger (thylacine) and the highly threatened Tasmanian devil. Several other members of the order are similarly under threat of extinction due to habitat loss, hunting, disease, and competition and predation by introduced species such as feral cats. We utilised publicly available RNA-seq data from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database to document the viral diversity within four Dasyuromorph species. Accordingly, we identified fifteen novel virus sequences from five DNA virus families (Adenoviridae, Anelloviridae, Gammaherpesvirinae, Papillomaviridae, and Polyomaviridae) and three RNA virus taxa: the order Jingchuvirales, the genus Hepacivirus, and the delta-like virus group. Of particular note was the identification of a marsupial-specific clade of delta-like viruses that may indicate an association of deltaviruses with marsupial species. In addition, we identified a highly divergent hepacivirus in a numbat liver transcriptome that falls outside of the larger mammalian clade. We also detect what may be the first Jingchuvirales virus in a mammalian host-a chu-like virus in Tasmanian devils-thereby expanding the host range beyond invertebrates and ectothermic vertebrates. As many of these Dasyuromorphia species are currently being used in translocation efforts to reseed populations across Australia, understanding their virome is of key importance to prevent the spread of viruses to naive populations.
Collapse
Affiliation(s)
- Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Petrohilos C, Patchett A, Hogg CJ, Belov K, Peel E. Tasmanian devil cathelicidins exhibit anticancer activity against Devil Facial Tumour Disease (DFTD) cells. Sci Rep 2023; 13:12698. [PMID: 37542170 PMCID: PMC10403513 DOI: 10.1038/s41598-023-39901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023] Open
Abstract
The Tasmanian devil (Sarcophilus harrisii) is endangered due to the spread of Devil Facial Tumour Disease (DFTD), a contagious cancer with no current treatment options. Here we test whether seven recently characterized Tasmanian devil cathelicidins are involved in cancer regulation. We measured DFTD cell viability in vitro following incubation with each of the seven peptides and describe the effect of each on gene expression in treated cells. Four cathelicidins (Saha-CATH3, 4, 5 and 6) were toxic to DFTD cells and caused general signs of cellular stress. The most toxic peptide (Saha-CATH5) also suppressed the ERBB and YAP1/TAZ signaling pathways, both of which have been identified as important drivers of cancer proliferation. Three cathelicidins induced inflammatory pathways in DFTD cells that may potentially recruit immune cells in vivo. This study suggests that devil cathelicidins have some anti-cancer and inflammatory functions and should be explored further to determine whether they have potential as treatment leads.
Collapse
Affiliation(s)
- Cleopatra Petrohilos
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Amanda Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide & Protein Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Stammnitz MR, Gori K, Kwon YM, Harry E, Martin FJ, Billis K, Cheng Y, Baez-Ortega A, Chow W, Comte S, Eggertsson H, Fox S, Hamede R, Jones M, Lazenby B, Peck S, Pye R, Quail MA, Swift K, Wang J, Wood J, Howe K, Stratton MR, Ning Z, Murchison EP. The evolution of two transmissible cancers in Tasmanian devils. Science 2023; 380:283-293. [PMID: 37079675 PMCID: PMC7614631 DOI: 10.1126/science.abq6453] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Tasmanian devils have spawned two transmissible cancer lineages, named devil facial tumor 1 (DFT1) and devil facial tumor 2 (DFT2). We investigated the genetic diversity and evolution of these clones by analyzing 78 DFT1 and 41 DFT2 genomes relative to a newly assembled, chromosome-level reference. Time-resolved phylogenetic trees reveal that DFT1 first emerged in 1986 (1982 to 1989) and DFT2 in 2011 (2009 to 2012). Subclone analysis documents transmission of heterogeneous cell populations. DFT2 has faster mutation rates than DFT1 across all variant classes, including substitutions, indels, rearrangements, transposable element insertions, and copy number alterations, and we identify a hypermutated DFT1 lineage with defective DNA mismatch repair. Several loci show plausible evidence of positive selection in DFT1 or DFT2, including loss of chromosome Y and inactivation of MGA, but none are common to both cancers. This study reveals the parallel long-term evolution of two transmissible cancers inhabiting a common niche in Tasmanian devils.
Collapse
Affiliation(s)
- Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Young Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ed Harry
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - William Chow
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastien Comte
- School of Nature Sciences, University of Tasmania, Hobart, Australia
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, Australia
| | | | - Samantha Fox
- Save the Tasmanian Devil Program, Tasmanian Department of Natural Resources and Environment, Hobart, Australia
- Toledo Zoo, 2605 Broadway, Toledo, Ohio 43609, USA
| | - Rodrigo Hamede
- School of Nature Sciences, University of Tasmania, Hobart, Australia
- CANCEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Menna Jones
- School of Nature Sciences, University of Tasmania, Hobart, Australia
| | - Billie Lazenby
- Save the Tasmanian Devil Program, Tasmanian Department of Natural Resources and Environment, Hobart, Australia
| | - Sarah Peck
- Save the Tasmanian Devil Program, Tasmanian Department of Natural Resources and Environment, Hobart, Australia
| | - Ruth Pye
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michael A. Quail
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kate Swift
- Mount Pleasant Laboratories, Tasmanian Department of Natural Resources and Environment, Prospect, Australia
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Wood
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kerstin Howe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Zemin Ning
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Bassey-Archibong BI, Rajendra Chokshi C, Aghaei N, Kieliszek AM, Tatari N, McKenna D, Singh M, Kalpana Subapanditha M, Parmar A, Mobilio D, Savage N, Lam F, Tokar T, Provias J, Lu Y, Chafe SC, Swanton C, Hynds RE, Venugopal C, Singh SK. An HLA-G/SPAG9/STAT3 axis promotes brain metastases. Proc Natl Acad Sci U S A 2023; 120:e2205247120. [PMID: 36780531 PMCID: PMC9974476 DOI: 10.1073/pnas.2205247120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/18/2022] [Indexed: 02/15/2023] Open
Abstract
Brain metastases (BM) are the most common brain neoplasm in adults. Current BM therapies still offer limited efficacy and reduced survival outcomes, emphasizing the need for a better understanding of the disease. Herein, we analyzed the transcriptional profile of brain metastasis initiating cells (BMICs) at two distinct stages of the brain metastatic cascade-the "premetastatic" or early stage when they first colonize the brain and the established macrometastatic stage. RNA sequencing was used to obtain the transcriptional profiles of premetastatic and macrometastatic (non-premetastatic) lung, breast, and melanoma BMICs. We identified that lung, breast, and melanoma premetastatic BMICs share a common transcriptomic signature that is distinct from their non-premetastatic counterparts. Importantly, we show that premetastatic BMICs exhibit increased expression of HLA-G, which we further demonstrate functions in an HLA-G/SPAG9/STAT3 axis to promote the establishment of brain metastatic lesions. Our findings suggest that unraveling the molecular landscape of premetastatic BMICs allows for the identification of clinically relevant targets that can possibly inform the development of preventive and/or more efficacious BM therapies.
Collapse
Affiliation(s)
| | - Chirayu Rajendra Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nikoo Aghaei
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Agata Monika Kieliszek
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Dillon McKenna
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mohini Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Arun Parmar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Fred Lam
- Department of Surgery, Division of Neurosurgery, McMaster University Faculty of Health Sciences, Hamilton General Hospital, Hamilton, ON, L8S 4K1, Canada
| | - Tomas Tokar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, M5T 2S8, Canada
| | - John Provias
- Department of Anatomical Pathology (Neuropathology), Hamilton General Hospital, Hamilton, ON, L8L 2X2, Canada
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Yu Lu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | | | - Charles Swanton
- The Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Robert Edward Hynds
- The Cancer Research UK (CRUK) Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Sheila Kumari Singh
- Department of Surgery, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
9
|
Klughammer J, Romanovskaia D, Nemc A, Posautz A, Seid CA, Schuster LC, Keinath MC, Lugo Ramos JS, Kosack L, Evankow A, Printz D, Kirchberger S, Ergüner B, Datlinger P, Fortelny N, Schmidl C, Farlik M, Skjærven K, Bergthaler A, Liedvogel M, Thaller D, Burger PA, Hermann M, Distel M, Distel DL, Kübber-Heiss A, Bock C. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat Commun 2023; 14:232. [PMID: 36646694 PMCID: PMC9842680 DOI: 10.1038/s41467-022-34828-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/08/2022] [Indexed: 01/18/2023] Open
Abstract
Methylation of cytosines is a prototypic epigenetic modification of the DNA. It has been implicated in various regulatory mechanisms across the animal kingdom and particularly in vertebrates. We mapped DNA methylation in 580 animal species (535 vertebrates, 45 invertebrates), resulting in 2443 genome-scale DNA methylation profiles of multiple organs. Bioinformatic analysis of this large dataset quantified the association of DNA methylation with the underlying genomic DNA sequence throughout vertebrate evolution. We observed a broadly conserved link with two major transitions-once in the first vertebrates and again with the emergence of reptiles. Cross-species comparisons focusing on individual organs supported a deeply conserved association of DNA methylation with tissue type, and cross-mapping analysis of DNA methylation at gene promoters revealed evolutionary changes for orthologous genes. In summary, this study establishes a large resource of vertebrate and invertebrate DNA methylomes, it showcases the power of reference-free epigenome analysis in species for which no reference genomes are available, and it contributes an epigenetic perspective to the study of vertebrate evolution.
Collapse
Affiliation(s)
- Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Daria Romanovskaia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Amelie Nemc
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Annika Posautz
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Charlotte A Seid
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Juan Sebastian Lugo Ramos
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ann Evankow
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Dieter Printz
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Stefanie Kirchberger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Bekir Ergüner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Schmidl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Medical University of Vienna, Center for Pathophysiology Infectiology and Immunology, Institute of Hygiene and Applied Immunology, Vienna, Austria
| | - Miriam Liedvogel
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Institute of Avian Research, An der Vogelwarte, Wilhelmshaven, Germany
| | - Denise Thaller
- Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marcela Hermann
- Medical University of Vienna, Department of Medical Biochemistry, Vienna, Austria
| | - Martin Distel
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Daniel L Distel
- Ocean Genome Legacy Center, Northeastern University Marine Science Center, Nahant, USA
| | - Anna Kübber-Heiss
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. .,Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria.
| |
Collapse
|
10
|
de Araujo ED, Orlova A, Ashraf QF, Moriggl R, Gunning PT. Inhibitor Library Screening of SH2 Domains Through Denaturation-Based Assays. Methods Mol Biol 2023; 2705:213-223. [PMID: 37668976 DOI: 10.1007/978-1-0716-3393-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Screening of inhibitor libraries for candidate ligands is an important step in the drug discovery process. Thermal denaturation-based screening strategies are built on the premise that a protein-ligand complex has an altered stability profile compared to the protein alone. As such, these assays provide an accessible and rapid methodology for stratifying ligands that directly engage with the protein target of interest. Here, we describe three denaturation-based strategies for examining protein-inhibitor binding, in the context of SH2 domains. This includes conventional dye-based Thermal Shift Assays (TSA), nonconventional labeled ligand-based TSA, and Cellular Thermal Shift Assays (CETSA). Conventional dye-based TSA reports on the fluorescence of an external hydrophobic dye as it interacts with heat-exposed nonpolar protein surfaces as the temperature is incrementally increased. By contrast, nonconventional-labeled ligand TSA involves a fluorescence-tagged probe (phosphopeptide for SH2 domains) that is quenched as it dissociates from the protein during the denaturation process. CETSA involves monitoring the presence of the protein via Western blotting as the temperature is increased. In all three approaches, performing the assay in the presence of a candidate ligand can alter the melting profile of the protein. These assays offer primary screening tools to examine SH2 domain inhibitors libraries with varying chemical motifs, and a subset of the advantages and limitations of each approach is also discussed.
Collapse
Affiliation(s)
- Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Qirat F Ashraf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Sorger H, Dey S, Vieyra‐Garcia PA, Pölöske D, Teufelberger AR, de Araujo ED, Sedighi A, Graf R, Spiegl B, Lazzeri I, Braun T, Garces de los Fayos Alonso I, Schlederer M, Timelthaler G, Kodajova P, Pirker C, Surbek M, Machtinger M, Graier T, Perchthaler I, Pan Y, Fink‐Puches R, Cerroni L, Ober J, Otte M, Albrecht JD, Tin G, Abdeldayem A, Manaswiyoungkul P, Olaoye OO, Metzelder ML, Orlova A, Berger W, Wobser M, Nicolay JP, André F, Nguyen VA, Neubauer HA, Fleck R, Merkel O, Herling M, Heitzer E, Gunning PT, Kenner L, Moriggl R, Wolf P. Blocking STAT3/5 through direct or upstream kinase targeting in leukemic cutaneous T-cell lymphoma. EMBO Mol Med 2022; 14:e15200. [PMID: 36341492 PMCID: PMC9727928 DOI: 10.15252/emmm.202115200] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.
Collapse
Affiliation(s)
- Helena Sorger
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Saptaswa Dey
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
- Department of PathologyMedical University of ViennaViennaAustria
| | | | - Daniel Pölöske
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | | | - Elvin D de Araujo
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Abootaleb Sedighi
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Ricarda Graf
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Benjamin Spiegl
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Isaac Lazzeri
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Till Braun
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
| | - Ines Garces de los Fayos Alonso
- Department of PathologyMedical University of ViennaViennaAustria
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Petra Kodajova
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Christine Pirker
- Centre for Cancer ResearchMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Surbek
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Michael Machtinger
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Thomas Graier
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | | | - Yi Pan
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Regina Fink‐Puches
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Lorenzo Cerroni
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Jennifer Ober
- Core Facility Flow Cytometry, Center for Medical Research (ZMF)Medical University of GrazGrazAustria
| | - Moritz Otte
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
| | - Jana D Albrecht
- Department of DermatologyUniversity Hospital MannheimMannheimGermany
| | - Gary Tin
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Ayah Abdeldayem
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Martin L Metzelder
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Anna Orlova
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Walter Berger
- Centre for Cancer ResearchMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marion Wobser
- Department of DermatologyUniversity Hospital WuerzburgWuerzburgGermany
| | - Jan P Nicolay
- Department of DermatologyUniversity Hospital MannheimMannheimGermany
| | - Fiona André
- University Clinic for Dermatology, Venereology and Allergology InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - Van Anh Nguyen
- University Clinic for Dermatology, Venereology and Allergology InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - Heidi A Neubauer
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | | | - Olaf Merkel
- Department of PathologyMedical University of ViennaViennaAustria
| | - Marco Herling
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
- Department of Hematology, Cellular Therapy, and HemostaseologyUniversity of LeipzigLeipzigGermany
| | - Ellen Heitzer
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Patrick T Gunning
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
- Janpix, a Centessa CompanyLondonUK
| | - Lukas Kenner
- Department of PathologyMedical University of ViennaViennaAustria
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Applied Metabolomics (CDL‐AM), Division of Nuclear MedicineMedical University of ViennaViennaAustria
- CBmed GmbH Center for Biomarker Research in MedicineGrazAustria
| | - Richard Moriggl
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Peter Wolf
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
12
|
Jia B, Wang X, Ma F, Li X, Han X, Zhang L, Li J, Diao N, Shi K, Ge C, Yang F, Du R. The combination of SMRT sequencing and Illumina sequencing highlights organ-specific and age-specific expression patterns of miRNAs in Sika Deer. Front Vet Sci 2022; 9:1042445. [DOI: 10.3389/fvets.2022.1042445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
Due to the lack of high-quality Sika Deer (Cervus nippon) transcriptome and sRNAome across multiple organs or development stages, it is impossible to comprehensively analyze the mRNA and miRNA regulatory networks related to growth, development and immunity response. In this study, we used single molecule-real time sequencing (SMRT-seq) and Illumina sequencing methods to generate transcriptome and sRNAome from ten tissues and four age groups of Sika Deer to help us understand molecular characteristics and global miRNA expression profiles. The results showed that a total of 240,846 consensus transcripts were generated with an average length of 2,784 bp. 4,329 Transcription factors (TFs), 109,000 Simple Sequence Repeats (SSRs) and 18,987 Long non-coding RNAs (LncRNAs) were identified. Meanwhile, 306 known miRNAs and 143 novel miRNAs were obtained. A large number of miRNAs showed organ-specific and age-specific differential expression patterns. In particular, we found that the organ-specific miRNAs were enriched in the brain, some of which shared only between the brain and adrenal. These miRNAs were involved in maintaining specific functions within the brain and adrenal. By constructing miRNA96mRNA interaction networks associated with Sika Deer immunity, we found that miRNAs (miR-148a, miR-26a, miR-214, let-7b, etc.) and mRNAs (CD6, TRIM38, C3, CD163, etc.) might play an important role in the immune response of Sika Deer spleen. Together, our study generated an improved transcript annotation for Sika Deer by SMRT-seq and revealed the role of miRNA in regulating the growth, development and immunity response of Sika Deer.
Collapse
|
13
|
Espejo C, Wilson R, Pye RJ, Ratcliffe JC, Ruiz-Aravena M, Willms E, Wolfe BW, Hamede R, Hill AF, Jones ME, Woods GM, Lyons AB. Cathelicidin-3 Associated With Serum Extracellular Vesicles Enables Early Diagnosis of a Transmissible Cancer. Front Immunol 2022; 13:858423. [PMID: 35422813 PMCID: PMC9004462 DOI: 10.3389/fimmu.2022.858423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumor disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (Sarcophilus harrisii). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumor lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analyzed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples using data-independent acquisition mass spectrometry approaches. The antimicrobial peptide cathelicidin-3 (CATH3), released by innate immune cells, was enriched in serum EV samples of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis; 93.8% sensitivity and 94.1% specificity). Although high expression of antimicrobial peptides has been mostly related to inflammatory diseases, our results suggest that they can be also used as accurate cancer biomarkers, suggesting a mechanistic role in tumorous processes. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperiled Tasmanian devil population.
Collapse
Affiliation(s)
- Camila Espejo
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Ruth J Pye
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Julian C Ratcliffe
- La Trobe University Bioimaging Platform, La Trobe University, Bundoora, VIC, Australia
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.,Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Eduard Willms
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Barrett W Wolfe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.,CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
Erdogan F, Qadree AK, Radu TB, Orlova A, de Araujo ED, Israelian J, Valent P, Mustjoki SM, Herling M, Moriggl R, Gunning PT. Structural and mutational analysis of member-specific STAT functions. Biochim Biophys Acta Gen Subj 2022; 1866:130058. [PMID: 34774983 DOI: 10.1016/j.bbagen.2021.130058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The STAT family of transcription factors control gene expression in response to signals from various stimulus. They display functions in diseases ranging from autoimmunity and chronic inflammatory disease to cancer and infectious disease. SCOPE OF REVIEW This work uses an approach informed by structural data to explore how domain-specific structural variations, post-translational modifications, and the cancer genome mutational landscape dictate STAT member-specific activities. MAJOR CONCLUSIONS We illustrated the structure-function relationship of STAT proteins and highlighted their effect on member-specific activity. We correlated disease-linked STAT mutations to the structure and cancer genome mutational landscape and proposed rational drug targeting approaches of oncogenic STAT pathway addiction. GENERAL SIGNIFICANCE Hyper-activated STATs and their variants are associated with multiple diseases and are considered high value oncology targets. A full understanding of the molecular basis of member-specific STAT-mediated signaling and the strategies to selectively target them requires examination of the difference in their structures and sequences.
Collapse
Affiliation(s)
- Fettah Erdogan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Abdul K Qadree
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Satu M Mustjoki
- Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Marco Herling
- Department of Hematology, Cellular Therapy, and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
| |
Collapse
|
15
|
Silva RCMC, Panis C, Pires BRB. Lessons from transmissible cancers for immunotherapy and transplant. Immunol Med 2021; 45:146-161. [PMID: 34962854 DOI: 10.1080/25785826.2021.2018783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | |
Collapse
|
16
|
Owen RS, Ramarathinam SH, Bailey A, Gastaldello A, Hussey K, Skipp PJ, Purcell AW, Siddle HV. The differentiation state of the Schwann cell progenitor drives phenotypic variation between two contagious cancers. PLoS Pathog 2021; 17:e1010033. [PMID: 34780568 PMCID: PMC8629380 DOI: 10.1371/journal.ppat.1010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/29/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell’s ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers. Cancer can be an infectious pathogen, with nine known cases, infecting bivalves, dogs and two independent tumours circulating in the endangered Tasmanian devil. These cancers, known as Devil Facial Tumour 1 (DFT1) and Devil Facial Tumour 2 (DFT2), spread through the wild population much like parasites, moving between genetically distinct hosts during social biting behaviours and persisting in the population. As DFT1 and DFT2 are independent contagious cancers that arose from the same cell type, a Schwann cell, they provide a unique model system for studying the emergence of phenotypic variation in cancers derived from a single progenitor cell. In this study, we have shown that these two remarkably similar tumours have emerged from Schwann cells in different differentiation states. The differentiation state of the progenitor has altered the characteristics of each tumour, resulting in different responses to external signals. This work demonstrates that the cellular origin of infection can direct the phenotype of a contagious cancer and how it responds to signals from the host environment. Further, the plasticity of Schwann cells may make these cells more prone to forming contagious cancers, raising the possibility that further parasitic cancers could emerge from this cell type.
Collapse
Affiliation(s)
- Rachel S. Owen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sri H. Ramarathinam
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Alistair Bailey
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Annalisa Gastaldello
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Kathryn Hussey
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Paul J. Skipp
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology and the Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Hannah V. Siddle
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Spatial variation in gene expression of Tasmanian devil facial tumors despite minimal host transcriptomic response to infection. BMC Genomics 2021; 22:698. [PMID: 34579650 PMCID: PMC8477496 DOI: 10.1186/s12864-021-07994-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Transmissible cancers lie at the intersection of oncology and infectious disease, two traditionally divergent fields for which gene expression studies are particularly useful for identifying the molecular basis of phenotypic variation. In oncology, transcriptomics studies, which characterize the expression of thousands of genes, have identified processes leading to heterogeneity in cancer phenotypes and individual prognoses. More generally, transcriptomics studies of infectious diseases characterize interactions between host, pathogen, and environment to better predict population-level outcomes. Tasmanian devils have been impacted dramatically by a transmissible cancer (devil facial tumor disease; DFTD) that has led to widespread population declines. Despite initial predictions of extinction, populations have persisted at low levels, due in part to heterogeneity in host responses, particularly between sexes. However, the processes underlying this variation remain unknown. RESULTS We sequenced transcriptomes from healthy and DFTD-infected devils, as well as DFTD tumors, to characterize host responses to DFTD infection, identify differing host-tumor molecular interactions between sexes, and investigate the extent to which tumor gene expression varies among host populations. We found minimal variation in gene expression of devil lip tissues, either with respect to DFTD infection status or sex. However, 4088 genes were differentially expressed in tumors among our sampling localities. Pathways that were up- or downregulated in DFTD tumors relative to normal tissues exhibited the same patterns of expression with greater intensity in tumors from localities that experienced DFTD for longer. No mRNA sequence variants were associated with expression variation. CONCLUSIONS Expression variation among localities may reflect morphological differences in tumors that alter ratios of normal-to-tumor cells within biopsies. Phenotypic variation in tumors may arise from environmental variation or differences in host immune response that were undetectable in lip biopsies, potentially reflecting variation in host-tumor coevolutionary relationships among sites that differ in the time since DFTD arrival.
Collapse
|
18
|
Patchett AL, Tovar C, Blackburn NB, Woods GM, Lyons AB. Mesenchymal plasticity of devil facial tumour cells during in vivo vaccine and immunotherapy trials. Immunol Cell Biol 2021; 99:711-723. [PMID: 33667023 DOI: 10.1111/imcb.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/12/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Immune evasion is critical to the growth and survival of cancer cells. This is especially pertinent to transmissible cancers, which evade immune detection across genetically diverse hosts. The Tasmanian devil (Sarcophilus harrisii) is threatened by the emergence of Devil Facial Tumour Disease (DFTD), comprising two transmissible cancers (DFT1 and DFT2). The development of effective prophylactic vaccines and therapies against DFTD has been restricted by an incomplete understanding of how allogeneic DFT1 and DFT2 cells maintain immune evasion upon activation of tumour-specific immune responses. In this study, we used RNA sequencing to examine tumours from three experimental DFT1 cases. Two devils received a vaccine prior to inoculation with live DFT1 cells, providing an opportunity to explore changes to DFT1 cancers under immune pressure. Analysis of DFT1 in the non-immunised devil revealed a 'myelinating Schwann cell' phenotype, reflecting both natural DFT1 cancers and the DFT1 cell line used for the experimental challenge. Comparatively, immunised devils exhibited a 'dedifferentiated mesenchymal' DFT1 phenotype. A third 'immune-enriched' phenotype, characterised by increased PDL1 and CTLA-4 expression, was detected in a DFT1 tumour that arose after immunotherapy. In response to immune pressure, mesenchymal plasticity and upregulation of immune checkpoint molecules are used by human cancers to evade immune responses. Similar mechanisms are associated with immune evasion by DFTD cancers, providing novel insights that will inform modification of DFTD vaccines. As DFT1 and DFT2 are clonal cancers transmitted across genetically distinct hosts, the Tasmanian devil provides a 'natural' disease model for more broadly exploring these immune evasion mechanisms in cancer.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.,School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Nicholas B Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
19
|
Ikonomopoulou MP, Lopez-Mancheño Y, Novelle MG, Martinez-Uña M, Gangoda L, Pal M, Costa-Machado LF, Fernandez-Marcos PJ, Ramm GA, Fernandez-Rojo MA. LXR stimulates a metabolic switch and reveals cholesterol homeostasis as a statin target in Tasmanian devil facial tumor disease. Cell Rep 2021; 34:108851. [PMID: 33730574 DOI: 10.1016/j.celrep.2021.108851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/02/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Devil facial tumor disease (DFTD) and its lack of available therapies are propelling the Tasmanian devil population toward extinction. This study demonstrates that cholesterol homeostasis and carbohydrate energy metabolism sustain the proliferation of DFTD cells in a cell-type-dependent manner. In addition, we show that the liver-X nuclear receptor-β (LXRβ), a major cholesterol cellular sensor, and its natural ligand 24S-hydroxycholesterol promote the proliferation of DFTD cells via a metabolic switch toward aerobic glycolysis. As a proof of concept of the role of cholesterol homeostasis on DFTD proliferation, we show that atorvastatin, an FDA-approved statin-drug subtype used against human cardiovascular diseases that inhibits cholesterol synthesis, shuts down DFTD energy metabolism and prevents tumor growth in an in vivo DFTD-xenograft model. In conclusion, we show that intervention against cholesterol homeostasis and carbohydrate-dependent energy metabolism by atorvastatin constitutes a feasible biochemical treatment against DFTD, which may assist in the conservation of the Tasmanian devil.
Collapse
Affiliation(s)
- Maria P Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The University of Queensland, Brisbane, QLD, Australia; Translational Venomics Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain.
| | - Yaiza Lopez-Mancheño
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain
| | - Marta G Novelle
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain
| | - Maite Martinez-Uña
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain
| | - Lahiru Gangoda
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Martin Pal
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Luis Filipe Costa-Machado
- Metabolic Syndrome Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain
| | | | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The University of Queensland, Brisbane, QLD, Australia
| | - Manuel Alejandro Fernandez-Rojo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; The University of Queensland, Brisbane, QLD, Australia; Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) Food, Madrid 28049, Spain.
| |
Collapse
|
20
|
Harrison BM, Loukopoulos P. Genomics and transcriptomics in veterinary oncology. Oncol Lett 2021; 21:336. [PMID: 33692868 PMCID: PMC7933772 DOI: 10.3892/ol.2021.12597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the canine genome, combined with additional genomic technologies, has created opportunities for research linking veterinary genomics with naturally occurring cancer in dogs. Also, as numerous canine cancers have features in common with human cancers, comparative studies can be performed to evaluate the use of cancers in dogs as models for human cancer. There have been several reviews of veterinary genomics but, to the best of our knowledge, there has been no comprehensive review of the literature of canine cancer genomics. PubMed and CAB Abstracts databases were searched to retrieve relevant literature using the search terms ‘veterinary’, ‘cancer’ or ‘oncology’, and ‘genomics’ or ‘transcriptomics’. Results were manually assessed and grouped based on the techniques used, the cancer type investigated and genomic lesions targeted. The search resulted in the retrieval of 44 genomic and transcriptomic studies, with the most common technique employed being comparative genomic hybridization. Across both fields, the most commonly studied cancer type was canine osteosarcoma. Genomic and transcriptomic aberrations in canine cancer often reflected those reported in the corresponding human cancers. Analysis of the literature indicated that employing genomic and transcriptomic technologies has been instrumental in developing the understanding of the origin, development and pathogenesis of several canine cancers. However, their use in canine oncology is at an early phase, and there appears to be comparatively little understanding of certain canine cancer types in contrast to their human forms. Aberrations detected in all tumors were tabulated, and the results for osteosarcoma, lymphoma and leukemia, mast cell tumor, transmissible venereal tumor and urothelial carcinoma discussed in detail.
Collapse
Affiliation(s)
- Bridget Marie Harrison
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria 3030, Australia
| | - Panayiotis Loukopoulos
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria 3030, Australia
| |
Collapse
|
21
|
Ehrlich M, Bacharach E. Oncolytic Virotherapy: The Cancer Cell Side. Cancers (Basel) 2021; 13:cancers13050939. [PMID: 33668131 PMCID: PMC7956656 DOI: 10.3390/cancers13050939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Oncolytic viruses (OVs) are a promising immunotherapy that specifically target and kill cancer cells and stimulate anti-tumor immunity. While different OVs are endowed with distinct features, which enhance their specificity towards tumor cells; attributes of the cancer cell also critically contribute to this specificity. Such features comprise defects in innate immunity, including antiviral responses, and the metabolic reprogramming of the malignant cell. The tumorigenic features which support OV replication can be intrinsic to the transformation process (e.g., a direct consequence of the activity of a given oncogene), or acquired in the course of tumor immunoediting—the selection process applied by antitumor immunity. Oncogene-induced epigenetic silencing plays an important role in negative regulation of immunostimulatory antiviral responses in the cancer cells. Reversal of such silencing may also provide a strong immunostimulant in the form of viral mimicry by activation of endogenous retroelements. Here we review features of the cancer cell that support viral replication, tumor immunoediting and the connection between oncogenic signaling, DNA methylation and viral oncolysis. As such, this review concentrates on the malignant cell, while detailed description of different OVs can be found in the accompanied reviews of this issue. Abstract Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses, including recognition of invading pathogens, inhibition of viral replication, reprogramming of cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation of immunostimulatory inflammation. In tumor development and/or immunotherapy settings, selective pressure applied by the immune system results in tumor immunoediting, a reduction in the immunostimulatory potential of the cancer cell. This editing process comprises the reduced expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review the manners by which oncogene-mediated transformation and tumor immunoediting combine to alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the functional connection between oncogenic signaling and epigenetic silencing, and the way by which restriction of such silencing results in immune activation. Together, the picture that emerges is one in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs activation of anti-tumor immunity for cancer therapy.
Collapse
|
22
|
A centric view of JAK/STAT5 in intestinal homeostasis, infection, and inflammation. Cytokine 2021; 139:155392. [PMID: 33482575 PMCID: PMC8276772 DOI: 10.1016/j.cyto.2020.155392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Cytokines, growth factors or hormones take action through the JAK/STAT5 signaling pathway, which plays a critical role in regulating the intestinal response to infection and inflammation. However, the way in which STAT5 regulates intestinal epithelial compartment is largely ignored due to the lack of genetic tools for proper exploration and because the two STAT5 transcription factors (STAT5A and STAT5B) have some redundant but also distinct functions. In this review article, by focusing on STAT5 functions in the intestinal undifferentiated and differentiated epithelia, we discuss major advances of the growth factor/cytokine-JAK/STAT5 research in view of intestinal mucosal inflammation and immunity. We highlight the gap in the research of the intestinal STAT5 signaling to anticipate the gastrointestinal explorative insights. Furthermore, we address the critical questions to illuminate how STAT5 signaling influences intestinal epithelial cell differentiation and stem cell regeneration during homeostasis and injury. Overall, our article provides a centric view of the relevance of the relationship between chronic inflammatory diseases and JAK/STAT5 pathway and it also gives an example of how chronic infection and inflammation pirate STAT5 signaling to worsen intestinal injuries. Importantly, our review suggests how to protect a wound healing from gastrointestinal diseases by modulating intestinal STAT5.
Collapse
|
23
|
Ohmer MEB, Costantini D, Czirják GÁ, Downs CJ, Ferguson LV, Flies A, Franklin CE, Kayigwe AN, Knutie S, Richards-Zawacki CL, Cramp RL. Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. CONSERVATION PHYSIOLOGY 2021; 9:coab074. [PMID: 34512994 PMCID: PMC8422949 DOI: 10.1093/conphys/coab074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/11/2023]
Abstract
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
Collapse
Affiliation(s)
- Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, MO 63130, USA
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, 57 Rue Cuvier, CP32, 75005, Paris, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andy Flies
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
| | - Ahab N Kayigwe
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Sarah Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268, USA
| | | | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
24
|
Patton AH, Lawrance MF, Margres MJ, Kozakiewicz CP, Hamede R, Ruiz-Aravena M, Hamilton DG, Comte S, Ricci LE, Taylor RL, Stadler T, Leaché A, McCallum H, Jones ME, Hohenlohe PA, Storfer A. A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science 2020; 370:370/6522/eabb9772. [PMID: 33303589 DOI: 10.1126/science.abb9772] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023]
Abstract
Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.
Collapse
Affiliation(s)
- Austin H Patton
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.,Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Matthew F Lawrance
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | | | - Rodrigo Hamede
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC), Montpellier 34090, France
| | - Manuel Ruiz-Aravena
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - David G Hamilton
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Sebastien Comte
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Vertebrate Pest Research Unit, Invasive Species and Biosecurity, NSW Department of Primary Industries, Orange, New South Wales 2800, Australia
| | - Lauren E Ricci
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.,Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | - Robyn L Taylor
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Tanja Stadler
- Department for Biosystems Science and Engineering, ETH Zürich, Basel 4058, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adam Leaché
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Hamish McCallum
- Vertebrate Pest Research Unit, Invasive Species and Biosecurity, NSW Department of Primary Industries, Orange, New South Wales 2800, Australia.,Environmental Futures Research Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Menna E Jones
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Paul A Hohenlohe
- Department of Biological Science, University of Idaho, Moscow, ID 83844, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
25
|
Kwon YM, Gori K, Park N, Potts N, Swift K, Wang J, Stammnitz MR, Cannell N, Baez-Ortega A, Comte S, Fox S, Harmsen C, Huxtable S, Jones M, Kreiss A, Lawrence C, Lazenby B, Peck S, Pye R, Woods G, Zimmermann M, Wedge DC, Pemberton D, Stratton MR, Hamede R, Murchison EP. Evolution and lineage dynamics of a transmissible cancer in Tasmanian devils. PLoS Biol 2020; 18:e3000926. [PMID: 33232318 PMCID: PMC7685465 DOI: 10.1371/journal.pbio.3000926] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Devil facial tumour 1 (DFT1) is a transmissible cancer clone endangering the Tasmanian devil. The expansion of DFT1 across Tasmania has been documented, but little is known of its evolutionary history. We analysed genomes of 648 DFT1 tumours collected throughout the disease range between 2003 and 2018. DFT1 diverged early into five clades, three spreading widely and two failing to persist. One clade has replaced others at several sites, and rates of DFT1 coinfection are high. DFT1 gradually accumulates copy number variants (CNVs), and its telomere lengths are short but constant. Recurrent CNVs reveal genes under positive selection, sites of genome instability, and repeated loss of a small derived chromosome. Cultured DFT1 cell lines have increased CNV frequency and undergo highly reproducible convergent evolution. Overall, DFT1 is a remarkably stable lineage whose genome illustrates how cancer cells adapt to diverse environments and persist in a parasitic niche.
Collapse
Affiliation(s)
- Young Mi Kwon
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Naomi Park
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Nicole Potts
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kate Swift
- Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Prospect, Tasmania, Australia
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Naomi Cannell
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sebastien Comte
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, New South Wales, Australia
| | - Samantha Fox
- Tasmanian Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
- Toledo Zoo, Toledo, Ohio, United States of America
| | - Colette Harmsen
- Mount Pleasant Laboratories, Tasmanian Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Prospect, Tasmania, Australia
| | - Stewart Huxtable
- Tasmanian Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
| | - Menna Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Alexandre Kreiss
- Menzies Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Clare Lawrence
- Tasmanian Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
| | - Billie Lazenby
- Tasmanian Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
| | - Sarah Peck
- Tasmanian Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
| | - Ruth Pye
- Menzies Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory Woods
- Menzies Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Mona Zimmermann
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David C. Wedge
- Oxford Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - David Pemberton
- Tasmanian Department of Primary Industries, Parks, Water and the Environment (DPIPWE), Save the Tasmanian Devil Program, Hobart, Tasmania, Australia
| | | | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Patchett AL, Flies AS, Lyons AB, Woods GM. Curse of the devil: molecular insights into the emergence of transmissible cancers in the Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci 2020; 77:2507-2525. [PMID: 31900624 PMCID: PMC11104928 DOI: 10.1007/s00018-019-03435-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
27
|
Spontaneous Tumor Regression in Tasmanian Devils Associated with RASL11A Activation. Genetics 2020; 215:1143-1152. [PMID: 32554701 DOI: 10.1534/genetics.120.303428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Spontaneous tumor regression has been documented in a small proportion of human cancer patients, but the specific mechanisms underlying tumor regression without treatment are not well understood. Tasmanian devils are threatened with extinction from a transmissible cancer due to universal susceptibility and a near 100% case fatality rate. In over 10,000 cases, <20 instances of natural tumor regression have been detected. Previous work in this system has focused on Tasmanian devil genetic variation associated with the regression phenotype. Here, we used comparative and functional genomics to identify tumor genetic variation associated with tumor regression. We show that a single point mutation in the 5' untranslated region of the putative tumor suppressor RASL11A significantly contributes to tumor regression. RASL11A was expressed in regressed tumors but silenced in wild-type, nonregressed tumors, consistent with RASL11A downregulation in human cancers. Induced RASL11A expression significantly reduced tumor cell proliferation in vitro The RAS pathway is frequently altered in human cancers, and RASL11A activation may provide a therapeutic treatment option for Tasmanian devils as well as a general mechanism for tumor inhibition.
Collapse
|
28
|
Cantharidin treatment inhibits hepatocellular carcinoma development by regulating the JAK2/STAT3 and PI3K/Akt pathways in an EphB4-dependent manner. Pharmacol Res 2020; 158:104868. [PMID: 32407961 DOI: 10.1016/j.phrs.2020.104868] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with limited treatment options. The tyrosine kinase receptor EphB4 promotes oncogenesis and tumor development and progression. Its inhibition is regarded as an effective strategy for the treatment of solid tumors. In the present study, we identified cantharidin as a novel EphB4 inhibitor for HCC treatment and evaluated the underlying molecular pharmacological mechanisms of action. We observed increased expression levels of EphB4 in HCC patients and a positive correlation between EphB4 and p-JAK2 levels in HCC patient samples. Knockdown of EphB4 using small interfering RNA decreased the expression levels of p-JAK2 and p-STAT3 in HCC cells, suggesting JAK2/STAT3 being a novel downstream signaling target of EphB4. Cell viability experiments revealed that the anti-cancer effect of cantharidin was positively correlated with EphB4 expression levels in HCC cell lines. We confirmed the potent antiproliferative activity of cantharidin on HepG2 cells with high expression of EphB4 and tumor xenograft. Molecular docking assay, immunoblotting assay and quantitative reverse transcription PCR assay indicated that cantharidin bound to EphB4, and thereby resulted in EphB4 suppression at mRNA and protein levels. Hep3B and SMMC-7721 cells were with low expression of EphB4. In EphB4-/HepG2, EphB4+/HepG2, and EphB4+/Hep3B cells, EphB4 knockdown alleviated the cantharidin-induced decrease in cell viability and colony formation ability and increase in apoptosis in HepG2 cells, while its overexpression exacerbated these effects in Hep3B cells and increased the apoptosis of HepG2 cells. In nude mouse models, cantharidin suppressed tumor growth more effectively in EphB4+/SMMC-7721 xenografts than in wild-type SMMC-7721 xenografts. Underlying mechanistic study showed that by targeting EphB4, cantharidin blocked a novel target, the downstream JAK2/STAT3 pathway, and the previously known target, the PI3K/Akt signaling, resulting in intrinsic apoptosis. These results indicated that cantharidin may be a potential candidate for HCC treatment by regulating the EphB4 signaling pathway.
Collapse
|
29
|
Patchett AL, Coorens THH, Darby J, Wilson R, McKay MJ, Kamath KS, Rubin A, Wakefield M, Mcintosh L, Mangiola S, Pye RJ, Flies AS, Corcoran LM, Lyons AB, Woods GM, Murchison EP, Papenfuss AT, Tovar C. Two of a kind: transmissible Schwann cell cancers in the endangered Tasmanian devil (Sarcophilus harrisii). Cell Mol Life Sci 2020; 77:1847-1858. [PMID: 31375869 PMCID: PMC11104932 DOI: 10.1007/s00018-019-03259-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Devil facial tumour disease (DFTD) comprises two genetically distinct transmissible cancers (DFT1 and DFT2) endangering the survival of the Tasmanian devil (Sarcophilus harrisii) in the wild. DFT1 first arose from a cell of the Schwann cell lineage; however, the tissue-of-origin of the recently discovered DFT2 cancer is unknown. In this study, we compared the transcriptome and proteome of DFT2 tumours to DFT1 and normal Tasmanian devil tissues to determine the tissue-of-origin of the DFT2 cancer. Our findings demonstrate that DFT2 expresses a range of Schwann cell markers and exhibits expression patterns consistent with a similar origin to the DFT1 cancer. Furthermore, DFT2 cells express genes associated with the repair response to peripheral nerve damage. These findings suggest that devils may be predisposed to transmissible cancers of Schwann cell origin. The combined effect of factors such as frequent nerve damage from biting, Schwann cell plasticity and low genetic diversity may allow these cancers to develop on rare occasions. The emergence of two independent transmissible cancers from the same tissue in the Tasmanian devil presents an unprecedented opportunity to gain insight into cancer development, evolution and immune evasion in mammalian species.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| | - Tim H H Coorens
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Jocelyn Darby
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Matthew J McKay
- Australian Proteome Analysis Facility, Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Karthik S Kamath
- Australian Proteome Analysis Facility, Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Alan Rubin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3000, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Matthew Wakefield
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3000, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Lachlan Mcintosh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3000, Australia
- Department of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Stefano Mangiola
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3000, Australia
- Department of Surgery, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Ruth J Pye
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Lynn M Corcoran
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3000, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | | | - Anthony T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3000, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3000, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| |
Collapse
|
30
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
31
|
Woods GM, Lyons AB, Bettiol SS. A Devil of a Transmissible Cancer. Trop Med Infect Dis 2020; 5:tropicalmed5020050. [PMID: 32244613 PMCID: PMC7345153 DOI: 10.3390/tropicalmed5020050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022] Open
Abstract
Devil facial tumor disease (DFTD) encompasses two independent transmissible cancers that have killed the majority of Tasmanian devils. The cancer cells are derived from Schwann cells and are spread between devils during biting, a common behavior during the mating season. The Centers for Disease Control and Prevention (CDC) defines a parasite as "An organism that lives on or in a host organism and gets its food from, or at, the expense of its host." Most cancers, including DFTD, live within a host organism and derive resources from its host, and consequently have parasitic-like features. Devil facial tumor disease is a transmissible cancer and, therefore, DFTD shares one additional feature common to most parasites. Through direct contact between devils, DFTD has spread throughout the devil population. However, unlike many parasites, the DFTD cancer cells have a simple lifecycle and do not have either independent, vector-borne, or quiescent phases. To facilitate a description of devil facial tumor disease, this review uses life cycles of parasites as an analogy.
Collapse
Affiliation(s)
- Gregory M. Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Correspondence:
| | - A. Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (A.B.L.); (S.S.B.)
| | - Silvana S. Bettiol
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS 7000, Australia; (A.B.L.); (S.S.B.)
| |
Collapse
|
32
|
Affiliation(s)
- Amanda Patchett
- Menzies Institute for Medical Research, Hobart, Tasmania 7000, Australia
| | - Gregory Woods
- Menzies Institute for Medical Research, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
33
|
Liu X, Mao Y, Kang Y, He L, Zhu B, Zhang W, Lu Y, Wu Q, Xu D, Shi L. MicroRNA-127 Promotes Anti-microbial Host Defense through Restricting A20-Mediated De-ubiquitination of STAT3. iScience 2020; 23:100763. [PMID: 31958753 PMCID: PMC6992901 DOI: 10.1016/j.isci.2019.100763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/29/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The increasing rising of multiple drug-resistant Staphylococcus aureus has become a major public health concern, underscoring a pressing need for developing therapies essentially based on the understanding of host defensive mechanism. In the present study, we showed that microRNA (miR)-127 played a key role in controlling bacterial infection and conferred a profound protection against staphylococcal pneumonia. The protective effect of miR-127 was largely dependent on its regulation of macrophage bactericidal activity and the generation of IL-22, IL-17, and anti-microbial peptides (AMPs), the pathway primarily driven by STAT3. Importantly, we revealed that the ubiquitin-editing enzyme A20, a genuine target of miR-127, specifically interacted with and repressed K63-ubiquitination of STAT3, thereby compromising its phosphorylation upon bacterial infection. Thus, our data not only identify miR-127 as a non-coding molecule with anti-bacterial activity but also delineate an unappreciated mechanism whereby A20 regulates STAT3-driven anti-microbial signaling via modulating its ubiquitination.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Mao
- Key Laboratory of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yanhua Kang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Long He
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Zhu
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinan Wu
- Collaborative Innovation Centers of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Liyun Shi
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Inflammation and Immunoregulation, Hangzhou Normal University School of Medicine, Hangzhou, China.
| |
Collapse
|
34
|
Jego G, Hermetet F, Girodon F, Garrido C. Chaperoning STAT3/5 by Heat Shock Proteins: Interest of Their Targeting in Cancer Therapy. Cancers (Basel) 2019; 12:cancers12010021. [PMID: 31861612 PMCID: PMC7017265 DOI: 10.3390/cancers12010021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/16/2023] Open
Abstract
While cells from multicellular organisms are dependent upon exogenous signals for their survival, growth, and proliferation, commitment to a specific cell fate requires the correct folding and maturation of proteins, as well as the degradation of misfolded or aggregated proteins within the cell. This general control of protein quality involves the expression and the activity of molecular chaperones such as heat shock proteins (HSPs). HSPs, through their interaction with the STAT3/STAT5 transcription factor pathway, can be crucial both for the tumorigenic properties of cancer cells (cell proliferation, survival) and for the microenvironmental immune cell compartment (differentiation, activation, cytokine secretion) that contributes to immunosuppression, which, in turn, potentially promotes tumor progression. Understanding the contribution of chaperones such as HSP27, HSP70, HSP90, and HSP110 to the STAT3/5 signaling pathway has raised the possibility of targeting such HSPs to specifically restrain STAT3/5 oncogenic functions. In this review, we present how HSPs control STAT3 and STAT5 activation, and vice versa, how the STAT signaling pathways modulate HSP expression. We also discuss whether targeting HSPs is a valid therapeutic option and which HSP would be the best candidate for such a strategy.
Collapse
Affiliation(s)
- Gaëtan Jego
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| | - François Hermetet
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
| | - François Girodon
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Haematology laboratory, Dijon University Hospital, F-21000 Dijon, France
| | - Carmen Garrido
- INSERM, LNC UMR1231, team HSP-Pathies, University of Bourgogne Franche-Comté, F-21000 Dijon, France; (F.H.); (F.G.)
- UFR des Sciences de Santé, University of Burgundy and Franche-Comté, F-21000 Dijon, France
- Centre Georges François Leclerc, 21000 Dijon, France
- Correspondence: (C.G.); (G.J.); Tel.: +33-3-8039-3345 (G.J.); Fax: +33-3-8039-3434 (C.G. & G.J.)
| |
Collapse
|
35
|
Wu CJ, Sundararajan V, Sheu BC, Huang RYJ, Wei LH. Activation of STAT3 and STAT5 Signaling in Epithelial Ovarian Cancer Progression: Mechanism and Therapeutic Opportunity. Cancers (Basel) 2019; 12:cancers12010024. [PMID: 31861720 PMCID: PMC7017004 DOI: 10.3390/cancers12010024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecologic malignancies. Despite advances in surgical and chemotherapeutic options, most patients with advanced EOC have a relapse within three years of diagnosis. Unfortunately, recurrent disease is generally not curable. Recent advances in maintenance therapy with anti-angiogenic agents or Poly ADP-ribose polymerase (PARP) inhibitors provided a substantial benefit concerning progression-free survival among certain women with advanced EOC. However, effective treatment options remain limited in most recurrent cases. Therefore, validated novel molecular therapeutic targets remain urgently needed in the management of EOC. Signal transducer and activator of transcription-3 (STAT3) and STAT5 are aberrantly activated through tyrosine phosphorylation in a wide variety of cancer types, including EOC. Extrinsic tumor microenvironmental factors in EOC, such as inflammatory cytokines, growth factors, hormones, and oxidative stress, can activate STAT3 and STAT5 through different mechanisms. Persistently activated STAT3 and, to some extent, STAT5 increase EOC tumor cell proliferation, survival, self-renewal, angiogenesis, metastasis, and chemoresistance while suppressing anti-tumor immunity. By doing so, the STAT3 and STAT5 activation in EOC controls properties of both tumor cells and their microenvironment, driving multiple distinct functions during EOC progression. Clinically, increasing evidence indicates that the activation of the STAT3/STAT5 pathway has significant correlation with reduced survival of recurrent EOC, suggesting the importance of STAT3/STAT5 as potential therapeutic targets for cancer therapy. This review summarizes the distinct role of STAT3 and STAT5 activities in the progression of EOC and discusses the emerging therapies specifically targeting STAT3 and STAT5 signaling in this disease setting.
Collapse
Affiliation(s)
- Chin-Jui Wu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Bor-Ching Sheu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
| | - Ruby Yun-Ju Huang
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore 119077, Singapore;
- School of Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Lin-Hung Wei
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; (C.-J.W.); (B.-C.S.)
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 71570); Fax: +886-2-2311-4965
| |
Collapse
|
36
|
Rébé C, Ghiringhelli F. STAT3, a Master Regulator of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E1280. [PMID: 31480382 PMCID: PMC6770459 DOI: 10.3390/cancers11091280] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Immune cells in the tumor microenvironment regulate cancer growth. Thus cancer progression is dependent on the activation or repression of transcription programs involved in the proliferation/activation of lymphoid and myeloid cells. One of the main transcription factors involved in many of these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on the role of STAT3 and its regulation, e.g. by phosphorylation or acetylation in immune cells and how it might impact immune cell function and tumor progression. Moreover, we will review the ability of STAT3 to regulate checkpoint inhibitors.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
37
|
Schwenzer H, Fassati A. The Deadly Bite of STAT3. Cancer Cell 2019; 35:5-7. [PMID: 30645976 DOI: 10.1016/j.ccell.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Tasmanian devils' facial tumor disease (DFTD) is a transmissible cancer that spreads by biting and threatens extinction of this marsupial. In this issue of Cancer Cell, Kosack et al. describe how overexpression of ERBB and uncontrolled activation of STAT3 drive DFTD growth and immune evasion.
Collapse
Affiliation(s)
- Hagen Schwenzer
- Department of Oncology, Oxford University, Oxford OX3 7DQ, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, University College London, London WC1E 4JF, UK.
| |
Collapse
|