1
|
Kondo T, Bourassa FXP, Achar S, DuSold J, Céspedes PF, Ando M, Dwivedi A, Moraly J, Chien C, Majdoul S, Kenet AL, Wahlsten M, Kvalvaag A, Jenkins E, Kim SP, Ade CM, Yu Z, Gaud G, Davila M, Love P, Yang JC, Dustin ML, Altan-Bonnet G, François P, Taylor N. Engineering TCR-controlled fuzzy logic into CAR T cells enhances therapeutic specificity. Cell 2025; 188:2372-2389.e35. [PMID: 40220754 DOI: 10.1016/j.cell.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/16/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy represents a breakthrough in the treatment of hematological malignancies, but poor specificity has limited its applicability to solid tumors. By contrast, natural T cells harboring T cell receptors (TCRs) can discriminate between neoantigen-expressing cancer cells and self-antigen-expressing healthy tissues but have limited potency against tumors. We used a high-throughput platform to systematically evaluate the impact of co-expressing a TCR and CAR on the same CAR T cell. While strong TCR-antigen interactions enhanced CAR activation, weak TCR-antigen interactions actively antagonized their activation. Mathematical modeling captured this TCR-CAR crosstalk in CAR T cells, allowing us to engineer dual TCR/CAR T cells targeting neoantigens (HHATL8F/p53R175H) and human epithelial growth factor receptor 2 (HER2) ligands, respectively. These T cells exhibited superior anti-cancer activity and minimal toxicity against healthy tissue compared with conventional CAR T cells in a humanized solid tumor mouse model. Harnessing pre-existing inhibitory crosstalk between receptors, therefore, paves the way for the design of more precise cancer immunotherapies.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Fuzzy Logic
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Cell Line, Tumor
- Neoplasms/therapy
- Neoplasms/immunology
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - François X P Bourassa
- Department of Physics, McGill University, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sooraj Achar
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Justyn DuSold
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Pablo F Céspedes
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; CAMS Oxford Institute, University of Oxford, Oxford, UK
| | - Makoto Ando
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alka Dwivedi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Saliha Majdoul
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adam L Kenet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Madison Wahlsten
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sanghyun P Kim
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Catherine M Ade
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Marco Davila
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - James C Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Paul François
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; MILA Québec, Montréal, QC, Canada.
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Wegner VD, Feile A, Alb M, Hudecek M, Hewitt P, Mosig AS. Short-Chain Fatty Acids Modulate Anti-ROR1 CAR T-Cell Function and Exhaustion in an Intestinal Adenocarcinoma-on-Chip Model. Adv Healthc Mater 2025; 14:e2405003. [PMID: 40249196 DOI: 10.1002/adhm.202405003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a promising approach for cancer treatment, with receptor tyrosine kinase-like orphan receptor 1 (ROR1) emerging as a novel target in malignancies. This study investigates how short-chain fatty acids (SCFAs), key microbiota-derived metabolites, modulate anti-ROR1 CAR T-cell efficacy using a physiologically relevant intestinal adenocarcinoma-on-chip model that replicates the human intestinal microenvironment. The findings demonstrate that propionate and butyrate inhibit anti-ROR1 CAR T-cell function by reducing infiltration, cytotoxicity, and cytokine release while preserving junctional integrity within the tumor model. Mechanistically, these SCFAs inhibit histone deacetylase activity and promote a phenotype switch toward regulatory T-cells, as indicated by increased expression of FoxP3 and RORγt. Additionally, propionate and butyrate upregulate PD-1 and TIM-3, markers of T-cell exhaustion and immune tolerance, and induce a dose- and time-dependent reduction in proinflammatory cytokines. In contrast, acetate and pentanoate promote a proinflammatory T helper 17 phenotype. These results highlight the immunomodulatory effects of SCFAs on CAR T-cell function, emphasizing the need to consider microbiota-derived metabolites in CAR T-cell therapies.
Collapse
Affiliation(s)
- Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, 07747, Jena, Germany
| | - Adrian Feile
- Institute of Biochemistry II, Jena University Hospital, 07747, Jena, Germany
| | - Miriam Alb
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080, Würzburg, Germany
- Fraunhofer Institut für Zelltherapie und Immunologie (IZI), Außenstelle Würzburg Zelluläre Immuntherapie, 97080, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080, Würzburg, Germany
- Fraunhofer Institut für Zelltherapie und Immunologie (IZI), Außenstelle Würzburg Zelluläre Immuntherapie, 97080, Würzburg, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293, Darmstadt, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
3
|
Mulvey A, Trueb L, Coukos G, Arber C. Novel strategies to manage CAR-T cell toxicity. Nat Rev Drug Discov 2025; 24:379-397. [PMID: 39901030 DOI: 10.1038/s41573-024-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 02/05/2025]
Abstract
The immune-related adverse events associated with chimeric antigen receptor (CAR)-T cell therapy result in substantial morbidity as well as considerable cost to the health-care system, and can limit the use of these treatments. Current therapeutic strategies to manage immune-related adverse events include interleukin-6 receptor (IL-6R) blockade and corticosteroids. However, because these interventions do not always address the side effects, nor prevent progression to higher grades of adverse events, new approaches are needed. A deeper understanding of the cell types involved, and their associated signalling pathways, cellular metabolism and differentiation states, should provide the basis for alternative strategies. To preserve treatment efficacy, cytokine-mediated toxicity needs to be uncoupled from CAR-T cell function, expansion, long-term persistence and memory formation. This may be achieved by targeting CAR or independent cytokine signalling axes transiently, and through novel T cell engineering strategies, such as low-affinity CAR-T cells, reversible on-off switches and versatile adaptor systems. We summarize the current management of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and review T cell- and myeloid cell-intrinsic druggable targets and cellular engineering strategies to develop safer CAR-T cells.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Lionel Trueb
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
- Departments of Oncology UNIL-CHUV and Laboratory Medicine and Pathology, Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Burga RA, Aksoy BA, Ao Z, Tchaicha JH, Sethi DK, Villasmil Ocando A, Kulkarni GS, Lajoie S, Pedro KD, Tremblay JR, Langley M, Primack B, Young VA, Ross T, Khattar M, Sun D, Li DJ, Subramanian S, Ols M, Ter Meulen J. IL-2-independent expansion, persistence, and antitumor activity in TIL expressing regulatable membrane-bound IL-15. Mol Ther 2025:S1525-0016(25)00310-7. [PMID: 40285351 DOI: 10.1016/j.ymthe.2025.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/07/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Adoptive cell therapy using tumor-infiltrating lymphocytes (TIL) has demonstrated great potential for patients with treatment-refractory metastatic melanoma. However, the need for interleukin-2 (IL-2) co-administration during TIL cell therapy limits patient eligibility and restricts treatment to intensive care units due to the risk of severe side effects. Instead, engineering TIL with membrane-bound interleukin-15 (mbIL15) has the potential to promote TIL expansion, antitumor activity, and persistence of CD8+ T cells, without the use of IL-2. cytoTIL15 cells express mbIL15 fused to a drug-responsive domain (DRD) that is regulated by the Food and Drug Administration-approved small-molecule drug acetazolamide (ACZ). As such, cytoTIL15 cells are manufactured with ACZ instead of IL-2, in the presence of engineered feeder cells. The cytoTIL15 cell product exhibits ACZ dose-dependent expansion and persistence in vitro and in vivo and potent tumor-killing activity in human melanoma models in the absence of IL-2. In patient-derived xenograft (PDX) tumors, spatial profiling revealed infiltrating cytoTIL15 cells to be highly cytotoxic and less exhausted than non-engineered TIL. This novel platform creates a powerful, IL-2-free TIL cell therapy with a potentially improved tolerability and safety profile, while allowing individualized pharmacologic regulation of the TIL product.
Collapse
Affiliation(s)
- Rachel A Burga
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA.
| | | | - Zheng Ao
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Dhruv K Sethi
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Gauri S Kulkarni
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Scott Lajoie
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Kyle D Pedro
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Meghan Langley
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Benjamin Primack
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Violet A Young
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Theresa Ross
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Mithun Khattar
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Dexue Sun
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Dan Jun Li
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Michelle Ols
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Jan Ter Meulen
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| |
Collapse
|
5
|
Shirzadian M, Moori S, Rabbani R, Rahbarizadeh F. SynNotch CAR-T cell, when synthetic biology and immunology meet again. Front Immunol 2025; 16:1545270. [PMID: 40308611 PMCID: PMC12040928 DOI: 10.3389/fimmu.2025.1545270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Cancer immunotherapy has been transformed by chimeric antigen receptor (CAR) T-cell treatment, which has shown groundbreaking results in hematological malignancies. However, its application in solid tumors remains a formidable challenge due to immune evasion, tumor heterogeneity, and safety concerns arising from off-target effects. A long-standing effort in this field has been the development of synthetic receptors to create new signaling pathways and rewire immune cells for the specific targeting of cancer cells, particularly in cell-based immunotherapy. This field has undergone a paradigm shift with the introduction of synthetic Notch (synNotch) receptors, which offer a highly versatile signaling platform modeled after natural receptor-ligand interactions. By functioning as molecular logic gates, synNotch receptors enable precise, multi-antigen regulation of T-cell activation, paving the way for enhanced specificity and control. This review explores the revolutionary integration of synNotch systems with CAR T-cell therapy, emphasizing cutting-edge strategies to overcome the inherent limitations of traditional approaches. We delve into the mechanisms of synNotch receptor design, focusing on their ability to discriminate between cancerous and normal cells through spatiotemporally controlled gene expression. Additionally, we highlight recent advancements to improve therapeutic efficacy, safety, and adaptability in treating solid tumors. This study highlights the potential of synNotch-based CAR-T cells to transform the field of targeted cancer therapy by resolving present challenges and shedding light on potential future paths.
Collapse
Affiliation(s)
- Mohsen Shirzadian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Moori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Rabbani
- Department of Stem Cell Technology and Tissue Engineering, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Rassek K, Misiak J, Ołdak T, Rozwadowska N, Basak G, Kolanowski T. New player in CAR-T manufacture field: comparison of umbilical cord to peripheral blood strategies. Front Immunol 2025; 16:1561174. [PMID: 40191201 PMCID: PMC11968755 DOI: 10.3389/fimmu.2025.1561174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
One of the most successful treatments in hematologic cancer is chimeric antigen receptor (CAR)-T cell-based immunotherapy. However, CAR-T therapy is not without challenges like the costly manufacturing process required to personalize each treatment for individual patients or graft-versus-host disease. Umbilical cord blood (UCB) has been most commonly used for hematopoietic cell transplant as it offers several advantages, including its rich source of hematopoietic stem cells, lower risk of graft-versus-host disease, and easier matching for recipients due to less stringent HLA requirements compared to bone marrow or peripheral blood stem cells. In this review, we have discussed the advantages and disadvantages of different CAR-T cell manufacturing strategies with the use of allogeneic and autologous peripheral blood cells. We compare them to the UCB approach and discuss ongoing pre-clinical and clinical trials in the field. Finally, we propose a cord blood bank as a readily available source of CAR-T cells.
Collapse
Affiliation(s)
- Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Tomasz Ołdak
- FamicordTx, Warsaw, Poland
- Polish Stem Cell Bank (PBKM), Warsaw, Poland
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- FamicordTx, Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kolanowski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- FamicordTx, Warsaw, Poland
| |
Collapse
|
7
|
Heinze CM, Pichon TJ, Wu AY, Baldwin M, Matthaei J, Song K, Sylvestre M, Gustafson J, White NJ, Jensen MC, Pun SH. Spatial Control of CAR T Cell Activation Using Tumor-Homing Polymers. J Am Chem Soc 2025; 147:5149-5161. [PMID: 39902740 PMCID: PMC11995850 DOI: 10.1021/jacs.4c15442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
CAR T cell therapies often lack specificity, leading to issues ranging from inadequate antigen targeting to off-tumor toxicities. To counter that lack of specificity, we expanded tumor targeting capabilities with universal CAR and spatially defined CAR T cell engagement with targets through a combination of synthetic biology and biomaterial approaches. We developed a novel framework, called "In situ Mobilization: Polymer Activated Cell Therapies" (IMPACT) for polymer-mediated, anatomical control of IF-THEN gated CAR T cells. With IMPACT, a regulated payload such as a BiTE or tumor-targeting CAR will only be expressed after engineered cells engage a tumor-localizing polymer ("IF" condition). In this first demonstration of IMPACT, we engineered CAR T cells to respond to fluorescein that is displayed by an injectable polymer that binds to and is retained in fibrin deposits in tumor microenvironments. This interaction then drives selective and conditional expression of a protein within tumors ("THEN" condition). Here, we develop the polymer and CAR T cell infrastructure of IMPACT and demonstrate tumor-localized CAR T cell activation in a murine tumor model after the intravenous administration of polymer and engineered T cells.
Collapse
Affiliation(s)
- Clinton M Heinze
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - Trey J Pichon
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| | - Abe Y Wu
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
| | - Michael Baldwin
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - James Matthaei
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - Kefan Song
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
| | - Meilyn Sylvestre
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
| | - Joshua Gustafson
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - Nathan J White
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
- Department of Emergency Medicine, University of Washington School of Medicine, Seattle, Washington 98105, United States
| | - Michael C Jensen
- Seattle Children's Therapeutics, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, Washington 98101, United States
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
- Resuscitation Engineering Science Unit (RESCU), Harborview Research and Training Building, Seattle, Washington 98104, United States
| |
Collapse
|
8
|
Jaeger-Ruckstuhl CA, Specht JM, Voutsinas JM, MacMillan HR, Wu Q(V, Muhunthan V, Berger C, Pullarkat S, Wright JH, Yeung CC, Hyun TS, Seaton B, Aicher LD, Song X, Pierce RH, Lo Y, Cole GO, Lee SM, Newell EW, Maloney DG, Riddell SR. Phase I Study of ROR1-Specific CAR-T Cells in Advanced Hematopoietic and Epithelial Malignancies. Clin Cancer Res 2025; 31:503-514. [PMID: 39466024 PMCID: PMC11788652 DOI: 10.1158/1078-0432.ccr-24-2172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/25/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is expressed in hematopoietic and epithelial cancers but has limited expression on normal adult tissues. This phase I study evaluated the safety of targeting ROR1 with autologous T lymphocytes engineered to express a ROR1 chimeric antigen receptor (CAR). Secondary objectives evaluated the persistence, trafficking, and antitumor activity of CAR-T cells. PATIENTS AND METHODS Twenty-one patients with ROR1+ tumors received CAR-T cells at one of four dose levels: 3.3 × 105, 1 × 106, 3.3 × 106, and 1 × 107 cells/kg body weight, administered after lymphodepletion with cyclophosphamide/fludarabine or oxaliplatin/cyclophosphamide. Cohort A included patients with chronic lymphocytic leukemia (CLL, n = 3); cohort B included patients with triple-negative breast cancer (TNBC, n = 10) or non-small cell lung cancer (NSCLC, n = 8). A second infusion was administered to one patient in cohort A with residual CLL in the marrow and three patients in cohort B with stable disease after first infusion. RESULTS Treatment was well tolerated, apart from one dose-limiting toxicity at dose level 4 in a patient with advanced NSCLC. Two of the three (67%) patients with CLL showed robust CAR-T-cell expansion and a rapid antitumor response. In patients with NSCLC and TNBC, CAR-T cells expanded to variable levels and infiltrated tumors poorly and 1 of 18 patients (5.5%) achieved partial response by RECIST 1.1. CONCLUSIONS ROR1 CAR-T cells were well tolerated in most patients. Antitumor activity was observed in CLL but was limited in TNBC and NSCLC. Immunogenicity of the CAR and lack of sustained tumor infiltration were identified as limitations. See related commentary by Kobold, p. 437.
Collapse
MESH Headings
- Humans
- Receptor Tyrosine Kinase-like Orphan Receptors/immunology
- Receptor Tyrosine Kinase-like Orphan Receptors/genetics
- Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Female
- Middle Aged
- Male
- Aged
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Adult
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Treatment Outcome
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
Collapse
Affiliation(s)
- Carla A. Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jennifer M. Specht
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jenna M. Voutsinas
- Clinical Statistics Team, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hugh R. MacMillan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Qian (Vicky) Wu
- Clinical Statistics Team, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Vishaka Muhunthan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Carolina Berger
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Shalini Pullarkat
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jocelyn H. Wright
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Cecilia C.S. Yeung
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Teresa S. Hyun
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Brandon Seaton
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lauri D. Aicher
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Xiaoling Song
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Robert H. Pierce
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yun Lo
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Gabriel O. Cole
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sylvia M. Lee
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Evan W. Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - David G. Maloney
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Stanley R. Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
9
|
Vogt KC, Silberman PC, Lin Q, Han JE, Laflin A, Gellineau HA, Heller DA, Scheinberg DA. Microenvironment actuated CAR T cells improve solid tumor efficacy without toxicity. SCIENCE ADVANCES 2025; 11:eads3403. [PMID: 39841845 PMCID: PMC11753401 DOI: 10.1126/sciadv.ads3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
A major limiting factor in the success of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors is targeting tumor antigens also found on normal tissues. CAR T cells against GD2 induced rapid, fatal neurotoxicity because of CAR recognition of GD2+ normal mouse brain tissue. To improve the selectivity of the CAR T cell, we engineered a synthetic Notch receptor that selectively expresses the CAR upon binding to P-selectin, a cell adhesion protein overexpressed in tumor neovasculature. These tumor microenvironment actuated T (MEAT) cells ameliorated T cell infiltration in the brain, preventing fatal neurotoxicity while maintaining antitumor efficacy. We found that conditional CAR expression improved the persistence of tumor-infiltrating lymphocytes because of enhanced metabolic fitness of MEAT cells and the infusion of a less differentiated product. This approach increases the repertoire of targetable solid tumor antigens by restricting CAR expression and subsequent killing to cancer cells only and provides a proof-of-concept model for other targets.
Collapse
MESH Headings
- Animals
- Tumor Microenvironment/immunology
- Mice
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Humans
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Line, Tumor
- Antigens, Neoplasm/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Xenograft Model Antitumor Assays
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
Collapse
Affiliation(s)
- Kristen C. Vogt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pedro C. Silberman
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Qianqian Lin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- BCMB Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - James E. Han
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amy Laflin
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hendryck A. Gellineau
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
10
|
Xu SX, Wang L, Ip P, Randhawa RR, Benatar T, Prosser SL, Lal P, Khan AN, Nitya-Nootan T, Thakor G, MacGregor H, Hayes DL, Vucicevic A, Mathew P, Sengupta S, Helsen CW, Bader AG. Preclinical Development of T Cells Engineered to Express a T-Cell Antigen Coupler Targeting Claudin 18.2-Positive Solid Tumors. Cancer Immunol Res 2025; 13:35-46. [PMID: 39404622 PMCID: PMC11712040 DOI: 10.1158/2326-6066.cir-24-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 01/11/2025]
Abstract
The T-cell antigen coupler (TAC) is a chimeric receptor that facilitates tumor antigen-specific activation of T cells by co-opting the endogenous T-cell receptor complex in the absence of tonic signaling. Previous data demonstrate that the TAC affords T cells with the ability to induce durable and safe antitumor responses in preclinical models of hematologic and solid tumors. In this study, we describe the preclinical pharmacology and safety of an autologous Claudin 18.2 (CLDN18.2)-directed TAC T-cell therapy, TAC01-CLDN18.2, in preparation for a phase I/II clinical study in subjects with CLDN18.2-positive solid tumors. Following a screen of putative TAC constructs, the specificity, activity, and cytotoxicity of TAC T cells expressing the final CLDN18.2-TAC receptor were evaluated in vitro and in vivo using gastric, gastroesophageal, and pancreatic tumor models as well as human cells derived from normal tissues. CLDN18.2-specific activity and cytotoxicity of CLDN18.2-TAC T cells were observed in coculture with various 2D tumor cultures naturally expressing CLDN18.2 as well as tumor spheroids. These effects occurred in models with low antigen levels and were positively associated with increasing CLDN18.2 expression. CLDN18.2-TAC T cells effectively eradicated established tumor xenografts in mice in the absence of observed off-target or on-target/off-tumor effects, elicited durable efficacy in recursive killing and tumor rechallenge experiments, and remained unreactive in coculture with human cells representing vital organs. Thus, the data demonstrate that CLDN18.2-TAC T cells can induce a specific and long-lasting antitumor response in various CLDN18.2-positive solid tumor models without notable TAC-dependent toxicities, supporting the clinical development of TAC01-CLDN18.2.
Collapse
MESH Headings
- Humans
- Animals
- Claudins/metabolism
- Claudins/genetics
- Mice
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Neoplasms/therapy
- Neoplasms/immunology
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Immunotherapy, Adoptive/methods
- Female
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
Collapse
Affiliation(s)
- Stacey X. Xu
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Ling Wang
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Philbert Ip
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Ritu R. Randhawa
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Tania Benatar
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Suzanna L. Prosser
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Prabha Lal
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Alima Naim Khan
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Thanyashanthi Nitya-Nootan
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Gargi Thakor
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Heather MacGregor
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Danielle L Hayes
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Andrea Vucicevic
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Princy Mathew
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Sadhak Sengupta
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Christopher W. Helsen
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| | - Andreas G. Bader
- Triumvira Immunologics, Inc., headquartered in Austin, Texas, with research facilities in Hamilton, Canada
| |
Collapse
|
11
|
Jambon S, Sun J, Barman S, Muthugounder S, Bito XR, Shadfar A, Kovach AE, Wood BL, Thoppey Manoharan V, Morrissy AS, Bhojwani D, Wayne AS, Pulsipher MA, Kim YM, Asgharzadeh S, Parekh C, Moghimi B. CD33-CD123 IF-THEN Gating Reduces Toxicity while Enhancing the Specificity and Memory Phenotype of AML-Targeting CAR-T Cells. Blood Cancer Discov 2025; 6:55-72. [PMID: 39624992 PMCID: PMC11707512 DOI: 10.1158/2643-3230.bcd-23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
SIGNIFICANCE Our study demonstrates the use of "IF-THEN" SynNotch-gated CAR-T cells targeting CD33 and CD123 in AML reduces off-tumor toxicity. This strategy enhances T-cell phenotype, improves expansion, preserves HSPCs, and mitigates cytokine release syndrome-addressing critical limitations of existing AML CAR-T therapies.
Collapse
MESH Headings
- Humans
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Interleukin-3 Receptor alpha Subunit/metabolism
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Phenotype
- Animals
Collapse
Affiliation(s)
- Samy Jambon
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jianping Sun
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shawn Barman
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sakunthala Muthugounder
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Xue Rachel Bito
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Armita Shadfar
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alexandra E. Kovach
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brent L. Wood
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - A. Sorana Morrissy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Deepa Bhojwani
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alan S. Wayne
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Michael A. Pulsipher
- Division of Hematology and Oncology, Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah
| | - Yong-Mi Kim
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shahab Asgharzadeh
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chintan Parekh
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Babak Moghimi
- Division of Hematology and Oncology, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
12
|
Marei HE, Bedair K, Hasan A, Al-Mansoori L, Caratelli S, Sconocchia G, Gaiba A, Cenciarelli C. Current status and innovative developments of CAR-T-cell therapy for the treatment of breast cancer. Cancer Cell Int 2025; 25:3. [PMID: 39755633 PMCID: PMC11700463 DOI: 10.1186/s12935-024-03615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Breast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy. The T cell-based immunotherapy known as chimeric antigen receptor (CAR) T cell treatment, which uses the patient's immune cells to fight cancer, has demonstrated remarkable efficacy in treating hematologic malignancies; nevertheless, the treatment effects in solid tumors, like breast cancer, have not lived up to expectations. We discuss in detail the role of tumor-associated antigens in breast cancer, current clinical trials, barriers to the intended therapeutic effects of CAR-T cell therapy, and potential ways to increase treatment efficacy. Finally, our review aims to stimulate readers' curiosity by summarizing the most recent advancements in CAR-T cell therapy for breast cancer.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Khaled Bedair
- Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | - Alice Gaiba
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | |
Collapse
|
13
|
Cao Y, Yan W, Yi W, Yin Q, Li Y. Bioengineered therapeutic systems for improving antitumor immunity. Natl Sci Rev 2025; 12:nwae404. [PMID: 40114728 PMCID: PMC11925021 DOI: 10.1093/nsr/nwae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 11/08/2024] [Indexed: 03/22/2025] Open
Abstract
Immunotherapy, a monumental advancement in antitumor therapy, still yields limited clinical benefits owing to its unguaranteed efficacy and safety. Therapeutic systems derived from cellular, bacterial and viral sources possess inherent properties that are conducive to antitumor immunotherapy. However, crude biomimetic systems have restricted functionality and may produce undesired toxicity. With advances in biotechnology, various toolkits are available to add or subtract certain properties of living organisms to create flexible therapeutic platforms. This review elaborates on the creation of bioengineered systems, via gene editing, synthetic biology and surface engineering, to enhance immunotherapy. The modifying strategies of the systems are discussed, including equipment for navigation and recognition systems to improve therapeutic precision, the introduction of controllable components to control the duration and intensity of treatment, the addition of immunomodulatory components to amplify immune activation, and the removal of toxicity factors to ensure biosafety. Finally, we summarize the advantages of bioengineered immunotherapeutic systems and possible directions for their clinical translation.
Collapse
Affiliation(s)
- Ying Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhe Yi
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| |
Collapse
|
14
|
Erickson SM, Manning BM, Kumar A, Patel MR. Engineered Cellular Therapies for the Treatment of Thoracic Cancers. Cancers (Basel) 2024; 17:35. [PMID: 39796666 PMCID: PMC11718842 DOI: 10.3390/cancers17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses. In this review, we discuss the prospect of chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, T cell receptor-engineered (TCR-T) cells, and tumor-infiltrating lymphocytes (TILs) as treatments for thoracic malignancies. CAR-T cells and TILs have proven successful in several hematologic cancers and advanced melanoma, respectively, but outside of melanoma, results have thus far been unsuccessful in most other solid tumors. NK cells and TCR-T cells are additional cell therapy platforms with their own unique advantages and challenges. Obstacles that must be overcome to develop effective cell therapy for these malignancies include selecting an appropriate target antigen, combating immunosuppressive cells and signaling molecules present in the tumor microenvironment, persistence, and delivering a sufficient quantity of antitumor immune cells to the tumor. Induced pluripotent stem cells (iPSCs) offer great promise as a source for both NK and T cell-based therapies due to their unlimited expansion potential. Here, we review clinical trial data, as well as recent basic scientific advances that offer insight into how we may overcome these obstacles, and provide an overview of ongoing trials testing novel strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Spencer M. Erickson
- Internal Medicine Residency Program, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Benjamin M. Manning
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Manish R. Patel
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| |
Collapse
|
15
|
Semeniuk S, Qian BZ, Cachat E. Engineering an αCD206-synNotch Receptor: Insights into the Development of Novel Synthetic Receptors. ACS Synth Biol 2024; 13:3876-3884. [PMID: 39555579 DOI: 10.1021/acssynbio.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Immune cells play a pivotal role in the establishment, growth, and progression of tumors at primary and metastatic sites. Macrophages, in particular, play a critical role in suppressing immune responses and promoting an anti-inflammatory environment through both direct and indirect cell-cell interactions. However, our understanding of the mechanisms underlying such interactions is limited due to a lack of reliable tools for studying transient interactions between cancer cells and macrophages within the tumor microenvironment. Recent advances in mammalian synthetic biology have introduced a wide range of synthetic receptors that have been used in diverse biosensing applications. One such synthetic receptor is the synNotch receptor, which can be tailored to sense specific ligands displayed on the surface of target cells. With this study, we aimed at developing a novel αCD206-synNotch receptor, targeting CD206+ macrophages, a population of macrophages that play a crucial role in promoting metastatic seeding and persistent growth. Engineered in cancer cells and used in mouse metastasis models, such a tool could help monitor─and provide an understanding of─the effects that cell-cell interactions between macrophages and cancer cells have on metastasis establishment. Here, we report the development of cancer landing-pad cells for versatile applications and the engineering of αCD206-synNotch cancer cells in particular. We report the measurement of their activity and specificity, and discuss unexpected caveats regarding their in vivo applications.
Collapse
Affiliation(s)
- Sofija Semeniuk
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai 200433, China
| | - Elise Cachat
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
16
|
Park S, Maus MV, Choi BD. CAR-T cell therapy for the treatment of adult high-grade gliomas. NPJ Precis Oncol 2024; 8:279. [PMID: 39702579 DOI: 10.1038/s41698-024-00753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Treatment for malignant primary brain tumors, including glioblastoma, remains a significant challenge despite advances in therapy. CAR-T cell immunotherapy represents a promising alternative to conventional treatments. This review discusses the landscape of clinical trials for CAR-T cell therapy targeting brain tumors, highlighting key advancements like novel target antigens and combinatorial strategies designed to address tumor heterogeneity and immunosuppression, with the goal of improving outcomes for patients with these aggressive cancers.
Collapse
Affiliation(s)
- Sangwoo Park
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bryan D Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Rankin AW, Duncan BB, Allen C, Silbert SK, Shah NN. Evolving strategies for addressing CAR T-cell toxicities. Cancer Metastasis Rev 2024; 44:17. [PMID: 39674824 PMCID: PMC11646216 DOI: 10.1007/s10555-024-10227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/02/2024] [Indexed: 12/16/2024]
Abstract
The field of chimeric antigen receptor (CAR) T-cell therapy has grown from a fully experimental concept to now boasting a multitude of treatments including six FDA-approved products targeting various hematologic malignancies. Yet, along with their efficacy, these therapies come with side effects requiring timely and thoughtful interventions. In this review, we discuss the most common toxicities associated with CAR T-cells to date, highlighting risk factors, prognostication, implications for critical care management, patient experience optimization, and ongoing work in the field of toxicity mitigation. Understanding the current state of the field and standards of practice is critical in order to improve and manage potential toxicities of both current and novel CAR T-cell therapies as they are applied in the clinic.
Collapse
Affiliation(s)
- Alexander W Rankin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brynn B Duncan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cecily Allen
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Critical Care Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Silbert
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Webber BR, Johnson MJ, Skeate JG, Slipek NJ, Lahr WS, DeFeo AP, Mills LJ, Qiu X, Rathmann B, Diers MD, Wick B, Henley T, Choudhry M, Starr TK, McIvor RS, Moriarity BS. Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining DNA repair. Nat Biomed Eng 2024; 8:1553-1570. [PMID: 38092857 PMCID: PMC11169092 DOI: 10.1038/s41551-023-01157-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1-6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%). We used the method to produce T cells with an engineered T-cell receptor or a chimaeric antigen receptor and show that the cells maintained low levels of exhaustion markers and excellent capacities for proliferation and cytokine production and that they elicited potent antitumour cytotoxicity in vitro and in mice. The method is readily adaptable to current good manufacturing practices and scale-up processes, and hence may be used as an alternative to viral vectors for the production of genetically engineered T cells for cancer immunotherapies.
Collapse
Affiliation(s)
- Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Anthony P DeFeo
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Lauren J Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaohong Qiu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Blaine Rathmann
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Miechaleen D Diers
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Department of Ob-Gyn and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - R Scott McIvor
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Trautmann T, Yakobian N, Nguyen R. CAR T-cells for pediatric solid tumors: where to go from here? Cancer Metastasis Rev 2024; 43:1445-1461. [PMID: 39317919 PMCID: PMC11554711 DOI: 10.1007/s10555-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great success that chimeric antigen receptor (CAR) T-cells have had in patients with B-cell malignancies and multiple myeloma, they continue to have limited efficacy against most solid tumors. Especially in the pediatric population, pre- and post-treatment biopsies are rarely performed due to ethical reasons, and thus, our understanding is still very limited regarding the mechanisms in the tumor microenvironment by which tumor cells exclude effectors and attract immune-suppressive cells. Nevertheless, based on the principles that are known, current T-cell engineering has leveraged some of these processes and created more potent CAR T-cells. The recent discovery of new oncofetal antigens and progress made in CAR design have expanded the potential pool of candidate antigens for therapeutic development. The most promising approaches to enhance CAR T-cells are novel CAR gating strategies, creative ways of cytokine delivery to the TME without enhancing systemic toxicity, and hijacking the chemokine axis of tumors for migratory purposes. With these new modifications, the next step in the era of CAR T-cell development will be the clinical validation of these promising preclinical findings.
Collapse
Affiliation(s)
- Tina Trautmann
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Natalia Yakobian
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Liu Y, Xiao L, Yang M, Chen X, Liu H, Wang Q, Guo M, Luo J. CAR-armored-cell therapy in solid tumor treatment. J Transl Med 2024; 22:1076. [PMID: 39609705 PMCID: PMC11603843 DOI: 10.1186/s12967-024-05903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Over the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a revolutionary immunotherapeutic approach to combat cancer. This therapy constructs a CAR on the surface of T cells through genetic engineering techniques. The CAR is formed from a combination of antibody-derived or ligand-derived domains and T-cell receptor (TCR) domains. This enables T cells to specifically bind to and activate against tumor cells. However, the efficacy of CAR-T cells in solid tumors remains inconclusive due to several challenges such as poor tumor trafficking, infiltration, and the immunosuppressive tumor microenvironment (TME). In response, CAR natural killer (CAR-NK) and CAR macrophages (CAR-M) have been developed as complementary strategies for solid tumors. CAR-NK cells do not require HLA compatibility, demonstrate reduced toxicity, and are thus seen as potential substitutes for CAR-T cells. Furthermore, CAR-M immunotherapy is also being researched and has shown phagocytic capabilities and tumor-antigen presentation. This study discusses the features, advantages, and limitations of CAR-T, CAR-NK, and CAR-M cells in the treatment of solid tumors and suggests prospective solutions for enhancing the efficacy of CAR host-cell-based immunotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Navy Medical University, Shanghai, 200433, China
| | - Lin Xiao
- Navy Medical University, Shanghai, 200433, China
| | | | - Xuemei Chen
- Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Hongyue Liu
- Navy Medical University, Shanghai, 200433, China
| | - Quanxing Wang
- Navy Medical University, Shanghai, 200433, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China
| | - Meng Guo
- Navy Medical University, Shanghai, 200433, China.
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China.
| | - Jianhua Luo
- Navy Medical University, Shanghai, 200433, China.
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China.
| |
Collapse
|
21
|
Park HB, Kim KH, Kim JH, Kim SI, Oh YM, Kang M, Lee S, Hwang S, Lee H, Lee T, Park S, Lee JE, Jeong GR, Lee DH, Youn H, Choi EY, Son WC, Chung SJ, Chung J, Choi K. Improved safety of chimeric antigen receptor T cells indirectly targeting antigens via switchable adapters. Nat Commun 2024; 15:9917. [PMID: 39557825 PMCID: PMC11574259 DOI: 10.1038/s41467-024-53996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells show remarkable efficacy for some hematological malignancies. However, CAR targets that are expressed at high level and selective to tumors are scarce. Several strategies have been proposed to tackle the on-target off-tumor toxicity of CAR-T cells that arise from suboptimal selectivity, but these are complicated, with many involving dual gene expression for specificity. In this study, we show that switchable CAR-T cells with a tumor targeting adaptor can mitigate on-target off-tumor toxicity against a low selectivity tumor antigen that cannot be targeted by conventional CAR-T cells, such as CD40. Our system is composed of anti-cotinine murine CAR-T cells and cotinine-labeled anti-CD40 single chain variable fragments (scFv), with which we show selective tumor killing while sparing CD40-expressing normal cells including macrophages in a mouse model of lymphoma. Simple replacement of the tumor-targeting adaptor with a suicidal drug-conjugated tag may further enhance safety by enabling permanent in vivo depletion of the switchable CAR-T cells when necessary. In summary, our switchable CAR system can control CAR-T cell toxicity while maintaining therapeutic efficacy, thereby expanding the range of CAR targets.
Collapse
MESH Headings
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Mice
- Humans
- Immunotherapy, Adoptive/methods
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- T-Lymphocytes/immunology
- Cell Line, Tumor
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/genetics
- Lymphoma/immunology
- Lymphoma/therapy
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hyung Bae Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju Hwan Kim
- AbTis Co. Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Sang Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Mi Oh
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Miseung Kang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoho Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Siwon Hwang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeonmin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - TaeJin Lee
- AbTis Co. Ltd., Suwon, Gyeonggi-do, Republic of Korea
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Seungbin Park
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Ji Eun Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ga Ram Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ticaros Inc., Seoul, Republic of Korea
| | - Dong Hyun Lee
- Department of Medical Science, AMIST, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyewon Youn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Chan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea.
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Kyungho Choi
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Tigu AB, Munteanu R, Moldovan C, Rares D, Kegyes D, Tomai R, Moisoiu V, Ghiaur G, Tomuleasa C, Einsele H, Gulei D, Croce CM. Therapeutic advances in the targeting of ROR1 in hematological cancers. Cell Death Discov 2024; 10:471. [PMID: 39551787 PMCID: PMC11570672 DOI: 10.1038/s41420-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are key cell surface receptors involved in cell communication and signal transduction, with great importance in cell growth, differentiation, survival, and metabolism. Dysregulation of RTKs, such as EGFR, VEGFR, HER2 or ROR, could lead to various diseases, particularly cancers. ROR1 has emerged as a promising target in hematological malignancies. The development of ROR1 targeted therapies is continuously growing leading to remarkable novel therapeutical approaches using mAbs, antibody-drug conjugates, several small molecules or CAR T cells which have shown encouraging preclinical results. In the hematological field, mAbs, small molecules, BiTEs or CAR T cell therapies displayed promising outcomes with the clinical trials data encouraging the use of anti-ROR1 therapies. This paper aims to offer a comprehensive analysis of the current landscape of ROR1-targeted therapies in hematological malignancies marking the innovative approaches with promising preclinical and clinical. Offering a better understanding of structural and functional aspects of ROR1 could lead to new perspectives in targeting a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Cristian Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Drula Rares
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Radu Tomai
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Vlad Moisoiu
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Gabriel Ghiaur
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania.
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
- Department of Medicine, University of Würzburg, Würzburg, Germany
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj Napoca, Cluj Napoca, Romania
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Gaimari A, De Lucia A, Nicolini F, Mazzotti L, Maltoni R, Rughi G, Zurlo M, Marchesini M, Juan M, Parras D, Cerchione C, Martinelli G, Bravaccini S, Tettamanti S, Pasetto A, Pasini L, Magnoni C, Gazzola L, Borges de Souza P, Mazza M. Significant Advancements and Evolutions in Chimeric Antigen Receptor Design. Int J Mol Sci 2024; 25:12201. [PMID: 39596267 PMCID: PMC11595069 DOI: 10.3390/ijms252212201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells are genetically engineered T cells with synthetic receptors capable of recognising and targeting tumour-specific or tumour-associated antigens. By leveraging the intrinsic cytotoxicity of T cells and enhancing their tumour-targeting specificity, CAR-T cell therapy holds immense potential in achieving long-term remission for cancer patients. However, challenges such as antigen escape and cytokine release syndrome underscore the need for the continued optimisation and refinement of CAR-T cell therapy. Here, we report on the challenges of CAR-T cell therapies and on the efforts focused on innovative CAR design, on diverse therapeutic strategies, and on future directions for this emerging and fast-growing field. The review highlights the significant advances and changes in CAR-T cell therapy, focusing on the design and function of CAR constructs, systematically categorising the different CARs based on their structures and concepts to guide researchers interested in ACT through an ever-changing and complex scenario. UNIVERSAL CARs, engineered to recognise multiple tumour antigens simultaneously, DUAL CARs, and SUPRA CARs are some of the most advanced instances. Non-molecular variant categories including CARs capable of secreting enzymes, such as catalase to reduce oxidative stress in situ, and heparanase to promote infiltration by degrading the extracellular matrix, are also explained. Additionally, we report on CARs influenced or activated by external stimuli like light, heat, oxygen, or nanomaterials. Those strategies and improved CAR constructs in combination with further genetic engineering through CRISPR/Cas9- and TALEN-based approaches for genome editing will pave the way for successful clinical applications that today are just starting to scratch the surface. The frontier lies in bringing those approaches into clinical assessment, aiming for more regulated, safer, and effective CAR-T therapies for cancer patients.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Genetic Engineering
Collapse
Affiliation(s)
- Anna Gaimari
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Anna De Lucia
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Fabio Nicolini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Lucia Mazzotti
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Roberta Maltoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanna Rughi
- Centro Trial Oncoematologico, Department of “Onco-Ematologia e Terapia Cellulare e Genica Bambino” Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Matteo Zurlo
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Matteo Marchesini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Manel Juan
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, 08036 Barcelona, Spain;
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Claudio Cerchione
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanni Martinelli
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Sara Bravaccini
- Faculty of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, 20900 Monza, Italy;
| | | | - Luigi Pasini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Chiara Magnoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Luca Gazzola
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Patricia Borges de Souza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Massimiliano Mazza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| |
Collapse
|
24
|
Dharani S, Cho H, Fernandez JP, Juillerat A, Valton J, Duchateau P, Poirot L, Das S. TALEN-edited allogeneic inducible dual CAR T cells enable effective targeting of solid tumors while mitigating off-tumor toxicity. Mol Ther 2024; 32:3915-3931. [PMID: 39169622 PMCID: PMC11573618 DOI: 10.1016/j.ymthe.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/29/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Adoptive cell therapy using chimeric antigen receptor (CAR) T cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has been limited in solid tumors. One key factor for this is cancer-associated fibroblasts (CAFs) that modulate the tumor microenvironment (TME) to inhibit T cell infiltration and induce "T cell dysfunction." Additionally, the sparsity of tumor-specific antigens (TSA) and expression of CAR-directed tumor-associated antigens (TAA) on normal tissues often results in "on-target off-tumor" cytotoxicity, raising safety concerns. Using TALEN-mediated gene editing, we present here an innovative CAR T cell engineering strategy to overcome these challenges. Our allogeneic "Smart CAR T cells" are designed to express a constitutive CAR, targeting FAP+ CAFs in solid tumors. Additionally, a second CAR targeting a TAA such as mesothelin is specifically integrated at a TCR signaling-inducible locus like PDCD1. FAPCAR-mediated CAF targeting induces expression of the mesothelin CAR, establishing an IF/THEN-gated circuit sensitive to dual antigen sensing. Using this approach, we observe enhanced anti-tumor cytotoxicity, while limiting "on-target off-tumor" toxicity. Our study thus demonstrates TALEN-mediated gene editing capabilities for design of allogeneic IF/THEN-gated dual CAR T cells that efficiently target immunotherapy-recalcitrant solid tumors while mitigating potential safety risks, encouraging clinical development of this strategy.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Mice
- Mesothelin
- Gene Editing
- Cell Line, Tumor
- Transcription Activator-Like Effector Nucleases
- Tumor Microenvironment/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Membrane Proteins
- Endopeptidases
Collapse
Affiliation(s)
| | - Hana Cho
- Cellectis Inc, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Fu M, He J, Zhu D, Zhang Q, Jiang Z, Yang G. Promising therapeutic targets for tumor treatment: Cleaved activation of receptors in the nucleus. Drug Discov Today 2024; 29:104192. [PMID: 39332484 DOI: 10.1016/j.drudis.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
A new fate of cell surface receptors, cleaved activation in the nucleus, is summarized. The intracellular domain (ICD) of cell surface receptors, cleaved by enzymes like γ-secretase, translocates to the nucleus to form transcriptional complexes participating in the onset and development of tumors. The fate is clinically significant, as inhibitors of cleavage enzymes have shown effectiveness in treating advanced tumors by reducing tumorigenic ICDs. Additionally, the construction of synthetic receptors also conforms with the fate mechanism. This review details each step of cleaved activation in the nucleus, elucidates tumorigenic mechanisms, explores application in antitumor therapy, and scrutinizes possible limitations.
Collapse
Affiliation(s)
- Mengdie Fu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Jin He
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Danji Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Qinmeng Zhang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Zhiwei Jiang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| | - Guoli Yang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
26
|
Bergo NJ, Lee S, Siebrand CJ, Andersen JK, Walton CC. Aβ-targeting synNotch Receptor for Alzheimer's Disease: Expanding Applications to Extracellular Protein Aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618096. [PMID: 39464071 PMCID: PMC11507771 DOI: 10.1101/2024.10.15.618096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The synthetic Notch receptor (synNotch) system is a versatile platform that induces gene transcription in response to extracellular signals. However, its application has been largely confined to membrane-bound targets due to specific activation requirements. Whether synNotch can also target extracellular protein aggregates, such as amyloid beta (Aβ) in Alzheimer's disease (AD), is unclear. To address this, we engineered an Aβ-targeting synNotch receptor controlling the production of chimeric human-mouse versions of Lecanemab (Leqembi®) or Aducanumab (Aduhelm®), both FDA-approved antibodies for AD. We demonstrate that NIH 3T3 cells expressing this synNotch system detect and respond to extracellular Aβ aggregates by synthesizing and secreting Aducanumab or Lecanemab. These findings broaden the potential applications of synNotch, extending its targets beyond membrane-bound proteins to extracellular protein aggregates, providing obvious benefits to research in this scientific arena.
Collapse
|
27
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
28
|
Cheever A, Kang CC, O’Neill KL, Weber KS. Application of novel CAR technologies to improve treatment of autoimmune disease. Front Immunol 2024; 15:1465191. [PMID: 39445021 PMCID: PMC11496059 DOI: 10.3389/fimmu.2024.1465191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has become an important treatment for hematological cancers, and its success has spurred research into CAR T cell therapies for other diseases, including solid tumor cancers and autoimmune diseases. Notably, the development of CAR-based treatments for autoimmune diseases has shown great progress recently. Clinical trials for anti-CD19 and anti-BCMA CAR T cells in treating severe B cell-mediated autoimmune diseases, like systemic lupus erythematosus (SLE), have shown lasting remission thus far. CAR T cells targeting autoreactive T cells are beginning clinical trials for treating T cell mediated autoimmune diseases. Chimeric autoantigen receptor (CAAR) T cells specifically target and eliminate only autoreactive B cells, and they have shown promise in treating mucosal pemphigus vulgaris and MuSK myasthenia gravis. Regulatory CAR T cells have also been developed, which show potential in altering autoimmune affected areas by creating a protective barrier as well as helping decrease inflammation. These new treatments are only the beginning of potential CAR T cell applications in treating autoimmune disease. Novel CAR technologies have been developed that increase the safety, potency, specificity, and efficacy of CAR T cell therapy. Applying these novel modifications to autoimmune CARs has the potential to enhance the efficacy and applicability of CAR therapies to autoimmune disease. This review will detail several recently developed CAR technologies and discuss how their application to autoimmune disease will improve this emerging field. These include logic-gated CARs, soluble protein-secreting CARs, and modular CARs that enable CAR T cell therapies to be more specific, reach a wider span of target cells, be safer for patients, and give a more potent cytotoxic response. Applying these novel CAR technologies to the treatment of autoimmune diseases has the potential to revolutionize this growing application of CAR T cell therapies.
Collapse
|
29
|
Galvan S, Teixeira AP, Fussenegger M. Enhancing cell-based therapies with synthetic gene circuits responsive to molecular stimuli. Biotechnol Bioeng 2024; 121:2987-3000. [PMID: 38867466 DOI: 10.1002/bit.28770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Synthetic biology aims to contribute to the development of next-generation patient-specific cell-based therapies for chronic diseases especially through the construction of sophisticated synthetic gene switches to enhance the safety and spatiotemporal controllability of engineered cells. Indeed, switches that sense and process specific cues, which may be either externally administered triggers or endogenous disease-associated molecules, have emerged as powerful tools for programming and fine-tuning therapeutic outputs. Living engineered cells, often referred to as designer cells, incorporating such switches are delivered to patients either as encapsulated cell implants or by infusion, as in the case of the clinically approved CAR-T cell therapies. Here, we review recent developments in synthetic gene switches responsive to molecular stimuli, spanning regulatory mechanisms acting at the transcriptional, translational, and posttranslational levels. We also discuss current challenges facing clinical translation of cell-based therapies employing these devices.
Collapse
Affiliation(s)
- Silvia Galvan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Xu F, Ni Q, Gong N, Xia B, Zhang J, Guo W, Hu Z, Li J, Liang XJ. Delivery Systems Developed for Treatment Combinations to Improve Adoptive Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407525. [PMID: 39165065 DOI: 10.1002/adma.202407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Adoptive cell therapy (ACT) has shown great success in the clinic for treating hematologic malignancies. However, solid tumor treatment with ACT monotherapy is still challenging, owing to insufficient expansion and rapid exhaustion of adoptive cells, tumor antigen downregulation/loss, and dense tumor extracellular matrix. Delivery strategies for combination cell therapy have great potential to overcome these hurdles. The delivery of vaccines, immune checkpoint inhibitors, cytokines, chemotherapeutics, and photothermal reagents in combination with adoptive cells, have been shown to improve the expansion/activation, decrease exhaustion, and promote the penetration of adoptive cells in solid tumors. Moreover, the delivery of nucleic acids to engineer immune cells directly in vivo holds promise to overcome many of the hurdles associated with the complex ex vivo cell engineering strategies. Here, these research advance, as well as the opportunities and challenges for integrating delivery technologies into cell therapy s are discussed, and the outlook for these emerging areas are criticlly analyzed.
Collapse
Affiliation(s)
- Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiankun Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Ningqiang Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Weisheng Guo
- College of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
32
|
Głowacki P, Tręda C, Rieske P. Regulation of CAR transgene expression to design semiautonomous CAR-T. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200833. [PMID: 39184876 PMCID: PMC11344471 DOI: 10.1016/j.omton.2024.200833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Effective transgene expression is critical for genetically engineered cell therapy. Therefore, one of CAR-T cell therapy's critical areas of interest, both in registered products and next-generation approaches is the expression of transgenes. It turns out that various constitutive promoters used in clinical products may influence CAR-T cell antitumor effectiveness and impact the manufacturing process. Furthermore, next-generation CAR-T starts to install remotely controlled inducible promoters or even autonomous expression systems, opening new ways of priming, boosting, and increasing the safety of CAR-T. In this article, a wide range of constitutive and inducible promoters has been grouped and structured, making it possible to compare their pros and cons as well as clinical usage. Finally, logic gates based on Synthetic Notch have been elaborated, demonstrating the coupling of desired external signals with genetically engineered cellular responses.
Collapse
Affiliation(s)
- Paweł Głowacki
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
| | - Cezary Tręda
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| |
Collapse
|
33
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
34
|
Shi J, Liu X, Jiang Y, Gao M, Yu J, Zhang Y, Wu L. CAR-T therapy pulmonary adverse event profile: a pharmacovigilance study based on FAERS database (2017-2023). Front Pharmacol 2024; 15:1434231. [PMID: 39234101 PMCID: PMC11371680 DOI: 10.3389/fphar.2024.1434231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Background Chimeric antigen receptor T-cell (CAR-T) therapy, a rapidly emerging treatment for cancer that has gained momentum since its approval by the FDA in 2017, involves the genetic engineering of patients' T cells to target tumors. Although significant therapeutic benefits have been observed, life-threatening adverse pulmonary events have been reported. Methods Using SAS 9.4 with MedDRA 26.1, we retrospectively analyzed data from the Food and Drug Administration's Adverse Event Reporting System (FAERS) database, covering the period from 2017 to 2023. The analysis included the Reporting Odds Ratio Proportional Reporting Ratio Information Component and Empirical Bayes Geometric Mean to assess the association between CAR-T cell therapy and adverse pulmonary events (PAEs). Results The FAERS database recorded 9,400 adverse events (AEs) pertaining to CAR-T therapies, of which 940 (10%) were PAEs. Among these CAR-T cell-related AEs, hypoxia was the most frequently reported (344 cases), followed by respiratory failure (127 cases). Notably, different CAR-T cell treatments demonstrated varying degrees of association with PAEs. Specifically, Tisa-cel was associated with severe events including respiratory failure and hypoxia, whereas Axi-cel was strongly correlated with both hypoxia and tachypnea. Additionally, other CAR-T therapies, namely, Brexu-cel, Liso-cel, Ide-cel, and Cilta-cel, have also been linked to distinct PAEs. Notably, the majority of these PAEs occurred within the first 30 days post-treatment. The fatality rates varied among the different CAR-T therapies, with Tisa-cel exhibiting the highest fatality rate (43.6%), followed by Ide-cel (18.8%). Conclusion This study comprehensively analyzed the PAEs reported in the FAERS database among recipients of CAR-T cell therapy, revealing conditions such as hypoxia, respiratory failure, pleural effusion, and atelectasis. These CAR-T cell therapy-associated events are clinically significant and merit the attention of clinicians and researchers.
Collapse
Affiliation(s)
- Jing Shi
- Xinjiang Medical University, Urumqi, China
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| | - Xinya Liu
- Xinjiang Medical University, Urumqi, China
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yun Jiang
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| | - Mengjiao Gao
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| | - Jian Yu
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| | | | - Li Wu
- Department of Oncology Cardiology, Xinjiang Medical University Cancer Hospital, Urumqi, China
| |
Collapse
|
35
|
Wei R, Liao X, Li J, Mu X, Ming Y, Peng Y. Novel humanized monoclonal antibodies against ROR1 for cancer therapy. Mol Cancer 2024; 23:165. [PMID: 39138527 PMCID: PMC11321157 DOI: 10.1186/s12943-024-02075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Overexpression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) contributes to cancer cell proliferation, survival and migration, playing crucial roles in tumor development. ROR1 has been proposed as a potential therapeutic target for cancer treatment. This study aimed to develop novel humanized ROR1 monoclonal antibodies and investigate their anti-tumor effects. METHODS ROR1 expression in tumor tissues and cell lines was analyzed by immunohistochemistry and flow cytometry. Antibodies from mouse hybridomas were humanized by the complementarity-determining region (CDR) grafting technique. Surface plasmon resonance spectroscopy, ELISA assay and flow cytometry were employed to characterize humanized antibodies. In vitro cellular assay and in vivo mouse experiment were conducted to comprehensively evaluate anti-tumor activity of these antibodies. RESULTS ROR1 exhibited dramatically higher expression in lung adenocarcinoma, liver cancer and breast cancer, and targeting ROR1 by short-hairpin RNAs significantly inhibited proliferation and migration of cancer cells. Two humanized ROR1 monoclonal antibodies were successfully developed, named h1B8 and h6D4, with high specificity and affinity to ROR1 protein. Moreover, these two antibodies effectively suppressed tumor growth in the lung cancer xenograft mouse model, c-Myc/Alb-cre liver cancer transgenic mouse model and MMTV-PyMT breast cancer mouse model. CONCLUSIONS Two humanized monoclonal antibodies targeting ROR1, h1B8 and h6D4, were successfully developed and exhibited remarkable anti-tumor activity in vivo.
Collapse
Affiliation(s)
- Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Liao
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Mu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
36
|
Cortese M, Torchiaro E, D'Andrea A, Petti C, Invrea F, Franco L, Donini C, Leuci V, Leto SM, Vurchio V, Cottino F, Isella C, Arena S, Vigna E, Bertotti A, Trusolino L, Sangiolo D, Medico E. Preclinical efficacy of a HER2 synNotch/CEA-CAR combinatorial immunotherapy against colorectal cancer with HER2 amplification. Mol Ther 2024; 32:2741-2761. [PMID: 38894542 PMCID: PMC11405179 DOI: 10.1016/j.ymthe.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
HER2 amplification occurs in approximately 5% of colorectal cancer (CRC) cases and is associated only partially with clinical response to combined human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR)-targeted treatment. An alternative approach based on adoptive cell therapy using T cells engineered with anti-HER2 chimeric antigen receptor (CAR) proved to be toxic due to on-target/off-tumor activity. Here we describe a combinatorial strategy to safely target HER2 amplification and carcinoembryonic antigen (CEA) expression in CRC using a synNotch-CAR-based artificial regulatory network. The natural killer (NK) cell line NK-92 was engineered with an anti-HER2 synNotch receptor driving the expression of a CAR against CEA only when engaged. After being transduced and sorted for HER2-driven CAR expression, cells were cloned. The clone with optimal performances in terms of specificity and amplitude of CAR induction demonstrated significant activity in vitro and in vivo specifically against HER2-amplified (HER2amp)/CEA+ CRC models, with no effects on cells with physiological HER2 levels. The HER2-synNotch/CEA-CAR-NK system provides an innovative, scalable, and safe off-the-shelf cell therapy approach with potential against HER2amp CRC resistant or partially responsive to HER2/EGFR blockade.
Collapse
MESH Headings
- Colorectal Neoplasms/therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Humans
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Carcinoembryonic Antigen/immunology
- Carcinoembryonic Antigen/genetics
- Gene Amplification
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Immunotherapy/methods
- Immunotherapy, Adoptive/methods
- Disease Models, Animal
- Female
Collapse
Affiliation(s)
- Marco Cortese
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy.
| | - Erica Torchiaro
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Alice D'Andrea
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Consalvo Petti
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Federica Invrea
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy
| | - Letizia Franco
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy
| | - Chiara Donini
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | | | | | | | - Claudio Isella
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Elisa Vigna
- University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Enzo Medico
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy.
| |
Collapse
|
37
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
38
|
Russell GC, Hamzaoui Y, Rho D, Sutrave G, Choi JS, Missan DS, Reckard GA, Gustafson MP, Kim GB. Synthetic biology approaches for enhancing safety and specificity of CAR-T cell therapies for solid cancers. Cytotherapy 2024; 26:842-857. [PMID: 38639669 DOI: 10.1016/j.jcyt.2024.03.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
CAR-T cell therapies have been successful in treating numerous hematologic malignancies as the T cell can be engineered to target a specific antigen associated with the disease. However, translating CAR-T cell therapies for solid cancers is proving more challenging due to the lack of truly tumor-associated antigens and the high risk of off-target toxicities. To combat this, numerous synthetic biology mechanisms are being incorporated to create safer and more specific CAR-T cells that can be spatiotemporally controlled with increased precision. Here, we seek to summarize and analyze the advancements for CAR-T cell therapies with respect to clinical implementation, from the perspective of synthetic biology and immunology. This review should serve as a resource for further investigation and growth within the field of personalized cellular therapies.
Collapse
Affiliation(s)
- Grace C Russell
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Yassin Hamzaoui
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Daniel Rho
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gaurav Sutrave
- The University of Sydney, Sydney, Australia; Department of Haematology, Westmead Hospital, Sydney, Australia; Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada
| | - Joseph S Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Dara S Missan
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Gabrielle A Reckard
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Michael P Gustafson
- Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada; Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gloria B Kim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.
| |
Collapse
|
39
|
Thomas P, Paris P, Pecqueur C. Arming Vδ2 T Cells with Chimeric Antigen Receptors to Combat Cancer. Clin Cancer Res 2024; 30:3105-3116. [PMID: 38747974 PMCID: PMC11292201 DOI: 10.1158/1078-0432.ccr-23-3495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 04/18/2024] [Indexed: 08/02/2024]
Abstract
Immunotherapy has emerged as a promising approach in the field of cancer treatment, with chimeric antigen receptor (CAR) T-cell therapy demonstrating remarkable success. However, challenges such as tumor antigen heterogeneity, immune evasion, and the limited persistence of CAR-T cells have prompted the exploration of alternative cell types for CAR-based strategies. Gamma delta T cells, a unique subset of lymphocytes with inherent tumor recognition capabilities and versatile immune functions, have garnered increasing attention in recent years. In this review, we present how arming Vδ2-T cells might be the basis for next-generation immunotherapies against solid tumors. Following a comprehensive overview of γδ T-cell biology and innovative CAR engineering strategies, we discuss the clinical potential of Vδ2 CAR-T cells in overcoming the current limitations of immunotherapy in solid tumors. Although the applications of Vδ2 CAR-T cells in cancer research are relatively in their infancy and many challenges are yet to be identified, Vδ2 CAR-T cells represent a promising breakthrough in cancer immunotherapy.
Collapse
Affiliation(s)
- Pauline Thomas
- Nantes Université, CRCI2NA, INSERM, CNRS, Nantes, France
| | - Pierre Paris
- Nantes Université, CRCI2NA, INSERM, CNRS, Nantes, France
| | | |
Collapse
|
40
|
Anurogo D, Luthfiana D, Anripa N, Fauziah AI, Soleha M, Rahmah L, Ratnawati H, Wargasetia TL, Pratiwi SE, Siregar RN, Sholichah RN, Maulana MS, Ikrar T, Chang YH, Qiu JT. The Art of Bioimmunogenomics (BIGs) 5.0 in CAR-T Cell Therapy for Lymphoma Management. Adv Pharm Bull 2024; 14:314-330. [PMID: 39206402 PMCID: PMC11347730 DOI: 10.34172/apb.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/13/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Lymphoma, the most predominant neoplastic disorder, is divided into Hodgkin and Non-Hodgkin Lymphoma classifications. Immunotherapeutic modalities have emerged as essential methodologies in combating lymphoid malignancies. Chimeric Antigen Receptor (CAR) T cells exhibit promising responses in chemotherapy-resistant B-cell non-Hodgkin lymphoma cases. Methods This comprehensive review delineates the advancement of CAR-T cell therapy as an immunotherapeutic instrument, the selection of lymphoma antigens for CAR-T cell targeting, and the conceptualization, synthesis, and deployment of CAR-T cells. Furthermore, it encompasses the advantages and disadvantages of CAR-T cell therapy and the prospective horizons of CAR-T cells from a computational research perspective. In order to improve the design and functionality of artificial CARs, there is a need for TCR recognition investigation, followed by the implementation of a quality surveillance methodology. Results Various lymphoma antigens are amenable to CAR-T cell targeting, such as CD19, CD20, CD22, CD30, the kappa light chain, and ROR1. A notable merit of CAR-T cell therapy is the augmentation of the immune system's capacity to generate tumoricidal activity in patients exhibiting chemotherapy-resistant lymphoma. Nevertheless, it also introduces manufacturing impediments that are laborious, technologically demanding, and financially burdensome. Physical, physicochemical, and physiological limitations further exacerbate the challenge of treating solid neoplasms with CAR-T cells. Conclusion While the efficacy and safety of CAR-T cell immunotherapy remain subjects of fervent investigation, the promise of this cutting-edge technology offers valuable insights for the future evolution of lymphoma treatment management approaches. Moreover, CAR-T cell therapies potentially benefit patients, motivating regulatory bodies to foster international collaboration.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Faculty of Medicine and Health Sciences, Muhammadiyah University of Makassar, Makassar, South Sulawesi, 90221, Indonesia
| | - Dewi Luthfiana
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang, East Java, 65162, Indonesia
| | - Nuralfin Anripa
- Department of Environmental Science, Dumoga University, Kotamobagu, South Sulawesi, 95711, Indonesia
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Apriliani Ismi Fauziah
- MSc Program in Tropical Medicine, Kaohsiung Medical University, Kaohsiung City, 807378, Taiwan
| | - Maratu Soleha
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
- IKIFA College of Health Sciences, East Jakarta, Special Capital Region of Jakarta, 13470, Indonesia
| | - Laila Rahmah
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
- Faculty of Medicine, Muhammadiyah University of Surabaya, Surabaya, East Java, 60113, Indonesia
| | - Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, 40164, Indonesia
| | | | - Sari Eka Pratiwi
- Department of Biology and Pathobiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, 78115, Indonesia
| | - Riswal Nafi Siregar
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
| | - Ratis Nour Sholichah
- Department of Biotechnology, Postgraduate School of Gadjah Mada University, Yogyakarta, 55284, Indonesia
| | - Muhammad Sobri Maulana
- Community Health Center (Puskesmas) Temon 1, Kulon Progo, Special Region of Yogyakarta, 55654, Indonesia
| | - Taruna Ikrar
- Director of Members-at-Large, International Association of Medical Regulatory Authorities (IAMRA), Texas, 76039, USA
- Aivita Biomedical Inc., Irvine, California, 92612, USA
- Chairman of Medical Council, The Indonesian Medical Council (KKI), Central Jakarta, 10350, Indonesia
- Adjunct Professor, School of Military Medicine, The Republic of Indonesia Defense University (RIDU), Jakarta Pusat, 10440, Indonesia
- Department of Pharmacology, Faculty of Medicine, Malahayati University, Bandar Lampung, Lampung, 35152, Indonesia
| | - Yu Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Locus Cell Co., LTD., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Jiantai Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| |
Collapse
|
41
|
Epperly R, Gottschalk S, DeRenzo C. CAR T cells redirected to B7-H3 for pediatric solid tumors: Current status and future perspectives. EJC PAEDIATRIC ONCOLOGY 2024; 3:100160. [PMID: 38957786 PMCID: PMC11218663 DOI: 10.1016/j.ejcped.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Despite intensive therapies, pediatric patients with relapsed or refractory solid tumors have poor outcomes and need novel treatments. Immune therapies offer an alternative to conventional treatment options but require the identification of differentially expressed antigens to direct antitumor activity to sites of disease. B7-H3 (CD276) is an immune regulatory protein that is expressed in a range of malignancies and has limited expression in normal tissues. B7-H3 is highly expressed in pediatric solid tumors including osteosarcoma, rhabdomyosarcoma, Ewing sarcoma, Wilms tumor, neuroblastoma, and many rare tumors. In this article we review B7-H3-targeted chimeric antigen receptor (B7-H3-CAR) T cell therapies for pediatric solid tumors, reporting preclinical development strategies and outlining the landscape of active pediatric clinical trials. We identify challenges to the success of CAR T cell therapy for solid tumors including localizing to and penetrating solid tumor sites, evading the hostile tumor microenvironment, supporting T cell expansion and persistence, and avoiding intrinsic tumor resistance. We highlight strategies to overcome these challenges and enhance the effect of B7-H3-CAR T cells, including advanced CAR T cell design and incorporation of combination therapies.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
42
|
Frankel NW, Deng H, Yucel G, Gainer M, Leemans N, Lam A, Li Y, Hung M, Lee D, Lee CT, Banicki A, Tian M, Almudhfar N, Naitmazi L, Roguev A, Lee S, Wong W, Gordley R, Lu TK, Garrison BS. Precision off-the-shelf natural killer cell therapies for oncology with logic-gated gene circuits. Cell Rep 2024; 43:114145. [PMID: 38669141 DOI: 10.1016/j.celrep.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis (5-year survival rate of 30.5% in the United States). Designing cell therapies to target AML is challenging because no single tumor-associated antigen (TAA) is highly expressed on all cancer subpopulations. Furthermore, TAAs are also expressed on healthy cells, leading to toxicity risk. To address these targeting challenges, we engineer natural killer (NK) cells with a multi-input gene circuit consisting of chimeric antigen receptors (CARs) controlled by OR and NOT logic gates. The OR gate kills a range of AML cells from leukemic stem cells to blasts using a bivalent CAR targeting FLT3 and/or CD33. The NOT gate protects healthy hematopoietic stem cells (HSCs) using an inhibitory CAR targeting endomucin, a protective antigen unique to healthy HSCs. NK cells with the combined OR-NOT gene circuit kill multiple AML subtypes and protect primary HSCs, and the circuit also works in vivo.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Animals
- Mice
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Gene Regulatory Networks
- Hematopoietic Stem Cells/metabolism
- Cell Line, Tumor
- Precision Medicine/methods
- Cell- and Tissue-Based Therapy/methods
Collapse
Affiliation(s)
| | - Han Deng
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Gozde Yucel
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Marcus Gainer
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Nelia Leemans
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Alice Lam
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Yongshuai Li
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Michelle Hung
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Derrick Lee
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Chen-Ting Lee
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Andrew Banicki
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Mengxi Tian
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | | | | | - Assen Roguev
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA
| | | | | | | | - Timothy K Lu
- Senti Biosciences, Inc., South San Francisco, CA 94080, USA; Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
43
|
Wu ZL, Wang Y, Jia XY, Wang YG, Wang H. Receptor tyrosine kinase-like orphan receptor 1: A novel antitumor target in gastrointestinal cancers. World J Clin Oncol 2024; 15:603-613. [PMID: 38835843 PMCID: PMC11145958 DOI: 10.5306/wjco.v15.i5.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the type I receptor tyrosine kinase family. ROR1 is pivotal in embryonic development and cancer, and serves as a biomarker and therapeutic target. It has soluble and membrane-bound subtypes, with the latter highly expressed in tumors. ROR1 is conserved throughout evolution and may play a role in the development of gastrointestinal cancer through multiple signaling pathways and molecular mechanisms. Studies suggest that overexpression of ROR1 may increase tumor invasiveness and metastasis. Additionally, ROR1 may regulate the cell cycle, stem cell characteristics, and interact with other signaling pathways to affect cancer progression. This review explores the structure, expression and role of ROR1 in the development of gastrointestinal cancers. It discusses current antitumor strategies, outlining challenges and prospects for treatment.
Collapse
Affiliation(s)
- Zheng-Long Wu
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| | - Ying Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Xiao-Yuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang Province, China
| |
Collapse
|
44
|
Jamitzky S, Altvater B, Krekeler C, Hoen L, Brandes C, Ebbinghaus J, Richter L, Kosel L, Ochs L, Farwick N, Urban K, Kluge L, Bücker L, Görlich D, Johnston ICD, Pfeifer R, Hartmann W, Rossig C, Kailayangiri S. Ganglioside SSEA-4 in Ewing sarcoma marks a tumor cell population with aggressive features and is a potential cell-surface immune target. Sci Rep 2024; 14:11935. [PMID: 38789477 PMCID: PMC11126692 DOI: 10.1038/s41598-024-62849-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
Carbohydrate markers of immature cells during prenatal human development can be aberrantly expressed in cancers and deserve evaluation as immune targets. A candidate target in Ewing sarcoma is the globo-series ganglioside stage-specific embryonic antigen-4 (SSEA-4). We detected SSEA-4 expression on the cell surface of all of 14 EwS cell lines and in 21 of 31 (68%) primary EwS tumor biopsies. Among paired subpopulations of tumor cells with low versus high SSEA-4 expression, SSEA-4high expression was significantly and consistently associated with functional characteristics of tumor aggressiveness, including higher cell proliferation, colony formation, chemoresistance and propensity to migrate. SSEA-4low versus SSEA-4high expression was not related to expression levels of the EWSR1-FLI1 fusion transcript or markers of epithelial/mesenchymal plasticity. SSEA-4low cells selected from bulk populations regained higher SSEA-4 expression in vitro and during in vivo tumor growth in a murine xenograft model. T cells engineered to express SSEA-4-specific chimeric antigen receptors (CARs) specifically interacted with SSEA-4 positive EwS cells and exerted effective antigen-specific tumor cell lysis in vitro. In conclusion, with its stable expression and functional significance in EwS, SSEA-4 is an attractive therapeutic immune target in this cancer that deserves further evaluation for clinical translation.
Collapse
Affiliation(s)
- Silke Jamitzky
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Carolin Krekeler
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Laura Hoen
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Caroline Brandes
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Julia Ebbinghaus
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lisa Richter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lisa Kosel
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Laurin Ochs
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Nicole Farwick
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Katja Urban
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lena Kluge
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Lara Bücker
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster, Schmeddingstr. 56, 48149, Muenster, Germany
| | - Ian C D Johnston
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Domagkstr. 17, 48149, Muenster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Roentgenstr. 16, 48149, Muenster, Germany.
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Albert-Schweitzer Campus 1, 38149, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
45
|
Chen K, Liu ML, Wang JC, Fang S. CAR-macrophage versus CAR-T for solid tumors: The race between a rising star and a superstar. BIOMOLECULES & BIOMEDICINE 2024; 24:465-476. [PMID: 37877819 PMCID: PMC11088881 DOI: 10.17305/bb.2023.9675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Adoptive cell therapy (ACT) has been demonstrated to be one of the most promising cancer immunotherapy strategies due to its active antitumor capabilities in vivo. Engineering T cells to overexpress chimeric antigen receptors (CARs), for example, has shown potent efficacy in the therapy of some hematologic malignancies. However, the efficacy of chimeric antigen receptor T cell (CAR-T) therapy against solid tumors is still limited due to the immunosuppressive tumor microenvironment (TME) of solid tumors, difficulty in infiltrating tumor sites, lack of tumor-specific antigens, antigen escape, and severe side effects. In contrast, macrophages expressing CARs (CAR-macrophages) have emerged as another promising candidate in immunotherapy, particularly for solid tumors. Now at its nascent stage (with only one clinical trial progressing), CAR-macrophage still shows inspiring potential advantages over CAR-T in treating solid tumors, including more abundant antitumor mechanisms and better infiltration into tumors. In this review, we discuss the relationships and differences between CAR-T and CAR-macrophage therapies in terms of their CAR structures, antitumor mechanisms, challenges faced in treating solid tumors, and insights gleaned from clinical trials and practice for solid tumors. We especially highlight the potential advantages of CAR-macrophage therapy over CAR-T for solid tumors. Understanding these relationships and differences provides new insight into possible optimization strategies of both these two therapies in solid tumor treatment.
Collapse
Affiliation(s)
- Kun Chen
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Min-ling Liu
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Jian-cheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
46
|
Chen T, Wang M, Chen Y, Liu Y. Current challenges and therapeutic advances of CAR-T cell therapy for solid tumors. Cancer Cell Int 2024; 24:133. [PMID: 38622705 PMCID: PMC11017638 DOI: 10.1186/s12935-024-03315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
The application of chimeric antigen receptor (CAR) T cells in the management of hematological malignancies has emerged as a noteworthy therapeutic breakthrough. Nevertheless, the utilization and effectiveness of CAR-T cell therapy in solid tumors are still limited primarily because of the absence of tumor-specific target antigen, the existence of immunosuppressive tumor microenvironment, restricted T cell invasion and proliferation, and the occurrence of severe toxicity. This review explored the history of CAR-T and its latest advancements in the management of solid tumors. According to recent studies, optimizing the design of CAR-T cells, implementing logic-gated CAR-T cells and refining the delivery methods of therapeutic agents can all enhance the efficacy of CAR-T cell therapy. Furthermore, combination therapy shows promise as a way to improve the effectiveness of CAR-T cell therapy. At present, numerous clinical trials involving CAR-T cells for solid tumors are actively in progress. In conclusion, CAR-T cell therapy has both potential and challenges when it comes to treating solid tumors. As CAR-T cell therapy continues to evolve, further innovations will be devised to surmount the challenges associated with this treatment modality, ultimately leading to enhanced therapeutic response for patients suffered solid tumors.
Collapse
Affiliation(s)
- Tong Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yanchao Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
47
|
Funk MA, Heller G, Waidhofer-Söllner P, Leitner J, Steinberger P. Inhibitory CARs fail to protect from immediate T cell cytotoxicity. Mol Ther 2024; 32:982-999. [PMID: 38384128 PMCID: PMC11163222 DOI: 10.1016/j.ymthe.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Chimeric antigen receptors (CARs) equipped with an inhibitory signaling domain (iCARs) have been proposed as strategy to increase on-tumor specificity of CAR-T cell therapies. iCARs inhibit T cell activation upon antigen recognition and thereby program a Boolean NOT gate within the CAR-T cell. If cancer cells do not express the iCAR target antigen while it is highly expressed on healthy tissue, CAR/iCAR coexpressing T cells are supposed to kill cancer cells but not healthy cells expressing the CAR antigen. In this study, we employed a well-established reporter cell system to demonstrate high potency of iCAR constructs harboring BTLA-derived signaling domains. We then created CAR/iCAR combinations for the clinically relevant antigen pairs B7-H3/CD45 and CD123/CD19 and show potent reporter cell suppression by iCARs targeting CD45 or CD19. In primary human T cells αCD19-iCARs were capable of suppressing T cell proliferation and cytokine production. Surprisingly, the iCAR failed to veto immediate CAR-mediated cytotoxicity. Likewise, T cells overexpressing PD-1 or BTLA did not show impaired cytotoxicity toward ligand-expressing target cells, indicating that inhibitory signaling by these receptors does not mediate protection against cytotoxicity by CAR-T cells. Future approaches employing iCAR-equipped CAR-T cells for cancer therapy should therefore monitor off-tumor reactivity and potential CAR/iCAR-T cell dysfunction.
Collapse
Affiliation(s)
- Maximilian A Funk
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria; University Hospital LMU Munich, Department of Medicine III, Munich, Germany; Gene Center, LMU Munich, Cancer and Immunometabolism Research Group, Munich, Germany; German Cancer Consortium (DKTK), Munich Site and German Cancer Research Center, Heidelberg, Germany
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
48
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
49
|
Bhatt B, García-Díaz P, Foight GW. Synthetic transcription factor engineering for cell and gene therapy. Trends Biotechnol 2024; 42:449-463. [PMID: 37865540 DOI: 10.1016/j.tibtech.2023.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Synthetic transcription factors (synTFs) that control beneficial transgene expression are an important method to increase the safety and efficacy of cell and gene therapy. Reliance on synTF components from non-human sources has slowed progress in the field because of concerns about immunogenicity and inducer drug properties. Recent advances in human-derived DNA-binding domains (DBDs) and transcriptional activation domains (TADs) paired with novel control modules responsive to clinically approved small molecules have poised the synTF field to overcome these hurdles. Advances include controllers inducible by autonomous signaling inputs and more complex, multi-input synTF circuits. Demonstrations of advanced control strategies with human-derived transcription factor components in clinically relevant vectors and in vivo models will facilitate progression into the clinic.
Collapse
Affiliation(s)
- Bhoomi Bhatt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA
| | - Pablo García-Díaz
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA
| | - Glenna Wink Foight
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
50
|
Eichholz K, Fukazawa Y, Peterson CW, Haeseleer F, Medina M, Hoffmeister S, Duell DM, Varco-Merth BD, Dross S, Park H, Labriola CS, Axthelm MK, Murnane RD, Smedley JV, Jin L, Gong J, Rust BJ, Fuller DH, Kiem HP, Picker LJ, Okoye AA, Corey L. Anti-PD-1 chimeric antigen receptor T cells efficiently target SIV-infected CD4+ T cells in germinal centers. J Clin Invest 2024; 134:e169309. [PMID: 38557496 PMCID: PMC10977982 DOI: 10.1172/jci169309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.
Collapse
Affiliation(s)
- Karsten Eichholz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher W. Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - Francoise Haeseleer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Manuel Medina
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Shelby Hoffmeister
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Derick M. Duell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin D. Varco-Merth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Sandra Dross
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Robert D. Murnane
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lei Jin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jiaxin Gong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Blake J. Rust
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Deborah H. Fuller
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|