1
|
Weiss L, Stintzing S, Stahler A, Benedikt Westphalen C, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, Lerchenmüller CA, Kahl C, Seipelt G, Kullmann F, Heinrich K, Holch JW, Alig A, Jung A, Modest DP, Heinemann V. Molecular hyperselection for optimal choice of first-line targeted therapy independent of primary tumor sidedness: An exploratory analysis of the randomized FIRE-3 study performed in RAS wild-type metastatic colorectal cancer. Eur J Cancer 2025; 221:115399. [PMID: 40222201 DOI: 10.1016/j.ejca.2025.115399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION Molecular diagnostics play a pivotal role in guiding therapy for metastatic colorectal cancer (mCRC). Current guidelines recommend stratification based on biomarkers such as RAS, BRAF, and DNA mismatch-repair (MMR) status to select between anti-EGFR (epidermal growth factor receptor) and anti-VEGF (vascular endothelial growth factor) therapies. MATERIALS AND METHODS This retrospective analysis evaluated the randomized FIRE-3 study that compared first-line treatment with FOLFIRI plus cetuximab to FOLFIRI plus bevacizumab in RAS wild-type patients. The present analysis included 199 patients with RAS/BRAF wild-type MMR proficient tumors. Next-generation sequencing (NGS) was successfully performed in all patients and allowed stratification into hyperselected (no predefined genetic alterations) or gene altered subgroups using the previously published approach of the PRESSING-studies. RESULTS Hyperselection according to PRESSING-3 was associated with a survival benefit from anti-EGFR-based therapy compared to bevacizumab (38.5 months vs. 27.5 months; HR 0.68; 95 % CI, 0.44-1.05; P = 0.08). This benefit was observed in both, right- and left-sided tumors, (HR 0.58 and HR 0.70). Patients with gene alterations showed inferior survival compared to hyperselected patients across all subgroups. In this unfavorable subgroup, application of cetuximab and bevacizumab were associated with comparable OS (total cohort: HR 1.04; 95 % CI, 0.61-1.79). Again, this finding was independent of primary tumor sidedness (left-sided tumors: HR 1.10; 95 % CI, 0.59-2.07; right-sided tumors: HR 1.05; 95 % CI, 0.31-3.55). CONCLUSION Molecular hyperselection facilitated by next generation sequencing could replace primary tumor sidedness as a tool of decision making for optimal choice of targeted therapy in first-line treatment of RAS wild-type mCRC.
Collapse
Affiliation(s)
- Lena Weiss
- Department of Medicine III, LMU Klinikum, University of Munich, Munich, Germany.
| | - Sebastian Stintzing
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Berlin, Germany
| | - Arndt Stahler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Berlin, Germany
| | - C Benedikt Westphalen
- Department of Medicine III, LMU Klinikum, University of Munich, Munich, Germany; Comprehensive Cancer Center Munich, LMU Klinikum, University of Munich, Munich, Germany
| | | | | | - Alexander Kiani
- Department of Hematology and Oncology, Klinikum Bayreuth GmbH, Bayreuth, Germany and Comprehensive Cancer Center-EMN, Erlangen, Germany
| | | | - Salah-Edin Al-Batran
- Institute of Clinical Cancer Research at Krankenhaus Nordwest University Cancer Center, Frankfurt, Germany
| | - Tobias Heintges
- Department of Medicine II, Rheinlandklinikum Neuss, Neuss, Germany
| | | | - Christoph Kahl
- Department of Haematology and Oncology, Städtisches Klinikum Magdeburg, Magdeburg, Germany; Department of Haematology, Oncology and Palliative Care, Klinikum Magdeburg gGmbH, Magdeburg, Germany; Department of Hematology, Oncology, and Palliative Care, University of Rostock, Rostock, Germany
| | - Gernot Seipelt
- Department of Hematology, Oncology, and Palliative Care, University of Rostock, Rostock, Germany; Oncological Practice, Bad Soden, Germany
| | - Frank Kullmann
- Oncological Practice, Bad Soden, Germany; Department of Medicine I, Klinikum Weiden, Weiden, Germany
| | - Kathrin Heinrich
- Department of Medicine III, LMU Klinikum, University of Munich, Munich, Germany
| | - Julian Walter Holch
- Department of Medicine III, LMU Klinikum, University of Munich, Munich, Germany
| | - Annabel Alig
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Berlin, Germany
| | - Andreas Jung
- Department of Medicine I, Klinikum Weiden, Weiden, Germany; Institute of Pathology, University of Munich, Munich, Germany
| | - Dominik Paul Modest
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Berlin, Germany
| | - Volker Heinemann
- Department of Medicine III, LMU Klinikum, University of Munich, Munich, Germany; Comprehensive Cancer Center Munich, LMU Klinikum, University of Munich, Munich, Germany
| |
Collapse
|
2
|
Bai M, Jin Y, Jin Z, Xie Y, Chen J, Zhong Q, Wang Z, Zhang Q, Cai Y, Qun F, Yuki N, Xin C, Shen X, Zhu J. Distinct immunophenotypic profiles and neutrophil heterogeneity in colorectal cancer. Cancer Lett 2025; 616:217570. [PMID: 39993650 DOI: 10.1016/j.canlet.2025.217570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Colorectal cancer (CRC) exhibits significant molecular and immunological heterogeneity. Neutrophil infiltration patterns play a crucial yet poorly understood role in tumor progression and patient outcomes. This study presents a comprehensive single-cell atlas of the CRC tumor microenvironment (TME), integrating transcriptomic data from 388,511 cells across 98 samples from 63 patients. Employing advanced computational methods, we stratified patients based on their immune cell infiltration profiles, revealing distinct immunophenotypes with potential therapeutic implications. Our analysis focused on tissue-resident neutrophils (TRNs) and uncovered previously uncharacterized subpopulations with diverse functional states. Trajectory inference analysis revealed a dynamic differentiation path from normal-associated neutrophils to tumor-associated neutrophils, highlighting the remarkable plasticity of these cells within the tumor environment. By integrating single-cell data with bulk transcriptomic and clinical information, we identified specific neutrophil-derived gene signatures associated with poor prognosis in CRC, suggesting their potential as novel prognostic biomarkers. This study not only provides unprecedented insights into neutrophil heterogeneity in CRC but also identifies potential targets for immunomodulatory therapies. Our findings lay the groundwork for developing more nuanced, personalized immunotherapeutic strategies for CRC, potentially improving treatment efficacy for patients who currently show a limited response to existing immunotherapies.
Collapse
Affiliation(s)
- Minghua Bai
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yuzhao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China; Wenzhou Medical University, Wenzhou, China
| | - Zihao Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Jinggang Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Qingping Zhong
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China; Wenzhou Medical University, Wenzhou, China
| | | | - Qian Zhang
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yibo Cai
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - FangYa Qun
- National Institutes for Quantum Science and Technology(QST), Chiba, Japan
| | - Nitta Yuki
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Cheng Xin
- Department of Colorectal Surgery, Changhai Hospital, Naval Mdical University, Shanghai, China.
| | - Xiaohui Shen
- Department of General Surgery, Department of General Practice, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China; Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Kratz JD, Rehman S, Johnson KA, Gillette AA, Sunil A, Favreau PF, Pasch CA, Miller D, Zarling LC, Yeung AH, Clipson L, Anderson SJ, Steimle AK, Sprackling CM, Lemmon KK, Abbott DE, Burkard ME, Bassetti MF, Eickhoff JC, Foley EF, Heise CP, Kimple RJ, Lawson EH, LoConte NK, Lubner SJ, Mulkerin DL, Matkowskyj KA, Sanger CB, Uboha NV, Mcilwain SJ, Ong IM, Carchman EH, Skala MC, Deming DA. Subclonal response heterogeneity to define cancer organoid therapeutic sensitivity. Sci Rep 2025; 15:12072. [PMID: 40200028 PMCID: PMC11978853 DOI: 10.1038/s41598-025-96204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
Tumor heterogeneity is predicted to confer inferior clinical outcomes with precision-based strategies, however, modeling heterogeneity in a manner that still represents the tumor of origin remains a formidable challenge. Sequencing technologies are limited in their ability to identify rare subclonal populations and predict response to treatments for patients. Patient-derived organotypic cultures have significantly improved the modeling of cancer biology by faithfully representing the molecular features of primary malignant tissues. Patient-derived cancer organoid (PCO) cultures contain subclonal populations with the potential to recapitulate heterogeneity, although treatment response assessments commonly ignore diversity in the molecular profile or treatment response. Here, we demonstrate the advantage of evaluating individual PCO heterogeneity to enhance the sensitivity of these assays for predicting clinical response. Additionally, organoid subcultures identify subclonal populations with altered treatment response. Finally, dose escalation studies of PCOs to targeted anti-EGFR therapy are utilized which reveal divergent pathway expression when compared to pretreatment cultures. Overall, these studies demonstrate the importance of population-based organoid response assessments, the use of PCOs to identify molecular heterogeneity not observed with bulk tumor sequencing, and PCO heterogeneity for understanding therapeutic resistance mechanisms.
Collapse
Affiliation(s)
- Jeremy D Kratz
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Shujah Rehman
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Katherine A Johnson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - Amani A Gillette
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Aishwarya Sunil
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Peter F Favreau
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Cheri A Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Devon Miller
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Lucas C Zarling
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Austin H Yeung
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
| | | | | | | | - Kayla K Lemmon
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Daniel E Abbott
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Michael F Bassetti
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Jens C Eickhoff
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Eugene F Foley
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Charles P Heise
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Randall J Kimple
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Elise H Lawson
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Noelle K LoConte
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Sam J Lubner
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Daniel L Mulkerin
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Cristina B Sanger
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Nataliya V Uboha
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Sean J Mcilwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Evie H Carchman
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Dustin A Deming
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin, Madison, WI, USA.
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
4
|
Killarney ST, Mesa G, Washart R, Mayro B, Dillon K, Wardell SE, Newlin M, Lu M, Rmaileh AA, Liu N, McDonnell DP, Pendergast AM, Wood KC. PKN2 Is a Dependency of the Mesenchymal-like Cancer Cell State. Cancer Discov 2025; 15:595-615. [PMID: 39560431 PMCID: PMC11875962 DOI: 10.1158/2159-8290.cd-24-0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Cancer cells exploit a mesenchymal-like transcriptional state (MLS) to survive drug treatments. Although the MLS is well characterized, few therapeutic vulnerabilities targeting this program have been identified. In this study, we systematically identify the dependency network of mesenchymal-like cancers through an analysis of gene essentiality scores in ∼800 cancer cell lines, nominating a poorly studied kinase, PKN2, as a top therapeutic target of the MLS. Coessentiality relationships, biochemical experiments, and genomic analyses of patient tumors revealed that PKN2 promotes mesenchymal-like cancer growth through a PKN2-SAV1-TAZ signaling mechanism. Notably, pairing genetic PKN2 inhibition with clinically relevant targeted therapies against EGFR, KRAS, and BRAF suppresses drug resistance by depleting mesenchymal-like drug-tolerant persister cells. These findings provide evidence that PKN2 is a core regulator of the Hippo tumor suppressor pathway and highlight the potential of PKN2 inhibition as a generalizable therapeutic strategy to overcome drug resistance driven by the MLS across cancer contexts. Significance: This work identifies PKN2 as a core member of the Hippo signaling pathway, and its inhibition blocks YAP/TAZ-driven tumorigenesis. Furthermore, this study discovers PKN2-TAZ as arguably the most selective dependency of mesenchymal-like cancers and supports specific inhibition of PKN2 as a provocative strategy to overcome drug resistance in diverse cancer contexts. See related commentary by Shen and Tan, p. 458.
Collapse
Affiliation(s)
- Shane T. Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Gabriel Mesa
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Rachel Washart
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Benjamin Mayro
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kerry Dillon
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Madeline Newlin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Min Lu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Areej Abu Rmaileh
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Nicky Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
5
|
Savy T, Flanders L, Karpanasamy T, Sun M, Gerlinger M. Cancer evolution: from Darwin to the Extended Evolutionary Synthesis. Trends Cancer 2025; 11:204-215. [PMID: 39880745 DOI: 10.1016/j.trecan.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
The fundamental evolutionary nature of cancer has been recognized for decades. Increasingly powerful genetic and single cell sequencing technologies, as well as preclinical models, continue to unravel the evolution of premalignant cells, and progression to metastatic stages and to drug-resistant end-stage disease. Here, we summarize recent advances and distil evolutionary principles and their relevance for the clinic. We reveal how cancer cell and microenvironmental plasticity are intertwined with Darwinian evolution and demonstrate the need for a conceptual framework that integrates these processes. This warrants the adoption of the recently developed Extended Evolutionary Synthesis (EES).
Collapse
Affiliation(s)
- Thomas Savy
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lucy Flanders
- Barts Cancer Institute, Queen Mary University of London, London, UK; St Bartholomew's Hospital, London, London, UK
| | | | - Min Sun
- St Bartholomew's Hospital, London, London, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK; St Bartholomew's Hospital, London, London, UK.
| |
Collapse
|
6
|
Sun F, Yao F, Zeng C, Zhao Y, Liang B, Li S, Wang Y, Wu Q, Shi Y, Yao Z, Wang J, Jiang Y, Gu C, Huang Q, Liao W, Huang N, Wang C, Rong X, Wu J, Tan Y, Peng J, Li Y, Shi M. Targeting adenosine enhances immunotherapy in MSS colorectal cancer with EGFRvIII mutation. J Immunother Cancer 2025; 13:e010126. [PMID: 39947814 PMCID: PMC11831272 DOI: 10.1136/jitc-2024-010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/07/2025] [Indexed: 02/19/2025] Open
Abstract
BACKGROUND Patients with microsatellite stable (MSS) colorectal cancer (CRC) often display resistance to immunotherapy. Epidermal growth factor receptor (EGFR)-targeted therapies have shown potential in enhancing immunotherapy, yet clinical benefits remain unfulfilled, which may relate to inadequate patient stratification. METHODS Circulating tumor cells and tumor tissues were collected from multicenter cohorts of patients with CRC receiving cetuximab to analyze EGFR variant type III (EGFRvIII) expression and immune infiltration. Syngeneic mouse models of EGFRvIII CRC were used to investigate the combined efficacy of adenosine inhibition and antiprogrammed cell death protein 1 (anti-PD-1). RESULTS EGFRvIII mutations are found in about 10% of MSS CRC and are associated with poor response to cetuximab therapy. EGFRvIII-mutated patients with CRC exhibit an adenosine-mediated immunosuppressive tumor microenvironment (TME) subtype. Combination therapy with adenosine inhibitors remodels the TME, reversing cetuximab resistance and enhancing anti-PD-1 efficacy in EGFRvIII CRC. CONCLUSIONS Our findings identified EGFRvIII-positive CRC as a distinct subtype characterized by adenosine-mediated immunosuppressive TME. Targeting adenosine significantly improved the efficacy of anti-PD-1 in MSS CRC.
Collapse
Affiliation(s)
- Fei Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangzhen Yao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunting Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bishan Liang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaowei Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yawen Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qijing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqi Yao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiao Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Jiang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunhui Gu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wu
- Department of Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yujing Tan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianjun Peng
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Li
- Department of Oncology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Feng QS, Shan XF, Yau V, Cai ZG, Xie S. Facilitation of Tumor Stroma-Targeted Therapy: Model Difficulty and Co-Culture Organoid Method. Pharmaceuticals (Basel) 2025; 18:62. [PMID: 39861125 PMCID: PMC11769033 DOI: 10.3390/ph18010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Tumors, as intricate ecosystems, comprise oncocytes and the highly dynamic tumor stroma. Tumor stroma, representing the non-cancerous and non-cellular composition of the tumor microenvironment (TME), plays a crucial role in oncogenesis and progression, through its interactions with biological, chemical, and mechanical signals. This review aims to analyze the challenges of stroma mimicry models, and highlight advanced personalized co-culture approaches for recapitulating tumor stroma using patient-derived tumor organoids (PDTOs). Methods: This review synthesizes findings from recent studies on tumor stroma composition, stromal remodeling, and the spatiotemporal heterogeneities of the TME. It explores popular stroma-related models, co-culture systems integrating PDTOs with stromal elements, and advanced techniques to improve stroma mimicry. Results: Stroma remodeling, driven by stromal cells, highlights the dynamism and heterogeneity of the TME. PDTOs, derived from tumor tissues or cancer-specific stem cells, accurately mimic the tissue-specific and genetic features of primary tumors, making them valuable for drug screening. Co-culture models combining PDTOs with stromal elements effectively recreate the dynamic TME, showing promise in personalized anti-cancer therapy. Advanced co-culture techniques and flexible combinations enhance the precision of tumor-stroma recapitulation. Conclusions: PDTO-based co-culture systems offer a promising platform for stroma mimicry and personalized anti-cancer therapy development. This review underscores the importance of refining these models to advance precision medicine and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Qiu-Shi Feng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Xiao-Feng Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Vicky Yau
- Division of Oral and Maxillofacial Surgery, Columbia Irving Medical Center, New York City, NY 10027, USA;
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22# Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (Q.-S.F.); (X.-F.S.)
| |
Collapse
|
8
|
Xu Y, Zhang Y, Song K, Liu J, Zhao R, Zhang X, Pei L, Li M, Chen Z, Zhang C, Wang P, Li F. ScDrugAct: a comprehensive database to dissect tumor microenvironment cell heterogeneity contributing to drug action and resistance across human cancers. Nucleic Acids Res 2025; 53:D1536-D1546. [PMID: 39526387 PMCID: PMC11701732 DOI: 10.1093/nar/gkae994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
The transcriptional heterogeneity of tumor microenvironment (TME) cells is a crucial factor driving the diversity of cellular response to drug treatment and resistance. Therefore, characterizing the cells associated with drug treatment and resistance will help us understand therapeutic mechanisms, discover new therapeutic targets and facilitate precision medicine. Here, we describe a database, scDrugAct (http://bio-bigdata.hrbmu.edu.cn/scDrugAct/), which aims to establish connections among drugs, genes and cells and dissect the impact of TME cellular heterogeneity on drug action and resistance at single-cell resolution. ScDrugAct is curated with drug-cell connections between 3838 223 cells across 34 cancer types and 13 857 drugs and identifies 17 274 drug perturbation/resistance-related genes and 276 559 associations between >10 000 drugs and 53 cell types. ScDrugAct also provides multiple flexible tools to retrieve and analyze connections among drugs, genes and cells; the distribution and developmental trajectories of drug-associated cells within the TME; functional features affecting the heterogeneity of cellular responses to drug perturbation and drug resistance; the cell-specific drug-related gene network; and drug-drug similarities. ScDrugAct serves as an important resource for investigating the impact of the cellular heterogeneity of the TME on drug therapies and can help researchers understand the mechanisms of action and resistance of drugs, as well as discover therapeutic targets.
Collapse
Affiliation(s)
- Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Yifang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Kaiyue Song
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Jiaqi Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Rui Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Xiaomeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Liying Pei
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Zhe Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| |
Collapse
|
9
|
Jiang J, Ma Y, Yang L, Ma S, Yu Z, Ren X, Kong X, Zhang X, Li D, Liu Z. CTR-DB 2.0: an updated cancer clinical transcriptome resource, expanding primary drug resistance and newly adding acquired resistance datasets and enhancing the discovery and validation of predictive biomarkers. Nucleic Acids Res 2025; 53:D1335-D1347. [PMID: 39494527 PMCID: PMC11701710 DOI: 10.1093/nar/gkae993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Drug resistance is a principal limiting factor in cancer treatment. CTR-DB, the Cancer Treatment Response gene signature DataBase, is the first data resource for clinical transcriptomes with cancer treatment response, and meanwhile supports various data analysis functions, providing insights into the molecular determinants of drug resistance. Here we proposed an upgraded version, CTR-DB 2.0 (http://ctrdb.ncpsb.org.cn). Around 190 up-to-date source datasets with primary resistance information (129% increase compared to version 1.0) and 13 acquired-resistant datasets (a new dataset type), covering 10 856 patient samples (111% increase), 39 cancer types (39% increase) and 346 therapeutic regimens (26% increase), have been collected. In terms of function, for the single dataset analysis and multiple-dataset comparison modules, CTR-DB 2.0 added new gene set enrichment, tumor microenvironment (TME) and signature connectivity analysis functions to help elucidate drug resistance mechanisms and their homogeneity/heterogeneity and discover candidate combinational therapies. Furthermore, biomarker-related functions were greatly extended. CTR-DB 2.0 newly supported the validation of cell types in the TME as predictive biomarkers of treatment response, especially the validation of a combinational biomarker panel and even the direct discovery of the optimal biomarker panel using user-customized CTR-DB patient samples. In addition, the analysis of users' own datasets, application programming interface and data crowdfunding were also added.
Collapse
Affiliation(s)
- Jianzhou Jiang
- College of Life Sciences, Hebei University, Baoding 071002, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yajie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Hebei University, Baoding 071002, China
| | - Lele Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Hebei University, Baoding 071002, China
| | - Shurui Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Zixuan Yu
- College of Life Sciences, Hebei University, Baoding 071002, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinyi Ren
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiangya Kong
- Beijing Cloudna Technology Company, Limited, Beijing 100029, China
| | - Xinlei Zhang
- Beijing Cloudna Technology Company, Limited, Beijing 100029, China
| | - Dong Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Hebei University, Baoding 071002, China
| | - Zhongyang Liu
- College of Life Sciences, Hebei University, Baoding 071002, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Hebei University, Baoding 071002, China
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
10
|
Qu F, Wu S, Yu W. Progress of Immune Checkpoint Inhibitors Therapy for pMMR/MSS Metastatic Colorectal Cancer. Onco Targets Ther 2024; 17:1223-1253. [PMID: 39735789 PMCID: PMC11681808 DOI: 10.2147/ott.s500281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 12/31/2024] Open
Abstract
Immunotherapy is one of the research hotspots in colorectal cancer field in recent years. The colorectal cancer patients with mismatch repair-deficient (dMMR) or high microsatellite instability (MSI-H) are the primary beneficiaries of immunotherapy. However, the vast majority of colorectal cancers are mismatch repair proficient (pMMR) or microsatellite stability (MSS), and their immune microenvironment is characterized by "cold tumors" that are generally insensitive to single immunotherapy based on immune checkpoint inhibitors (ICIs). Studies have shown that some pMMR/MSS colorectal cancer patients regulate the immune microenvironment by combining other treatments, such as multi-target tyrosine kinase inhibitors, anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, chemotherapy, radiotherapy, anti-epithelial growth factor receptor (EGFR) monoclonal antibodies, and mitogen-activated protein kinase (MAPK) signaling pathway inhibitors and oncolytic viruses, etc. to transform "cold tumor" into "hot tumor", thereby improving the response to immunotherapy. In addition, screening for potential prognostic biomarkers can also enrich the population benefiting from immunotherapy for microsatellite stable colorectal cancer. Therefore, in pMMR or MSS metastatic colorectal cancer (mCRC), the optimization of immunotherapy regimens and the search for effective efficacy prediction biomarkers are currently important research directions. In this paper, we review the progress of efficacy of immunotherapy (mainly ICIs) in pMMR /MSS mCRC, challenges and potential markers, in order to provide research ideas for the development of immunotherapy for mCRC.
Collapse
Affiliation(s)
- Fanjie Qu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - Shuang Wu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| | - WeiWei Yu
- Department of Oncology, Affiliated Dalian Third People’s Hospital of Dalian Medical University, Dalian, Liaoning Province, 116033, People’s Republic of China
| |
Collapse
|
11
|
Shi M, Yang Y, Huang N, Zeng D, Mo Z, Wang J, Zhang X, Liu R, Wang C, Rong X, Wu Z, Huang Q, Shang H, Tang J, Wang Z, Cai J, Huang G, Guan Y, Guo J, Mu Q, Wang J, Liao W. Genetic and microenvironmental evolution of colorectal liver metastases under chemotherapy. Cell Rep Med 2024; 5:101838. [PMID: 39631402 PMCID: PMC11722126 DOI: 10.1016/j.xcrm.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Drug resistance limits the efficacy of chemotherapy for colorectal cancer liver metastasis (CRLM). However, the evolution of CRLM during drug treatment remains poorly elucidated. Multi-omics and treatment response data from 115 samples of 49 patients with CRLM undergoing bevacizumab (BVZ)-based chemotherapy show little difference in genomic alterations in 92% of cases, while remarkable differences are observed at the transcriptomic level. By decoupling intrinsic and acquired resistance, we find that hepatocyte and myeloid cell infiltration contribute to 38.5% and 23.1% of acquired resistance, respectively. Importantly, SMAD4 mutations and chr20q copy-number gain are associated with intrinsic chemoresistance. Gene interference experiments suggest that SMAD4R361H/C mutations confer BVZ and 5-fluorouracil (5-FU) resistance through STAT3 signaling. Notably, supplementing BVZ and 5-FU with the STAT3 inhibitor GB201 restores therapeutic efficacy in SMAD4R361H/C cancer cells. Our study uncovers the evolutionary dynamics of CRLM and its microenvironment during treatment and offers strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Zongchao Mo
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiao Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaomeng Zhang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ran Liu
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chunlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenzhen Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haixia Shang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jihong Tang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhaojun Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jianan Cai
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Genjie Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yijin Guan
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian Guo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Quanhua Mu
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiguang Wang
- Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, P.R. China.
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
| |
Collapse
|
12
|
Geng Y, Xia W, Zheng X, Chen L, Zhou Y, Feng J, Yuan Y, Zhang M, Lu J, Wei S, Hu W. Targeted delivery of FAK siRNA by engineered exosomes to reverse cetuximab resistance via activating paraptosis in colon cancer. Apoptosis 2024; 29:1959-1977. [PMID: 38960944 PMCID: PMC11550291 DOI: 10.1007/s10495-024-01986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Cetuximab is extensively used in the treatment of metastatic colorectal cancer (mCRC). However, resistance poses a significant challenge to successful therapy. Recently, paraptosis, a non-classical programmed cell death, has garnered increased attention for its potential application value in antitumor treatments. We aimed to identify the essential pathways and signaling molecules involved in paraptosis inhibition and select them as therapeutic targets in cetuximab resistance. Additionally, engineered exosome technology is used as a drug delivery system with both targeted and effector properties. RESULTS By comparing the differential expression of paraptosis-related genes between drug-resistant colon cancer cells and sensitive cells, it was observed that the paraptosis level induced by cetuximab was significantly downregulated in drug-resistant cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the focal adhesion kinase (FAK) signaling pathway as a key pathway involved in the suppression of paraptosis. The biological function of FAK in cetuximab-resistant cells was investigated through cell morphology observation, CCK-8 assay, colony formation assay, RT-qPCR, Western Blot, and loss-of-function experiments. The results showed that the FAK signaling pathway was significantly upregulated in cetuximab-resistant colon cancer cells, and siRNA interference targeting FAK could notably inhibit cell proliferation while upregulating the paraptosis level. Based on this, engineered colon cancer cells targeted and FAK siRNA loaded exosomes (CT-Exo-siFAK1) were constructed. In vitro experiments, CT-Exo-siFAK1 could effectively activate paraptosis and inhibit the proliferation of drug-resistant colon cancer cells. In vivo experiments also confirmed that CT-Exo-siFAK1 significantly suppressed tumor growth and metastasis while upregulating the paraptosis level. CONCLUSION This study suggests that FAK signaling pathway-mediated inhibition of paraptosis levels is crucial in the sensitivity of cetuximab targeted therapy in colon cancer, and the use of engineered exosomes to deliver FAK siRNA may be an effective strategy to reverse cetuximab resistance.
Collapse
Affiliation(s)
- Yiting Geng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wei Xia
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Xiao Zheng
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Tumor Biological Diagnosis and Treatment Center, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Lujun Chen
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Tumor Biological Diagnosis and Treatment Center, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - You Zhou
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Tumor Biological Diagnosis and Treatment Center, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
- Institute of Cell Therapy, Soochow University, Changzhou, 213003, China
| | - Jun Feng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Ye Yuan
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mingyue Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Jianwen Lu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Shanshan Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wenwei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
13
|
Li Z, Meng Z, Xiao L, Du J, Jiang D, Liu B. Constructing and identifying an eighteen-gene tumor microenvironment prognostic model for non-small cell lung cancer. World J Surg Oncol 2024; 22:319. [PMID: 39609690 PMCID: PMC11603896 DOI: 10.1186/s12957-024-03588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a crucial role in tumorigenesis and tumor progression. This study aimed to identify novel TME-related biomarkers and develop a prognostic model for patients with non-small-cell lung cancer (NSCLC). METHODS After downloading and preprocessing data from The Cancer Genome Atlas (TCGA) data portal and Gene Expression Omnibus (GEO) datasets, we classified the molecular subtypes using the "NMF" R package. We performed survival analysis and quantified immune scores between clusters. A Cox proportional hazards model was then constructed, and its formula was produced. We assessed model performance and clinical utility. A prediction nomogram was also constructed and validated. Additionally, we explored the potential regulatory mechanisms of our TME gene signature using Gene Set Enrichment Analysis (GSEA). RESULTS From data processing and univariate Cox regression analysis, 57 TME-related prognostic genes were identified, and two significantly distinct clusters were established. Using Cox regression and Lasso regression, an 18-gene TME-related prognostic model was developed. Patients were stratified into high- and low-risk groups based on the risk score, with survival analysis showing that the low-risk group had significantly better outcomes than the high-risk group (P < 0.01). ROC curve analysis demonstrated strong predictive performance, with 1-year, 3-year, and 5-year AUC values ranging from 0.654 to 0.702 across different cohorts. The model accurately predicted survival outcomes across subgroups with varying clinical features, and its predictive accuracy was validated through a nomogram. CONCLUSIONS We developed a prognostic model based on TME-related genes in NSCLC. Our 18-gene TME signature can effectively predict the prognosis of NSCLC with high accuracy.
Collapse
Affiliation(s)
- Zaishan Li
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Zhenzhen Meng
- Department of Pain, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Lin Xiao
- Department of Operation Management, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Jiahui Du
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Dazhi Jiang
- Department of Thoracic Surgery, Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Baoling Liu
- Department of Oncology, Linyi People's Hospital, Intersection of Wohushan Road and Wuhan Road, Lanshan District, Linyi, Shandong, 276000, China.
| |
Collapse
|
14
|
Pallathadka H, Hsu CY, Obaid Saleh R, Renuka Jyothi S, Kumar A, Yumashev A, Sinha A, Hussein Zwamel A, Abed Jawad M, Alsaadi SB. Specific small interfering RNAs (siRNAs) for targeting the metastasis, immune responses, and drug resistance of colorectal cancer cells (CRC). Int Immunopharmacol 2024; 140:112730. [PMID: 39083927 DOI: 10.1016/j.intimp.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Colorectal cancer (CRC) involves various genetic alterations, with liver metastasis posing a significant clinical challenge. Furthermore, CRC cells mostly show an increase in resistance to traditional treatments like chemotherapy. It is essential to investigate more advanced and effective therapies to prevent medication resistance and metastases and extend patient life. As a result, it is anticipated that small interfering RNAs (siRNAs) would be exceptional instruments that can control gene expression by RNA interference (RNAi). In eukaryotes, RNAi is a biological mechanism that destroys specific messenger RNA (mRNA) molecules, thereby inhibiting gene expression. In the management of CRC, this method of treatment represents a potential therapeutic agent. However, it is important to acknowledge that siRNA therapies have significant issues, such as low serum stability and nonspecific absorption into biological systems. Delivery mechanisms are thus being created to address these issues. In the current work, we address the potential benefits of siRNA therapy and outline the difficulties in treating CRCby focusing on the primary signaling pathways linked to metastasis as well as genes implicated in the multi-drug resistance (MDR) process.
Collapse
Affiliation(s)
| | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russia.
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique college, the Islamic University of Babylon, Babylon, Iraq.
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad 10011, Iraq.
| |
Collapse
|
15
|
Hamid MA, Pammer LM, Lentner TK, Doleschal B, Gruber R, Kocher F, Gasser E, Jöbstl A, Seeber A, Amann A. Immunotherapy for Microsatellite-Stable Metastatic Colorectal Cancer: Can we close the Gap between Potential and Practice? Curr Oncol Rep 2024; 26:1258-1270. [PMID: 39080202 PMCID: PMC11480176 DOI: 10.1007/s11912-024-01583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 10/17/2024]
Abstract
PURPOSE OF REVIEW This review will explore various strategies to rendering MSS mCRCs susceptible to ICI. Moreover, we will provide an overview of potential biomarkers that may aid to better patient selection, and discuss ongoing efforts in this area of research. RECENT FINDINGS Colorectal cancer (CRC) ranks among the top three most common cancers worldwide. While significant advances in treatment strategies have improved the prognosis for patients in the early stages of the disease, treatment options for metastatic CRC (mCRC) remain limited. Although immune checkpoint inhibitors (ICI) have revolutionized the treatment of several malignancies, its efficacy in mCRC is largely confined to patients exhibiting a high microsatellite instability status (MSI-H). However, the vast majority of mCRC patients do not exhibit a MSI-H, but are microsatellite stable (MSS). In these patients ICIs are largely ineffective. So far, ICIs do not play a crucial role in patients with MSS mCRC, despite the promising data for inducing long-term remissions in other tumour entities. For this reason, novel treatment strategies are needed to overcome the primary resistance upon ICI in patients with MSS.
Collapse
Affiliation(s)
- Marwa Abdel Hamid
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Gastroenterology and Hepatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa K Lentner
- Clinical Department for Internal Medicine, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Bernhard Doleschal
- Department of Internal Medicine I for Hematology With Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz, Linz, Austria
- Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elisabeth Gasser
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Jöbstl
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
16
|
Refae AA, Abu Shakra RI, Ibrahim EM. Immunotherapy plus Chemotherapy for Patients with EGFR-Mutated Non-Squamous Cell Lung Cancer for Disease Progression after EGFR Tyrosine-Kinase Inhibitor: A Meta-Analysis of Randomized Controlled Trials. Oncology 2024:1-13. [PMID: 39284291 DOI: 10.1159/000541415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Patients with non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) mutations face poor outcomes after progression on tyrosine kinase inhibitors (TKIs). The efficacy of immune checkpoint inhibitors (ICIs) combined with chemotherapy in these patients remains uncertain. METHODS We searched for studies published between randomized controlled trials of ICIs in combination therapies in advanced NSCLC patients post-EGFR TKI progression. Data on progression-free survival (PFS), overall survival (OS), and objective response rate (ORR) were extracted and analyzed. RESULTS Six studies with a total of 2,225 patients were analyzed. The pooled hazard ratio (HR) for PFS was 0.60 (95% CI, 0.55-0.65; p < 0.0001), indicating a significant improvement in PFS with ICIs. Subgroup analysis suggested that patients with prior exposure to third-generation TKIs showed a more pronounced benefit (HR = 0.61; 95% CI, 0.49-0.76; p < 0.0001). However, no benefit was found in patients without prior exposure. The efficacy of the experimental interventions was also shown on the pooled estimates of OS (HR = 0.87; 95% CI, 0.77-0.0.99; p value = 0.04) and ORR (OR = 1.91; 95% CI, 1.32-2.76; p < 0.0001). CONCLUSION ICIs may significantly benefit PFS among patients with EGFR-mutated NSCLC who have progressed on TKI treatment. Future research should continue stratifying patients based on prior treatment exposure to optimize therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed A Refae
- Oncology Department, King's College London, Jeddah, Saudi Arabia
| | - Rafat I Abu Shakra
- Oncology Center of Excellence, International Medical Center, Jeddah, Saudi Arabia
| | | |
Collapse
|
17
|
de Back TR, van Hooff SR, Sommeijer DW, Vermeulen L. Transcriptomic subtyping of gastrointestinal malignancies. Trends Cancer 2024; 10:842-856. [PMID: 39019673 DOI: 10.1016/j.trecan.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Gastrointestinal (GI) cancers are highly heterogeneous at multiple levels. Tumor heterogeneity can be captured by molecular profiling, such as genetic, epigenetic, proteomic, and transcriptomic classification. Transcriptomic subtyping has the advantage of combining genetic and epigenetic information, cancer cell-intrinsic properties, and the tumor microenvironment (TME). Unsupervised transcriptomic subtyping systems of different GI malignancies have gained interest because they reveal shared biological features across cancers and bear prognostic and predictive value. Importantly, transcriptomic subtypes accurately reflect complex phenotypic states varying not only per tumor region, but also throughout disease progression, with consequences for clinical management. Here, we discuss methodologies of transcriptomic subtyping, proposed taxonomies for GI malignancies, and the challenges posed to clinical implementation, highlighting opportunities for future transcriptomic profiling efforts to optimize clinical impact.
Collapse
Affiliation(s)
- Tim R de Back
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sander R van Hooff
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Dirkje W Sommeijer
- Flevohospital, Department of Internal Medicine, Hospitaalweg 1, 1315 RA, Almere, The Netherlands
| | - Louis Vermeulen
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Nigam A, Krishnamoorthy GP, Chatila WK, Berman K, Saqcena M, Walch H, Venkatramani M, Ho AL, Schultz N, Fagin JA, Untch BR. Cooperative genomic lesions in HRAS-mutant cancers predict resistance to farnesyltransferase inhibitors. Oncogene 2024; 43:2806-2819. [PMID: 39152269 DOI: 10.1038/s41388-024-03095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/19/2024]
Abstract
In the clinical development of farnesyltransferase inhibitors (FTIs) for HRAS-mutant tumors, responses varied by cancer type. Co-occurring mutations may affect responses. We aimed to uncover cooperative genetic events specific to HRAS-mutant tumors and to study their effect on sensitivity to FTIs. Using targeted sequencing data from the MSK-IMPACT and Dana-Farber Cancer Institute Genomic Evidence Neoplasia Information Exchange databases, we identified comutations that were observed predominantly in HRAS-mutant versus KRAS-mutant or NRAS-mutant cancers. HRAS-mutant cancers had a higher frequency of coaltered mutations (48.8%) in the MAPK, PI3K, or RTK pathway genes, compared with KRAS-mutant (41.4%) and NRAS-mutant (38.4%) cancers (p < 0.05). Class 3 BRAF, NF1, PTEN, and PIK3CA mutations were more prevalent in HRAS-mutant lineages. To study the effects of comutations on sensitivity to FTIs, HrasG13R was transfected into "RASless" (Kraslox/lox/Hras-/-/Nras-/-/RERTert/ert) mouse embryonic fibroblasts (MEFs), which sensitized nontransfected MEFs to tipifarnib. Comutation in the form of Pten or Nf1 deletion and Pik3caH1047R transduction led to resistance to tipifarnib in HrasG13R-transfected MEFs in the presence or absence of KrasWT, whereas BrafG466E transduction led to resistance to tipifarnib only in the presence of KrasWT. Combined treatment with tipifarnib and MEK inhibition sensitized cells to tipifarnib in all settings, including in MEFs with PI3K pathway comutations. HRAS-mutant tumors demonstrate lineage-dependent MAPK or PI3K pathway alterations, which confer resistance to tipifarnib. The combined use of FTIs and MEK inhibition is a promising strategy for HRAS-mutant tumors.
Collapse
Affiliation(s)
- Aradhya Nigam
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Walid K Chatila
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Henry Walch
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mandakini Venkatramani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology and Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
19
|
Zhu Q, Zhang R, Gu X, Zhao Z, Gao Q, Chen M, Wu Q, Xie T, Sui X. Honokiol enhances the sensitivity of cetuximab in KRAS G13D mutant colorectal cancer through destroying SNX3-retromer complex. Theranostics 2024; 14:5443-5460. [PMID: 39310106 PMCID: PMC11413778 DOI: 10.7150/thno.97180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale : the proto-oncogene KRAS is frequently mutated in colorectal cancer (CRC), leading to inherent resistance against monoclonal antibodies targeting the epidermal growth factor receptor (EGFR), such as cetuximab. Therefore, addressing the primary resistance and expanding the indications for target therapy have become critical challenges. Methods : the screening of a natural product library against KRAS mutant CRC cells was conducted, leading to the discovery of a small molecule compound that sensitive to the KRASG13D mutation site. The anti-tumor activity of this small molecule compound in combination with cetuximab was evaluated using the KRASG13D mutant CRC models both in vivo and in vitro. This evaluation includes an examination of its effects on cell proliferation, viability, apoptosis, cell cycle progression, and tumor growth. Furthermore, RNA sequencing, western blot analysis, immunofluorescence, real-time quantitative PCR, and pull-down assays were employed to explore the molecular mechanisms underlying the synergistic anti-tumor effect of this small molecule compound in combination with cetuximab. Results : our study screened 882 compounds in KRAS mutant CRC cells and identified honokiol, a small molecule compound that exhibits specific sensitivity to KRASG13D mutant CRC cells. Furthermore, we revealed that the synergistic augmentation of cetuximab's sensitivity in vivo and in vitro models of KRASG13D mutant CRC in combination with honokiol. Mechanistically, honokiol suppresses SNX3-retromer mediated trafficking, thereby impeding lysosomal proteolytic capacity and inhibiting autophagy and macropinocytosis fluxes. Moreover, honokiol inhibits the conversion of RAS GDP to RAS GTP, heightening the susceptibility of KRASG13D CRC mutant cells to cetuximab. Conclusions : honokiol enhances the sensitivity of cetuximab by destroying SNX3 retromer in KRASG13D mutant CRC preclinical model. These findings present a promising strategy for expanding the indications of target therapy in KRAS mutant colorectal cancer patients.
Collapse
Affiliation(s)
- Qianru Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Ruonan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Quan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Min Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, P.R. China
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
20
|
Xu X, Ai L, Hu K, Liang L, Lv M, Wang Y, Cui Y, Li W, Li Q, Yu S, Feng Y, Liu Q, Yang Y, Zhang J, Xu F, Yu Y, Liu T. Tislelizumab plus cetuximab and irinotecan in refractory microsatellite stable and RAS wild-type metastatic colorectal cancer: a single-arm phase 2 study. Nat Commun 2024; 15:7255. [PMID: 39179622 PMCID: PMC11343749 DOI: 10.1038/s41467-024-51536-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Immunotherapy confers little to no benefit in the treatment of microsatellite stable (MSS) metastatic colorectal cancer (mCRC). Mechanistic insights suggested that epidermal growth factor receptor (EGFR) antibody plus irinotecan might augment the tumor immune response in mCRC. Therefore, we conducted a proof-of-concept, single-arm, phase 2 study (ChiCTR identifier: ChiCTR2000035642) of a combination treatment regimen including tislelizumab (anti-PD-1), cetuximab (anti-EGFR) and irinotecan in 33 patients with MSS and RAS wild-type (WT) mCRC who were previously treated with ≥2 lines of therapy. The primary endpoint was met, with a confirmed objective response rate of 33%. As secondary endpoints, the disease control rate was 79%, and the median progression-free survival and overall survival were 7.3 and 17.4 months respectively. Among the 33 patients, 32 (97.0%) had treatment-related adverse events (AEs). Three (9.1%) reported grade ≥ 3 AEs, including rash (n = 1), neutropenia (n = 2). The post-hoc evaluation of dynamic circulating tumor DNA using next generation sequencing and the analysis of peripheral immune proteomics landscape using Olink revealed that lower variant allele frequency (VAF) at baseline, greater reduction in VAF on treatment, and a hot peripheral macroenvironment were associated with the treatment response independently. Our study showed the antitumor activity of tislelizumab, cetuximab, and irinotecan combination with a tolerable safety profile in previously treated MSS and RAS WT mCRC.
Collapse
Affiliation(s)
- Xiaojing Xu
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Luoyan Ai
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Keshu Hu
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Li Liang
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Minzhi Lv
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yan Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yuehong Cui
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Wei Li
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Qian Li
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Shan Yu
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yi Feng
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Qing Liu
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Ying Yang
- Genecast Biotechnology Co., Ltd, 214104, Wuxi City, Jiangsu, China
| | - Jiao Zhang
- Genecast Biotechnology Co., Ltd, 214104, Wuxi City, Jiangsu, China
| | - Fei Xu
- Genecast Biotechnology Co., Ltd, 214104, Wuxi City, Jiangsu, China
| | - Yiyi Yu
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Tianshu Liu
- Department of Oncology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
- Center of Evidence-based medicine, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
21
|
Li C, Hu M, Cai S, Yang G, Yang L, Jing H, Xing L, Sun X. Dysfunction of CD8 + T cells around tumor cells leads to occult lymph node metastasis in NSCLC patients. Cancer Sci 2024; 115:2528-2539. [PMID: 38720474 PMCID: PMC11309950 DOI: 10.1111/cas.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 08/10/2024] Open
Abstract
Occult lymph node metastasis (OLNM) is one of the main causes of regional recurrence in inoperable N0 non-small cell lung cancer (NSCLC) patients following stereotactic ablation body radiotherapy (SABR) treatment. The integration of immunotherapy and SABR (I-SABR) has shown preliminary efficiency in mitigating this recurrence. Therefore, it is necessary to explore the functional dynamics of critical immune effectors, particularly CD8+ T cells in the development of OLNM. In this study, tissue microarrays (TMAs) and multiplex immunofluorescence (mIF) were used to identify CD8+ T cells and functional subsets (cytotoxic CD8+ T cells/predysfunctional CD8+ T cells (CD8+ Tpredys)/dysfunctional CD8+ T cells (CD8+ Tdys)/other CD8+ T cells) among the no lymph node metastasis, OLNM, and clinically evident lymph node metastasis (CLNM) groups. As the degree of lymph node metastasis escalated, the density of total CD8+ T cells and CD8+ Tdys cells, as well as their proximity to tumor cells, increased progressively and remarkably in the invasive margin (IM). In the tumor center (TC), both the density and proximity of CD8+ Tpredys cells to tumor cells notably decreased in the OLNM group compared with the group without metastasis. Furthermore, positive correlations were found between the dysfunction of CD8+ T cells and HIF-1α+CD8 and cancer microvessels (CMVs). In conclusion, the deterioration in CD8+ T cell function and interactive dynamics between CD8+ T cells and tumor cells play a vital role in the development of OLNM in NSCLC. Strategies aimed at improving hypoxia or targeting CMVs could potentially enhance the efficacy of I-SABR.
Collapse
Affiliation(s)
- Chaozhuo Li
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Mengyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Siqi Cai
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Guanqun Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Liying Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
- Cheeloo College of MedicineShandong UniversityJinanChina
| | - Hongbiao Jing
- Department of Pathology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
22
|
Yin J, Zhu W, Feng S, Yan P, Qin S. The role of cancer-associated fibroblasts in the invasion and metastasis of colorectal cancer. Front Cell Dev Biol 2024; 12:1375543. [PMID: 39139454 PMCID: PMC11319178 DOI: 10.3389/fcell.2024.1375543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has ranked the third leading cause in cancerassociated death globally. Metastasis is the leading cause of death in colorectal cancer patients. The role of tumor microenvironment (TME) in colorectal cancer metastasis has received increasing attention. As the most abundant cell type in the TME of solid tumors, cancer-associated fibroblasts (CAFs) have been demonstrated to have multiple functions in advancing tumor growth and metastasis. They can remodel the extracellular matrix (ECM) architecture, promote epithelial-mesenchymal transition (EMT), and interact with cancer cells or other stromal cells by secreting growth factors, cytokines, chemokines, and exosomes, facilitating tumor cell invasion into TME and contributing to distant metastasis. This article aims to analyze the sources and heterogeneity of CAFs in CRC, as well as their role in invasion and metastasis, in order to provide new insights into the metastasis mechanism of CRC and its clinical applications.
Collapse
Affiliation(s)
- Jinjin Yin
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Senling Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengke Yan
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shumin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
23
|
Qi X. Advances in antitumour therapy with oncolytic herpes simplex virus combinations. Discov Oncol 2024; 15:302. [PMID: 39046631 PMCID: PMC11269532 DOI: 10.1007/s12672-024-01165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Oncolytic Virus (OVs) is an emerging approach to tumour immunity that allows the use of natural or genetically modified viruses to specifically infect and lyse tumour cells without damaging normal cells. Oncolytic herpes simplex virus (oHSV) is one of the more widely researched and applied OVs in the field of oncology, which can directly kill tumour cells to promote anti-tumour immune responses. oHSV is one of the few viruses with good antiviral drugs, so oHSV is also more clinically safe. In recent years, in addition to monotherapy of oHSV in tumours, more and more studies have been devoted to exploring the anti-tumour effects of oHSV in combination with other therapeutic approaches. In this article we describe the progress of oHSV combination therapy against tumours in the nervous system, digestive system, reproductive system and other systems.
Collapse
Affiliation(s)
- Xuejiao Qi
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
24
|
Tao XY, Li QQ, Zeng Y. Clinical application of liquid biopsy in colorectal cancer: detection, prediction, and treatment monitoring. Mol Cancer 2024; 23:145. [PMID: 39014366 PMCID: PMC11250976 DOI: 10.1186/s12943-024-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies affecting the gastrointestinal tract and is ranked third among cancers with the highest incidence and second-highest mortality rate worldwide. CRC exhibits a slow progression providing a wide treatment window. The currently employed CRC screening methods have shown great potential to prevent CRC and reduce CRC-related morbidity and mortality. The diagnosis of CRC is achieved by colonoscopy and tissue biopsy, with studies showing that liquid biopsy is more effective in detecting and diagnosing early CRC patients. Increasing number of studies have shown that the tumor components shed into circulating blood can be detected in liquid form, and can be applied in the clinical management of CRC. Analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-associated platelets (TEPs) in the blood can be used for early screening and diagnosis of CRC, aid tumor staging, treatment response monitoring, and prediction of CRC recurrence and metastasis in a minimally invasive manner. This chapter provides an updated review of CTCs, ctDNA, and TEPs as novel biomarkers for CRC, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- Xiang-Yuan Tao
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Qian-Qian Li
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- School of Pharmacy, University of South China, Hengyang, China.
| |
Collapse
|
25
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
26
|
Singh M, Morris VK, Bandey IN, Hong DS, Kopetz S. Advancements in combining targeted therapy and immunotherapy for colorectal cancer. Trends Cancer 2024; 10:598-609. [PMID: 38821852 DOI: 10.1016/j.trecan.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
Colorectal cancer (CRC) is a prevalent gastrointestinal cancer posing significant clinical challenges. CRC management traditionally involves surgery, often coupled with chemotherapy. However, unresectable or metastatic CRC (mCRC) presents a complex challenge necessitating innovative treatment strategies. Targeted therapies have emerged as the cornerstone of treatment in such cases, with interventions tailored to specific molecular attributes. Concurrently, immunotherapies have revolutionized cancer treatment by harnessing the immune system to combat malignant cells. This review explores the evolving landscape of CRC treatment, focusing on the synergy between immunotherapies and targeted therapies, thereby offering new avenues for enhancing the effectiveness of therapy for CRC.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Irfan N Bandey
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
27
|
Dorighi KM, Zhu A, Fortin JP, Hung-Hao Lo J, Sudhamsu J, Wendorff TJ, Durinck S, Callow M, Foster SA, Haley B. Accelerated drug-resistant variant discovery with an enhanced, scalable mutagenic base editor platform. Cell Rep 2024; 43:114313. [PMID: 38838224 DOI: 10.1016/j.celrep.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
Personalized cancer therapeutics bring directed treatment options to patients based on their tumor's genetic signature. Unfortunately, tumor genomes are remarkably adaptable, and acquired resistance through gene mutation frequently occurs. Identifying mutations that promote resistance within drug-treated patient populations can be cost, resource, and time intensive. Accordingly, base editing, enabled by Cas9-deaminase domain fusions, has emerged as a promising approach for rapid, large-scale gene variant screening in situ. Here, we adapt and optimize a conditional activation-induced cytidine deaminase (AID)-dead Cas9 (dCas9) system, which demonstrates greater heterogeneity of edits with an expanded footprint compared to the most commonly utilized cytosine base editor, BE4. In combination with a custom single guide RNA (sgRNA) library, we identify individual and compound variants in epidermal growth factor receptor (EGFR) and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) that confer resistance to established EGFR inhibitors. This system and analytical pipeline provide a simple, highly scalable platform for cis or trans drug-modifying variant discovery and for uncovering valuable insights into protein structure-function relationships.
Collapse
Affiliation(s)
- Kristel M Dorighi
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Anqi Zhu
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jean-Philippe Fortin
- Department of Data Science and Statistical Computing, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jerry Hung-Hao Lo
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Timothy J Wendorff
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steffen Durinck
- Department of Oncology Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Marinella Callow
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Scott A Foster
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
28
|
Harrold E, Keane F, Walch H, Chou JF, Sinopoli J, Palladino S, Al-Rawi DH, Chadalavada K, Manca P, Chalasani S, Yang J, Cercek A, Shia J, Capanu M, Bakhoum SF, Schultz N, Chatila WK, Yaeger R. Molecular and Clinical Determinants of Acquired Resistance and Treatment Duration for Targeted Therapies in Colorectal Cancer. Clin Cancer Res 2024; 30:2672-2683. [PMID: 38502113 PMCID: PMC11176917 DOI: 10.1158/1078-0432.ccr-23-4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Targeted therapies have improved outcomes for patients with metastatic colorectal cancer, but their impact is limited by rapid emergence of resistance. We hypothesized that an understanding of the underlying genetic mechanisms and intrinsic tumor features that mediate resistance to therapy will guide new therapeutic strategies and ultimately allow the prevention of resistance. EXPERIMENTAL DESIGN We assembled a series of 52 patients with paired pretreatment and progression samples who received therapy targeting EGFR (n = 17), BRAF V600E (n = 17), KRAS G12C (n = 15), or amplified HER2 (n = 3) to identify molecular and clinical factors associated with time on treatment (TOT). RESULTS All patients stopped treatment for progression and TOT did not vary by oncogenic driver (P = 0.5). Baseline disease burden (≥3 vs. <3 sites, P = 0.02), the presence of hepatic metastases (P = 0.02), and gene amplification on baseline tissue (P = 0.03) were each associated with shorter TOT. We found evidence of chromosomal instability (CIN) at progression in patients with baseline MAPK pathway amplifications and those with acquired gene amplifications. At resistance, copy-number changes (P = 0.008) and high number (≥5) of acquired alterations (P = 0.04) were associated with shorter TOT. Patients with hepatic metastases demonstrated both higher number of emergent alterations at resistance and enrichment of mutations involving receptor tyrosine kinases. CONCLUSIONS Our genomic analysis suggests that high baseline CIN or effective induction of enhanced mutagenesis on targeted therapy underlies rapid progression. Longer response appears to result from a progressive acquisition of genomic or chromosomal instability in the underlying cancer or from the chance event of a new resistance alteration.
Collapse
Affiliation(s)
- Emily Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Henry Walch
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joanne F. Chou
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jenna Sinopoli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Palladino
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Duaa H. Al-Rawi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kalyani Chadalavada
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paolo Manca
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sree Chalasani
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jessica Yang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K. Chatila
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
29
|
Mason JD, Marks E, Fan S, McCormick K, Wilson C, Harris AL, Hamdy FC, Cunningham C, Goberdhan DCI. Stress-induced Rab11a-exosomes induce amphiregulin-mediated cetuximab resistance in colorectal cancer. J Extracell Vesicles 2024; 13:e12465. [PMID: 38887984 PMCID: PMC11184284 DOI: 10.1002/jev2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/28/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Exosomes are secreted vesicles made intracellularly in the endosomal system. We have previously shown that exosomes are not only made in late endosomes, but also in recycling endosomes marked by the monomeric G-protein Rab11a. These vesicles, termed Rab11a-exosomes, are preferentially secreted under nutrient stress from several cancer cell types, including HCT116 colorectal cancer (CRC) cells. HCT116 Rab11a-exosomes have particularly potent signalling activities, some mediated by the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). Mutant activating forms of KRAS, a downstream target of EGFR, are often found in advanced CRC. When absent, monoclonal antibodies, such as cetuximab, which target the EGFR and block the effects of EGFR ligands, such as AREG, can be administered. Patients, however, inevitably develop resistance to cetuximab, either by acquiring KRAS mutations or via non-genetic microenvironmental changes. Here we show that nutrient stress in several CRC cell lines causes the release of AREG-carrying Rab11a-exosomes. We demonstrate that while soluble AREG has no effect, much lower levels of AREG bound to Rab11a-exosomes from cetuximab-resistant KRAS-mutant HCT116 cells, can suppress the effects of cetuximab on KRAS-wild type Caco-2 CRC cells. Using neutralising anti-AREG antibodies and an intracellular EGFR kinase inhibitor, we show that this effect is mediated via AREG activation of EGFR, and not transfer of activated KRAS. Therefore, presentation of AREG on Rab11a-exosomes affects its ability to compete with cetuximab. We propose that this Rab11a-exosome-mediated mechanism contributes to the establishment of resistance in cetuximab-sensitive cells and may explain why in cetuximab-resistant tumours only some cells carry mutant KRAS.
Collapse
Affiliation(s)
- John D. Mason
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Ewan Marks
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Shih‐Jung Fan
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- Department of Life SciencesNational Central UniversityTaoyuan CityTaiwan
| | - Kristie McCormick
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Clive Wilson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Adrian L. Harris
- Department of Oncology, Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Freddie C. Hamdy
- Nuffield Department of Surgical SciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Chris Cunningham
- Nuffield Department of Surgical SciencesUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | | |
Collapse
|
30
|
Bahrambeigi V, Lee JJ, Branchi V, Rajapakshe KI, Xu Z, Kui N, Henry JT, Kun W, Stephens BM, Dhebat S, Hurd MW, Sun R, Yang P, Ruppin E, Wang W, Kopetz S, Maitra A, Guerrero PA. Transcriptomic Profiling of Plasma Extracellular Vesicles Enables Reliable Annotation of the Cancer-Specific Transcriptome and Molecular Subtype. Cancer Res 2024; 84:1719-1732. [PMID: 38451249 PMCID: PMC11096054 DOI: 10.1158/0008-5472.can-23-4070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Longitudinal monitoring of patients with advanced cancers is crucial to evaluate both disease burden and treatment response. Current liquid biopsy approaches mostly rely on the detection of DNA-based biomarkers. However, plasma RNA analysis can unleash tremendous opportunities for tumor state interrogation and molecular subtyping. Through the application of deep learning algorithms to the deconvolved transcriptomes of RNA within plasma extracellular vesicles (evRNA), we successfully predicted consensus molecular subtypes in patients with metastatic colorectal cancer. Analysis of plasma evRNA also enabled monitoring of changes in transcriptomic subtype under treatment selection pressure and identification of molecular pathways associated with recurrence. This approach also revealed expressed gene fusions and neoepitopes from evRNA. These results demonstrate the feasibility of using transcriptomic-based liquid biopsy platforms for precision oncology approaches, spanning from the longitudinal monitoring of tumor subtype changes to the identification of expressed fusions and neoantigens as cancer-specific therapeutic targets, sans the need for tissue-based sampling. SIGNIFICANCE The development of an approach to interrogate molecular subtypes, cancer-associated pathways, and differentially expressed genes through RNA sequencing of plasma extracellular vesicles lays the foundation for liquid biopsy-based longitudinal monitoring of patient tumor transcriptomes.
Collapse
Affiliation(s)
- Vahid Bahrambeigi
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaewon J. Lee
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Vittorio Branchi
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimal I. Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhichao Xu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naishu Kui
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason T. Henry
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wang Kun
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bret M. Stephens
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Dhebat
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark W. Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Yang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Statistics Rice University, Houston, TX, USA
| | - Eytan Ruppin
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wenyi Wang
- Department Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paola A. Guerrero
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Stefanidis E, Semilietof A, Pujol J, Seijo B, Scholten K, Zoete V, Michielin O, Sandaltzopoulos R, Coukos G, Irving M. Combining SiRPα decoy-coengineered T cells and antibodies augments macrophage-mediated phagocytosis of tumor cells. J Clin Invest 2024; 134:e161660. [PMID: 38828721 PMCID: PMC11142748 DOI: 10.1172/jci161660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 04/16/2024] [Indexed: 06/05/2024] Open
Abstract
The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antigens, Differentiation/immunology
- Antigens, Neoplasm/immunology
- CD47 Antigen/immunology
- Cell Line, Tumor
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/genetics
- Immunotherapy, Adoptive
- Macrophages/immunology
- Macrophages/metabolism
- Phagocytosis
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- T-Lymphocytes/immunology
- Xenograft Model Antitumor Assays
- Male
- Female
Collapse
Affiliation(s)
- Evangelos Stefanidis
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aikaterini Semilietof
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julien Pujol
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Bili Seijo
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Kirsten Scholten
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Michielin
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Oncology, University Hospital of Geneva (HUG), Geneva, Switzerland
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne (UNIL) and University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
32
|
Ríos-Hoyo A, Monzonís X, Vidal J, Linares J, Montagut C. Unveiling acquired resistance to anti-EGFR therapies in colorectal cancer: a long and winding road. Front Pharmacol 2024; 15:1398419. [PMID: 38711991 PMCID: PMC11070789 DOI: 10.3389/fphar.2024.1398419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
Emergence of acquired resistance limits the efficacy of the anti-EGFR therapies cetuximab and panitumumab in metastatic colorectal cancer. In the last decade, preclinical and clinical cohort studies have uncovered genomic alterations that confer a selective advantage to tumor cells under EGFR blockade, mainly downstream re-activation of RAS-MEK signaling and mutations in the extracellular domain of EGFR (EGFR-ECD). Liquid biopsies (genotyping of ctDNA) have been established as an excellent tool to easily monitor the dynamics of genomic alterations resistance in the blood of patients and to select patients for rechallenge with anti-EGFR therapies. Accordingly, several clinical trials have shown clinical benefit of rechallenge with anti-EGFR therapy in genomically-selected patients using ctDNA. However, alternative mechanisms underpinning resistance beyond genomics -mainly related to the tumor microenvironment-have been unveiled, specifically relevant in patients receiving chemotherapy-based multi-drug treatment in first line. This review explores the complexity of the multifaceted mechanisms that mediate secondary resistance to anti-EGFR therapies and potential therapeutic strategies to circumvent acquired resistance.
Collapse
Affiliation(s)
- Alejandro Ríos-Hoyo
- Yale Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Xavier Monzonís
- Department of Medical Oncology, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Joana Vidal
- Department of Medical Oncology, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Jenniffer Linares
- Department of Medical Oncology, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Clara Montagut
- Department of Medical Oncology, Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| |
Collapse
|
33
|
Qiao Y, Su M, Zhao H, Liu H, Wang C, Dai X, Liu L, Liu G, Sun H, Sun M, Wang J, Li Z, Fan J, Zhang Q, Li C, Situ F, Xue J, Jia Z, Zhang C, Zhang S, Shan C. Targeting FTO induces colorectal cancer ferroptotic cell death by decreasing SLC7A11/GPX4 expression. J Exp Clin Cancer Res 2024; 43:108. [PMID: 38600610 PMCID: PMC11005233 DOI: 10.1186/s13046-024-03032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Ferroptosis is a newly identified iron-dependent form of death that is becoming increasingly recognized as a promising avenue for cancer therapy. N6-methyladenosine (m6A) is the most abundant reversible methylation modification in mRNA contributing to tumorigenesis. However, the crucial role of m6A modification in regulating ferroptosis during colorectal cancer (CRC) tumorigenesis remains elusive. Herein, we find that m6A modification is increased during ferroptotic cell death and correlates with the decreased m6A demethylase fat mass and obesity-associated protein (FTO) expression. Functionally, we demonstrate that suppressing FTO significantly induces CRC ferroptotic cell death, as well as enhancing CRC cell sensitivity to ferroptosis inducer (Erastin and RSL3) treatment. Mechanistically, high FTO expression increased solute carrier family 7 member 11 (SLC7A11) or glutathione peroxidase 4 (GPX4) expressions in an m6A-YTHDF2 dependent manner, thereby counteracting ferroptotic cell death stress. In addition, we identify Mupirocin as a novel inhibitor of FTO, and Mupirocin induces CRC ferroptosis and inhibits tumor growth. Clinically, the levels of FTO, SLC7A11, and GPX4, are highly correlated expression in CRC tissues. Our findings reveal that FTO protects CRC from ferroptotic cell death in promoting CRC tumorigenesis through triggering SLC7A11/GPX4 expression.
Collapse
Affiliation(s)
- Yaya Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Meng Su
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Liaoning, Shenyang, 117004, China
| | - Huifang Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huanle Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Chenxi Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Xintong Dai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Lingling Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Guangju Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Huanran Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Zhen Li
- Guangzhou key laboratory for clinical rapid diagnosis and early warning of infectious diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangdong, Guangzhou, 510180, China
| | - Jun Fan
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510632, China
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Chunshen Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fangmin Situ
- College of Chinese and Culture, Jinan University, Guangzhou, 510632, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Zhenghu Jia
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, China.
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300193, China.
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, China.
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
34
|
Xiong F, Zhou YW, Hao YT, Wei GX, Chen XR, Qiu M. Combining Anti-epidermal Growth Factor Receptor (EGFR) Therapy with Immunotherapy in Metastatic Colorectal Cancer (mCRC). Expert Rev Gastroenterol Hepatol 2024; 18:185-192. [PMID: 37705376 DOI: 10.1080/17474124.2023.2232718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/30/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Monoclonal antibodies binding the EGFR, such as cetuximab and panitumumab, have been extensively used as targeted therapy for the treatment of mCRC. However, in clinical practice, it has been found that these treatment options have some limitations and fail to fully exploit their immunoregulatory activities. Meanwhile, because of the limited effects of current treatments, immunotherapy is being widely studied for patients with mCRC. However, previous immunotherapy trials in mCRC patients have had unsatisfactory outcomes as monotherapy. Thus, combinatorial treatment strategies are being researched. AREAS COVERED The authors retrieved relevant documents of combination therapy for mCRC from PubMed and Medline. This review elaborates on the knowledge of immunomodulatory effects of anti-EGFR therapy alone and in combination with immunotherapy for mCRC. EXPERT OPINION Although current treatment options have improved median overall survival (OS) for advanced disease to 30 months, the prognosis remains challenging for those with metastatic disease. More recently, the combination of anti-EGFR therapy with immunotherapy has been shown activity with complementary mechanisms. Hence, anti-EGFR therapy in combination with immunotherapy may hold the key to improving the therapeutic effect of refractory mCRC.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Ting Hao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Gui-Xia Wei
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Rong Chen
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Lu S, Yao Z, Cheng Q, Wu J, Jiang Y, Lin H. RAS-Selective Lethal 3-Induced Ferroptosis Promotes the Antitumor Efficiency of Anti-Programmed Cell Death Protein 1 Treatment in Colorectal Cancer. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:288-298. [PMID: 39128094 PMCID: PMC11114210 DOI: 10.5152/tjg.2023.23300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 08/13/2024]
Abstract
BACKGROUND/AIMS Anti-programmed cell death protein 1 (PD-1) treatment has exhibited clinical benefits in colorectal cancer (CRC). However, the low response rate of CRC to immunotherapy is an urgent problem that needs to be solved. MATERIALS AND METHODS MC-38 tumor cells was challenged subcutaneously in the flank of 7-week-old male C57BL/6 mice. The mice were randomly divided into 3 groups, and 200µg/mouse anti-PD-1 antibody and 100 mg/kg RAS-Seletive Lethal 3 (RSL) or phosphate buffer saline (PBS) were intraperitoneally injected every 2 days. The expression of oxidative stress and ferroptosis-related genes was measured by Western blotting, real-time reverse transcription-polymerase chain reaction, Prussian blue staining, and enzyme-linked immunosorbent assay. RESULTS Anti-PD-1 treatment-unresponsive tumors showed stronger immunosuppression than responsive tumors. Notably, the responsive tumors showed higher levels of H2O2 and reactive oxygen species, both of which could impair the antitumor effect of cytotoxic CD8+ T cells. The anti-PD-1 treatment-responsive tumors showed a higher expression of pro-ferroptosis genes and Fe2+ accumulation than those of anti-PD-1 nonresponsive tumors, indicating the potential role of ferroptosis in the efficacy of anti-PD-1 treatment. In MC-38 syngeneic tumor model, (1S, 3R)-RSL3 (RSL), a glutathione peroxidase 4 inhibitor, effectively promoted the antitumor effect of anti-PD-1 treatment in vivo. However, anti-PD-1 treatment did not affect the levels of ferroptosis-related genes in tumor model. Mechanistically, RSL treatment significantly upregulated the frequency of proliferating (ki67+) and cytotoxic (GZMB+) CD8+ T cells. Furthermore, the frequency of tumor neoantigen-specific interferon (IFN)-γ CD8+ T cells showed a significant increase after RSL plus anti-PD-1 treatment. CONCLUSION RSL may be a promising drug for potentiating the antitumor efficiency of anti-PD-1 treatment in CRC.
Collapse
Affiliation(s)
- Shiyv Lu
- Department of Gastroenterology, Shanghai Jing’an District Zhabei Central Hospital, Shanghai, China
| | - Zhilu Yao
- Department of Gastroenterology, Shanghai Qingpu District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Qing Cheng
- Department of Gastroenterology, Shanghai Qingpu District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Jianping Wu
- Department of Gastroenterology, Shanghai Qingpu District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Lin
- Department of Gastroenterology, Shanghai Qingpu District Hospital of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
Niemann B, Moise J, Sestito M, Malla M, Train K, Murken D, Mayers K, Groves E, Garland-Kledzik M. Circulating Tumor DNA (ctDNA) Clearance May Predict Treatment Response in Neoadjuvant Colorectal Cancer Management. J Clin Med 2024; 13:1684. [PMID: 38541909 PMCID: PMC10970814 DOI: 10.3390/jcm13061684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
Background: Circulating tumor DNA (ctDNA) is extracellular DNA released by tumors and has been proposed as a marker of residual disease as well as a predictor of disease recurrence in the adjuvant setting. However, data are lacking on the utility of this biomarker in the neoadjuvant setting. Methods: We performed a retrospective study of stage III and IV colorectal cancer patients receiving neoadjuvant treatment at a single institution. Results: Seventeen patients converted from a positive pre-neoadjuvant ctDNA to a negative ctDNA prior to surgery. Five patients remained persistently positive despite systemic treatment. ctDNA conversion was found to be associated with a higher incidence of favorable treatment effect scores on final surgical pathology. There was no difference in recurrence-free survival in this small population. Furthermore, no added benefit was identified for patients receiving additional neoadjuvant therapy after the time of positive to negative ctDNA conversion. Conclusions: This study highlights the potential utility of ctDNA and the need for prospective trials in the neoadjuvant setting to monitor treatment response and guide decisions on treatment duration.
Collapse
Affiliation(s)
- Britney Niemann
- Department of Surgery, West Virginia University, Morgantown, WV 26505, USA; (B.N.); (M.S.); (K.T.); (D.M.); (K.M.); (E.G.)
| | - John Moise
- School of Medicine, West Virginia University, Morgantown, WV 26505, USA
| | - Michael Sestito
- Department of Surgery, West Virginia University, Morgantown, WV 26505, USA; (B.N.); (M.S.); (K.T.); (D.M.); (K.M.); (E.G.)
| | - Midhun Malla
- Division of Hematology and Oncology, University of Alabama, 2000 6th Avenue South, Floor 5, Birmingham, AL 35233, USA
| | - Kevin Train
- Department of Surgery, West Virginia University, Morgantown, WV 26505, USA; (B.N.); (M.S.); (K.T.); (D.M.); (K.M.); (E.G.)
| | - Douglas Murken
- Department of Surgery, West Virginia University, Morgantown, WV 26505, USA; (B.N.); (M.S.); (K.T.); (D.M.); (K.M.); (E.G.)
| | - Keri Mayers
- Department of Surgery, West Virginia University, Morgantown, WV 26505, USA; (B.N.); (M.S.); (K.T.); (D.M.); (K.M.); (E.G.)
| | - Emily Groves
- Department of Surgery, West Virginia University, Morgantown, WV 26505, USA; (B.N.); (M.S.); (K.T.); (D.M.); (K.M.); (E.G.)
| | - Mary Garland-Kledzik
- Department of Surgery, West Virginia University, Morgantown, WV 26505, USA; (B.N.); (M.S.); (K.T.); (D.M.); (K.M.); (E.G.)
| |
Collapse
|
37
|
Licaj M, Mhaidly R, Kieffer Y, Croizer H, Bonneau C, Meng A, Djerroudi L, Mujangi-Ebeka K, Hocine HR, Bourachot B, Magagna I, Leclere R, Guyonnet L, Bohec M, Guérin C, Baulande S, Kamal M, Le Tourneau C, Lecuru F, Becette V, Rouzier R, Vincent-Salomon A, Gentric G, Mechta-Grigoriou F. Residual ANTXR1+ myofibroblasts after chemotherapy inhibit anti-tumor immunity via YAP1 signaling pathway. Nat Commun 2024; 15:1312. [PMID: 38346978 PMCID: PMC10861537 DOI: 10.1038/s41467-024-45595-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Although cancer-associated fibroblast (CAF) heterogeneity is well-established, the impact of chemotherapy on CAF populations remains poorly understood. Here we address this question in high-grade serous ovarian cancer (HGSOC), in which we previously identified 4 CAF populations. While the global content in stroma increases in HGSOC after chemotherapy, the proportion of FAP+ CAF (also called CAF-S1) decreases. Still, maintenance of high residual CAF-S1 content after chemotherapy is associated with reduced CD8+ T lymphocyte density and poor patient prognosis, emphasizing the importance of CAF-S1 reduction upon treatment. Single cell analysis, spatial transcriptomics and immunohistochemistry reveal that the content in the ECM-producing ANTXR1+ CAF-S1 cluster (ECM-myCAF) is the most affected by chemotherapy. Moreover, functional assays demonstrate that ECM-myCAF isolated from HGSOC reduce CD8+ T-cell cytotoxicity through a Yes Associated Protein 1 (YAP1)-dependent mechanism. Thus, efficient inhibition after treatment of YAP1-signaling pathway in the ECM-myCAF cluster could enhance CD8+ T-cell cytotoxicity. Altogether, these data pave the way for therapy targeting YAP1 in ECM-myCAF in HGSOC.
Collapse
Affiliation(s)
- Monika Licaj
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Rana Mhaidly
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Yann Kieffer
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Hugo Croizer
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Claire Bonneau
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Arnaud Meng
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Lounes Djerroudi
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Kevin Mujangi-Ebeka
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Hocine R Hocine
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Brigitte Bourachot
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Ilaria Magagna
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France
| | - Renaud Leclere
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Lea Guyonnet
- Cytometry platform, PSL University, Institut Curie, 75005, Paris, France
| | - Mylene Bohec
- ICGex Next-Generation Sequencing Platform, PSL University, Institut Curie, 75005, Paris, France
| | - Coralie Guérin
- Cytometry platform, PSL University, Institut Curie, 75005, Paris, France
| | - Sylvain Baulande
- ICGex Next-Generation Sequencing Platform, PSL University, Institut Curie, 75005, Paris, France
| | - Maud Kamal
- Department of Drug Development and Innovation, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris-Saclay University, Institut Curie, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Fabrice Lecuru
- Breast, gynecology and reconstructive surgery Department, Institut Curie Hospital Group, Paris Cité University, 26, rue d'Ulm, F-75248, Paris, France
| | - Véronique Becette
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Roman Rouzier
- Department of Surgery, Institut Curie Hospital Group, 35 rue Dailly, 92210, Saint-Cloud, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theragnostic Medicine, Institut Curie Hospital Group, 26, rue d'Ulm, F-75248, Paris, France
| | - Geraldine Gentric
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France.
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France.
| | - Fatima Mechta-Grigoriou
- Institut Curie, Stress and Cancer Laboratory, Equipe labélisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'Ulm, F-75248, Paris, France.
- Inserm, U830, 26, rue d'Ulm, Paris, F-75005, France.
| |
Collapse
|
38
|
Russo M. Genetic and non-genetic drug resistance: Darwin or Lamarck? Mol Oncol 2024; 18:241-244. [PMID: 38308461 PMCID: PMC10850810 DOI: 10.1002/1878-0261.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
Drug resistance represents a major limitation to the long-term efficacy of anti-cancer treatments. The commonly accepted view is that the selection of inheritable genetic mechanisms governs the development of secondary resistance. However, compelling evidence suggests an important role for adaptive cell plasticity and non-genetic mechanisms in the development of therapy resistance. The two phenomena are not mutually exclusive and the interplay between genetic and non-genetic mechanisms may affect tumor evolution during treatment. A broader characterization of the genetic and non-genetic mechanisms of drug resistance may pave the way for more precise and effective therapeutic strategies to overcome resistance.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
39
|
Challoner BR, Woolston A, Lau D, Buzzetti M, Fong C, Barber LJ, Anandappa G, Crux R, Assiotis I, Fenwick K, Begum R, Begum D, Lund T, Sivamanoharan N, Sansano HB, Domingo-Arada M, Tran A, Pandha H, Church D, Eccles B, Ellis R, Falk S, Hill M, Krell D, Murugaesu N, Nolan L, Potter V, Saunders M, Shiu KK, Guettler S, Alexander JL, Lázare-Iglesias H, Kinross J, Murphy J, von Loga K, Cunningham D, Chau I, Starling N, Ruiz-Bañobre J, Dhillon T, Gerlinger M. Genetic and immune landscape evolution in MMR-deficient colorectal cancer. J Pathol 2024; 262:226-239. [PMID: 37964706 DOI: 10.1002/path.6228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023]
Abstract
Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/β-catenin, mitogen-activated protein kinase, and TGF-β receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Andrew Woolston
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - David Lau
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Marta Buzzetti
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Louise J Barber
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Richard Crux
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Dipa Begum
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Tom Lund
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Nanna Sivamanoharan
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - Amina Tran
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - David Church
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bryony Eccles
- University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK
| | | | - Stephen Falk
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mark Hill
- Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK
| | - Daniel Krell
- Royal Free London NHS Foundation Trust, London, UK
| | - Nirupa Murugaesu
- St George's University Hospitals NHS Foundation Trust, London, UK
- Genomics England, London, UK
| | - Luke Nolan
- Hampshire Hospitals NHS Foundation Trust, Winchester, UK
| | - Vanessa Potter
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Kai-Keen Shiu
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | - Jamie Murphy
- Imperial College Healthcare NHS Trust, London, UK
| | - Katharina von Loga
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ian Chau
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Juan Ruiz-Bañobre
- University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tony Dhillon
- Royal Surrey Hospital NHS Foundation Trust, Guildford, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK
- St Bartholomew's Hospital Cancer Centre, London, UK
| |
Collapse
|
40
|
Burcher KM, Bloomer CH, Gavrila E, Kalada JM, Chang MJ, Gebeyehu RR, Song AH, Khoury LM, Lycan TW, Kinney R, D’Agostino R, Bunch PM, Shukla K, Triozzi P, Furdui CM, Zhang W, Porosnicu M. Study protocol: phase II study to evaluate the effect of cetuximab monotherapy after immunotherapy with PD-1 inhibitors in patients with head and neck squamous cell cancer. Ther Adv Med Oncol 2024; 16:17588359231217959. [PMID: 38249330 PMCID: PMC10799583 DOI: 10.1177/17588359231217959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/15/2023] [Indexed: 01/23/2024] Open
Abstract
Background Immunotherapy with programmed death receptor-1 (PD-1) inhibitors, as a single agent or in combination with chemotherapy, is the standard first-line treatment for recurrent or metastatic head and neck squamous cell cancer (R/M HNSCC). Unfortunately, there is no established second-line treatment for the many patients who fail immunotherapy. Cetuximab is the only targeted therapy approved in HNSCC but historically has a low response rate of 13%. Objectives We hypothesize that cetuximab monotherapy following an immune checkpoint inhibitor (ICI) will lead to increased efficacy due to a potential synergistic effect on the antitumor immune response, as a result of activation effects of both treatments on innate and adaptative immune responses. To the authors' knowledge, this is the only ongoing prospective clinical study that evaluates the combination of cetuximab and ICIs administered sequentially. Methods and analysis In this non-randomized, open-label, phase II trial, 30 patients with R/M HNSCC who have previously failed or could not tolerate a PD-1 inhibitor as a single agent or in combination with chemotherapy will subsequently be treated with cetuximab monotherapy. Outcomes of interest include overall response rate, duration of response, progression-free survival, overall survival, and treatment toxicity, as well as treatment outcome measured by a patient-reported outcome questionnaire. Saliva and blood will be collected for correlative studies to investigate the immune response status at the end of therapy with an ICI and the effect of cetuximab on the antitumor immune response. The results will be correlated with the response to cetuximab and the time window between the last administration of an ICI and the loading dose of cetuximab. The clinical study is actively recruiting. Ethics This study was approved by the Wake Forest Comprehensive Cancer Center Institutional Review Board: IRB00065239. Clinical trial registration This study is registered on ClinicalTrials.gov: NCT04375384.
Collapse
Affiliation(s)
- Kimberly M. Burcher
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Chance H. Bloomer
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Elena Gavrila
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - John M. Kalada
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark J. Chang
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Rediet R. Gebeyehu
- Section on Hematology and Oncology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Alexander H. Song
- Section on Hematology and Oncology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lara M. Khoury
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Thomas W. Lycan
- Section on Hematology and Oncology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Rebecca Kinney
- Section on Hematology and Oncology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ralph D’Agostino
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Paul M. Bunch
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kirtikar Shukla
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Pierre Triozzi
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Cristina M. Furdui
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Wei Zhang
- Center for Cancer Genomics and Precision Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Mercedes Porosnicu
- Section on Hematology and Oncology, Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| |
Collapse
|
41
|
Saoudi González N, Ros J, Baraibar I, Salvà F, Rodríguez-Castells M, Alcaraz A, García A, Tabernero J, Élez E. Cetuximab as a Key Partner in Personalized Targeted Therapy for Metastatic Colorectal Cancer. Cancers (Basel) 2024; 16:412. [PMID: 38254903 PMCID: PMC10814823 DOI: 10.3390/cancers16020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cetuximab, a chimeric IgG1 monoclonal antibody targeting the epidermal growth factor receptor (EGFR), has revolutionized personalized treatment of metastatic colorectal cancer (mCRC) patients. This review highlights the mechanism of action, characteristics, and optimal indications for cetuximab in mCRC. Cetuximab has emerged as a pivotal partner for novel therapies in specific molecular subgroups, including BRAF V600E, KRAS G12C, and HER2-altered mCRC. Combining cetuximab with immunotherapy and other targeted agents further expands the therapeutic landscape, offering renewed hope for mCRC patients who face the development of resistance to conventional therapies. Ongoing clinical trials have continued to uncover innovative cetuximab-based treatment strategies, promising a brighter future for mCRC patients. This review provides a comprehensive overview of cetuximab's role and its evolving importance in personalized targeted therapy of mCRC patients, offering valuable insights into the evolving landscape of colorectal cancer treatment.
Collapse
Affiliation(s)
- Nadia Saoudi González
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (N.S.G.); (F.S.)
- Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
| | - Javier Ros
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (N.S.G.); (F.S.)
- Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
| | - Iosune Baraibar
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (N.S.G.); (F.S.)
- Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
| | - Francesc Salvà
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (N.S.G.); (F.S.)
- Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
| | - Marta Rodríguez-Castells
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (N.S.G.); (F.S.)
- Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
| | - Adriana Alcaraz
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (N.S.G.); (F.S.)
- Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
| | - Ariadna García
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (N.S.G.); (F.S.)
| | - Josep Tabernero
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (N.S.G.); (F.S.)
- Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
| | - Elena Élez
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; (N.S.G.); (F.S.)
- Vall d’Hebron Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
42
|
Randon G, Nakamura Y, Yaeger R, Lonardi S, Cremolini C, Elez E, Nichetti F, Ghelardi F, Nasca V, Bergamo F, Conca V, Ros J, Bando H, Maddalena G, Oldani S, Prisciandaro M, Raimondi A, Schrock AB, Agnelli L, Walch H, Yoshino T, Pietrantonio F. Negative Hyperselection of Patients with HER2+ and RAS Wild-Type Metastatic Colorectal Cancer Receiving Dual HER2 Blockade: the PRESSING-HER2 Study. Clin Cancer Res 2024; 30:436-443. [PMID: 37610454 PMCID: PMC10792357 DOI: 10.1158/1078-0432.ccr-23-1379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE To demonstrate the negative prognostic impact of a panel of genomic alterations (PRESSING-HER2 panel) and lack of HER2 amplification by next-generation sequencing (NGS) in patients with HER2+, RAS wild-type metastatic colorectal cancer receiving dual HER2 blockade. EXPERIMENTAL DESIGN The PRESSING-HER2 panel of HER2 mutations/rearrangements and RTK/MAPK mutations/amplifications was assessed by NGS. HER2 amplification was confirmed by NGS if copy-number variation (CNV) was ≥ 6. With a case-control design, hypothesizing 30% and 5% PRESSING-HER2 positivity in resistant [progression-free survival (PFS) <4 months and no RECIST response] versus sensitive cohorts, respectively, 35 patients were needed per group. RESULTS PRESSING-HER2 alterations included HER2 mutations/rearrangements, EGFR amplification, and BRAF mutations and had a prevalence of 27% (9/33) and 3% (1/35) in resistant versus sensitive patients (P = 0.005) and 63% predictive accuracy. Overall, HER2 nonamplified status by NGS had 10% prevalence. Median PFS and overall survival (OS) were worse in PRESSING-HER2+ versus negative (2.2 vs. 5.3 months, P < 0.001; 5.4 vs. 14.9 months, P = 0.001) and in HER2 nonamplified versus amplified (1.6 vs. 5.2 months, P < 0.001; 7.4 vs. 12.4 months, P = 0.157). These results were confirmed in multivariable analyses [PRESSING-HER2 positivity: PFS HR = 3.06, 95% confidence interval (CI), 1.40-6.69, P = 0.005; OS HR = 2.93, 95% CI, 1.32-6.48, P = 0.007]. Combining PRESSING-HER2 and HER2 CNV increased the predictive accuracy to 75%. CONCLUSIONS PRESSING-HER2 panel and HER2 nonamplified status by NGS warrant validation as potential predictive markers in this setting. See related commentary by Raghav et al., p. 260.
Collapse
Affiliation(s)
- Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Translational Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sara Lonardi
- Department of Oncology, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elena Elez
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Filippo Ghelardi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Vincenzo Nasca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Francesca Bergamo
- Department of Oncology, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Giulia Maddalena
- Department of Oncology, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Simone Oldani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Michele Prisciandaro
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Luca Agnelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Henry Walch
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
43
|
Liu Y, Chen X, Xu Y, Yang T, Wang H, Wang Z, Hu Z, Chen L, Zhang Z, Wu Y. CTHRC1 promotes colorectal cancer progression by recruiting tumor-associated macrophages via up-regulation of CCL15. J Mol Med (Berl) 2024; 102:81-94. [PMID: 37987774 DOI: 10.1007/s00109-023-02399-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Tumor-associated macrophages (TAMs) represent a key factor in the tumor immune microenvironment (TME), exerting significant influence over tumor migration, invasion, immunosuppressive features, and drug resistance. Collagen triple helix repeat containing 1 (CTHRC1), a 30 KDa protein which was secreted during the tissue-repair process, is highly expressed in several malignant tumors, including colorectal cancer (CRC). Previous studies demonstrated that CTHRC1 expression in TAMs was positively correlated to M2 macrophage polarization and liver metastasis, while our discovery suggesting a novel mechanism that CTHRC1 secreted from cancer cell could indirectly interplay with TAMs. In this study, the high expression level of CTHRC1 was evaluated in CRC based on GEO and TCGA databases. Further, CTHRC1 was detected high in all stages of CRC patients by ELISA and was correlated to poor prognosis. Multispectral imaging of IHC demonstrated that M2 macrophage infiltration was increased accompanied with CTHRC1 enrichment, suggesting that CTHRC1 may have chemotactic effect on macrophages. In vitro, CTHRC1 could have chemotactic ability of macrophage in the presence of HT-29 cell line. Cytokine microarray revealed that CTHRC1 could up-regulate the CCL15 level of HT-29, pathway analysis demonstrated that CTHRC1 could regulate CCL15 by controlling the TGFβ activation and Smad phosphorylation level. In vivo, knocking down of CTHRC1 from CT-26 also inhibits tumor formation. In conclusion, CTHRC1 could promote the chemotactic ability of macrophages by up-regulating CCL15 via TGFβ/Smad pathway; additionally, a high level of CTHRC1 could promote macrophage's M2 polarization. This discovery may be related to tumor immune tolerance and tumor immunotherapy resistance in CRC. KEY MESSAGES: CTHRC1 promotes CRC progression by up-regulating CCL15 via TGF-β/Smad pathways to further recruit tumor-associated macrophages. By the means of autocrine or paracrine, CTHRC1 can indeed promote macrophage chemotaxis and enhance the infiltration of macrophages in tumor tissues but in the presence of tumor cells. CAFs were another source of CTHRC1, indicating CTHRC1 can infiltrate tumor islet as well as the stomal and be secreted from both tumor cells and CAFs. This study validated CTHRC1 as a potential immune therapy target CRC.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ying Xu
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghan Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haichuan Wang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhangyong Hu
- Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Longqi Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Zhang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yangping Wu
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
44
|
Das A, Gkoutos GV, Acharjee A. Analysis of translesion polymerases in colorectal cancer cells following cetuximab treatment: A network perspective. Cancer Med 2024; 13:e6945. [PMID: 39102671 PMCID: PMC10809876 DOI: 10.1002/cam4.6945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/19/2023] [Accepted: 01/06/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Adaptive mutagenesis observed in colorectal cancer (CRC) cells upon exposure to EGFR inhibitors contributes to the development of resistance and recurrence. Multiple investigations have indicated a parallel between cancer cells and bacteria in terms of exhibiting adaptive mutagenesis. This phenomenon entails a transient and coordinated escalation of error-prone translesion synthesis polymerases (TLS polymerases), resulting in mutagenesis of a magnitude sufficient to drive the selection of resistant phenotypes. METHODS In this study, we conducted a comprehensive pan-transcriptome analysis of the regulatory framework within CRC cells, with the objective of identifying potential transcriptome modules encompassing certain translesion polymerases and the associated transcription factors (TFs) that govern them. Our sampling strategy involved the collection of transcriptomic data from tumors treated with cetuximab, an EGFR inhibitor, untreated CRC tumors, and colorectal-derived cell lines, resulting in a diverse dataset. Subsequently, we identified co-regulated modules using weighted correlation network analysis with a minKMEtostay threshold set at 0.5 to minimize false-positive module identifications and mapped the modules to STRING annotations. Furthermore, we explored the putative TFs influencing these modules using KBoost, a kernel PCA regression model. RESULTS Our analysis did not reveal a distinct transcriptional profile specific to cetuximab treatment. Moreover, we elucidated co-expression modules housing genes, for example, POLK, POLI, POLQ, REV1, POLN, and POLM. Specifically, POLK, POLI, and POLQ were assigned to the "blue" module, which also encompassed critical DNA damage response enzymes, for example. BRCA1, BRCA2, MSH6, and MSH2. To delineate the transcriptional control of this module, we investigated associated TFs, highlighting the roles of prominent cancer-associated TFs, such as CENPA, HNF1A, and E2F7. CONCLUSION We found that translesion polymerases are co-regulated with DNA mismatch repair and cell cycle-associated factors. We did not, however, identified any networks specific to cetuximab treatment indicating that the response to EGFR inhibitors relates to a general stress response mechanism.
Collapse
Affiliation(s)
- Anubrata Das
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- MRC Health Data Research UK (HDR UK)LondonUK
- Centre for Health Data ResearchUniversity of BirminghamBirminghamUK
- NIHR Experimental Cancer Medicine CentreBirminghamUK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- MRC Health Data Research UK (HDR UK)LondonUK
- Centre for Health Data ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
45
|
Li Y, Wang B, Ma F, Jiang D, Wang Y, Li K, Tan S, Feng J, Wang Y, Qin Z, Xu G, Tian S, Zhang X, Xu C, Wu J, Xu J, Hou Y, Ding C. Proteomic characterization of the colorectal cancer response to chemoradiation and targeted therapies reveals potential therapeutic strategies. Cell Rep Med 2023; 4:101311. [PMID: 38086380 PMCID: PMC10772406 DOI: 10.1016/j.xcrm.2023.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/22/2023]
Abstract
Chemoradiation and targeted therapies are the major treatments for colorectal cancer (CRC); however, molecular properties associated with therapy resistance are incompletely characterized. Here, we profile the proteome of 254 tumor tissues from patients with CRC undergoing chemotherapy, chemoradiation, or chemotherapy combined with targeted therapy. Proteome-based classification reveals four subtypes featured with distinct biological and therapeutic characteristics. The integrative analysis of CRC cell lines and clinical samples indicates that immune regulation is significantly associated with drug sensitivity. HSF1 can increase DNA damage repair and cell cycle, thus inducing resistance to radiation, while high expression of HDAC6 is negatively associated with response of cetuximab. Furthermore, we develop prognostic models with high accuracy to predict the therapeutic response, further validated by parallel reaction monitoring (PRM) assay in an independent validation cohort. This study provides a rich resource for investigating the mechanisms and indicators of chemoradiation and targeted therapy in CRC.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Bing Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Fahan Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Ganfei Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| |
Collapse
|
46
|
Ramos Zapatero M, Tong A, Opzoomer JW, O'Sullivan R, Cardoso Rodriguez F, Sufi J, Vlckova P, Nattress C, Qin X, Claus J, Hochhauser D, Krishnaswamy S, Tape CJ. Trellis tree-based analysis reveals stromal regulation of patient-derived organoid drug responses. Cell 2023; 186:5606-5619.e24. [PMID: 38065081 DOI: 10.1016/j.cell.2023.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.
Collapse
Affiliation(s)
- María Ramos Zapatero
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Alexander Tong
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Computer Science and Operations Research, Université de Montréal, Montreal, QC, Canada; Mila - Quebec AI Institute, Montréal, QC, Canada
| | - James W Opzoomer
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rhianna O'Sullivan
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Callum Nattress
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Daniel Hochhauser
- Drug-DNA Interactions Group, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK
| | - Smita Krishnaswamy
- Department of Computer Science, Yale University, New Haven, CT, USA; Department of Genetics, Yale University, New Haven, CT, USA; Program for Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA; Program for Applied Math, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA.
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London WC1E 6DD, UK.
| |
Collapse
|
47
|
Reissig TM, Ladigan‐Badura S, Steinberg A, Maghnouj A, Li T, Verdoodt B, Liffers ST, Pohl M, Wolters H, Teschendorf C, Viebahn R, Admard J, Casadei N, Tannapfel A, Schmiegel W, Hahn SA, Vangala DB. Lasting response by vertical inhibition with cetuximab and trametinib in KRAS-mutated colorectal cancer patient-derived xenografts. Mol Oncol 2023; 17:2396-2414. [PMID: 37604687 PMCID: PMC10620118 DOI: 10.1002/1878-0261.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/30/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Although approximately half of all metastatic colorectal cancers (mCRCs) harbour mutations in KRAS or NRAS, hardly any progress has been made regarding targeted treatment for this group over the last few years. Here, we investigated the efficacy of vertical inhibition of the RAS-pathway by targeting epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase kinase (MEK) in patient-derived xenograft (PDX) tumours with primary KRAS mutation. In total, 19 different PDX models comprising 127 tumours were tested. Responses were evaluated according to baseline tumour volume changes and graded as partial response (PR; ≤ - 30%), stable disease (SD; between -30% and +20%) or progressive disease (PD; ≥ + 20%). Vertical inhibition with trametinib and cetuximab induced SD or PR in 74% of analysed models, compared to 24% by monotherapy with trametinib. In cases of PR by vertical inhibition (47%), responses were lasting (as long as day 137), with a low incidence of secondary resistance (SR). Molecular analyses revealed that primary and SR was driven by transcriptional reprogramming activating the RAS pathway in a substantial fraction of tumours. Together, these preclinical data strongly support the translation of this combination therapy into clinical trials for CRC patients.
Collapse
Affiliation(s)
- Timm M. Reissig
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
- Department of Medical Oncology, West German Cancer CenterUniversity Hospital EssenGermany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital Essen, University Duisburg‐EssenGermany
| | - Swetlana Ladigan‐Badura
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
- Center for Hemato‐Oncological DiseasesUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| | - Anja Steinberg
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
| | - Abdelouahid Maghnouj
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
| | - Ting Li
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
| | | | - Sven T. Liffers
- Bridge Institute of Experimental Tumor Therapy, West German Cancer CenterUniversity Hospital Essen, University Duisburg‐EssenGermany
- Institute of PathologyRuhr University BochumGermany
| | - Michael Pohl
- Center for Hemato‐Oncological DiseasesUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| | - Heiner Wolters
- Department of Visceral and General SurgerySt. Josef HospitalDortmundGermany
| | | | - Richard Viebahn
- Department of Visceral and General SurgeryUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| | - Jakob Admard
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenGermany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenGermany
| | | | - Wolff Schmiegel
- Center for Hemato‐Oncological DiseasesUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| | - Stephan A. Hahn
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
| | - Deepak B. Vangala
- Department of Molecular GI Oncology, Faculty of MedicineRuhr‐University BochumGermany
- Center for Hemato‐Oncological DiseasesUniversity Hospital Knappschaftskrankenhaus, Ruhr‐University BochumGermany
| |
Collapse
|
48
|
Oshima K, Yamazaki K. Immune checkpoint inhibitor therapy in neoadjuvant and adjuvant treatment for cancer: A paradigm shift in the treatment of resectable gastrointestinal cancer 3)A paradigm shift in the treatment of colorectal cancer. Int J Clin Oncol 2023; 28:1442-1450. [PMID: 37668816 DOI: 10.1007/s10147-023-02387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 09/06/2023]
Abstract
Immune checkpoint inhibitors, such as anti-programmed cell death-1, programmed cell death ligand-1, and cytotoxic T-lymphocyte antigen-4 monoclonal antibodies, have been notably effective in various types of cancers. Mismatch repair deficiency and microsatellite instability-high tumors have been established as striking biomarkers for response to immune checkpoint inhibitors. These biomarkers show a higher mutational burden, have cancer-associated neoantigens, and dense immune cell infiltration, which generates a robust immune response. For metastatic colorectal cancer, pembrolizumab and nivolumab, with or without ipilimumab, are recommended for chemotherapy-refractory patients, and pembrolizumab is recommended for chemotherapy-naive patients with mismatch repair deficiency and microsatellite instability-high tumors. Conversely, patients with mismatch repair-proficient and microsatellite-stable metastatic colorectal cancer showed no clinical benefit from immune checkpoint inhibitor monotherapy. Currently, combination therapy with anti-programmed cell death-1/programmed cell death ligand-1 and cytotoxic T-lymphocyte antigen-4 monoclonal antibodies or a combination of immune checkpoint inhibitors with molecular targeting agents or radiotherapy have been investigated to modulate immune cells and enhance therapeutic efficacy in mismatch repair-proficient and microsatellite-stable metastatic colorectal cancer. Furthermore, immune checkpoint inhibitors have been developed for neoadjuvant and adjuvant settings. In this review, we summarize the existing clinical data and discuss future perspectives with a focus on immune checkpoint inhibitor-based treatments for colorectal cancer.
Collapse
Affiliation(s)
- Kotoe Oshima
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan
| | - Kentaro Yamazaki
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-Cho, Sunto-Gun, Shizuoka, 411-8777, Japan.
| |
Collapse
|
49
|
Kang Z, Chen B, Ma X, Yan F, Wang Z. Immune-related gene-based model predicts the survival of colorectal carcinoma and reflected various biological statuses. Front Mol Biosci 2023; 10:1277933. [PMID: 37920710 PMCID: PMC10619740 DOI: 10.3389/fmolb.2023.1277933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Bakcground: Prognosis of colorectal cancer (CRC) varies due to complex genetic-microenviromental interactions, and multiple gene-based prognostic models have been highlighted. Material and Method: In this work, the immune-related genes' expression-based model was developed and the scores of each sample were calculated. The correlation between the model and clinical information, immune infiltration, drug response and biological pathways were analyzed. Results: The high-score samples have a significantly longer survival (overall survival and progression-free survival) period than those with a low score, which was validated across seven datasets containing 1,325 samples (GSE17536 (N = 115), GSE17537 (N = 55), GSE33113 (N = 90), GSE37892 (N = 130), GSE38832 (N = 74), GSE39582 (N = 481), and TCGA (N = 380)). The score is significantly associated with clinical indicators, including age and stage, and further associated with PD-1/PD-L1 gene expression. Furthermore, high-score samples have significantly higher APC and a lower MUC5B mutation rate. The high-score samples show more immune infiltration (including CD4+ and CD8+ T cells, M1/M2 macrophages, and NK cells). Enriched pathway analyses showed that cancer-related pathways, including immune-related pathways, were significantly activated in high-score samples and that some drugs have significantly lower IC50 values than those with low score. Conclusion: The model developed based on immune-related genes is robust and reflected various statuses of CRC and may be a potential clinical indicator.
Collapse
Affiliation(s)
| | | | | | - Feihu Yan
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhen Wang
- Department of Colorectal Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
50
|
Marrocco I, Yarden Y. Resistance of Lung Cancer to EGFR-Specific Kinase Inhibitors: Activation of Bypass Pathways and Endogenous Mutators. Cancers (Basel) 2023; 15:5009. [PMID: 37894376 PMCID: PMC10605519 DOI: 10.3390/cancers15205009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitors (TKIs) have changed the landscape of lung cancer therapy. For patients who are treated with the new TKIs, the current median survival exceeds 3 years, substantially better than the average 20 month survival rate only a decade ago. Unfortunately, despite initial efficacy, nearly all treated patients evolve drug resistance due to the emergence of either new mutations or rewired signaling pathways that engage other receptor tyrosine kinases (RTKs), such as MET, HER3 and AXL. Apparently, the emergence of mutations is preceded by a phase of epigenetic alterations that finely regulate the cell cycle, bias a mesenchymal phenotype and activate antioxidants. Concomitantly, cells that evade TKI-induced apoptosis (i.e., drug-tolerant persister cells) activate an intrinsic mutagenic program reminiscent of the SOS system deployed when bacteria are exposed to antibiotics. This mammalian system imbalances the purine-to-pyrimidine ratio, inhibits DNA repair and boosts expression of mutation-prone DNA polymerases. Thus, the net outcome of the SOS response is a greater probability to evolve new mutations. Deeper understanding of the persister-to-resister transformation, along with the development of next-generation TKIs, EGFR-specific proteolysis targeting chimeras (PROTACs), as well as bispecific antibodies, will permit delaying the onset of relapses and prolonging survival of patients with EGFR+ lung cancer.
Collapse
Affiliation(s)
- Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|