1
|
Deng YL, Chi BT, Lu SY, Xiong DD, He RQ, Qin DY, Huang WY, Yang X, Chen G, Peng W, Luo J. How has the field of immunogenic cell death in breast cancer evolved and impacted clinical practice over the past eleven years? Hum Vaccin Immunother 2025; 21:2505349. [PMID: 40418649 DOI: 10.1080/21645515.2025.2505349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
This study elucidates the research landscape of immunogenic cell death (ICD) in breast cancer through a bibliometric analysis of 457 Web of Science articles. Contributions from China and the USA are particularly prominent, with notable international collaborations. Core journals such as Biomaterials published influential studies, while researchers like Huang Y made impactful contributions. High-frequency keyword analysis identified key research hotspots, including immunotherapy, the tumor microenvironment, and nanomedicine. The integration of chemotherapy with immunotherapy and the identification of key proteins have driven recent advancements. Fundamental research on immunotherapy, photodynamic therapy (PDT), and triple-negative breast cancer (TNBC) points to future trends and potential breakthroughs. This study offers a strategic overview of ICD in breast cancer, providing insights into clinical practice and guiding future research in the field.
Collapse
Affiliation(s)
- Yu-Long Deng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Shang-Yi Lu
- Department of Hepatological and Gland Surgery, Wuzhou Gongren Hospital/The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, P. R. China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning, P. R. China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xia Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wei Peng
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jiayuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
2
|
Qiu N, Xu C, Zhang Z, Wang R, Wei X, Xie Y, Wang S, Lu D, Wang K, Xu S, Shen C, Su R, Cen B, Liu Y, Shen Y, Xu X. Autologous tumoral esterase-driven therapeutic polymers sequentially orchestrated antigen-induction, STING activation and anti-angiogenesis for systemic cancer immune therapy. Biomaterials 2025; 320:123260. [PMID: 40138966 DOI: 10.1016/j.biomaterials.2025.123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/23/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
Effective cancer immune therapy requires the orchestration of antigen induction, presentation and T-cell activation, further enhanced by anti-angiogenesis treatment; therefore, multiple therapeutics are generally used for such combination therapy. Herein, we report esterase-hydrolysable cationic polymers, N-[3-((4-acetoxy benzyl) oxy)-3-oxopropyl]-N-methyl-quaternized PEI (ERP) and poly{N-[2-(acryloyl-oxy) ethyl]-N-[p-acetyloxyphenyl]-N,N-dimethylammonium chloride} (PQDMA), capable of simultaneously inducing tumor cell immunogenic cell death (ICD) to release antigens, activating the cGAS-STING pathways of tumor macrophages and dendritic cells, and releasing antiangiogenic agent p-hydroxybenzyl alcohol (HBA). Thus, intratumoral injection of ERP or PQDMA systemically boosted the anti-cancer immunities and inhibited tumor angiogenesis in mouse hepatocellular carcinoma and melanoma bilateral tumor models, leading to more effective tumor growth inhibition of both treated and abscopal untreated tumors than ICD alone induced by mitoxantrone and control cationic polymers. Further study using gene knockout mice and transcriptome sequencing analysis confirmed the involvement of cGAS-STING and type I IFN signaling pathways. This work demonstrates ERP and PQDMA as the first examples of inherent therapeutic polymers, accomplishing systemic tumor inhibition without combining other therapeutic agents.
Collapse
Affiliation(s)
- Nasha Qiu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Chang Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Zhen Zhang
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education of China, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Rui Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Yangla Xie
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, China
| | - Kai Wang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Chenchen Shen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Beini Cen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Yanpeng Liu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Youqing Shen
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Key Laboratory of Biomass Chemical Engineering of the Ministry of Education of China, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310059, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Stucchi S, Borea R, Garcia-Recio S, Zingarelli M, Rädler PD, Camerini E, Marnata Pellegry C, O'Connor S, Earp HS, Carey LA, Perou CM, Savoldo B, Dotti G. B7-H3 and CSPG4 co-targeting as Pan-CAR-T cell treatment of triple-negative breast cancer. J Immunother Cancer 2025; 13:e011533. [PMID: 40425233 DOI: 10.1136/jitc-2025-011533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
PURPOSE Chimeric antigen receptor T (CAR-T) cell therapy is under clinical investigation in patients with metastatic triple-negative breast cancer (TNBC). However, the identification of targetable antigens remains a high priority to avoid toxicity and prevent tumor escape. EXPERIMENTAL DESIGN Here we analyzed the gene expression of B7-H3 (CD276) and chondroitin sulfate proteoglycan 4 (CSPG4) in 98 TNBC samples identified in the AURORA US Network and Rapid Autopsy RNA sequencing data set at University of North Carolina (UNC). We then performed immunohistochemistry analysis for B7-H3 and CSPG4 protein expression in 151 TNBC samples collected at UNC. Finally, the validity of the proposed B7-H3 and CSGP4 co-targeting was tested in clinically relevant TNBC patient derived xenograft (PDX) models. RESULTS We observed that CD276 and CSPG4 genes are broadly and comparably expressed in TNBC samples, and gene expression is generally conserved in tumor metastases. None of the TNBC analyzed met the criteria for simultaneous low expression of CSPG4 and CD276 genes. Immunohistochemistry analysis showed a median H-score of 138 (105-168, lower and upper quartile, respectively) for B7-H3 expression and a median H-score of 33 (14-78 lower and upper quartile, respectively) for CSPG4 expression. Notably, 49% of the TNBC cores with B7-H3 H-score ≤105 exhibited a CSPG4 H-score exceeding its median value, and 37% and 18% of the TNBC cores with low B7-H3 expression scored CSPG4 expression above its median H-score or exceeded its upper quartile, respectively, confirming that at least one of these two proteins is expressed in 94% of the analyzed tumors. Finally, optimized dual-specific B7-H3 and CSPG4 CAR-T cells eradicated tumors with mixed antigen expression in TNBC PDX models. CONCLUSIONS These data highlight the clinical potential of the proposed approach that could be applicable to the great majority of patients with TNBC as well as most of patients with breast cancer in general.
Collapse
Affiliation(s)
- Simone Stucchi
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Roberto Borea
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Susana Garcia-Recio
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Manuela Zingarelli
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Patrick D Rädler
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elena Camerini
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Siobhan O'Connor
- Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - H Shelton Earp
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lisa A Carey
- Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Charles M Perou
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Barbara Savoldo
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gianpietro Dotti
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Cai L, Wu F, Zhou Q, Gao Y, Yao B, DeBerardinis RJ, Acquaah-Mensah GK, Aidinis V, Beane JE, Biswal S, Chen T, Concepcion-Crisol CP, Grüner BM, Jia D, Jones RA, Kurie JM, Lee MG, Lindahl P, Lissanu Y, Lorz C, MacPherson D, Martinelli R, Mazur PK, Mazzilli SA, Mii S, Moll HP, Moorehead RA, Morrisey EE, Ng SR, Oser MG, Pandiri AR, Powell CA, Ramadori G, Santos M, Snyder EL, Sotillo R, Su KY, Taki T, Taparra K, Tran PT, Xia Y, van Veen JE, Winslow MM, Xiao G, Rudin CM, Oliver TG, Xie Y, Minna JD. The Lung Cancer Autochthonous Model Gene Expression Database Enables Cross-Study Comparisons of the Transcriptomic Landscapes Across Mouse Models. Cancer Res 2025; 85:1769-1783. [PMID: 40298430 PMCID: PMC12081188 DOI: 10.1158/0008-5472.can-24-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/23/2024] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
Lung cancer, the leading cause of cancer mortality, exhibits diverse histologic subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. In this study, we established the Lung Cancer Autochthonous Model Gene Expression Database (LCAMGDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMM), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCAMGDB aligned 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in the GEMMs. To accompany this resource, a web application was developed that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCAMGDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance. Significance: The Lung Cancer Autochthonous Model Gene Expression Database (LCAMGDB) provides a comprehensive and accessible resource for the research community to investigate lung cancer biology in mouse models.
Collapse
Affiliation(s)
- Ling Cai
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ying Gao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Yao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Vassilis Aidinis
- Institute of Fundamental Biological Research, Biomedical Sciences Research Center Alexander Fleming, 34 Fleming Street, 16672 Athens, Greece
| | - Jennifer E. Beane
- Section of Computational Biomedicine, Boston University School of Medicine, 72 E. Concord Street | Boston, MA 02118
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205
| | | | | | - Barbara M. Grüner
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Deshui Jia
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201620, China
| | - Robert A Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G2W1
| | - Jonathan M. Kurie
- Department of Thoracic-Head & Neck Med Onc, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Per Lindahl
- Sahlgrenska Center for Cancer Research Institute of Biomedicine | Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicanaregatan 1F, 413 90 Gothenburg, Sweden
| | - Yonathan Lissanu
- Department of Thoracic & Cardiovascular Surgery, the University of Texas MD Anderson Cancer Center
| | - Corina Lorz
- Biomedical Innovation Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | | | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, SA, Italy
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarah A. Mazzilli
- Section of Computational Biomedicine, Boston University School of Medicine, 72 E. Concord Street | Boston, MA 02118
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Herwig P. Moll
- Medical University of Vienna Center for Physiology and Pharmacology Waehringer Strasse 13a 1090 Vienna, Austria
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G2W1
| | - Edward E. Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Sheng Rong Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138632
| | - Matthew G. Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Arun R. Pandiri
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709,USA
| | - Charles A. Powell
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1232, New York, N.Y. 10029
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva; Geneva, 1211, Switzerland
| | - Mirentxu Santos
- Biomedical Innovation Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - Eric L. Snyder
- Department of Pathology and Huntsman Cancer Institute, University of Utah, SLC, UT 84112
| | - Rocio Sotillo
- Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University
| | - Tetsuro Taki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kekoa Taparra
- Department of Radiation Oncology, Stanford Health Care, Stanford, CA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Yifeng Xia
- Salk Institute for Biological Studies. La Jolla, CA 92037 USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Jin X, Zhang N, Yan T, Wei J, Hao L, Sun C, Zhao H, Jiang S. Lactate-mediated metabolic reprogramming of tumor-associated macrophages: implications for tumor progression and therapeutic potential. Front Immunol 2025; 16:1573039. [PMID: 40433363 PMCID: PMC12106438 DOI: 10.3389/fimmu.2025.1573039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
The tumor microenvironment (TME) is characterized by distinct metabolic adaptations that not only drive tumor progression but also profoundly influence immune responses. Among these adaptations, lactate, a key metabolic byproduct of aerobic glycolysis, accumulates in the TME and plays a pivotal role in regulating cellular metabolism and immune cell function. Tumor-associated macrophages (TAMs), known for their remarkable functional plasticity, serve as critical regulators of the immune microenvironment and tumor progression. Lactate modulates TAM polarization by influencing the M1/M2 phenotypic balance through diverse signaling pathways, while simultaneously driving metabolic reprogramming. Furthermore, lactate-mediated histone and protein lactylation reshapes TAM gene expression, reinforcing their immunosuppressive properties. From a therapeutic perspective, targeting lactate metabolism has shown promise in reprogramming TAMs and enhancing anti-tumor immunity. Combining these metabolic interventions with immunotherapies may further augment treatment efficacy. This review underscores the crucial role of lactate in TAM regulation and tumor progression, highlighting its potential as a promising therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Xiaohan Jin
- Center for Post-Doctoral Studies, Shandong University of Traditional Chinese Medicine, Jinan, China
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Jining, China
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Ni Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyang Wei
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingli Hao
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Changgang Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haibo Zhao
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No.1 People’s Hospital, Jining, China
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, China
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Zheng Q, Ma H, Luo D, Qiu X, Ming Y, Pu W, Ai M, He J, Peng Y. Structure-directing optimization of N-(2,3-dihydrobenzo[b] [1,4]dioxin-6-yl)benzamide derivatives as selective receptor tyrosine kinase-like orphan receptor 1 (ROR1) inhibitors for cancer therapy. Eur J Med Chem 2025; 294:117755. [PMID: 40409056 DOI: 10.1016/j.ejmech.2025.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/25/2025]
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an attractive therapeutic target for various cancers, including leukemia and lung cancer. Although some biological agents have entered clinical trials and several small-molecule inhibitors have been developed, selective ROR1 inhibitors remain underexplored. In our previous studies, we identified LDR102, an indole derivative, as a ROR1 inhibitor with favorable binding affinity and potent antitumor efficacy. However, LDR102 exhibited moderate ROR1 inhibitory activity and "off-target" effects on other kinases, such as c-Kit and AblT315I, limiting its further development. To address these limitations, we optimized LDR102 and synthesized a series of N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)benzamide derivatives as selective ROR1 inhibitors, culminating in the identification of compound 9i, which possesses favorable ROR1 inhibitory activity, good selectivity, and potent anti-tumor activity in vivo and in vitro.
Collapse
Affiliation(s)
- Qingquan Zheng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hulin Ma
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongdong Luo
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xingyang Qiu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Ming
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchen Pu
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Ai
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhua He
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Tianfu Jincheng Laboratory, 610093, Chengdu, China.
| |
Collapse
|
7
|
Lu Y, Wang FY, Levine MS, Shi HR, Wang Y, Xiong X, Yang LM, Shi YQ, Zou T, Sessler JL, Liang H, Huang KB. Oxoisoaporphine Alkaloid Iridium(III) Derivative: An Immunogenic Cell Death Inducer That Engages the Autophagy-Dependent Regulator Cathepsin D. J Am Chem Soc 2025; 147:15216-15228. [PMID: 40279467 DOI: 10.1021/jacs.5c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Autophagy has been recognized as one of the pathways for eliciting immunogenic cell death (ICD). However, the specific molecular target responsible for autophagy-mediated ICD has not yet been elucidated. Here, we report that an oxoisoaporphine alkaloid-modified iridium(III) complex (2a) displays autophagy-inducing ICD activity. Through unbiased thermal proteome profiling (TPP), this new complex was found to interact with the lysosomal protease cathepsin D (Cat D). Subsequent cellular and biochemical assays─including the cellular thermal shift assay, isothermal dose-response assay, enzymatic assays, and molecular docking─confirmed that 2a binds to and inhibits Cat D. Further pathway analysis demonstrated that 2a triggers autophagy-dependent ICD via the LKB1-AMPK-ULK1 signaling pathway by inhibiting Cat D. Several other autophagy-dependent ICD inducers were tested and likewise found to inhibit Cat D. In contrast, an earlier reported analogue of 2a, complex 1a, was found to bind and destabilize binding immunoglobulin protein (BiP) and promote its ICD activity through an endoplasmic reticulum stress response. We believe that the findings reported here will enhance the understanding of the novel mechanisms of ICD agents and pave the way for the design of new ICD inducers with high specificity and efficacy.
Collapse
Affiliation(s)
- Yuan Lu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi College Key Laboratory of Innovation Research on Medical and Engineering Integration & Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources Development, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, China
| | - Feng-Yang Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- Key Laboratory of Medical Biotechnology and Translational Medicine, Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541004, China
| | - Matthew S Levine
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Hai-Rong Shi
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuan Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Liang-Mei Yang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ya-Qian Shi
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ke-Bin Huang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
8
|
Seynhaeve AL, Liu H, Priester MI, Valentijn M, van Holten-Neelen C, Brouwer RW, van Brakel M, Dik WA, van IJcken WF, Debets R, Stubbs AP, ten Hagen TL. CXCL10 Secreted by Pericytes Mediates TNFα-Induced Vascular Leakage in Tumors and Enhances Extravasation of Nanoparticle-Based Chemotherapeutics. Cancer Res 2025; 85:1596-1610. [PMID: 40009768 PMCID: PMC12046328 DOI: 10.1158/0008-5472.can-24-3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
TNFα induces vascular permeability and plays an important role in inflammation. In addition, TNFα-induced vascular leakage is involved in the increased extravasation of nanoparticle-formulated chemotherapeutic drugs, improving drug delivery and subsequent tumor response. In this study, we uncovered a positive correlation between the presence of pericytes in the tumor-associated vasculature and TNFα-induced leakage and drug delivery, especially when drugs were encapsulated in nanoparticles. RNA sequencing and pathway analysis identified high expression of C-X-C motif chemokine ligand 10 (CXCL10) in TNFα-stimulated pericytes. In addition, TNFα increased CXCL10 protein production by pericytes in vitro. In animal studies, tumor types with vessels with high pericyte coverage showed enhanced permeability and extravasation of drugs encapsulated in nanoparticles following treatment with TNFα, which could be blocked with a CXCL10-neutralizing antibody. In contrast, tumors harboring vessels with low pericyte numbers did not display increased drug extravasation in response to TNFα. Lack of pericyte coverage could be compensated by coadministration of CXCL10. These findings reveal a mechanism by which TNFα induces CXCL10 release from pericytes, resulting in increased endothelial permeability, vascular leakage, and drug delivery. Significance: TNFα stimulates tumor-associated pericytes to produce CXCL10 that mediates vascular leakage and assists in the intratumoral delivery of nanoparticle-encapsulated chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ann L.B. Seynhaeve
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hui Liu
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjolein I. Priester
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mike Valentijn
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Conny van Holten-Neelen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rutger W.W. Brouwer
- Center for Biomics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mandy van Brakel
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew P. Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Timo L.M. ten Hagen
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Wu M, Liu J, Liu L, Yang Y, Liu H, Yu L, Zeng H, Yuan S, Xu R, Liu H, Jiang H, Qu S, Wang L, Chen Y, Wang J, Zhang Y, He S, Feng L, Han J, Zeng W, Wang H, Huang Y. Autologous Peripheral Vγ9Vδ2 T Cell Synergizes with αβ T Cell Through Antigen Presentation and BTN3A1 Blockade in Immunotherapy of Cervical Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2401230. [PMID: 40091603 PMCID: PMC12079532 DOI: 10.1002/advs.202401230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/07/2025] [Indexed: 03/19/2025]
Abstract
New treatment strategies are urgently needed for patients with advanced cervical cancer (CC). Here, a synergistic anti-CC effect of a novel combinatorial immunotherapy with adoptively transferred autologous Vγ9Vδ2 T cells and αβ T cells is shown. The pivotal role of both circulating and tumor-infiltrating Vγ9Vδ2 T cells in anti-CC immunity is uncovered. Importantly, autologous Vγ9Vδ2 T cells show a synergistic anti-CC effect with αβ T cells not only through killing tumor directly, but also by promoting the activation and tumoricidal activity of syngeneic αβ T cells through antigen presentation, which can be further boosted by conventional chemotherapy. Moreover, Vγ9Vδ2 T cells can restore the tumoricidal function of αβ T cell through competitively binding to BTN3A1, a TCR-Vγ9Vδ2 ligand on CC cells upregulated by IFN-γ derived from activated αβ T cell. These findings uncover a critical synergistic effect of autologous Vγ9Vδ2 T cells and αβ T cells in immunotherapy of CC and reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Min Wu
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Liting Liu
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hong Liu
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Long Yu
- Beckman Coulter Commercial Enterprise (China) Co., LtdShanghai200122China
| | - Haihong Zeng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shuo Yuan
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Ruiyi Xu
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Hangyu Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Han Jiang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shen Qu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Liming Wang
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jingyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuwei Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shan He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital and School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Junyan Han
- Department of Immunology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hui Wang
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyCancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Gynecologic Oncology, Women's HospitalZhejiang University School of MedicineZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
10
|
Alenezi SK. CAR T cells in lung cancer: Targeting tumor-associated antigens to revolutionize immunotherapy. Pathol Res Pract 2025; 269:155947. [PMID: 40168775 DOI: 10.1016/j.prp.2025.155947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Tumor-targeted T cells engineered for targeting and killing tumor cells have revolutionized cancer treatment, specifically in hematologic malignancies, through chimeric antigen receptor (CAR) T cell therapy. However, the migration of this success to lung cancer is challenging due to the tumor microenvironment (TME), antigen heterogeneity, and limitations of T cell infiltration. This review aims to evaluate current strategies addressing these barriers, focusing on the optimization of tumor-associated antigen (TAA) targeting, such as epidermal growth factor receptor (EGFR), mucin-1 (MUC1), and mesothelin (MSLN), which are frequently overexpressed in lung cancer and offer promising targets for CAR T-cell therapy. In this review, we discuss recent progress in CAR T cell engineering, applying enhanced costimulatory molecules, cytokine-secreting CAR T cells, and engineered modifications to improve T cell resilience in immunosuppressive environments. Additionally, this review also evaluates combination therapies of immune checkpoint inhibitors and recently published clinical trials on lung cancer with CAR T cells. We offer insights into the way to optimize CAR T cell therapy for lung cancer by analyzing antigen selection, immune evasion, and the strategies to enhance T cell persistence and tumor infiltration.
Collapse
Affiliation(s)
- Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia.
| |
Collapse
|
11
|
De Angelis B, D’Amore ML, Lecot P, Neininger K, Lorrain M, Gambotti L, Dreuillet C, Courcault E, Chatterjee S, Delgado J, Galy A, Franz P, Rodriguez-Madoz JR, Cabrerizo Y, Richter A, Girvalaki C, Noviello M, Tassi E, Sanges C, Luu M, Hudecek M, Kremer A, Locatelli F, Negre H, Quintarelli C. European survey on CAR T-Cell analytical methods from apheresis to post-infusion immunomonitoring. Front Immunol 2025; 16:1567582. [PMID: 40342422 PMCID: PMC12058815 DOI: 10.3389/fimmu.2025.1567582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/24/2025] [Indexed: 05/11/2025] Open
Abstract
Background Chimeric Antigen Receptor (CAR) T-cell therapy has emerged as a revolutionary approach to cancer treatment. Given the rapid expansion of new indications addressed by newly developed CAR T-cell products, it is essential to standardize analytical methods for the characterization/monitoring of apheresis materials, drug products, and post-infusion patient samples. Methods The T2Evolve Consortium, part of the European Union's Innovative Medicines Initiative (IMI), conducted an extensive anonymous online survey between February and June 2022. Comprising 36 questions, the survey targeted a wide range of stakeholders involved in engineered T-cell therapies, including researchers, manufacturers, and clinicians. Its goal was to address the current variability within the CAR T-cell field, focusing on analytical assays for quality control of apheresis materials, drug products, and post-infusion immunomonitoring. Another objective was to identify gaps and needs in the field. Results A total of 53 respondents from 13 european countries completed the survey, providing insights into the most commonly used assays for apheresis material and drug product characterization, alongside safety and efficacy tests required by the Pharmacopeia. Notably, a minority of respondents conducted phenotypical characterization of T-cell subsets in the drug product and assessed activation/exhaustion T cell profiles. Conclusion The survey underscored the necessity to standardize CAR T-cell functional potency assays and identify predictive biomarkers for response, relapse, and toxicity. Additionally, responses indicated significant variability in CAR T-cell monitoring during short-term patient follow-up across clinical centers. This European survey represents the first initiative to report current approaches in different stages of CAR T-cell therapies via a survey, from drug product quality controls to post-infusion immunomonitoring. Based on these findings, and with input from T2EVOLVE experts, the next step will be to address harmonization in the identified areas. These efforts are anticipated to significantly enhance cancer patients' access to engineered T cell therapy safely and effectively throughout Europe.
Collapse
Affiliation(s)
- Biagio De Angelis
- Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Luisa D’Amore
- Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pacôme Lecot
- Department of Clinical Research, Institute National du Cancer (French National Cancer Institute-INCa), Boulogne-Billancourt, France
| | - Kerstin Neininger
- Information Technology for Translational Medicine S.A., Esch-sur-Alzette, Luxembourg
| | - Margot Lorrain
- Information Technology for Translational Medicine S.A., Esch-sur-Alzette, Luxembourg
| | - Laetitia Gambotti
- Department of Clinical Research, Institute National du Cancer (French National Cancer Institute-INCa), Boulogne-Billancourt, France
| | - Caroline Dreuillet
- Department of Clinical Research, Institute National du Cancer (French National Cancer Institute-INCa), Boulogne-Billancourt, France
| | - Elise Courcault
- Department of Clinical Research, Institute National du Cancer (French National Cancer Institute-INCa), Boulogne-Billancourt, France
| | - Sampurna Chatterjee
- Takeda Development Center Americas, Inc., Lexington, MA, United States
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, United States
| | - Julio Delgado
- Hospital Clinic Barcelona, Insitut de Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Anne Galy
- Accelerator of Technological Research in Genomic Therapy (ART-TG), US35, Inserm, Corbeil-Essonnes, France
| | - Paul Franz
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | | | | | - Anne Richter
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | - Maddalena Noviello
- Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Tassi
- Division of Immunology, Transplantation, and Infectious Diseases, Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmen Sanges
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Andreas Kremer
- Information Technology for Translational Medicine S.A., Esch-sur-Alzette, Luxembourg
| | - Franco Locatelli
- Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Pediatrics, Catholic University of the Sacred Heart, Rome, Italy
| | - Helene Negre
- Institut de Recherche et Développement Servier Paris-Saclay, Gif-sur-Yvette, France
| | - Concetta Quintarelli
- Department of Oncology-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Zhong W, Qin Z, Yu Z, Yang J, Yan D, Engel NW, Sheppard NC, Fan Y, Radhakrishnan R, Xu X, Ma L, Fuchs SY, June CH, Guo W. Overcoming extracellular vesicle-mediated fratricide improves CAR T cell treatment against solid tumors. NATURE CANCER 2025:10.1038/s43018-025-00949-8. [PMID: 40234680 DOI: 10.1038/s43018-025-00949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
The efficacy of chimeric antigen receptor (CAR) T cells against solid tumors is limited. The molecular mechanisms underlying CAR T cell resistance are yet to be elucidated and new strategies need to be developed to improve treatment outcomes. Here we report that solid tumors respond to CAR T cells by upregulating the secretion of small extracellular vesicles carrying tumor antigens, which are horizontally transferred to CAR T cells, leading to antigen recognition and CAR T cell fratricide. Engineered CAR T cells armored with Serpin B9, a major granzyme B inhibitor, show decreased fratricide and increased vitality, tumor infiltration, and antitumor activity in female mice. Moreover, Serpin B9-armored CAR T cells show higher efficacy than parental CAR T cells in treating solid tumors when combined with the anti-programmed death 1 antibody. Our study demonstrates a mechanism that limits CAR T cell function and suggests an improved strategy in tumor treatment.
Collapse
Affiliation(s)
- Wenqun Zhong
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiyuan Qin
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ziyan Yu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingbo Yang
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongdong Yan
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nils W Engel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leyuan Ma
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Guo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Zhang G, Zhang G, Zhao Y, Wan Y, Jiang B, Wang H. Unveiling the nexus of p53 and PD-L1: insights into immunotherapy resistance mechanisms in hepatocellular carcinoma. Am J Cancer Res 2025; 15:1410-1435. [PMID: 40371157 PMCID: PMC12070102 DOI: 10.62347/brto3272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/25/2025] [Indexed: 05/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer worldwide, continues to pose a substantial health challenge with limited treatment options for advanced stages. Despite progress in therapies such as surgery, transplantation, and targeted treatments, prognosis remains bleak for many patients. The advent of immunotherapy has revolutionized the landscape of advanced HCC treatment, offering hope for improved outcomes. However, its efficacy is limited, with a modest response rate of approximately 20% as a single-agent therapy, underscoring the urgent need to decipher mechanisms of immunotherapy resistance. Tumor protein 53 gene (TP53), a pivotal tumor suppressor gene, and Programmed death ligand 1 (PD-L1), a crucial immune checkpoint ligand, play central roles in HCC's evasion of immune responses. Understanding how tumor protein 53 (p53) influences PD-L1 expression and immune system interactions is essential for unraveling the complexities of immunotherapy resistance mechanisms. Elucidating these molecular interactions not only enhances our understanding of HCC's underlying mechanisms but also lays the foundation for developing targeted treatments that may improve outcomes for patients with advanced-stage liver cancer. Ultimately, deciphering the nexus of p53 and PD-L1 in immunotherapy resistance promises to advance treatment strategies and outcomes in the challenging landscape of HCC. This review delves into the intricate relationship between p53 and PD-L1 concerning immunotherapy resistance in HCC, offering insights that could pave the way for novel therapeutic strategies aimed at enhancing treatment efficacy and overcoming resistance in advanced stages of the disease.
Collapse
Affiliation(s)
- Guoyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Gan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Yixuan Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Yunyan Wan
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Bin Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| | - Huaxiang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of MedicineShiyan 442000, Hubei, China
| |
Collapse
|
14
|
Li J, Guo L, Feng Y, Li G, Sun H, Huang W, Tian J, Du Y, An Y. Optical-magnetic Imaging for Optimizing Lymphodepletion-TIL Combination Therapy in Breast Cancer. Mol Imaging Biol 2025; 27:260-273. [PMID: 39909989 DOI: 10.1007/s11307-025-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/20/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE Lymphodepletion before tumor-infiltrating lymphocytes (TIL) infusion can activate the immune system, enhance the release of homeostatic cytokines, and decrease the number of immunosuppressive cells. This process is crucial for improving the therapeutic efficacy of TIL therapy. However, the challenge of in vivo assessing TILs targeting tumors limits the optimization of lymphodepleting conditioning regimen (LDC). PROCEDURES This study aims to employ magnetic particle imaging (MPI) and fluorescence molecular imaging (FMI) to monitor TIL biodistribution in vivo and optimize LDC in triple-negative breast cancer TIL therapy. MPI provides quantitative imaging capabilities without depth limitations, effectively complementing the high sensitivity of FMI. The efficacy of different LDCs in enhancing TIL therapy was assessed using FMI, and MPI quantified the number of TILs accumulated in the 4T1 tumor. RESULTS TILs preserved viability, phenotypes, and anti-tumor efficacy after being labeled with superparamagnetic iron oxide and fluorescence dye DiR. The dual-modality imaging system effectively discerned variations in LDC treatments that enhanced TIL therapy. Compared to TIL monotherapy, lymphodepletion with TIL therapy improves tumor dual-modality imaging signal intensity, increases the expression of monocyte chemotactic protein-1 in serum and tumor tissue, and enhances the therapeutic effect of TILs. CONCLUSION Our results confirm the utility of optical-magnetic dual-modality imaging for tracking the biodistribution of TILs in vivo. With the help of optical-magnetic dual-modality imaging, we successfully optimize TIL combination therapy. Optical-magnetic dual-modality imaging provides a new approach to develop personalized immunotherapy strategies and mine potential therapeutic mechanisms for TIL.
Collapse
Affiliation(s)
- Jiaqian Li
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lishuang Guo
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Yuan Feng
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Guanghui Li
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - He Sun
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jie Tian
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China.
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- The University of Chinese Academy of Sciences, Beijing, 100080, China.
| | - Yu An
- School of Engineering Medicine & School of Biological Science and Medicine Engineering, Beihang University, Beijing, 100191, China.
- The Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
15
|
Davila M, Lee SB, Kang YP, Boucher J, Mandula J, Roselli E, Chang D, Jimenez R, Kotani H, Reid K, Vazquez-Martinez J, Beatty N, Goala P, Sierra-Mondragon R, Liu M, Koomen J, Nguyen J, Hussaini M, Shaw T, Wang X, Faramand R, Jain M, Locke F, Rodriguez P, Sailer C, McSain S, Hamid S, Tariq M, Wang J, Abraham-Miranda J. CAR T cell-driven induction of iNOS in tumor-associated macrophages promotes CAR T cell resistance in B cell lymphoma. RESEARCH SQUARE 2025:rs.3.rs-3481746. [PMID: 40235478 PMCID: PMC11998770 DOI: 10.21203/rs.3.rs-3481746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapies have revolutionized B cell malignancy treatment, but subsets of patients with large B cell lymphoma (LBCL) experience primary resistance or relapse after CAR T cell treatment. To uncover tumor microenvironment (TME)-induced resistance mechanisms, we examined patients' intratumoral immune infiltrates and observed that elevated levels of immunoregulatory macrophages in pre-infusion tumor biopsies are correlated with poor clinical responses. CAR T cell-produced interferon-gamma (IFN-γ) promotes the expression of inducible nitric oxide synthase (iNOS, NOS2) in immunoregulatory macrophages, impairing CAR T cell function. Mechanistically, iNOS-expressing macrophages upregulated the p53 pathway, mediating apoptosis and cell cycle arrest in CAR T cells, while downregulating the MYC pathway involved in ribosome biogenesis and protein synthesis. Furthermore, CAR T cell metabolism is compromised by depletion of glycolytic intermediates and rewiring of the TCA cycle. Pharmacological inhibition of iNOS enhances the CAR T cell treatment efficacy in B cell tumor-bearing mice. Notably, elevated levels of iNOS+CD14+ monocytes were observed in leukaphereses of patients with non-durable response to CAR T cell therapy. These findings suggest that mitigating iNOS in tumor-associated macrophages (TAMs) by blocking IFN-γ secretion from CAR T cells will improve outcomes for LBCL patients.
Collapse
|
16
|
Gaoual Y, Mahyaoui A, Yachi L, Bouatia M, Aliat Z, Rahali Y. Advancements and challenges in CAR T cell therapy for pediatric brain tumors: A review. J Oncol Pharm Pract 2025:10781552251331609. [PMID: 40156311 DOI: 10.1177/10781552251331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy represents a groundbreaking advancement in immunotherapy, initially gaining FDA approval for treating hematological malignancies. This therapy has shown promising results in solid tumors, particularly in pediatric brain tumors, which are the leading cause of cancer-related death in children. CAR T cells are engineered to target specific antigens on tumor cells, thereby reducing off-target effects and increasing the cytotoxic impact on cancer cells. Over the years, CAR T cell technology has evolved through five generations, each enhancing the structure, functionality, and safety of these cells. Despite these advancements, the application of CAR T cells in solid tumors, especially within the central nervous system (CNS), faces significant challenges. These include the physical barrier posed by the blood-brain barrier (BBB), the immunosuppressive tumor microenvironment (TME), and the heterogeneity of tumor antigens. The review discusses several promising antigenic targets for CAR T cells in pediatric brain tumors, such as HER2, EphA2, IL-13Rα2, and Survivin, which have been explored in recent clinical trials. These trials have shown early promise in improving patient outcomes, though the risks of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) remain concerns. The future of CAR T cell therapy lies in overcoming these barriers through innovative approaches like "Armored CARs" or TRUCKs, designed to modulate the TME and improve CAR T cell efficacy in solid tumors. Additionally, combination therapies and safety switches in next-generation CAR T cells are being explored to enhance therapeutic potential while minimizing adverse effects.
Collapse
Affiliation(s)
- Yasmina Gaoual
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
| | - Adam Mahyaoui
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
| | - Lamyae Yachi
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Children's hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Team of analytical chemistry and bromatology, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
| | - Mustapha Bouatia
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Children's hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Team of analytical chemistry and bromatology, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
- Ibn Sina University Hospital Center, 10 170 Rabat, Morocco
| | - Zineb Aliat
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
| | - Younes Rahali
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Ibn Sina University Hospital Center, 10 170 Rabat, Morocco
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
| |
Collapse
|
17
|
Chen Q, Sun J, Ling S, Yang H, Li T, Yang X, Li M, Du M, Zhang Y, Li C, Wang Q. Tumor Microenvironment-Responsive Nano-Immunomodulators for Enhancing Chimeric Antigen Receptor-T Cell Therapy in Lung Cancer. ACS NANO 2025; 19:8212-8226. [PMID: 39988897 DOI: 10.1021/acsnano.4c17899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Chimeric antigen receptor (CAR)-T cells have shown unparalleled efficacy in treating hematologic cancers, but their application in solid tumor treatment remains challenging due to the immunosuppressive tumor microenvironment (TME). It is highly significant to develop safe and efficient TME regulatory strategies for the adoptive cellular immunotherapy of tumors. Herein, a TME-responsive nanoimmunomodulator (FMANAC) is designed using a multicomponent coordination self-assembly method to reconstruct the immune chemokine gradient and overcome the suppression of CAR-T cell immunoactivity, thereby improving the infiltration and killing efficiency of CAR-T cells within tumors. The acidic TME induces the disassembly of FMANAC, followed by the drug release, in which C-C chemokine ligand 5 (CCL5) improves the disrupted chemotactic gradient within tumors, increasing CAR-T cell recruitment and infiltration into deep tissue; and NLG919 reverses indoleamine 2,3-dioxygenase (IDO)-mediated immunosuppression in TME to create a favorable environment for CAR-T cells to exert their killing function. In the H460 lung cancer animal model, this nanoregulatory strategy combined with engineered CD276 CAR-T cells, guided by multiplexed near-infrared-II fluorescence imaging for programmed administration, achieved significantly enhanced tumor treatment efficacy.
Collapse
Affiliation(s)
- Qian Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Jie Sun
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215031, China
| | - Sisi Ling
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaohu Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Meng Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mingming Du
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
18
|
Landi D, Navai SA, Brock RM, Fousek K, Nawas Z, Sanber K, Chauvin-Fleurence C, Bhat RR, Xu S, Krishnamurthy P, Choe M, Campbell ME, Morris JS, Gad AZ, Shree A, Echeandia Marrero AS, Saadeldin AM, Matthew PR, Mullikin D, Bielamowicz K, Kurenbekova L, Major AM, Salsman VS, Byrd TT, Hicks JM, Zhang YJ, Yustein J, Carisey AF, Joseph SK, Ahmed N, Hegde M. A Checkpoint Reversal Receptor Mediates Bipartite Activation and Enhances CAR T-cell Function. CANCER RESEARCH COMMUNICATIONS 2025; 5:527-548. [PMID: 39973814 PMCID: PMC11955954 DOI: 10.1158/2767-9764.crc-24-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/18/2024] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
SIGNIFICANCE Enhancing CART function and persistence while balancing immune effector-mediated inflammation is crucial. Using our clinically relevant HER2-CAR platform, we demonstrate that tumor-intrinsic signals like the PD-1/PD-L1 immune checkpoint can be leveraged in CART design to modulate immune synapse and metabolic parameters, improving antitumor function without increasing cytokine production.
Collapse
Affiliation(s)
- Daniel Landi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Shoba A. Navai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Rebecca M. Brock
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kristen Fousek
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Zeid Nawas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Khaled Sanber
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Cynthia Chauvin-Fleurence
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Raksha R. Bhat
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Shuo Xu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Purna Krishnamurthy
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Michelle Choe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Matthew E. Campbell
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jessica S. Morris
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Ahmed Z. Gad
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Ankita Shree
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Alesandra S. Echeandia Marrero
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Amr M. Saadeldin
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX
| | - Pretty R. Matthew
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Dolores Mullikin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kevin Bielamowicz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lyazat Kurenbekova
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Angela M. Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Vita S. Salsman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Tiara T. Byrd
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - John M. Hicks
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Yi Jonathan Zhang
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas
| | - Jason Yustein
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Alexandre F. Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Cell & Molecular Biology Department, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sujith K. Joseph
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nabil Ahmed
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
19
|
Yang Z, Ha B, Wu Q, Ren F, Yin Z, Zhang H. Expanding the horizon of CAR T cell therapy: from cancer treatment to autoimmune diseases and beyond. Front Immunol 2025; 16:1544532. [PMID: 40046061 PMCID: PMC11880241 DOI: 10.3389/fimmu.2025.1544532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has garnered significant attention for its transformative impact on the treatment of hematologic malignancies such as leukemia and lymphoma. Despite its remarkable success, challenges such as resistance, limited efficacy in solid tumors, and adverse side effects remain prominent. This review consolidates recent advancements in CAR-T-cell therapy and explores innovative engineering techniques and strategies to overcome the immunosuppressive tumor microenvironment (TME). We also discuss emerging applications beyond cancer, including autoimmune diseases and chronic infections. Future perspectives highlight the development of more potent CAR-T cells with increased specificity and persistence and reduced toxicity, providing a roadmap for next-generation immunotherapies.
Collapse
Affiliation(s)
- Zishan Yang
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bingjun Ha
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinhan Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Qin L, Li Y, Liu J, An X. Advancements in cellular immunotherapy: overcoming resistance in lung and colorectal cancer. Front Immunol 2025; 16:1554256. [PMID: 39975543 PMCID: PMC11835964 DOI: 10.3389/fimmu.2025.1554256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/17/2025] [Indexed: 02/21/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment, offering hope for patients with otherwise treatment-resistant tumors. Among the most promising approaches are cellular therapies, particularly chimeric antigen receptor T-cell (CAR-T) therapy, which has shown remarkable success in hematologic malignancies. However, the application of these therapies to solid tumors, such as lung and colorectal cancers, has faced significant challenges. Tumor resistance mechanisms-ranging from immune evasion, antigen loss, and immune checkpoint upregulation, to tumor microenvironment immunosuppression-remain major obstacles. This mini-review highlights the latest advancements in tumor immunotherapy, with a focus on cellular therapies, and addresses the resistance mechanisms that hinder their effectiveness in lung and colorectal cancers. We examine the evolution of CAR-T cell therapy, as well as the potential of engineered natural killer (NK) cells and macrophages in solid tumor treatment. The review also explores cutting-edge strategies aimed at overcoming resistance, including combination therapies, gene editing technologies, and nanotechnology for targeted drug delivery. By discussing the molecular, cellular, and microenvironmental factors contributing to resistance, we aim to provide a comprehensive overview of how these challenges can be overcome, paving the way for more effective, personalized immunotherapies in lung and colorectal cancer treatment.
Collapse
Affiliation(s)
- Lijuan Qin
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuan Li
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Liu
- Department of Special needs Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoqin An
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
21
|
Jaeger-Ruckstuhl CA, Specht JM, Voutsinas JM, MacMillan HR, Wu Q(V, Muhunthan V, Berger C, Pullarkat S, Wright JH, Yeung CC, Hyun TS, Seaton B, Aicher LD, Song X, Pierce RH, Lo Y, Cole GO, Lee SM, Newell EW, Maloney DG, Riddell SR. Phase I Study of ROR1-Specific CAR-T Cells in Advanced Hematopoietic and Epithelial Malignancies. Clin Cancer Res 2025; 31:503-514. [PMID: 39466024 PMCID: PMC11788652 DOI: 10.1158/1078-0432.ccr-24-2172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/25/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is expressed in hematopoietic and epithelial cancers but has limited expression on normal adult tissues. This phase I study evaluated the safety of targeting ROR1 with autologous T lymphocytes engineered to express a ROR1 chimeric antigen receptor (CAR). Secondary objectives evaluated the persistence, trafficking, and antitumor activity of CAR-T cells. PATIENTS AND METHODS Twenty-one patients with ROR1+ tumors received CAR-T cells at one of four dose levels: 3.3 × 105, 1 × 106, 3.3 × 106, and 1 × 107 cells/kg body weight, administered after lymphodepletion with cyclophosphamide/fludarabine or oxaliplatin/cyclophosphamide. Cohort A included patients with chronic lymphocytic leukemia (CLL, n = 3); cohort B included patients with triple-negative breast cancer (TNBC, n = 10) or non-small cell lung cancer (NSCLC, n = 8). A second infusion was administered to one patient in cohort A with residual CLL in the marrow and three patients in cohort B with stable disease after first infusion. RESULTS Treatment was well tolerated, apart from one dose-limiting toxicity at dose level 4 in a patient with advanced NSCLC. Two of the three (67%) patients with CLL showed robust CAR-T-cell expansion and a rapid antitumor response. In patients with NSCLC and TNBC, CAR-T cells expanded to variable levels and infiltrated tumors poorly and 1 of 18 patients (5.5%) achieved partial response by RECIST 1.1. CONCLUSIONS ROR1 CAR-T cells were well tolerated in most patients. Antitumor activity was observed in CLL but was limited in TNBC and NSCLC. Immunogenicity of the CAR and lack of sustained tumor infiltration were identified as limitations. See related commentary by Kobold, p. 437.
Collapse
MESH Headings
- Humans
- Receptor Tyrosine Kinase-like Orphan Receptors/immunology
- Receptor Tyrosine Kinase-like Orphan Receptors/genetics
- Receptor Tyrosine Kinase-like Orphan Receptors/antagonists & inhibitors
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Female
- Middle Aged
- Male
- Aged
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Adult
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Treatment Outcome
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
Collapse
Affiliation(s)
- Carla A. Jaeger-Ruckstuhl
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jennifer M. Specht
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jenna M. Voutsinas
- Clinical Statistics Team, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hugh R. MacMillan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Qian (Vicky) Wu
- Clinical Statistics Team, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Vishaka Muhunthan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Carolina Berger
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Shalini Pullarkat
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jocelyn H. Wright
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Cecilia C.S. Yeung
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Teresa S. Hyun
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Brandon Seaton
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lauri D. Aicher
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Xiaoling Song
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Robert H. Pierce
- Clinical Trials Pathology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Yun Lo
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Gabriel O. Cole
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sylvia M. Lee
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Evan W. Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - David G. Maloney
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Stanley R. Riddell
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Hematology and Medical Oncology, University of Washington, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
22
|
Kobold S. RORing CAR T Cells in Solid and Hematologic Cancers: Same but Different. Clin Cancer Res 2025; 31:437-438. [PMID: 39625823 PMCID: PMC7617067 DOI: 10.1158/1078-0432.ccr-24-3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
A recent phase I clinical study tested anti-ROR1 chimeric antigen receptor (CAR) T cells in patients with chronic lymphocytic leukemia, non-small cell lung cancer, and triple-negative breast cancer. The product could be safely administered and had activity in chronic lymphocytic leukemia but less so in non-small cell lung cancer and triple-negative breast cancer. See related article by Jaeger-Ruckstuhl et al., p. 503.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Female
Collapse
Affiliation(s)
- Sebastian Kobold
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), a partnership between LMU Hospital and DKTK Heidelberg, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München - German Research Center for Environmental Health Neuherberg, Germany
| |
Collapse
|
23
|
Garitaonaindia Y, Martínez-Cutillas M, Uribarren M, Redondo I, Calvo V, Serna-Blasco R, Provencio M. Adoptive cell therapies in thoracic malignancies: a comprehensive review. Clin Transl Oncol 2025:10.1007/s12094-024-03834-5. [PMID: 39789380 DOI: 10.1007/s12094-024-03834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
This review aims to summarize recent studies and findings within adoptive cell therapies, including tumor-infiltrating lymphocytes, genetically engineered T cell receptors, and chimeric antigen receptor T cells, in the treatment of thoracic malignancies, including non-small cell lung cancer, small cell lung cancer, and malignant pleural mesothelioma. Several trials are ongoing, and a few have reported results, suggesting that adoptive cell therapies may represent a potential treatment option for these patients, especially when checkpoint inhibition has failed. We also discuss the potential implementation of these therapies, as they present a new toxicity profile and an intrinsic financial burden. Despite the challenges to overcome, such as the accurate identification of antigens and developing strategies to improve efficacy and toxicity profiles, new cellular therapies are experiencing significant development in the field of thoracic malignancies.
Collapse
Affiliation(s)
- Yago Garitaonaindia
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain.
| | - Marta Martínez-Cutillas
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain
| | - Maria Uribarren
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain
| | - Isabel Redondo
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain
| | - Virginia Calvo
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain
| | - Roberto Serna-Blasco
- Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Puerta De Hierro University Hospital, Majadahonda, Madrid, Spain
| | - Mariano Provencio
- Medical Oncology Department, Puerta de Hierro University Hospital, C/ Manuel de Falla, 1, 28222, Majadahonda, Madrid, Spain.
| |
Collapse
|
24
|
Hao L, Ling YY, Wang J, Shen QH, Li ZY, Tan CP. Theranostic Rhenium(I)-Based ER-Phagy Retardant Promotes Immunogenic Cell Death. J Med Chem 2025; 68:338-347. [PMID: 39720929 DOI: 10.1021/acs.jmedchem.4c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
ER-phagy is a double-edged sword in the occurrence, development, and treatment of cancer; especially, its functions in immunotherapy are still unknown. In this work, we designed a theranostic Re complex (Re1) containing a BODIPY-derived ligand and a β-carboline ligand to target the endoplasmic reticulum (ER) and block ER-phagy at the late stages. Interestingly, as validated both in vitro and in vivo, ER-phagy blockage greatly enhances the capability of Re1 to induce immunogenic cell death (ICD). In summary, we dexterously fused two molecular modules for ER targeting and ER-phagy blockage into a coordination complex to afford a highly effective ICD inducer, which provides clues for designing new cancer immunotherapeutics.
Collapse
Affiliation(s)
- Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jie Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou 510006, P. R. China
| |
Collapse
|
25
|
Ward MB, Jones AB, Krenciute G. Therapeutic advantage of combinatorial chimeric antigen receptor T cell and chemotherapies. Pharmacol Rev 2025; 77:100011. [PMID: 39952691 DOI: 10.1124/pharmrev.124.001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have transformed outcomes for many patients with hematological malignancies. However, some patients do not respond to CAR T cell treatment, and adapting CAR T cells for treatment of solid and brain tumors has been met with many challenges, including a hostile tumor microenvironment and poor CAR T cell persistence. Thus, it is unlikely that CAR T cell therapy alone will be sufficient for consistent, complete tumor clearance across patients with cancer. Combinatorial therapies of CAR T cells and chemotherapeutics are a promising approach for overcoming this because chemotherapeutics could augment CAR T cells for improved antitumor activity or work in tandem with CAR T cells to clear tumors. Herein, we review efforts toward achieving successful CAR T cell and chemical drug combination therapies. We focus on combination therapies with approved chemotherapeutics because these will be more easily translated to the clinic but also review nonapproved chemotherapeutics and drug screens designed to reveal promising new CAR T cell and chemical drug combinations. Overall, this review highlights the promise of CAR T cell and chemotherapy combinations with a specific focus on how combinatorial therapy overcomes challenges faced by either monotherapy and supports the potential of this therapeutic strategy to improve outcomes for patients with cancer. SIGNIFICANCE STATEMENT: Improving currently available CAR T cell products via combinatorial therapy with chemotherapeutics has the potential to drastically expand the types of cancers and number of patients that could benefit from these therapies when neither alone has been sufficient to achieve tumor clearance. Herein, we provide a thorough review of the current efforts toward studying CAR T and chemotherapy combinatorial therapies and offer perspectives on optimal ways to identify new and effective combinations moving forward.
Collapse
Affiliation(s)
- Meghan B Ward
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Amber B Jones
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
26
|
Dou L, Fang Y, Yang H, Ai G, Shen N. Immunogenic cell death: A new strategy to enhancing cancer immunotherapy. Hum Vaccin Immunother 2024; 20:2437918. [PMID: 39655738 PMCID: PMC11639453 DOI: 10.1080/21645515.2024.2437918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
Immunogenic cell death (ICD) is a distinct type of stress-induced regulated cell death that can lead to adaptive immune responses and the establishment of immunological memory. ICD exhibits both similarities and differences when compared to apoptosis and other non-apoptotic forms of regulated cell death (RCD). The interplay between ICD-mediated immunosurveillance against cancer and the ability of cancer cells to evade ICD influences the host-tumor immunological interaction. Consequently, the restoration of ICD and the development of effective strategies to induce ICD have emerged as crucial considerations in the treatment of cancer within the context of immunotherapy. To enhance comprehension of ICD in the setting of cancer, this paper examines the interconnected responsive pathways associated with ICD, the corresponding biomarkers indicative of ICD, and the mechanisms through which tumors subvert ICD. Additionally, this review explores strategies for reinstating ICD and the therapeutic potential of harnessing ICD in cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Dou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fang
- Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyuan Yang
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Ai
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Erickson SM, Manning BM, Kumar A, Patel MR. Engineered Cellular Therapies for the Treatment of Thoracic Cancers. Cancers (Basel) 2024; 17:35. [PMID: 39796666 PMCID: PMC11718842 DOI: 10.3390/cancers17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses. In this review, we discuss the prospect of chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, T cell receptor-engineered (TCR-T) cells, and tumor-infiltrating lymphocytes (TILs) as treatments for thoracic malignancies. CAR-T cells and TILs have proven successful in several hematologic cancers and advanced melanoma, respectively, but outside of melanoma, results have thus far been unsuccessful in most other solid tumors. NK cells and TCR-T cells are additional cell therapy platforms with their own unique advantages and challenges. Obstacles that must be overcome to develop effective cell therapy for these malignancies include selecting an appropriate target antigen, combating immunosuppressive cells and signaling molecules present in the tumor microenvironment, persistence, and delivering a sufficient quantity of antitumor immune cells to the tumor. Induced pluripotent stem cells (iPSCs) offer great promise as a source for both NK and T cell-based therapies due to their unlimited expansion potential. Here, we review clinical trial data, as well as recent basic scientific advances that offer insight into how we may overcome these obstacles, and provide an overview of ongoing trials testing novel strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Spencer M. Erickson
- Internal Medicine Residency Program, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Benjamin M. Manning
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Manish R. Patel
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| |
Collapse
|
28
|
Guo Q, Li J, Wang J, Li L, Wei J, Zhang L. The advent of chimeric antigen receptor T Cell therapy in recalibrating immune balance for rheumatic autoimmune disease treatment. Front Pharmacol 2024; 15:1502298. [PMID: 39734406 PMCID: PMC11672202 DOI: 10.3389/fphar.2024.1502298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
CAR-T cell therapy, a cutting-edge cellular immunotherapy with demonstrated efficacy in treating hematologic malignancies, also exhibits significant promise for addressing autoimmune diseases. This innovative therapeutic approach holds promise for achieving long-term remission in autoimmune diseases, potentially offering significant benefits to affected patients. Current targets under investigation for the treatment of these conditions include CD19, CD20, and BCMA, among others. However, CAR-T therapy faces difficulties such as time-consuming cell manufacturing, complex and expensive process, and the possibility of severe adverse reactions complicating the treatment, etc. This article examines CAR-T therapy across various rheumatic autoimmune diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS), systemic sclerosis (SSc), antisynthetase syndrome (ASS), and ANCA-associated vasculitis (AAV), highlighting both therapeutic advancements and ongoing challenges.
Collapse
Affiliation(s)
- Qianyu Guo
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Jie Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Juanjuan Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Linxin Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jia Wei
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
29
|
Li MSC, Chan ALS, Mok KKS, Chan LL, Mok TSK. Next-generation immunotherapy: igniting new hope for lung cancer. Ther Adv Med Oncol 2024; 16:17588359241302021. [PMID: 39649017 PMCID: PMC11624561 DOI: 10.1177/17588359241302021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024] Open
Abstract
Adoption of immunotherapy has completely transformed the treatment landscape of cancer. Patients with advanced cancer treated with immunotherapy may benefit from durable tumor response and long-term survival. The most widely used immunotherapy in solid tumors is anti-programmed-death (ligand) protein (PD-(L)1), which is now an integral part of non-small cell lung cancer (NSCLC) treatment irrespective of histological cell types and tumor stage. However, the vast majority of patients with advanced NSCLC treated with anti-PD-(L)1 still develop therapeutic resistance, and the prognosis after anti-PD-(L)1 resistance is poor. Resistance mechanisms to PD-1 blockade are often complex and encompass a combination of defects within the cancer-immunity cycle. These defects include failure in antigen presentation and T-cell priming, presence of co-inhibitory immune checkpoints, inability of immune cells to infiltrate the tumor, and presence of immunosuppressive tumor microenvironment. Recently, advances in drug design, genomic sequencing, and gene editing technologies have led to development of next-generation immunotherapies that may potentially overcome these resistance mechanisms. In this review, we will discuss the anti-PD-(L)1 resistance mechanism landscape in NSCLC and four novel modalities of immunotherapy in detail, namely novel immune checkpoint inhibitor and targeted therapy combinations, bispecific antibodies, cancer vaccine, and cell therapy. These novel therapeutics have all demonstrated early clinical data in NSCLC treatment and may work synergistically with each other to restore anticancer immunity. In addition, we share our perspectives on the future promises and challenges in the transformation of these novel immunotherapies to standard clinical care.
Collapse
Affiliation(s)
- Molly S. C. Li
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew L. S. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kevin K. S. Mok
- Department of Clinical Oncology, Prince of Wales Hospital, Shatin, Hong Kong
| | - Landon L. Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tony S. K. Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
30
|
Trautmann T, Yakobian N, Nguyen R. CAR T-cells for pediatric solid tumors: where to go from here? Cancer Metastasis Rev 2024; 43:1445-1461. [PMID: 39317919 PMCID: PMC11554711 DOI: 10.1007/s10555-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great success that chimeric antigen receptor (CAR) T-cells have had in patients with B-cell malignancies and multiple myeloma, they continue to have limited efficacy against most solid tumors. Especially in the pediatric population, pre- and post-treatment biopsies are rarely performed due to ethical reasons, and thus, our understanding is still very limited regarding the mechanisms in the tumor microenvironment by which tumor cells exclude effectors and attract immune-suppressive cells. Nevertheless, based on the principles that are known, current T-cell engineering has leveraged some of these processes and created more potent CAR T-cells. The recent discovery of new oncofetal antigens and progress made in CAR design have expanded the potential pool of candidate antigens for therapeutic development. The most promising approaches to enhance CAR T-cells are novel CAR gating strategies, creative ways of cytokine delivery to the TME without enhancing systemic toxicity, and hijacking the chemokine axis of tumors for migratory purposes. With these new modifications, the next step in the era of CAR T-cell development will be the clinical validation of these promising preclinical findings.
Collapse
Affiliation(s)
- Tina Trautmann
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Natalia Yakobian
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA.
| |
Collapse
|
31
|
Cao YZ, Pan JY, Zheng GL, An C, Zuo MX. Hepatic arterial infusion chemotherapy combined with systemic therapy sequentially or simultaneously for advanced hepatocellular carcinoma. Cancer Immunol Immunother 2024; 74:24. [PMID: 39540963 PMCID: PMC11564491 DOI: 10.1007/s00262-024-03872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS The goal of this study was to compare the efficacy and safety of hepatic arterial infusion chemotherapy (HAIC) combined with targeted therapy and PD-(L)1 blockade (triple therapy), either sequentially (SE) or simultaneously (SI), in the treatment of Barcelona Clinic Liver Cancer (BCLC) stage C hepatocellular carcinoma (HCC). APPROACH AND RESULTS From January 1, 2018, to June 1, 2022, 575 patients with BCLC stage C HCC who underwent SE or SI triple therapy were retrospectively enrolled. Propensity score matching (PSM; 1:1) was performed to eliminate possible confounder imbalances across cohorts. We used the Kaplan-Meier method and a log-rank test to compare the overall survival (OS) and progression-free survival (PFS) rates between the SI and SE groups. The tumor response and the incidence of adverse events (AEs) were reported. After PSM, 182 patients in each of the two groups were matched. The median OS in the SI group was significantly longer than that in the SE group (28.8 vs. 16.1 months; P = 0.002), and the median PFS was significantly improved in the SI versus SE group (9.6 vs. 7.0 months; P = 0.01). The objective response rate based on the mRECIST was higher in the SI group (58% vs. 37%; P < 0.001). The total incidences of grade 3-4 AEs were 111/182 (60.9%) and 128/182 (70.3%) in the SE and SI groups, respectively. No grade 5 AEs were reported in either group. CONCLUSIONS Simultaneous HAIC plus targeted therapy and PD-(L)1 blockade significantly improved outcomes compared to the sequential regimen in patients with BCLC stage C HCC, with no unexpected AEs. CLINICAL RELEVANCE STATEMENT The patients who received hepatic arterial infusion chemotherapy combined with targeted therapy and PD-(L)1 blockade simultaneously have a better prognosis than those who received it sequentially.
Collapse
Affiliation(s)
- Yu-Zhe Cao
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Jia-Yu Pan
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Guang-Lei Zheng
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Chao An
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China.
| | - Meng-Xuan Zuo
- Department of Minimally Invasive Interventional Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China.
| |
Collapse
|
32
|
Yin L, Sun P, Guo S, Shuai P, Zhang J. CAR-T cell therapy: Challenge and opportunity for effective treatment of small cell lung cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189228. [PMID: 39615863 DOI: 10.1016/j.bbcan.2024.189228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 12/08/2024]
Abstract
Small cell lung cancer (SCLC) is a devastating malignancy characterized by rapid metastasis, drug resistance, and frequent recurrence. Owing to the paucity of existing therapeutic options, the prognosis of SCLC remains poor. Recently, the combination of immune checkpoint inhibitors and chemotherapy has resulted in modest improvements in treatment responses. In this review, we characterize the biological signature of SCLC and outline the obstacles to current treatment, including impaired antigen presentation and T cell infiltration. These obstacles may potentially be overcome by chimeric antigen receptor (CAR)-T cell therapy. For the first time, we summarize the available data and discuss the future prospects of CAR-T cell therapy for the treatment of SCLC. Given the high heterogeneity and immunosuppressive tumor microenvironment of SCLC, structural modifications of CAR-T cells and combination therapy may be required to elicit a successful antitumor response. Further research, including clinical trials, is needed to determine the suitability of CAR-T cell therapy as a treatment for SCLC.
Collapse
Affiliation(s)
- Limei Yin
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Sun
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shujin Guo
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Shuai
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Junlin Zhang
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
33
|
Ju A, Choi S, Jeon Y, Kim K. Lymphodepletion in Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: A Focus on Brain Tumors. Brain Tumor Res Treat 2024; 12:208-220. [PMID: 39542517 PMCID: PMC11570086 DOI: 10.14791/btrt.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/17/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy, which has demonstrated remarkable efficacy in hematologic malignancies, is being extended to the treatment of refractory solid tumors, including brain tumors. Lymphodepletion (LD) is an essential preconditioning process that enhances CAR-T efficacy by promoting CAR-T cell expansion and persistence in the body, and has become a standard regimen for hematologic cancers. Recent clinical results of CAR-T therapy for solid tumors, including brain tumors, have shown that cyclophosphamide/fludarabine-based preconditioning has potential benefits and is gradually becoming adopted in solid tumor CAR-T trials. Furthermore, some CAR-T trials for solid tumors are attempting to develop LD regimens optimized specifically for solid tumors, distinct from the standard LD regimens used in hematologic cancers. In contrast, CAR-T therapy targeting brain tumors frequently employs locoregionally repeated administration in tumors or cerebrospinal fluid, resulting in less frequent use of LD compared to other solid tumors. Nevertheless, several clinical studies suggest that LD may still provide potential benefits for CAR-T expansion and improvement in clinical responses in systemic CAR-T administration. The studies presented in this review suggest that while LD can be beneficial for enhancing CAR-T efficacy, considerations must be made regarding its compatibility with the CAR-T administration route, potential excessive activation based on CAR-T structural characteristics, and target expression in normal organs. Additionally, given the unique characteristics of brain tumors, optimized selection of LD agents, as well as dosing and regimens, may be required, highlighting the need for further research.
Collapse
Affiliation(s)
- Anna Ju
- R&D Center, CellabMED Inc., Seoul, Korea
| | | | | | - Kiwan Kim
- R&D Center, CellabMED Inc., Seoul, Korea.
| |
Collapse
|
34
|
Porter LH, Harrison SG, Risbridger GP, Lister N, Taylor RA. Left out in the cold: Moving beyond hormonal therapy for the treatment of immunologically cold prostate cancer with CAR T cell immunotherapies. J Steroid Biochem Mol Biol 2024; 243:106571. [PMID: 38909866 DOI: 10.1016/j.jsbmb.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Prostate cancer is primarily hormone-dependent, and medical treatments have focused on inhibiting androgen biosynthesis or signaling through various approaches. Despite significant advances with the introduction of androgen receptor signalling inhibitors (ARSIs), patients continue to progress to castration-resistant prostate cancer (CRPC), highlighting the need for targeted therapies that extend beyond hormonal blockade. Chimeric Antigen Receptor (CAR) T cells and other engineered immune cells represent a new generation of adoptive cellular therapies. While these therapies have significantly enhanced outcomes for patients with hematological malignancies, ongoing research is exploring the broader use of CAR T therapy in solid tumors, including advanced prostate cancer. In general, CAR T cell therapies are less effective against solid cancers with the immunosuppressive tumor microenvironment hindering T cell infiltration, activation and cytotoxicity following antigen recognition. In addition, inherent tumor heterogeneity exists in patients with advanced prostate cancer that may prevent durable therapeutic responses using single-target agents. These barriers must be overcome to inform clinical trial design and improve treatment efficacy. In this review, we discuss the innovative and rationally designed strategies under investigation to improve the clinical translation of cellular immunotherapy in prostate cancer and maximise therapeutic outcomes for these patients.
Collapse
Affiliation(s)
- L H Porter
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - S G Harrison
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - G P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia; Cancer Immunology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia
| | - Natalie Lister
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - R A Taylor
- Cancer Immunology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Cabrini Institute, Cabrini Health, Malvern, VIC 3144, Australia; Prostate Cancer Research Group, Monash Biomedicine Discovery Institute, Cancer Program, Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
35
|
Xu F, Ni Q, Gong N, Xia B, Zhang J, Guo W, Hu Z, Li J, Liang XJ. Delivery Systems Developed for Treatment Combinations to Improve Adoptive Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407525. [PMID: 39165065 DOI: 10.1002/adma.202407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Adoptive cell therapy (ACT) has shown great success in the clinic for treating hematologic malignancies. However, solid tumor treatment with ACT monotherapy is still challenging, owing to insufficient expansion and rapid exhaustion of adoptive cells, tumor antigen downregulation/loss, and dense tumor extracellular matrix. Delivery strategies for combination cell therapy have great potential to overcome these hurdles. The delivery of vaccines, immune checkpoint inhibitors, cytokines, chemotherapeutics, and photothermal reagents in combination with adoptive cells, have been shown to improve the expansion/activation, decrease exhaustion, and promote the penetration of adoptive cells in solid tumors. Moreover, the delivery of nucleic acids to engineer immune cells directly in vivo holds promise to overcome many of the hurdles associated with the complex ex vivo cell engineering strategies. Here, these research advance, as well as the opportunities and challenges for integrating delivery technologies into cell therapy s are discussed, and the outlook for these emerging areas are criticlly analyzed.
Collapse
Affiliation(s)
- Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiankun Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Ningqiang Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Weisheng Guo
- College of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
36
|
Zuo M, Cao Y, Yang Y, Zheng G, Li D, Shao H, Ma Q, Song P, An C, Li W. Hepatic arterial infusion chemotherapy plus camrelizumab and apatinib for advanced hepatocellular carcinoma. Hepatol Int 2024; 18:1486-1498. [PMID: 38961006 PMCID: PMC11461759 DOI: 10.1007/s12072-024-10690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/21/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND AND AIMS There is limited information on combination of hepatic arterial infusion chemotherapy (HAIC) and systemic therapy for advanced hepatocellular carcinoma (Ad-HCC). We aim to compare the efficacy and safety of HAIC plus camrelizumab (a PD-1 inhibitor) and apatinib (an VEGFR-2 inhibitor) versus camrelizumab and apatinib for Ad-HCC. METHODS From April 2019 to October 2022, 416 patients with Ad-HCC who received either HAIC plus camrelizumab and apatinib (TRIPLET protocol, n = 207) or camrelizumab and apatinib (C-A protocol, n = 209) were reviewed retrospectively. The propensity score matching (PSM) was used to reduce selective bias. Overall survival (OS) and progression-free survival (PFS) were compared using the Kaplan-Meier method with the log-rank test. Cox regression analyses of independent prognostic factors were evaluated. RESULTS After PSM 1:1, 109 patients were assigned to two groups. The median OS of not reached in the TRIPLET group was significantly longer than that of 19.9 months in the C-A group (p < 0.001), while in the TRIPLET group, the median PFS of 11.5 months was significantly longer than that of 9.6 months in the C-A group (p < 0.001). Multivariate analyses showed that the factors significantly affected the OS were CTP grade, tumor number > 3, and TRIPLET treatment (p < 0.001). Grade 3/4 adverse events occurred at a rate of 82.1% vs. 71.3% in TRIPLET and C-A groups, respectively. CONCLUSION The TRIPLET protocol has promising survival benefits in the management of patients with Ad-HCC, with acceptable safety. TRAIL REGISTRATION The study has been retrospectively registered at Chinese Clinical Trial Registry ( https://www.chictr.org.cn/ , ChiCTR2300075828).
Collapse
Affiliation(s)
- Mengxuan Zuo
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Yuzhe Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Yi Yang
- Department of Hepatobiliary Surgery, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Guanglei Zheng
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Da Li
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Hongyan Shao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Qiaoyun Ma
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Peng Song
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, People's Republic of China
- The Second Medical and National Clinical Research Center for Geriatric Disease, Beijing, People's Republic of China
| | - Chao An
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China
| | - Wang Li
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China.
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, People's Republic of China.
| |
Collapse
|
37
|
Ghemrawi R, Abuamer L, Kremesh S, Hussien G, Ahmed R, Mousa W, Khoder G, Khair M. Revolutionizing Cancer Treatment: Recent Advances in Immunotherapy. Biomedicines 2024; 12:2158. [PMID: 39335671 PMCID: PMC11429153 DOI: 10.3390/biomedicines12092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer immunotherapy has emerged as a transformative approach in oncology, utilizing the body's immune system to specifically target and destroy malignant cells. This review explores the scope and impact of various immunotherapeutic strategies, including monoclonal antibodies, chimeric antigen receptor (CAR)-T cell therapy, checkpoint inhibitors, cytokine therapy, and therapeutic vaccines. Monoclonal antibodies, such as Rituximab and Trastuzumab, have revolutionized treatment paradigms for lymphoma and breast cancer by offering targeted interventions that reduce off-target effects. CAR-T cell therapy presents a potentially curative option for refractory hematologic malignancies, although challenges remain in effectively treating solid tumors. Checkpoint inhibitors have redefined the management of cancers like melanoma and lung cancer; however, managing immune-related adverse events and ensuring durable responses are critical areas of focus. Cytokine therapy continues to play a vital role in modulating the immune response, with advancements in cytokine engineering improving specificity and reducing systemic toxicity. Therapeutic vaccines, particularly mRNA-based vaccines, represent a frontier in personalized cancer treatment, aiming to generate robust, long-lasting immune responses against tumor-specific antigens. Despite these advancements, the field faces significant challenges, including immune resistance, tumor heterogeneity, and the immunosuppressive tumor microenvironment. Future research should address these obstacles through emerging technologies, such as next-generation antibodies, Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-based gene editing, and AI-driven drug discovery. By integrating these novel approaches, cancer immunotherapy holds the promise of offering more durable, less toxic, and highly personalized treatment options, ultimately improving patient outcomes and survival rates.
Collapse
Affiliation(s)
- Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Lama Abuamer
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghadeer Hussien
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Rahaf Ahmed
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Walaa Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
38
|
Zhang B, Liu J, Mo Y, Zhang K, Huang B, Shang D. CD8 + T cell exhaustion and its regulatory mechanisms in the tumor microenvironment: key to the success of immunotherapy. Front Immunol 2024; 15:1476904. [PMID: 39372416 PMCID: PMC11452849 DOI: 10.3389/fimmu.2024.1476904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
A steady dysfunctional state caused by chronic antigen stimulation in the tumor microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity, and changes in metabolism and transcription. TME induces T cell exhaustion through long-term antigen stimulation, upregulation of immune checkpoints, recruitment of immunosuppressive cells, and secretion of immunosuppressive cytokines. CD8+ Tex may be both the reflection of cancer progression and the reason for poor cancer control. The successful outcome of the current cancer immunotherapies, which include immune checkpoint blockade and adoptive cell treatment, depends on CD8+ Tex. In this review, we are interested in the intercellular signaling network of immune cells interacting with CD8+ Tex. These findings provide a unique and detailed perspective, which is helpful in changing this completely unpopular state of hypofunction and intensifying the effect of immunotherapy.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Mo
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Lei M, Xiao M, Long Z, Lin T, Ding R, Quan Q. Prognosis of colorectal cancer, prognostic index of immunogenic cell death associated genes in response to immunotherapy, and potential therapeutic effects of ferroptosis inducers. Front Immunol 2024; 15:1458270. [PMID: 39372411 PMCID: PMC11449742 DOI: 10.3389/fimmu.2024.1458270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction This study leverages bioinformatics and medical big data to integrate datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), providing a comprehensive overview of immunogenic cell death (ICD)-related gene expression in colorectal cancer (CRC). The research aims to elucidate the molecular pathways and gene networks associated with ICD in CRC, with a focus on the therapeutic potential of cell death inducers, including ferroptosis agents, and their implications for precision medicine. Methods We conducted differential expression analysis and utilized advanced bioinformatic techniques to analyze ICD-related gene expression in CRC tissues. Unsupervised consensus clustering was applied to categorize CRC patients into distinct ICD-associated subtypes, followed by an in-depth immune microenvironment analysis and single-cell RNA sequencing to investigate immune responses and cell infiltration patterns. Experimental validation was performed to assess the impact of cell death inducers on ICD gene expression and their interaction with ferroptosis inducers in combination with other clinical drugs. Results Distinct ICD gene expression profiles were identified in CRC tissues, revealing molecular pathways and intricate gene networks. Unsupervised consensus clustering refined the CRC cohort into unique ICD-associated subtypes, each characterized by distinct clinical and immunological features. Immune microenvironment analysis and single-cell RNA sequencing revealed significant variations in immune responses and cell infiltration patterns across these subtypes. Experimental validation confirmed that cell death inducers directly affect ICD gene expression, highlighting their therapeutic potential. Additionally, combinatorial therapies with ferroptosis inducers and clinical drugs were shown to influence drug sensitivity and resistance in CRC. Discussion Our findings underscore the importance of ICD-related genes in CRC prognosis and therapeutic targeting. The study provides actionable insights into the efficacy of cell death-inducing therapies, particularly ferroptosis inducers, and their regulatory mechanisms in CRC. These discoveries support the development of precision medicine strategies targeting ICD genes and offer valuable guidance for translating these therapies into clinical practice, with the potential to enhance CRC treatment outcomes and patient survival.
Collapse
Affiliation(s)
- Mengjie Lei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Meihua Xiao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhiqing Long
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Taolin Lin
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ran Ding
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Qi Quan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of the VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
40
|
Xu L, Cao P, Wang J, Zhang P, Hu S, Cheng C, Wang H. IL-22: A key inflammatory mediator as a biomarker and potential therapeutic target for lung cancer. Heliyon 2024; 10:e35901. [PMID: 39263114 PMCID: PMC11387261 DOI: 10.1016/j.heliyon.2024.e35901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Lung cancer, one of the most prevalent cancers worldwide, stands as the primary cause of cancer-related deaths. As is well-known, the utmost crucial risk factor contributing to lung cancer is smoking. In recent years, remarkable progress has been made in treating lung cancer, particularly non-small cell lung cancer (NSCLC). Nevertheless, the absence of effective and accurate biomarkers for diagnosing and treating lung cancer remains a pressing issue. Interleukin 22 (IL-22) is a member of the IL-10 cytokine family. It exerts biological functions (including induction of proliferation and anti-apoptotic signaling pathways, enhancement of tissue regeneration and immunity defense) by binding to heterodimeric receptors containing type 1 receptor chain (R1) and type 2 receptor chain (R2). IL-22 has been identified as a pro-cancer factor since dysregulation of the IL-22-IL-22R system has been implicated in the development of different cancers, including lung, breast, gastric, pancreatic, and colon cancers. In this review, we discuss the differential expression, regulatory role, and potential clinical significance of IL-22 in lung cancer, while shedding light on innovative approaches for the future.
Collapse
Affiliation(s)
- Ling Xu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Peng Cao
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Jianpeng Wang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Peng Zhang
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Shuhui Hu
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Chao Cheng
- Department of Interventional Pulmonary Diseases, The Anhui Chest Hospital, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
42
|
Shi T, Sun M, Tuerhong S, Li M, Wang J, Wang Y, Zheng Q, Zou L, Lu C, Sun Z, Zou Z, Shao J, Du J, Li R, Liu B, Meng F. Acidity-targeting transition-aided universal chimeric antigen receptor T-cell (ATT-CAR-T) therapy for the treatment of solid tumors. Biomaterials 2024; 309:122607. [PMID: 38759487 DOI: 10.1016/j.biomaterials.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The use of CAR-T cells in treating solid tumors frequently faces significant challenges, mainly due to the heterogeneity of tumor antigens. This study assessed the efficacy of an acidity-targeting transition-aided universal chimeric antigen receptor T (ATT-CAR-T) cell strategy, which is facilitated by an acidity-targeted transition. Specifically, the EGFRvIII peptide was attached to the N-terminus of a pH-low insertion peptide. Triggered by the acidic conditions of the tumor microenvironment, this peptide alters its structure and selectively integrates into the membrane of solid tumor cells. The acidity-targeted transition component effectively relocated the EGFRvIII peptide across various tumor cell membranes; thus, allowing the direct destruction of these cells by EGFRvIII-specific CAR-T cells. This method was efficient even when endogenous antigens were absent. In vivo tests showed marked antigen modification within the acidic tumor microenvironment using this component. Integrating this component with CAR-T cell therapy showed high effectiveness in combating solid tumors. These results highlight the capability of ATT-CAR-T cell therapy to address the challenges presented by tumor heterogeneity and expand the utility of CAR-T cell therapy in the treatment of solid tumors.
Collapse
Affiliation(s)
- Tianyu Shi
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengna Sun
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Subiyinuer Tuerhong
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengru Li
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Jiayu Wang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yingxin Wang
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Qinghua Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lu Zou
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Changchang Lu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhichen Sun
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhengyun Zou
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Jie Shao
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Juan Du
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Rutian Li
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Fanyan Meng
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
43
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
44
|
Xia X, Yang Z, Lu Q, Liu Z, Wang L, Du J, Li Y, Yang DH, Wu S. Reshaping the tumor immune microenvironment to improve CAR-T cell-based cancer immunotherapy. Mol Cancer 2024; 23:175. [PMID: 39187850 PMCID: PMC11346058 DOI: 10.1186/s12943-024-02079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
In many hematologic malignancies, the adoptive transfer of chimeric antigen receptor (CAR) T cells has demonstrated notable success; nevertheless, further improvements are necessary to optimize treatment efficacy. Current CAR-T therapies are particularly discouraging for solid tumor treatment. The immunosuppressive microenvironment of tumors affects CAR-T cells, limiting the treatment's effectiveness and safety. Therefore, enhancing CAR-T cell infiltration capacity and resolving the immunosuppressive responses within the tumor microenvironment could boost the anti-tumor effect. Specific strategies include structurally altering CAR-T cells combined with targeted therapy, radiotherapy, or chemotherapy. Overall, monitoring the tumor microenvironment and the status of CAR-T cells is beneficial in further investigating the viability of such strategies and advancing CAR-T cell therapy.
Collapse
Affiliation(s)
- Xueting Xia
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zongxin Yang
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qisi Lu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, China
| | - Zhenyun Liu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lei Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jinwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA.
| | - Shaojie Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
45
|
Rina A, Maffeo D, Minnai F, Esposito M, Palmieri M, Serio VB, Rosati D, Mari F, Frullanti E, Colombo F. The Genetic Analysis and Clinical Therapy in Lung Cancer: Current Advances and Future Directions. Cancers (Basel) 2024; 16:2882. [PMID: 39199653 PMCID: PMC11352260 DOI: 10.3390/cancers16162882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer, including both non-small cell lung cancer and small cell lung cancer, remains the leading cause of cancer-related mortality worldwide, representing 18% of the total cancer deaths in 2020. Many patients are identified already at an advanced stage with metastatic disease and have a worsening prognosis. Recent advances in the genetic understanding of lung cancer have opened new avenues for personalized treatments and targeted therapies. This review examines the latest discoveries in the genetics of lung cancer, discusses key biomarkers, and analyzes current clinical therapies based on this genetic information. It will conclude with a discussion of future prospects and potential research directions.
Collapse
Affiliation(s)
- Angela Rina
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
| | - Debora Maffeo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| | - Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Viola Bianca Serio
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Diletta Rosati
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Mari
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy;
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (D.M.); (M.P.); (V.B.S.); (D.R.); (E.F.)
- Cancer Genomics and Systems Biology Laboratory, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy; (F.M.); (M.E.)
| |
Collapse
|
46
|
Wei R, Liao X, Li J, Mu X, Ming Y, Peng Y. Novel humanized monoclonal antibodies against ROR1 for cancer therapy. Mol Cancer 2024; 23:165. [PMID: 39138527 PMCID: PMC11321157 DOI: 10.1186/s12943-024-02075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Overexpression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) contributes to cancer cell proliferation, survival and migration, playing crucial roles in tumor development. ROR1 has been proposed as a potential therapeutic target for cancer treatment. This study aimed to develop novel humanized ROR1 monoclonal antibodies and investigate their anti-tumor effects. METHODS ROR1 expression in tumor tissues and cell lines was analyzed by immunohistochemistry and flow cytometry. Antibodies from mouse hybridomas were humanized by the complementarity-determining region (CDR) grafting technique. Surface plasmon resonance spectroscopy, ELISA assay and flow cytometry were employed to characterize humanized antibodies. In vitro cellular assay and in vivo mouse experiment were conducted to comprehensively evaluate anti-tumor activity of these antibodies. RESULTS ROR1 exhibited dramatically higher expression in lung adenocarcinoma, liver cancer and breast cancer, and targeting ROR1 by short-hairpin RNAs significantly inhibited proliferation and migration of cancer cells. Two humanized ROR1 monoclonal antibodies were successfully developed, named h1B8 and h6D4, with high specificity and affinity to ROR1 protein. Moreover, these two antibodies effectively suppressed tumor growth in the lung cancer xenograft mouse model, c-Myc/Alb-cre liver cancer transgenic mouse model and MMTV-PyMT breast cancer mouse model. CONCLUSIONS Two humanized monoclonal antibodies targeting ROR1, h1B8 and h6D4, were successfully developed and exhibited remarkable anti-tumor activity in vivo.
Collapse
Affiliation(s)
- Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xun Liao
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Mu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
47
|
Yaga M, Hasegawa K, Ikeda S, Matsubara M, Hiroshima T, Kimura T, Shirai Y, Tansri W, Uehara H, Tachikawa M, Okairi Y, Sone M, Mori H, Kogue Y, Akamine H, Okuzaki D, Kawagishi K, Kawanaka S, Yamato H, Takeuchi Y, Okura E, Kanzaki R, Okami J, Nakamichi I, Nakane S, Kobayashi A, Iwazawa T, Tokunaga T, Yokouchi H, Yano Y, Uchida J, Mori M, Komuta K, Tachi T, Kuroda H, Kijima N, Kishima H, Ichii M, Futami S, Naito Y, Shiroyama T, Miyake K, Koyama S, Hirata H, Takeda Y, Funaki S, Shintani Y, Kumanogoh A, Hosen N. CD98 heavy chain protein is overexpressed in non-small cell lung cancer and is a potential target for CAR T-cell therapy. Sci Rep 2024; 14:17917. [PMID: 39095551 PMCID: PMC11297167 DOI: 10.1038/s41598-024-68779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells are effective against hematological cancers, but are less effective against solid tumors such as non-small cell lung cancer (NSCLC). One of the reasons is that only a few cell surface targets specific for NSCLC cells have been identified. Here, we report that CD98 heavy chain (hc) protein is overexpressed on the surface of NSCLC cells and is a potential target for CAR T cells against NSCLC. Screening of over 10,000 mAb clones raised against NSCLC cell lines showed that mAb H2A011 bound to NSCLC cells but not normal lung epithelial cells. H2A011 recognized CD98hc. Although CAR T cells derived from H2A011 could not be established presumably due to the high level of H2A011 reactivity in activated T cells, those derived from the anti-CD98hc mAb R8H283, which had been shown to lack reactivity with CD98hc glycoforms expressed on normal hematopoietic cells and some normal tissues, were successfully developed. R8H283 specifically reacted with NSCLC cells in six of 15 patients. R8H283-derived CAR T cells exerted significant anti-tumor effects in a xenograft NSCLC model in vivo. These results suggest that R8H283 CAR T cells may become a new therapeutic tool for NSCLC, although careful testing for off-tumor reactivity should be performed in the future.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antibodies, Monoclonal/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Fusion Regulatory Protein 1, Heavy Chain/metabolism
- Immunotherapy, Adoptive/methods
- Lung Neoplasms/therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Kana Hasegawa
- Laboratory of Cellular Immunotherapy, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Shunya Ikeda
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Miwa Matsubara
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takashi Hiroshima
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Wibowo Tansri
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirofumi Uehara
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mana Tachikawa
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuzuru Okairi
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Masayuki Sone
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hiromi Mori
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yosuke Kogue
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hiroki Akamine
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan
- Laboratory of Human Immunology (Single Cell Genomics), World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Kotaro Kawagishi
- Department of General Thoracic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Satoshi Kawanaka
- Department of General Thoracic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Hiroyuki Yamato
- Department of General Thoracic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Yukiyasu Takeuchi
- Department of General Thoracic Surgery, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Eiji Okura
- Department of Surgery, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Ryu Kanzaki
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Jiro Okami
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Itsuko Nakamichi
- Department of Pathology, Minoh City Hospital, Minoh, Osaka, Japan
| | - Shigeru Nakane
- Department of Surgery, Minoh City Hospital, Minoh, Osaka, Japan
| | - Aki Kobayashi
- Department of Surgery, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Takashi Iwazawa
- Department of Surgery, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan
| | - Toshiteru Tokunaga
- Department of General Thoracic Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Hideoki Yokouchi
- Department of Surgery, Suita Municipal Hospital, Suita, Osaka, Japan
| | - Yukihiro Yano
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Junji Uchida
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Kiyoshi Komuta
- Department of Internal Medicine, Osaka Anti-Tuberculosis Association Osaka Fukujuji Hospital, Neyagawa, Osaka, Japan
| | - Tetsuro Tachi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideki Kuroda
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunology and Molecular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan
| | - Naoki Hosen
- Laboratory of Cellular Immunotherapy, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
48
|
Long J, Wang Y, Jiang X, Ge J, Chen M, Zheng B, Wang R, Wang M, Xu M, Ke Q, Wang J. Nanomaterials Boost CAR-T Therapy for Solid Tumors. Adv Healthc Mater 2024; 13:e2304615. [PMID: 38483400 DOI: 10.1002/adhm.202304615] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Indexed: 05/22/2024]
Abstract
T cell engineering, particularly via chimeric antigen receptor (CAR) modifications for enhancing tumor specificity, has shown efficacy in treating hematologic malignancies. The extension of CAR-T cell therapy to solid tumors, however, is impeded by several challenges: The absence of tumor-specific antigens, antigen heterogeneity, a complex immunosuppressive tumor microenvironment, and physical barriers to cell infiltration. Additionally, limitations in CAR-T cell manufacturing capacity and the high costs associated with these therapies restrict their widespread application. The integration of nanomaterials into CAR-T cell production and application offers a promising avenue to mitigate these challenges. Utilizing nanomaterials in the production of CAR-T cells can decrease product variability and lower production expenses, positively impacting the targeting and persistence of CAR-T cells in treatment and minimizing adverse effects. This review comprehensively evaluates the use of various nanomaterials in the production of CAR-T cells, genetic modification, and in vivo delivery. It discusses their underlying mechanisms and potential for clinical application, with a focus on improving specificity and safety in CAR-T cell therapy.
Collapse
Affiliation(s)
- Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, 1001 Xueyuan Road, Shenzhen, 518055, China
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, 410013, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, 410078, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, 362000, China
| | - Boshu Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Rong Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Meifang Xu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Qi Ke
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| | - Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, No.1 Xuefu North Road University Town, Fuzhou, 350122, China
| |
Collapse
|
49
|
Zhou Z, Lei J, Fang J, Chen P, Zhou J, Wang H, Sun Z, Chen Y, Yin L. Dihydroartemisinin remodels tumor micro-environment and improves cancer immunotherapy through inhibiting cyclin-dependent kinases. Int Immunopharmacol 2024; 139:112637. [PMID: 39033659 DOI: 10.1016/j.intimp.2024.112637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Cancer immunotherapies are ineffective in nonresponding patients due to absence of immune responses. Here, we identified that dihydroartemisinin (DHA) induced immunogenic cell death (ICD) in hepatocellular carcinoma (HCC), proved by release or surface expose of damage-associated molecular patterns and in vivo protective vaccine activity. Mechanistically, DHA can inhibit cyclin-dependent kinases (CDKs), leading to a buildup of intracellular reactive oxygen species (ROS), which induces immunogenic cell death. In both Hepa1-6 and H22 tumor bearing mice, DHA exerted anti-tumor activity through increasing tumor-infiltrating CD8+ T cells with expression of activation makers (CD25 and CD69), secretion of intracellular cytokines (IFN-γ and TNF-α) and activated dendritic cells expressing MHCⅡ, CD80 and CD86. In hepa1-6 tumor bearing mice, DHA decreased immunosuppressive myeloid-derived suppressor cells. Furthermore, DHA enhanced the anti-PD-1 antibody and chimeric antigen receptor (CAR) T cell-mediated tumor suppression through recruitment and activation of endogenous CD8+ T cells. Overall, we demonstrated that by inhibiting CDKs, DHA can remodel tumor micro-environment to amplify anti-tumor immune responses in HCC. These findings provide a promising therapy option for HCC patients.
Collapse
Affiliation(s)
- Zihao Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jun Lei
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China; Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, China.
| | - Jialing Fang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Peng Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jin Zhou
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Hongjian Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Zaiqiao Sun
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Yongshun Chen
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
50
|
Chen Q, Sun Y, Li H. Application of CAR-T cell therapy targeting mesothelin in solid tumor treatment. Discov Oncol 2024; 15:289. [PMID: 39023820 PMCID: PMC11258118 DOI: 10.1007/s12672-024-01159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is one of the most effective immunotherapies. CAR-T-cell therapy has achieved great success in the treatment of hematological malignancies. However, due to the characteristics of solid malignant tumors, such as on-target effects, off-tumor toxicity, an immunosuppressive tumor microenvironment (TME), and insufficient trafficking, CAR-T-cell therapy for solid tumors is still in the exploration stage. Mesothelin (MSLN) is a molecule expressed on the surface of various solid malignant tumor cells that is suitable as a target of tumor cells with high MSLN expression for CAR-T-cell therapy. This paper briefly described the development of CAR-T cell therapy and the structural features of MSLN, and especially summarized the strategies of structure optimization of MSLN-targeting CAR-T-cells and the enhancement methods of MSLN-targeting CAR-T cell anti-tumor efficacy by summarizing some preclinical experiment and clinical trials. When considering MSLN-targeting CAR-T-cell therapy as an example, this paper summarizes the efforts made by researchers in CAR-T-cell therapy for solid tumors and summarizes feasible treatment plans by integrating the existing research results.
Collapse
Affiliation(s)
- Qiuhong Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China.
| |
Collapse
|