1
|
Liu X, Lv M, Feng B, Gong Y, Min Q, Wang Y, Wu Q, Chen J, Zhao D, Li J, Zhang W, Zhan Q. SQLE amplification accelerates esophageal squamous cell carcinoma tumorigenesis and metastasis through oncometabolite 2,3-oxidosqualene repressing Hippo pathway. Cancer Lett 2025; 621:217528. [PMID: 39924077 DOI: 10.1016/j.canlet.2025.217528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers worldwide, characterized by a dismal prognosis and elusive therapeutic targets. Dysregulated cholesterol metabolism is a critical hallmark of cancer cells, facilitating tumor progression. Here, we used whole genome sequencing data from several ESCC cohorts to identify the important role of squalene epoxidase (SQLE) in promoting ESCC tumorigenesis and metastasis. Specifically, our findings highlight the significance of 2,3-oxidosqualene, an intermediate metabolite of cholesterol biosynthesis, synthesized by SQLE and metabolized by lanosterol synthase (LSS), as a key regulator of ESCC progression. Mechanistically, the interaction between 2,3-oxidosqualene and vinculin enhances the nuclear accumulation of Yes-associated protein 1 (YAP), thereby increasing YAP/TEAD-dependent gene expression and accelerating both tumor growth and metastasis. In a 4-nitroquinoline 1-oxide (4-NQO)-induced ESCC mouse model, overexpression of Sqle resulted in accelerated tumorigenesis compared to wild-type controls, highlighting the pivotal role of SQLE in vivo. Furthermore, elevated SQLE expression in ESCC patients correlates with a poorer prognoses, suggesting potential therapeutic avenues for treatment. In conclusion, our study elucidates the oncogenic function of 2,3-oxidosqualene as a naturally occurring metabolite and proposes modulation of its levels as a promising therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Bicong Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Ying Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongyu Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Soochow University Cancer Institute, Suzhou, 215127, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|
2
|
Jiang H, Kuang L, Zhang T, Zhao X. Annexin A1-FPR1 Interaction in dendritic cells promotes immune microenvironment modulation in Thyroid Cancer. Cell Biol Toxicol 2025; 41:97. [PMID: 40483281 PMCID: PMC12145322 DOI: 10.1007/s10565-025-10042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/09/2025] [Indexed: 06/11/2025]
Abstract
Thyroid cancer (THCA) is profoundly influenced by its immune microenvironment, with dendritic cells (DCs) serving as key mediators of tumor-immune interactions. This study leveraged single-cell RNA sequencing and transcriptome RNA sequencing to analyze DC populations in THCA tissues. The results revealed significant disparities in DC distribution and function, with formyl peptide receptor 1 (FPR1) emerging as a crucial factor associated with patient prognosis. Meta-analysis further validated the differential expression of FPR1, reinforcing its significance in THCA progression. Investigations into the TME highlighted the relationship between FPR1 and DC maturation and activation, elucidating the mechanistic basis for immune regulation. Experimental validation confirmed that Annexin A1 (ANXA1) interacts with FPR1 in DCs, promoting tumor progression through immune modulation. These findings advance the understanding of THCA immune mechanisms and underscore the potential of targeting the ANXA1-FPR1 axis as a novel approach for immunotherapy in THCA.
Collapse
Affiliation(s)
- Hongwei Jiang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan Dong Road, Huanggu District, Shenyang, 110032, P. R, China
| | - Lirun Kuang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan Dong Road, Huanggu District, Shenyang, 110032, P. R, China
| | - Tianyi Zhang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan Dong Road, Huanggu District, Shenyang, 110032, P. R, China
| | - Xupeng Zhao
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan Dong Road, Huanggu District, Shenyang, 110032, P. R, China.
| |
Collapse
|
3
|
Duan L, Cao S, Zhao F, Du X, Gao Z, Wang X, Bian F. Effects of FAP+ fibroblasts on cell proliferation migration and immunoregulation of esophageal squamous carcinoma cells through the CXCL12/CXCR4 axis. Mol Cell Biochem 2025; 480:3841-3855. [PMID: 39934460 DOI: 10.1007/s11010-025-05226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Cancer-associated fibroblasts (CAFs) secrete and synthesize fibroblast activation protein (FAP), which could promote proliferation and immunosuppression of multiple cancers including esophageal squamous cell carcinoma (ESCC). CXCL12/CXCR4 signaling could be revitalized by CAFs in cancer cells. Nevertheless, the significance of this interaction in ESCC has yet to be elucidated. Herein, we investigated whether FAP+ CAF cells could promote ESCC cells proliferation, migration and regulate immunity through the CXCL12/CXCR4 pathway in vitro and in vivo. The protein expression level of FSP1, FAP, CD8+ and Ki-67 in different sample was estimated by IHC and western blot. qPCR was used to quantify the mRNA level of FSP1, FAP, CD8+ and Ki-67 in different sample. The cell viability, proliferation, migration and invasion of different sample were evaluated by CCK-8, EdU staining, wound healing assay and Transwell assay, respectively. The ELISA was carried out to measure the protein level of IFN-γ, TNF-α, GZMB and IL-2. ESCC xenograft mice model was established to assess the impact of FAP+ CAF. FSP1, FAP, CD8+ and Ki-67 are greatly up-regulated in hESCC tissues. Through CXCL12/CXCR4 axis, FAP-positive CAF was capable of promoting the cell proliferation, migration and invasion of ESCC tumor cells and preventing the CD8+ T cells from secreting cytokine. Blocking this signaling with selective CXCR4 antagonist could counteract the effects caused by high-expression of FAP. FAP+ CAFs could inhibit the occurrence and development of tumors. These results indicated that FAP-positive CAF have an impact on cell proliferation migration and immunoregulation of ESCC through the CXCL12/CXCR4 axis.
Collapse
Affiliation(s)
- Lijuan Duan
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China.
- Henan Provincial Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455000, Henan Province, People's Republic of China.
| | - Shasha Cao
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China
- Henan Provincial Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455000, Henan Province, People's Republic of China
| | - Fang Zhao
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China
- Henan Provincial Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455000, Henan Province, People's Republic of China
| | - Xianjuan Du
- Department of Pathology, Anyang Cancer Hospital, Anyang, 455000, Henan Province, People's Republic of China
| | - Zhaowei Gao
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China
- Henan Provincial Key Medical Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang, 455000, Henan Province, People's Republic of China
| | - Xiaoxiao Wang
- Central Laboratory, Anyang Cancer Hospital, No.1, Huanbin North Road, Beiguan District, Anyang, 455000, Henan Province, People's Republic of China
| | - Fang Bian
- Department of Pathology, Anyang Cancer Hospital, Anyang, 455000, Henan Province, People's Republic of China
| |
Collapse
|
4
|
Yuan L, Zhang Y, Wen C, Liu S, Zhang Q, Yin W, Jia Q, Chen M, Luo G, Deng M, Lv M, Xiao W. Esophageal cancer and precancerous lesions: focus on resident bacteria and fungi. Microbiol Spectr 2025:e0313724. [PMID: 40391887 DOI: 10.1128/spectrum.03137-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/27/2025] [Indexed: 05/22/2025] Open
Abstract
Accumulating evidence highlights the pivotal role of microbiomes in cancer development. To elucidate the esophageal microbiome's characteristics during esophageal squamous cell carcinoma (ESCC) progression, normal tissues from 13 healthy controls (HC), paired esophageal squamous intraepithelial neoplasia (ESIN) lesional and adjacent (ESINA) tissues from 10 ESIN individuals, and ESCC lesional and adjacent (ESCCA) tissues from 12 ESCC individuals were collected. Following 16S rRNA and ITS sequencing, analyses encompassed α/β-diversity assessments, shared species identification, Type-I Taylor's Power Law Extensions (TPLE), linear discriminant analysis effect size (LEfSe), co-occurrence networks, receiver operating characteristic (ROC) curve analysis, and functional predictions. Distinct microbial signatures characterized HC, precancerous, and cancerous groups. The ESIN group exhibited unique microbial features, including diminished bacterial and fungal species sharing relative to the ESINA group and maximal b values in TPLE for both taxa. Despite the absence of significant bacterial composition differences between HC and ESIN in β-diversity analysis, notable alterations in the oral microbiome were observed. ESIN was marked by Lactobacillus and Aspergillus enrichment, while ESCC was predominantly associated with Fusobacterium, Streptococcus, and Alternaria. Disease progression led to shifts and reductions in species co-occurrence network interactions. Aspergillus demonstrated potential diagnostic value for ESIN, and its ratio to pathogenic functional clusters within network analysis significantly enhanced ESCC detection accuracy. Functional predictions revealed stage-specific pathway enrichments. These findings delineate microbiome alterations across ESCC stages, emphasizing ESIN-specific microbial shifts that may inform microbiome-based strategies for early detection and intervention. IMPORTANCE This study collected esophageal tissues through gastroscopic biopsy and conducted sequencing and analyses to explore the diversity, heterogeneity, key microbial composition, interaction networks, and functional predictions of resident bacteria and fungi in esophageal squamous cell carcinoma (ESCC) progression. The esophageal squamous intraepithelial neoplasia group showed the highest heterogeneity in oral microbiome and fungi, with certain species potentially contributing to ESCC progression. Targeting the oral microbiome in high-risk populations may thus provide a valuable approach for improving early diagnosis and potentially intervening in disease progression.
Collapse
Affiliation(s)
- Liping Yuan
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Gastroenterology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, China
| | - Yi Zhang
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chengli Wen
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
| | - Qin Zhang
- Department of Gastroenterology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, China
| | - Wen Yin
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Qian Jia
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Maolin Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Mingming Deng
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Muhan Lv
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
| | - Wanmeng Xiao
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou, China
| |
Collapse
|
5
|
Liu Y, Sinjab A, Min J, Han G, Paradiso F, Zhang Y, Wang R, Pei G, Dai Y, Liu Y, Cho KS, Dai E, Basi A, Burks JK, Rajapakshe KI, Chu Y, Jiang J, Zhang D, Yan X, Guerrero PA, Serrano A, Li M, Hwang TH, Futreal A, Ajani JA, Solis Soto LM, Jazaeri AA, Kadara H, Maitra A, Wang L. Conserved spatial subtypes and cellular neighborhoods of cancer-associated fibroblasts revealed by single-cell spatial multi-omics. Cancer Cell 2025; 43:905-924.e6. [PMID: 40154487 PMCID: PMC12074878 DOI: 10.1016/j.ccell.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are a multifaceted cell population essential for shaping the tumor microenvironment (TME) and influencing therapy responses. Characterizing the spatial organization and interactions of CAFs within complex tissue environments provides critical insights into tumor biology and immunobiology. In this study, through integrative analyses of over 14 million cells from 10 cancer types across 7 spatial transcriptomics and proteomics platforms, we discover, validate, and characterize four distinct spatial CAF subtypes. These subtypes are conserved across cancer types and independent of spatial omics platforms. Notably, they exhibit distinct spatial organizational patterns, neighboring cell compositions, interaction networks, and transcriptomic profiles. Their abundance and composition vary across tissues, shaping TME characteristics, such as levels, distribution, and state composition of tumor-infiltrating immune cells, tumor immune phenotypes, and patient survival. This study enriches our understanding of CAF spatial heterogeneity in cancer and paves the way for novel approaches to target and modulate CAFs.
Collapse
Affiliation(s)
- Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jimin Min
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Paradiso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanyuan Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yibo Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yang Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyung Serk Cho
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Akshay Basi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kimal I Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanshuo Chu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiahui Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alejandra Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tae Hyun Hwang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA; The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Ma Z, Wang Y, Wang W, Wei C, Liu Z, Li Z, Ye Y, Mao Y, Yuan Y, Huang Z, Zhang J, Cao Y, Mao X, Zhang Y, Jin X, Yin J, Li G, Zheng L, Liu Z, Li X, Liang X, Liu Z. Targeting VSIG4 + tissue-resident macrophages enhances T cell cytotoxicity and immunotherapy efficacy in cancer. Dev Cell 2025:S1534-5807(25)00249-7. [PMID: 40339578 DOI: 10.1016/j.devcel.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/23/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025]
Abstract
Tissue-resident macrophage (TRM) is crucial for organ development and homeostasis. However, the role of TRM-derived tumor-associated macrophage (TAM) subpopulations in cancer remains unclear. Using single-cell RNA sequencing and lineage tracing, we reported a TRM-derived TAM subpopulation, characterized by VSIG4 overexpression in testicular cancer. Macroscopically, such subpopulation was also found in tumors such as hepatocellular carcinoma, lung cancer, and glioblastoma. It was associated with poor prognosis and the suppression of CD8+ T-cell-dependent immunity via VSIG4. Notably, VSIG4 promoted immunosuppressive effects through direct or indirect modes, including interacting with receptors on CD8+ T cells or inducing transcription of IL-11 in TAMs. More importantly, MEF2C was identified as a key transcription factor that maintained VSIG4 expression and determined the biological behaviors of VSIG4+ TAMs. In preclinical models, targeting VSIG4+ TAMs via VSIG4 or MEF2C demonstrated a favorable effect of enhancing the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Zikun Ma
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Yuzhao Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Weikai Wang
- BGI Research, Chongqing 401329, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Wei
- BGI Research, Chongqing 401329, China
| | - Zhenhua Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zhiyong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yunlin Ye
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yize Mao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pancreatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yunfei Yuan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zhenkun Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Ji Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yun Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Xiaopeng Mao
- Department of Urology, the First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Jianhua Yin
- BGI Research, Shenzhen 518083, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Guibo Li
- BGI Research, Chongqing 401329, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Limin Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiangdong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Xiaoyu Liang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Zhuowei Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou 730050, China.
| |
Collapse
|
7
|
Zhang X, Wang Z, Zhao Y, Ye H, Li T, Wang H, Sun G, Liang F, Dai L, Wang P, Liu X. Multi-omics analysis unveils a four-gene prognostic signature in esophageal squamous carcinoma and the therapeutic potential of PKP1. BMC Cancer 2025; 25:777. [PMID: 40281492 PMCID: PMC12032815 DOI: 10.1186/s12885-025-14150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies, characterized by high heterogeneity and poor outcomes. Effective classification for patient stratification and identifying reliable markers for prognosis prediction and treatment choice are crucial. METHODS Integration of single-cell RNA-sequencing (RNA-seq) and bulk RNA-seq analyses were used to characterize ESCC. Non-negative matrix factorization (NMF) clustering was performed to stratify the ESCC patients into different subtypes and the clinical and pathological features of the ESCC subtypes were compared. Cox regression analysis and LASSO regression analysis were used to select key genes and construct a risk model for ESCC. The associations of the key genes with anti-cancer drug sensitivities in ESCC cell lines were investigated. RT-qRCR experiments, proteomics analysis, and multiplex immunohistochemistry (mIHC) experiments were used to validate the results. Furthermore, one identified gene was selected to investigate its correlation with EGFR expression and the gene effect scores of various potential gene targets across pan-cancer. RESULTS The study identified the dysregulated distributions of epithelial cells and fibroblasts as characteristic of ESCC. ESCC patients could be classified into four distinct subtypes with unique cell type features and prognoses. With the gene makers of the cell type features, a four-gene prognostic signature for ESCC was constructed. The CCND1-PKP1-JUP-ANKRD12 model could effectively discriminate the survival status of ESCC patients, independent of various pathological and clinical features. The risk score for the samples was correlated with the expression levels of immunoregulatory genes. The prognostic effects of CCND1, PKP1, and JUP were confirmed at the protein level. The phosphorylation levels of PKP1, JUP, and ANKRD12 were found to be dysregulated in ESCC tumors. Their expression dysregulation and heterogeneity were demonstrated in ESCC cell lines. All four genes were significantly correlated with at least one of the anti-cancer drug sensitivities in ESCC cell lines. PKP1 expression was significantly correlated with EGFR expression and gene effect scores in multiple cancers. CONCLUSIONS We conclude that the CCND1-PKP1-JUP-ANKRD12 signature may serve as a novel indicator for ESCC prognosis and diagnosis. PKP1 expression might provide new clues for gene therapy efficacy in multiple cancers.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 4500001, China
| | - Zhi Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Yutong Zhao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, 4500001, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 4500001, China
| | - Han Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 4500001, China
| | - Guiying Sun
- College of Public Health, Zhengzhou University, Zhengzhou, 4500001, China
| | - Feifei Liang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, China.
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 4500001, China.
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, China.
| | - Xiaoli Liu
- Laboratory Department, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
8
|
Ma Z, Yu D, Tan S, Li H, Zhou F, Qiu L, Xie X, Wu X. CXCL12 alone is enough to Reprogram Normal Fibroblasts into Cancer-Associated Fibroblasts. Cell Death Discov 2025; 11:156. [PMID: 40199862 PMCID: PMC11978793 DOI: 10.1038/s41420-025-02420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME), playing significant roles in regulating cancer progression. However, the underlying mechanism of CAFs activation remains elusive. In this study, we aim to investigates the mechanisms by which CAFs promote the conversion of normal fibroblasts (NFs) to CAFs in lung cancer, with a focus on the role of p53 mutations and the CXCL12/STAT3 signaling axis. We found that CAFs significantly induced NFs to acquire CAFs properties (called CEFs), including upregulation of α-SMA and Vimentin, enhanced proliferation and migration, and increased ability to promote lung cancer cell migration. In vivo, CEFs accelerated A549 xenograft growth and induced spontaneous lung metastasis. CXCL12 was identified as a key factor in NFs-to-CEFs conversion, with its expression positively correlated with CAFs markers in lung cancer. Further investigation confirmed that CXCL12 is sufficient to reprogram NFs into CAFs through the STAT3 pathway. Notably, inhibiting CXCL12 signaling and the STAT3 pathway reduced the conversion of NFs to CAFs, thereby hindering lung cancer progression progression both in vitro and in vivo. Our study reveals CAFs could promote the conversion of NFs to CAFs-like cells through the CXCL12/STAT3 axis, enhancing tumor growth and metastasis in lung cancer. Therefore, inhibition of the CXCL12/STAT3 axis is a promising strategy for the treatment of lung cancers and other CXCL12-dependent malignancies.
Collapse
Affiliation(s)
- Zelong Ma
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Diping Yu
- Department of Pathology, Pu'er People's Hospital, Pu'er, Yunnan, 665000, China
| | - Siqi Tan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Hao Li
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Faxiao Zhou
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Lei Qiu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan, 650500, China.
| |
Collapse
|
9
|
Liu S, Liu C, He Y, Li J. Benign non-immune cells in tumor microenvironment. Front Immunol 2025; 16:1561577. [PMID: 40248695 PMCID: PMC12003390 DOI: 10.3389/fimmu.2025.1561577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
The tumor microenvironment (TME) is a highly complex and continuous evolving ecosystem, consisting of a diverse array of cellular and non-cellular components. Among these, benign non-immune cells, including cancer-associated fibroblasts (CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs) and others, are crucial factors for tumor development. Benign non-immune cells within the TME interact with both tumor cells and immune cells. These interactions contribute to tumor progression through both direct contact and indirect communication. Numerous studies have highlighted the role that benign non-immune cells exert on tumor progression and potential tumor-promoting mechanisms via multiple signaling pathways and factors. However, these benign non-immune cells may play different roles across cancer types. Therefore, it is important to understand the potential roles of benign non-immune cells within the TME based on tumor heterogeneity. A deep understanding allows us to develop novel cancer therapies by targeting these cells. In this review, we will introduce several types of benign non-immune cells that exert on different cancer types according to tumor heterogeneity and their roles in the TME.
Collapse
Affiliation(s)
- Shaowen Liu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunhui Liu
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Li
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, China
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Correia-Silva RD, Corrêa MP, de Castro ME, Almeida JS, D'Ávila SCGP, Oliani SM, Greco KV, Gil CD. Regulatory role of annexin A1 in NLRP3 inflammasome activation in atopic dermatitis: insights from keratinocytes in human and murine studies. J Mol Med (Berl) 2025; 103:435-451. [PMID: 40100418 DOI: 10.1007/s00109-025-02529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Despite the well-documented regulatory role of annexin A1 (ANXA1) in numerous stages of the inflammatory response, its involvement in regulating the NLRP3 inflammasome in the context of allergic responses has not been extensively investigated to date. This study evaluated the expression patterns of the ANXA1 and NLRP3 proteins in human skin samples obtained from patients with atopic dermatitis (AD) and in mice with ovalbumin (OVA)-induced experimental AD. Furthermore, the in vitro effect of the ANXA1 mimetic peptide Ac2-26 on IL-4-stimulated human keratinocytes was evaluated. IL-4-stimulated keratinocytes were treated with Ac2-26 (a mimetic peptide of ANXA1) in two different concentrations: 5 and 25 ng/mL. Additionally, some cells were treated with the pan-formyl peptide receptor antagonist Boc2 at a concentration of 10 µM, administered 15 min before Ac2-26. The NLRP3 protein demonstrated intense immunoreactivity in both murine and human AD skin samples, with NLRP3 and ANXA1 exhibiting particularly high coexpression in keratinocytes. A significant increase in ANXA1 and NLRP3 transcripts was observed in AD skins (GSE16161 study). ANXA1 transcript levels were elevated in the AD epidermis relative to the non-lesional epidermis, while NLRP3 transcript levels were reduced in the AD epidermis (GSE120721 study). The Ac2-26 treatment reduced the proliferation rate of IL-4-stimulated keratinocytes, an effect abolished by Boc2 and IL-1β and ROS production. In conclusion, our findings indicate that ANXA1 plays a role in regulating NLRP3 activation in keratinocytes, contributing to the pathogenesis of AD. KEY MESSAGES: ANXA1 and NLRP3 levels are upregulated and exhibit coexpression in murine and human AD skins. ANXA1-FPR axis regulates the proliferation of human keratinocytes under IL-4 stimulation. ANXA1-derived peptide Ac2-26 regulates oxidative stress and NLRP3 activation in human keratinocytes.
Collapse
Affiliation(s)
- Rebeca D Correia-Silva
- Departamento de Morfologia E Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres - 3º andar, São Paulo, SP, 04023-900, Brazil
| | - Mab P Corrêa
- Departamento de Morfologia E Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres - 3º andar, São Paulo, SP, 04023-900, Brazil
| | - Maria Eduarda de Castro
- Departamento de Morfologia E Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres - 3º andar, São Paulo, SP, 04023-900, Brazil
| | - Joaquim S Almeida
- Departamento de Patologia, EPM-UNIFESP, São Paulo, SP, 04023-900, Brazil
| | - Solange C G P D'Ávila
- Departamento de Patologia E Medicina Forense, Faculdade de Medicina de São José Do Rio Preto (FAMERP), São José Do Rio Preto, SP, 15090-000, Brazil
| | - Sonia M Oliani
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Letras E Ciências Exatas, São José Do Rio Preto, SP, 15054-000, Brazil
- Centro de Pesquisa Avançada Em Medicina (CEPAM), União das Faculdades Dos Grandes Lagos (Unilago), São José Do Rio Preto, São Paulo, 15030-070, Brazil
| | - Karin V Greco
- Division of Surgery and Interventional Science, University College London (UCL), London, WC1E 6BT, UK
| | - Cristiane D Gil
- Departamento de Morfologia E Genética, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres - 3º andar, São Paulo, SP, 04023-900, Brazil.
| |
Collapse
|
11
|
Wang C, Ju C, Du D, Zhu P, Yin J, Jia J, Wang X, Xu X, Zhao L, Wan J, Sun T, Yang L, Li H, He F, Zhou M, He J. CircNF1 modulates the progression and immune evasion of esophageal squamous cell carcinoma through dual regulation of PD-L1. Cell Mol Biol Lett 2025; 30:37. [PMID: 40158127 PMCID: PMC11955112 DOI: 10.1186/s11658-025-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Tumor immune escape is a pivotal gateway for esophageal squamous cell carcinoma (ESCC) development. Immune checkpoint-blocking therapies, represented by programmed cell death receptor-1/ligand 1 (PD-1/PD-L1) inhibitors, have achieved remarkable breakthroughs in ESCC treatment. However, not all patients with ESCC receive satisfactory clinical benefit. Therefore, identifying novel biomarkers for predicting the efficacy of immunotherapy in ESCC is of great importance. METHODS CircNF1 was screened from the circRNAs microarray, and its expression was measured by droplet digital polymerase chain reaction (ddPCR) and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays in ESCC tissues and serum. Functional experiments were conducted to demonstrate the role of circNF1 in ESCC proliferation, metastasis, and tumor evasion. High-throughput RNA sequencing, chromatin immunoprecipitation (ChIP), co-immunoprecipitation (co-IP), and chromatin isolation by RNA purification-mass spectrometry (ChIRP-MS) were performed to clarify the underlying mechanisms of circNF1-mediated tumor progression. RESULTS The upregulation of circNF1 was closely associated with the response of anti-PD-L1 immunotherapy. Functionally, circNF1 promoted ESCC cell malignant phenotypes and regulated CD8+ T-cell-mediated antitumor immunity. Mechanistically, circNF1 drove the IL-6-induced oncogenic activation of the JAK-STAT3 pathway, which stimulated p-STAT3 binding of the promoter regions of PD-L1. Furthermore, circNF1 physically interacted with annexin A1 (ANXA1), blocking the ANXA1 deubiquitination induced by ubiquitin-specific protease 7 (USP7), resulting in increased interaction between USP7 and PD-L1 and augmented PD-L1 stability. CONCLUSIONS Our findings provide novel insights into the specific regulatory mechanism of PD-L1 in ESCC cells, which offer a new strategy for synergizing with anti-PD-L1 therapy.
Collapse
Affiliation(s)
- Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Dan Du
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peiyu Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Center of Gastrointestinal Cancer, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jie Yin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xue Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinyu Xu
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Li Zhao
- Department of Research and Development, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junhu Wan
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ting Sun
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lijun Yang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
12
|
Ou Z, Zhu L, Chen X, Liu T, Cheng G, Liu R, Zhang S, Tan W, Lin D, Wu C. Hypoxia-Induced Senescent Fibroblasts Secrete IGF1 to Promote Cancer Stemness in Esophageal Squamous Cell Carcinoma. Cancer Res 2025; 85:1064-1081. [PMID: 39661488 DOI: 10.1158/0008-5472.can-24-1185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/12/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Cancer-associated fibroblasts (CAF) contribute to cancer initiation and progression and play a pivotal role in therapeutic response and patient prognosis. CAFs exhibit functional and phenotypic heterogeneity, highlighting the need to clarify the specific subtypes of CAFs to facilitate the development of targeted therapies against protumorigenic CAFs. In this study, using single-cell RNA sequencing on patient samples of esophageal squamous cell carcinoma (ESCC), we identified a CAF subcluster associated with tumor stemness that was enriched in genes associated with hypoxia and senescence. The CAF subpopulation, termed as hypoxia-induced senescent fibroblasts (hsCAF), displayed high secretion of insulin-like growth factor 1 (IGF1). The hsCAFs inhibited AMP-activated protein kinase (AMPK) activity in cancer cells via IGF1 to promote tumor stemness. The formation of hsCAFs was induced by the synergetic effect of hypoxia and cancer cells. Activation of nuclear factor erythroid 2-related factor 2 (NRF2) in cancer cells under hypoxia drove IL1α production to trigger CAF senescence and IGF1 secretion via nuclear factor I A. Knockout of IGF1 in CAFs or nuclear factor erythroid 2-related factor 2 in ESCC cells suppressed the tumor growth and chemotherapy resistance induced by CAFs in vivo. Importantly, patients with high proportions of hsCAFs showed poor survival and a worse response to chemotherapy. In summary, these findings identify a hsCAF subpopulation generated by interplay between cancer cells and CAFs under hypoxic conditions that promotes ESCC stemness and reveal targeting hsCAFs as an effective therapeutic strategy against chemotherapy-resistant ESCC. Significance: A hypoxic microenvironment and cancer cells cooperate to induce a senescent fibroblast subset that supports tumor stemness, suggesting that targeting this cancer-associated fibroblast subpopulation is a potential therapeutic strategy to overcome chemoresistance.
Collapse
Affiliation(s)
- Zhengjie Ou
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Rucheng Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Chang J, Lu J, Liu Q, Xiang T, Zhang S, Yi Y, Li D, Liu T, Liu Z, Chen X, Dong Z, Li C, Yi H, Yu S, Huang L, Qu F, Wang M, Wang D, Dong H, Cheng G, Zhu L, Li J, Li C, Wu P, Xie X, Teschendorff AE, Lin D, Wang X, Wu C. Single-cell multi-stage spatial evolutional map of esophageal carcinogenesis. Cancer Cell 2025; 43:380-397.e7. [PMID: 40068596 DOI: 10.1016/j.ccell.2025.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
Cancer development involves the co-evolution of cancer cells and their surrounding microenvironment, yet the dynamics of this interaction within the physical architecture remains poorly understood. Here, we present a spatial transcriptomic map at single-cell resolution, encompassing 127 multi-stage fields of view from 43 patients, to chart the evolutionary trajectories of human esophageal squamous cell carcinoma (ESCC). By analyzing 6.4 million cells, we reveal that ESCC progression is driven by a proliferative epithelial cell subpopulation that acquires dedifferentiated and invasive characteristics. At the late precancerous stage, these cells disrupt the epithelial-stromal interface and recruit normal fibroblasts via JAG1-NOTCH1 signaling, transforming them into cancer-associated fibroblasts (CAFs). This interaction leads to the formation of a "CAF-Epi" (CAF and epithelial cell) niche at the tumor edge that shields the tumor from immune surveillance. The CAF-Epi niche formation is a key indicator of progression in ESCC and other squamous cell carcinomas and patient outcomes.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyi Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxu Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Zeyuan Liu
- Changping Laboratory, Beijing 102206, China
| | - Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenghao Dong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Cainan Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - HanZhang Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Siqi Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Luwei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Fangfei Qu
- Changping Laboratory, Beijing 102206, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Dehe Wang
- Changping Laboratory, Beijing 102206, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiachen Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chenying Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pujie Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoting Xie
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Xiaoqun Wang
- Changping Laboratory, Beijing 102206, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
14
|
Liang L, Yang X, Yao S, Li X, Wang F. Identification of lactylation-associated fibroblast subclusters predicting prognosis and cancer immunotherapy response in colon cancer. Gene 2025; 940:149220. [PMID: 39765285 DOI: 10.1016/j.gene.2025.149220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Lactylation plays an important role in tumor progression. This study aimed to clarify the impact of lactylation on cancer-associated fibroblasts(CAFs). METHODS Single-cell and bulk RNA sequence data, along with survival information, were obtained from TCGA and GEO datasets. Significant lactylation-associated genes were acquired by differential analysis and used to construct a prognostic model via Cox and LASSO regression analyses. Next, single-cell analysis, enrichment and pathway analysis, pseudotemporal trajectory and survival analysis were used to identify significant lactylation-associated fibroblast subclusters in colon cancer. IMvigor210 and PRJEB23709 cohorts were applied to assess the response to immunotherapy. In vitro experiments were conducted to explore how lactylation affect fibroblasts. RESULTS We established a lactylation-associated prognostic model with 17 risk genes in TCGA and further validated it in GEO datasets. Single-cell analysis revealed the lactylation level of fibroblasts in colon cancer was greater than that in normal tissues. Moreover, five lactylation-associated fibroblast subclusters were identified via the NMF algorithm. Patients with lower scores of FB_2_CALD1, FB_3_TPM4 and FB_4_AHNAK subclusters had better clinical prognosis in colon cancer and were more likely to benefit from immunotherapy. Further experiments demonstrated that lactylation could enhance the proliferation, migration and invasion ability of fibroblasts and up-regulate the expression of COL1A1, which was similar to the effect of colon cancer cells. CONCLUSION This study identified key fibroblast subclusters with prognostic value and implied that lactylation might help transform fibroblasts into CAFs in colon cancer for the first time, which provides new paths for understanding the evolution of CAFs and cancer therapeutic strategies.
Collapse
Affiliation(s)
- Lunxi Liang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Xueer Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Shuoyi Yao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Xinmeng Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
15
|
Wang Y, Shi Y, Hu X, Wang C. Targeting glycolysis in esophageal squamous cell carcinoma: single-cell and multi-omics insights for risk stratification and personalized therapy. Front Pharmacol 2025; 16:1559546. [PMID: 40115255 PMCID: PMC11922847 DOI: 10.3389/fphar.2025.1559546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is closely linked to aberrant glycolytic metabolism, a hallmark of cancer progression, immune evasion, and therapy resistance. This study employs single-cell transcriptomics and multi-omics approaches to unravel glycolysis-mediated mechanisms in ESCC, with a focus on risk stratification and therapeutic opportunities. Methods Data from TCGA and GEO databases were integrated with single-cell RNA sequencing, bulk RNA sequencing, as well as clinical datasets to investigate glycolysis-associated cell subtypes and their clinical implications in ESCC. Analytical approaches encompassed cell subtype annotation, cell-cell communication network analysis, and gene regulatory network modeling. A glycolysis-related risk score model was built via non-negative matrix factorization (NMF) and Cox regression, and then experimentally verified through Western blotting. Drug sensitivity analyses were carried out to explore potential therapeutic strategies. Results Single-cell analysis identified epithelial cells as the dominant glycolysis-active subtype, and tumor tissues showed significantly higher glycolytic activity than adjacent normal tissues. Among malignant epithelial subpopulations, IGFBP3+Epi (IGFBP3-expressing epithelial cells) and LHX9+Epi (LHX9-expressing epithelial cells) had elevated glycolysis levels, which correlated with poor prognosis, immune suppression, and changes in the tumor microenvironment. The seven-gene glycolysis-based risk score model divided patients into high- and low-risk groups, demonstrating strong prognostic performance. Drug sensitivity analysis showed high-risk patients were more responsive to Navitoclax as well as Rapamycin, but low-risk ones were more sensitive to Afatinib and Erlotinib, highlighting the model's usefulness in guiding personalized treatment. Conclusion This research emphasizes the crucial role of glycolysis in ESCC progression a well as immune modulation, offering a novel glycolysis-related risk score model with significant prognostic and therapeutic implications. These findings provide a basis for risk-based stratification and tailored therapeutic strategies, advancing precision medicine in ESCC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesia, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yunjie Shi
- Department of Anesthesia, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiao Hu
- Department of Anesthesia, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chenfang Wang
- Department of Anesthesia, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Huang Z, Cong Z, Luo J, Qiu B, Wang K, Gao C, Xu Y, Yang N, Zou Z, Hu L, Shen Y. Association between cancer-associated fibroblasts and prognosis of neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma: a bioinformatics analysis based on single-cell RNA sequencing. Cancer Cell Int 2025; 25:74. [PMID: 40025479 PMCID: PMC11871762 DOI: 10.1186/s12935-025-03709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a prevalent and aggressive subtype of esophageal cancer, posing a significant mortality and economic burden, especially in East and Southeast Asia. Current therapeutic strategies have limitations in improving patient survival, particularly regarding disease progression and resistance. This study aimed to investigate the impact of neoadjuvant chemoradiotherapy (NCRT) on the ESCC microenvironment. METHODS We utilized single-cell RNA sequencing to systematically characterize the tumor and cancer-associated fibroblasts (CAFs) subtypes. Marker genes of myofibroblastic CAFs (myCAFs) were employed to establish a prognostic model and verify its application in other datasets. Other experiments were conducted on clinical samples to explore potential ESCC risk-related genes. RESULTS Our bioinformatics and statistical analyses revealed an increased proportion of fibroblasts and epithelial cells in NCRT and identified the Ep_c1 subtype associated with a better prognosis. Further results indicated a complex communication network between Ep_c1 and myCAFs. The top 30 marker genes of myCAFs were used to construct a prognostic signature with a significant response to immunotherapy. Finally, experiments identified Complement C1s subcomponent (C1S), Decorin (DCN), and Neuroblastoma suppression of tumorigenicity 1 (NBL1) as potential ESCC risk-related genes. CONCLUSION Our findings highlight the dynamic alterations in the post-NCRT ESCC microenvironment and provide a foundation for the development of personalized treatment and immunotherapeutic approaches. Future studies are warranted to further validate these findings and explore their clinical implications.
Collapse
Affiliation(s)
- Zhao Huang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China
- Department of Cardiothoracic Surgery, The 960th Hospital of PLA, Jinan, Shandong Province, 250000, China
| | - Zhuangzhuang Cong
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China
| | - Bingmei Qiu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China
| | - Kang Wang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China
| | - Chuan Gao
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China
| | - Nan Yang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China
| | - Zhiqiang Zou
- Department of Cardiothoracic Surgery, The 960th Hospital of PLA, Jinan, Shandong Province, 250000, China.
| | - Liwen Hu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China.
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
17
|
Chen L, Hao Y, Zhai T, Yang F, Chen S, Lin X, Li J. Single-cell Analysis Highlights Anti-apoptotic Subpopulation Promoting Malignant Progression and Predicting Prognosis in Bladder Cancer. Cancer Inform 2025; 24:11769351251323569. [PMID: 40018511 PMCID: PMC11866393 DOI: 10.1177/11769351251323569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Backgrounds Bladder cancer (BLCA) has a high degree of intratumor heterogeneity, which significantly affects patient prognosis. We performed single-cell analysis of BLCA tumors and organoids to elucidate the underlying mechanisms. Methods Single-cell RNA sequencing (scRNA-seq) data of BLCA samples were analyzed using Seurat, harmony, and infercnv for quality control, batch correction, and identification of malignant epithelial cells. Gene set enrichment analysis (GSEA), cell trajectory analysis, cell cycle analysis, and single-cell regulatory network inference and clustering (SCENIC) analysis explored the functional heterogeneity between malignant epithelial cell subpopulations. Cellchat was used to infer intercellular communication patterns. Co-expression analysis identified co-expression modules of the anti-apoptotic subpopulation. A prognostic model was constructed using hub genes and Cox regression, and nomogram analysis was performed. The tumor immune dysfunction and exclusion (TIDE) algorithm was applied to predict immunotherapy response. Results Organoids recapitulated the cellular and mutational landscape of the parent tumor. BLCA progression was characterized by mesenchymal features, epithelial-mesenchymal transition (EMT), immune microenvironment remodeling, and metabolic reprograming. An anti-apoptotic tumor subpopulation was identified, characterized by aberrant gene expression, transcriptional instability, and a high mutational burden. Key regulators of this subpopulation included CEBPB, EGR1, ELF3, and EZH2. This subpopulation interacted with immune and stromal cells through signaling pathways such as FGF, CXCL, and VEGF to promote tumor progression. Myofibroblast cancer-associated fibroblasts (mCAFs) and inflammatory cancer-associated fibroblasts (iCAFs) differentially contributed to metastasis. Protein-protein interaction (PPI) network analysis identified functional modules related to apoptosis, proliferation, and metabolism in the anti-apoptotic subpopulation. A 5-gene risk model was developed to predict patient prognosis, which was significantly associated with immune checkpoint gene expression, suggesting potential implications for immunotherapy. Conclusions We identified a distinct anti-apoptotic tumor subpopulation as a key driver of tumor progression with prognostic significance, laying the foundation for the development of new therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Linhuan Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Tianzhang Zhai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Fan Yang
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Jiang Y, Liao C, Lai J, Peng Y, Chen Q, Zheng X. KRT7 promotes pancreatic cancer metastasis by remodeling the extracellular matrix niche through FGF2-fibroblast crosstalk. Sci Rep 2025; 15:6951. [PMID: 40011455 PMCID: PMC11865440 DOI: 10.1038/s41598-024-84129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/20/2024] [Indexed: 02/28/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with a dismal prognosis due to distant metastasis. Through an analysis of large RNA sequencing and proteomics datasets, we found that high KRT7 expression in PDAC patients was correlated with liver metastasis and poor survival. A functional investigation revealed that the overexpression of KRT7 promoted liver metastasis but did not affect tumor cell proliferation in vivo or in vitro. Analysis of scRNA-Seq data from 24 PDAC samples revealed a negative correlation between KRT7 expression in PDAC cells and cancer-associated fibroblast (CAF) infiltration, and this was further confirmed in orthotopic tumor model mice injected with KRT7-overexpressing PDAC cells, which led the development of to a prometastatic niche with reduced ECM deposition. Mechanistically, KRT7 in PDAC cells promoted the secretion of FGF2, which inhibited CAF proliferation and ECM-related gene transcription through the Wnt/β-catenin pathway. Moreover, targeting FGF2 decreased liver metastasis in vivo. Our study revealed that KRT7 promotes PDAC liver metastasis by remodeling the extracellular matrix niche through FGF2-fibroblast crosstalk and provides a promising strategy for preventing PDAC liver metastasis.
Collapse
Affiliation(s)
- Yuting Jiang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Chengyu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, No.134 East Street, Fuzhou, 350001, China.
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| | - Jianlin Lai
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, No.134 East Street, Fuzhou, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Yunyi Peng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Qilin Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Xiaoling Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Digestive Endoscopy, Fujian Provincial Hospital, No. 134 East Street, Fuzhou, 350001, China.
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
19
|
Chen J, Hu Q, Zhang C, Zhao A, Guan B, Wang Y, Zhang M, Li X, Chen B, Zeng L, Chen M, Wu B, Wang J, Yang Y, Ji J. Tendomodulin in pan-cancer analysis: exploring its impact on immune modulation and uncovering functional insights in colorectal cancer. BMC Cancer 2025; 25:239. [PMID: 39934677 PMCID: PMC11817044 DOI: 10.1186/s12885-025-13608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Tendomodulin (TNMD) is pivotal in various malignancies, including colorectal cancer (CRC). However, its comprehensive impact across cancers, particularly its immunomodulatory function in CRC, remains underexplored. This study explored the role of TNMD in CRC by focusing on its immunomodulatory functions through comprehensive molecular and clinical analyses. METHODS Multiple bioinformatics databases and analytical tools were utilized for the TNMD in pan-cancer analysis. To validate the role of TNMD in CRC, we performed experiments, including immunofluorescence (IF), immunohistochemistry (IHC), real-time quantitative reverse transcription PCR (qPCR), western blotting, and cell migration assays. RESULTS TNMD expression and gene mutation vary across cancers and offer high diagnostic value. Survival analysis found that TNMD is associated with prognosis in multiple cancers. Notably, in patients with high microsatellite instability (MSI-H) CRC, TNMD expression correlated positively with various immune cells, particularly natural killer (NK) cells, whereas it was inversely correlated with regulatory T cells (Tregs). Crucially, in patients with microsatellite stability (MSS) CRC, high TNMD expression was associated with better immunotherapy outcomes, indicating its potential as a biomarker for patient stratification and tailored treatment approaches. Furthermore, single-cell sequencing data revealed stronger interactions between TNMD-positive tumor cells and fibroblasts or macrophages in the tumor microenvironment. Finally, TNMD was overexpressed in CRC tumor tissues and cell lines, thereby promoting invasion and metastasis. CONCLUSIONS Our findings reveal a critical immunomodulatory role of TNMD in CRC, particularly in influencing tumor-immune interactions. Beyond its potential diagnostic and prognostic biomarker, TNMD promotes CRC metastasis and invasion, thus emerging as a promising therapeutic target. These findings highlight TNMD's significance in CRC and potentially other malignancies.
Collapse
Affiliation(s)
- Jingfeng Chen
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
- Anorectal surgery of The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Qin Hu
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Cong Zhang
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, 323000, China
| | - Aiqi Zhao
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Bihua Guan
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Yifan Wang
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Min Zhang
- Department, Pathology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xia Li
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Biao Chen
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Lulu Zeng
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui Central Hospital, Lishui, 323000, China
| | - Bing Wu
- Department, Pharmacy, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jianping Wang
- Anorectal surgery of The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Yang Yang
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China.
- Key Laboratory of Precision Medicine of Lishui, Lishui Central Hospital, Lishui, 323000, China.
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.
| | - Jiansong Ji
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China.
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui Central Hospital, Lishui, 323000, China.
- Key Laboratory of Precision Medicine of Lishui, Lishui Central Hospital, Lishui, 323000, China.
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China.
| |
Collapse
|
20
|
Sheng K, Chen J, Xu R, Sun H, Liu R, Wang Y, Xu W, Guo J, Zhang M, Liu S, Lei J, Sun Y, Jia Y, Guo D. Deciphering the generation of heterogeneity in esophageal squamous cell carcinoma metastasis via single-cell multiomics analysis. J Transl Med 2025; 23:148. [PMID: 39905485 PMCID: PMC11792320 DOI: 10.1186/s12967-025-06154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Chromatin accessibility plays a crucial role in mediating transcriptional dysregulation and heterogeneity in Esophageal Squamous Cell Carcinoma (ESCC). Examining the chromatin accessibility of ESCC at single-cell level is imperative to understand how it activates oncogenes and contributes to the onset and metastasis of ESCC. METHODS We performed single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on cancerous and adjacent noncancerous tissues from four ESCC patients who were pathological staged as T1a, T2b, T3b, or T4a, to investigate whether regulatory elements are pivotal in instigating cellular heterogeneity during ESCC metastasis. In conjunction, we integrated these data with 55 scRNA-seq datasets, ChIP-seq or CUT&Tag sequencing data, Hi-C sequencing data, bulk RNA-seq data, and bulk ATAC-seq data from ESCC cell lines to dissect the mechanisms underlying the heterogeneity of ESCC and tumor microenvironment (TME). RESULTS Our study identified enhancer-specific activation within epithelial cells orchestrated by the three-dimensional structure of chromatin that regulates SERPINH1 transcription, and promotes the epithelial-mesenchymal transition (EMT) and metastasis of ESCC. Additionally, chromatin element activation facilitated the expression of TNFSF4 in CD8 + exhausted T cells, thereby activating Tregs. Furthermore, we observed that chromatin accessibility promoted the differentiation of tumor-associated macrophages (TAMs) and cancer associated fibroblasts (CAFs). CONCLUSIONS In summary, utilizing multiomics analyses, we have revealed chromatin accessibility maps and illuminated the intricate molecular mechanisms that underlie cellular heterogeneity during ESCC metastasis, offering valuable insights to further advance research on tumor progression and deterioration.
Collapse
Affiliation(s)
- Kaiwen Sheng
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250117, Shandong, China
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China
| | - Jun Chen
- Department of Endocrinology and Metabolism, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ruitang Xu
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China
| | - Haoqiang Sun
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China
| | - Ran Liu
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China
| | - Yongjie Wang
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China
| | - Wenwen Xu
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China
| | - Jiao Guo
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China
| | - Miao Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250117, Shandong, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China
| | - Juan Lei
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China
| | - Yawen Sun
- Department of Clinical Epidemiology and Biostatistics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yang Jia
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250117, Shandong, China.
| | - Dianhao Guo
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Qingdao Road No.6699, Huaiyin District, Jinan, 250117, China.
| |
Collapse
|
21
|
Qi L, Wang J, Hou S, Liu S, Zhang Q, Zhu S, Liu S, Zhang S. Unraveling the tumor microenvironment of esophageal squamous cell carcinoma through single-cell sequencing: A comprehensive review. Biochim Biophys Acta Rev Cancer 2025; 1880:189264. [PMID: 39805342 DOI: 10.1016/j.bbcan.2025.189264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous and aggressive malignancy. The progression, invasiveness, and metastatic potential of ESCC are shaped by a multitude of cells within the tumor microenvironment (TME), including tumor cells, immune cells, endothelial cells, as well as fibroblasts and other cell types. Recent advancements in single-cell sequencing technologies have significantly enhanced our comprehension of the diverse landscape of ESCC. Single-cell multi-omics technology, particularly single-cell transcriptome sequencing, have shed light on the expression profiles of individual cells and the molecular characteristics of distinct tumor cell populations. This review summarizes the latest literature on single-cell research in the field of ESCC, aiming to elucidate the heterogeneity of tumor cells, immune cells, and stromal cells at the single-cell level. Furthermore, it explores the impact of cellular interactions within the TME on the progression of ESCC. By compiling a comprehensive overview of single-cell omics research on ESCC, this article aims to enhance our understanding of ESCC diagnosis and treatment by elucidating the intricate interplay within the TME. It explores the cellular composition, spatial arrangement, and functional attributes of the ESCC TME, offering potential therapeutic targets and biomarkers for personalized treatment strategies.
Collapse
Affiliation(s)
- Lingyu Qi
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Jiaxin Wang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Songyuan Hou
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Siying Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Qian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Shengtao Zhu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Si Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| | - Shutian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| |
Collapse
|
22
|
Ling L, Peng C, Lin S, Chen Y, Deng M, Qiu H, Huang Y. Integrative analysis disclosing UQCRC1 as a potential prognostic and immunological biomarker of lung adenocarcinoma. Pathol Res Pract 2025; 266:155816. [PMID: 39799889 DOI: 10.1016/j.prp.2025.155816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/11/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Lung cancer is one of the most malignant cancers in the world. Approximately 40 % of lung cancer cases are lung adenocarcinoma (LUAD). Exploring new biomarkers was an urgent need for treatments of LUAD. Here, we aimed to perform a pan-cancer analysis of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) and verify it in LUAD. Compared to normal samples, we observed that UQCRC1 was significantly enhanced in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), LUAD, liver hepatocellular carcinoma (LIHC), and several other cancers. In terms of overall survival, UQCRC1 was positively associated with poor prognosis of LUAD and skin cutaneous melanoma (SKCM). Almost more than 8 % deeply deleted frequency of UQCRC1 was showed in lymphoid neoplasm diffuse large B-cell lymphoma (DLBC). In LUAD, SKCM, and a few cancers, UQCRC1 was negatively correlated with the infiltration of B cells and cancer-associated fibroblasts. As regards further mechanism analysis, we found that UQCRC1 modulated cancer progression via mitochondrial related metabolism and oxidative phosphorylation. Taking advantage of the Kras-driven spontaneous LUAD mice model, online single-cell data, and clinical tissues, we particularly confirmed that UQCRC1 was highly expressed in LUAD and acted as a prognostic marker for LUAD. These findings implied that UQCRC1 played an important role in cancers, especially in LUAD.
Collapse
Affiliation(s)
- Lv Ling
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Cong Peng
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Sheng Lin
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Yuanhang Chen
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Min Deng
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, China
| | - Huisi Qiu
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, Guangdong 511518, China.
| | - Yuanfeng Huang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510095, China.
| |
Collapse
|
23
|
Tao L, Xia J, Hu D, Zhang G, Gong Y, Yan J. Single-Cell Sequencing Reveals Heterogeneity and Interactions Between Epithelial Cells and Fibroblasts in Post-ESD Oesophageal Stricture. J Cell Mol Med 2025; 29:e70411. [PMID: 39910700 PMCID: PMC11798872 DOI: 10.1111/jcmm.70411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Oesophageal stricture, especially circumferential lesions, is a common complication of endoscopic submucosal dissection (ESD). However, the exact mechanisms underlying its development remain unclear. Consequently, understanding tissue microenvironment changes is crucial for identifying therapeutic targets. To address this, single-cell RNA sequencing (scRNA-seq) was performed on oesophageal stricture samples and normal controls. Alterations in cellular composition were observed, particularly in epithelial, endothelial, fibroblast and immune cells. A notable increase was observed in the number of differentiating suprabasal cell_2 (DFSC_2), which displayed pro-keratinizing traits. Detailed investigations revealed augmentation in a subset of these cells, characterised by elevated FTH1 and ECM1 expression, indicating their role in epithelial remodelling. Furthermore, fibroblast heterogeneity was demonstrated, with significant activation of myofibroblasts within stricture tissues. MDK-NCL, CXCL5/6-CXCR2, and TGFA-EGFR ligand-receptor pairs were enhanced in stricture tissues, mediating epithelial-stromal interactions. This study dissected the transcriptional landscape of postoperative oesophageal stricture tissues, providing valuable insights into stricture mechanisms and potential preventive strategies.
Collapse
Affiliation(s)
- Lulong Tao
- Department of GastroenterologyThe First Affiliated Hospital With Nanjing Medical UniversityNanjingChina
- The First Clinical Medical CollegeNanjing Medical UniversityNanjingChina
| | - Junjun Xia
- Department of GastroenterologyThe First Affiliated Hospital With Nanjing Medical UniversityNanjingChina
- The First Clinical Medical CollegeNanjing Medical UniversityNanjingChina
| | - Die Hu
- Department of GastroenterologyThe First Affiliated Hospital With Nanjing Medical UniversityNanjingChina
- The First Clinical Medical CollegeNanjing Medical UniversityNanjingChina
| | - Guoxin Zhang
- Department of GastroenterologyThe First Affiliated Hospital With Nanjing Medical UniversityNanjingChina
- The First Clinical Medical CollegeNanjing Medical UniversityNanjingChina
| | - Yaoyao Gong
- Department of GastroenterologyThe First Affiliated Hospital With Nanjing Medical UniversityNanjingChina
- The First Clinical Medical CollegeNanjing Medical UniversityNanjingChina
| | - Jin Yan
- Department of GastroenterologyThe First Affiliated Hospital With Nanjing Medical UniversityNanjingChina
- The First Clinical Medical CollegeNanjing Medical UniversityNanjingChina
| |
Collapse
|
24
|
Guo ZX, Ma JL, Zhang JQ, Yan LL, Zhou Y, Mao XL, Li SW, Zhou XB. Metabolic reprogramming and immunological changes in the microenvironment of esophageal cancer: future directions and prospects. Front Immunol 2025; 16:1524801. [PMID: 39925801 PMCID: PMC11802498 DOI: 10.3389/fimmu.2025.1524801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Esophageal cancer (EC) is the seventh-most prevalent cancer worldwide and is a significant contributor to cancer-related mortality. Metabolic reprogramming in tumors frequently coincides with aberrant immune function alterations, and extensive research has demonstrated that perturbations in energy metabolism within the tumor microenvironment influence the occurrence and progression of esophageal cancer. Current treatment modalities for esophageal cancer primarily include encompass chemotherapy and a limited array of targeted therapies, which are hampered by toxicity and drug resistance issues. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway, has exhibited promising results; however, a substantial proportion of patients remain unresponsive. The optimization of these immunotherapies requires further investigation. Mounting evidence underscores the importance of modulating metabolic traits within the tumor microenvironment (TME) to augment anti-tumor immunotherapy. Methods We selected relevant studies on the metabolism of the esophageal cancer tumor microenvironment and immune cells based on our searches of MEDLINE and PubMed, focusing on screening experimental articles and reviews related to glucose metabolism, amino acid metabolism, and lipid metabolism, as well their interactions with tumor cells and immune cells, published within the last five years. We analyzed and discussed these studies, while also expressing our own insights and opinions. Results A total of 137 articles were included in the review: 21 articles focused on the tumor microenvironment of esophageal cancer, 33 delved into research related to glucose metabolism and tumor immunology, 30 introduced amino acid metabolism and immune responses, and 17 focused on the relationship between lipid metabolism in the tumor microenvironment and both tumor cells and immune cells. Conclusion This article delves into metabolic reprogramming and immune alterations within the TME of EC, systematically synthesizes the metabolic characteristics of the TME, dissects the interactions between tumor and immune cells, and consolidates and harnesses pertinent immunotherapy targets, with the goal of enhancing anti-tumor immunotherapy for esophageal cancer and thereby offering insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhi-Xun Guo
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jia-Li Ma
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-Ling Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ying Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
25
|
Zhao H, Park YM, Zheng Y, Mao Q, Collet C, Hu B, Zhou T, Lin L, Wong S, Pan Y, Monreal AV, Sinha UK, Sedghizadeh P, Soragni A, Lin DC. Genetically Defined Organoid Models Reveal Mechanisms Driving Squamous Cell Neoplastic Evolution and Identify Potential Therapeutic Vulnerabilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.631624. [PMID: 39896470 PMCID: PMC11785044 DOI: 10.1101/2025.01.18.631624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Upper aerodigestive squamous cell carcinoma (UASCC) is an aggressive and lethal neoplasm, with its early neoplastic transformation mechanisms remaining poorly understood. Here, we characterize over 25 genetically-defined organoid models derived from murine and human oral/esophageal tissues harboring key driver mutations. Double knockout of TP53 and CDKN2A induced morphological dysplasia, hyperproliferation, loss of squamous differentiation, and tumorigenicity, which were further exacerbated by additional driver mutations (e.g., PIK3CA, NOTCH1, KMT2C). Single-cell analysis revealed an expansion of quiescent basal cells and proliferative squamous cells, alongside a loss of differentiated squamous cells during malignant transformation. A distinct senescence program, regulated by ANXA1, was markedly diminished during early neoplastic evolution. Mechanistically, the ANXA1-SMAD3-p27KIP1 pathway was identified as a critical regulator of this senescence program, acting to suppress neoplastic features in organoid models. Lastly, our high-throughput, single-organoid-resolution drug screens unexpectedly revealed PIK3CA-driven organoids exhibited sensitivity to Mitomycin C and Onalespib. This study provides novel mechanistic insights into early neoplastic evolution and underscores the value of genetically-defined organoid models for investigating cancer biology and identifying targeted therapies.
Collapse
Affiliation(s)
- Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Young Min Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
| | - Qiong Mao
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, P.R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, P.R. China
| | - Casey Collet
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Boyan Hu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Tianming Zhou
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Luda Lin
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephanie Wong
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Yuhao Pan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Anette Vistoro Monreal
- Department of Diagnostic Sciences, Anesthesia & Emergency Medicine, Infection and Immunity Laboratory, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, USA
| | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Parish Sedghizadeh
- Department of Diagnostic Sciences, Anesthesia & Emergency Medicine, Infection and Immunity Laboratory, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| |
Collapse
|
26
|
Zhou S, Zhao Z, Wang Z, Xu H, Li Y, Xu K, Li W, Yang J. Cancer-associated fibroblasts in carcinogenesis. J Transl Med 2025; 23:50. [PMID: 39806363 PMCID: PMC11727299 DOI: 10.1186/s12967-025-06071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
In contemporary times, cancer poses the most significant threat to human life and safety. Scientists have relentlessly pursued the intricacies of carcinogenesis and explored ways to prevent and treat cancer. Carcinogenesis is a complex, multi-faceted, and multi-stage process, with numerous underlying causes, including inflammation and fibrosis. Cancer-associated fibroblasts (CAFs), however, occupy a pivotal and substantial role within the tumor microenvironment, facilitating carcinogenesis through diverse mechanisms such as creating inflammation, fostering a fibrotic tumor microenvironment, and immunosuppression. In this paper, we introduce the concept of carcinogenesis, explain its causes, describe the characteristics of CAFs and their sources, and highlight the roles and mechanisms of CAFs in promoting carcinogenesis. Ultimately, our aim is to contribute to the development of novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Shufen Zhou
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zekun Zhao
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojun Wang
- Department of Thyroid and Breast Surgery, The DingLi Clinical, The Wenzhou Central Hospital, College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hanzheng Xu
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijie Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China.
| | - Wei Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
27
|
Wei G, Nie Y, Sun M, Zhou W, Zhao H, Chen F, Zhu C. Cancer-associated fibroblasts induce almonertinib resistance in non-small cell lung cancer. J Transl Med 2025; 23:42. [PMID: 39794783 PMCID: PMC11724582 DOI: 10.1186/s12967-024-06064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Almonertinib is the initial third-generation EGFR-TKI in China, but its resistance mechanism is unknown. Cancer-associated fibroblasts (CAFs) are essential matrix components in the tumor microenvironment, but their impact on almonertinib resistance is unknown. This study aimed to explore the correlation between CAFs and almonertinib resistance in non-small cell lung cancer (NSCLC). METHODS The anti-cancer effects of almonertinib on NSCLC cells, as well as the reversal of these effects mediated by CAFs, were validated through phenotypic experiments. Differential gene expression analysis, along with GO and KEGG enrichment analyses, was performed to predict the potential mechanisms underlying resistance to third-generation EGFR-TKIs. Finally, qPCR and Western blot analyses were used to explore the signaling pathways by which CAFs induce resistance to almonertinib in NSCLC cells. RESULTS Our findings revealed that almonertinib significantly suppressed the invasion, migration, and proliferation of EGFR T790M-mutant NSCLC cells. TGF-β1 successfully induced the differentiation of CAFs and upregulated the expression of CAF markers, including α-SMA and fibroblast activation protein (FAP). Exposure of H1975 cells to almonertinib increased TGF-β1 secretion. Additionally, CAFs enhanced the survival of almonertinib-treated NSCLC cells, whereas normal fibroblasts (NFs) exerted the opposite effect. qPCR analysis demonstrated that the expression of the core molecules of the Hippo pathway, YAP and TAZ, was lower in A549 cells than in H1975 cells, and CAF intervention further reduced YAP/TAZ expression in H1975 cells. Western blot analysis confirmed a significant reduction in YAP/TAZ protein levels in cancer cells treated with CAF-conditioned medium (CAF-CM) compared to those treated with normal control-conditioned medium (NC-CM). Finally, we demonstrated that CAFs induced resistance to almonertinib in NSCLC cells, potentially through a mechanism involving YAP/TAZ. CONCLUSION This study demonstrated that H1975 cells stimulated by almonertinib promoted the accumulation of CAFs in NSCLC cells, likely through increased secretion of TGF-β1. The accumulation of CAFs enhanced the survival of NSCLC cells undergoing almonertinib treatment and induced drug resistance. Additionally, the mechanism underlying CAF-induced drug resistance in NSCLC cells was potentially linked to the activation of the YAP/TAZ signaling pathway.
Collapse
Affiliation(s)
- Guohao Wei
- Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Yu Nie
- Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Min Sun
- Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Wenzheng Zhou
- Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Huihui Zhao
- Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| | - Fangfang Chen
- Department of Clinical Laboratory, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Chuandong Zhu
- Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
28
|
Xie J, Lin X, Deng X, Tang H, Zou Y, Chen W, Xie X. Cancer-associated fibroblast-derived extracellular vesicles: regulators and therapeutic targets in the tumor microenvironment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:2. [PMID: 39935427 PMCID: PMC11810458 DOI: 10.20517/cdr.2024.152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025]
Abstract
Cancer-associated fibroblasts (CAFs) constitute a critical component of the tumor microenvironment (TME). CAFs can be reprogrammed by cancer cells, leading to the production of extracellular vesicles (EVs). These EVs serve as carriers for bioactive substances, including proteins, nucleic acids, and metabolic products, thereby facilitating tumor progression. CAF-derived EVs exert substantial influence on tumor cell proliferation, invasion, and metastasis, the immunological environment, and the processes of lymphangiogenesis and angiogenesis. Despite their potential as non-invasive biomarkers and therapeutic delivery vehicles, the clinical application of CAF-derived EVs is currently limited by challenges in purification and precise targeting. This review delineates the diverse roles of CAF-derived EVs in tumor growth, metastasis, and immune evasion within the TME.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
- Authors contributed equally
| | - Xinmei Lin
- School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- Authors contributed equally
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
- Authors contributed equally
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| |
Collapse
|
29
|
Xi Y, Zhang S. Protocol for constructing whole-genome libraries from mini-biopsies by using laser capture microdissection. STAR Protoc 2024; 5:103396. [PMID: 39412994 PMCID: PMC11525219 DOI: 10.1016/j.xpro.2024.103396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Disclosure of the key events in tumor progress will help us deepen the understanding of tumorigenesis. Here, we present a protocol for multi-regional tissue capture of malignant continuum. We describe steps for preparing tissue sections, laser capture microdissection, and whole-genome library preparation, which enable the concurrent analysis of potential driver events in precancer initiation. This protocol overcomes challenges posed by limited DNA quantity and preserves the spatial information of the target regions. For complete details on the use and execution of this protocol, please refer to Li et al.,1 Chang et al.,2 and Chen et al.3.
Collapse
Affiliation(s)
- Yiyi Xi
- Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China.
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China.
| |
Collapse
|
30
|
Zhang S, Cheng G, Zhu S, Lin D, Wu C. Protocol for the generation, characterization, and functional assays of organoid cultures from normal and cancer-prone human esophageal tissues. STAR Protoc 2024; 5:103316. [PMID: 39277865 PMCID: PMC11419821 DOI: 10.1016/j.xpro.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
Multiple sampling strategies to cover different or dynamic stages of malignant continuum with organoid cultures provide a valuable platform for epithelium homeostasis, transformation, and cancer progression. Here, we present a protocol to initiate, culture, passage, and characterize organoids from normal and cancer-prone human esophageal tissues. We describe steps for multiple sampling of malignant continuum and the initiation and maintenance of multi-stage organoids. We then detail procedures for the histological characterization of organoids and co-culture systems based on organoids and stromal cells. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China.
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Shihao Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Changping Laboratory, Beijing 102206, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Changping Laboratory, Beijing 102206, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China
| |
Collapse
|
31
|
Li R, Li N, Yang Q, Tong X, Wang W, Li C, Zhao J, Jiang D, Huang H, Fang C, Xie K, Yuan J, Chen S, Li G, Luo H, Gao Z, Wu D, Cui X, Jiang W, Guo L, Ma H, Feng Y. Spatial transcriptome profiling identifies DTX3L and BST2 as key biomarkers in esophageal squamous cell carcinoma tumorigenesis. Genome Med 2024; 16:148. [PMID: 39696540 DOI: 10.1186/s13073-024-01422-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Understanding the stepwise progression of esophageal squamous cell carcinoma (ESCC) is crucial for developing customized strategies for early detection and optimal clinical management. Herein, we aimed to unravel the transcriptional and immunologic alterations occurring during malignant transformation and identify clinically significant biomarkers of ESCC. METHODS Digital spatial profiling (DSP) was performed on 11 patients with early-stage ESCC (pT1) to explore the transcriptional alterations in epithelial, immune cell, and non-immune cell stromal compartments across regions of distinct histology, including normal tissues, low- and high-grade dysplasia, and cancerous tissues. Furthermore, single-cell spatial transcriptomics was performed using the CosMx Spatial Molecular Imaging (SMI) system on 4 additional patients with pT1 ESCC. Immunohistochemical (IHC) analysis was performed on consecutive histological sections of 20 pT1 ESCCs. Additionally, public bulk and single-cell RNA-sequencing (scRNA-seq) datasets were analyzed, and in vitro and in vivo functional studies were conducted. RESULTS Spatial transcriptional reprogramming and dynamic cell signaling pathways that determined ESCC progression were delineated. Increased infiltration of macrophages from normal tissues through dysplasia to cancerous tissues occurred. Macrophage subtypes were characterized using the scRNA-seq dataset. Cell-cell communication analysis of scRNA-seq and SMI data indicated that the migration inhibitory factor (MIF)-CD74 axis may exhibit pro-tumor interactions between macrophages and epithelial cells. DSP, SMI, and IHC data demonstrated that DTX3L expression in epithelial cells and BST2 expression in stromal cells increased gradually with ESCC progression. Functional studies demonstrated that DTX3L or BST2 knockdown inhibited ESCC proliferation and migration and decreased M2 polarization of tumor-associated macrophages. CONCLUSIONS Spatial profiling comprehensively characterized the molecular and immunological hallmarks from normal tissue to ESCC, guiding the way to a deeper understanding of the tumorigenesis and progression of this disease and contributing to the prevention of ESCC. Within this exploration, we uncovered biomarkers that exhibit a robust correlation with ESCC progression, offering potential new avenues for insightful therapeutic approaches.
Collapse
Affiliation(s)
- Rutao Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China.
| | - Qianqian Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xing Tong
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wei Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Chang Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jun Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Dong Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Huang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chen Fang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Kai Xie
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Jiamin Yuan
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Shaomu Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangbin Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Zhibo Gao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Dongfang Wu
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Xiaoli Cui
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Wei Jiang
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Haitao Ma
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Department of Thoracic Surgery, the Fourth Affiliated Hospital Affiliated to Soochow University, Suzhou, 215000, China.
| | - Yu Feng
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Thoracic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
32
|
Zhou S, Lin N, Yu L, Su X, Liu Z, Yu X, Gao H, Lin S, Zeng Y. Single-cell multi-omics in the study of digestive system cancers. Comput Struct Biotechnol J 2024; 23:431-445. [PMID: 38223343 PMCID: PMC10787224 DOI: 10.1016/j.csbj.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
Digestive system cancers are prevalent diseases with a high mortality rate, posing a significant threat to public health and economic burden. The diagnosis and treatment of digestive system cancer confront conventional cancer problems, such as tumor heterogeneity and drug resistance. Single-cell sequencing (SCS) emerged at times required and has developed from single-cell RNA-seq (scRNA-seq) to the single-cell multi-omics era represented by single-cell spatial transcriptomics (ST). This article comprehensively reviews the advances of single-cell omics technology in the study of digestive system tumors. While analyzing and summarizing the research cases, vital details on the sequencing platform, sample information, sampling method, and key findings are provided. Meanwhile, we summarize the commonly used SCS platforms and their features, as well as the advantages of multi-omics technologies in combination. Finally, the development trends and prospects of the application of single-cell multi-omics technology in digestive system cancer research are prospected.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Nanfei Lin
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, & Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaowan Yu
- Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| |
Collapse
|
33
|
Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer 2024; 24:850-866. [PMID: 39433978 DOI: 10.1038/s41568-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Xu X, Zhang B, Zhang J, Ma H. Unraveling disulfidptosis for prognostic modeling and personalized treatment strategies in lung adenocarcinoma. Future Sci OA 2024; 10:2432211. [PMID: 39587729 PMCID: PMC11601057 DOI: 10.1080/20565623.2024.2432211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
AIM To construct and identify a prognostic and therapeutic signature based on disulfidptosis-related genes in lung adenocarcinoma. METHODS Bioinformatic analysis was performed to assess the differential expression of disulfidptosis-related genes between cancerous and control samples from The Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD) database. Survival analysis, immune cell infiltration assessment, and examination of oncogenic pathways were performed to uncover potential clinical implications of disulfidptosis gene expression. Differential gene expression analysis between subtypes facilitated the development of a prognostic model using a combination of genes associated with survival. A nomogram was further created using independent clinical and molecular factors. RESULTS We identified the significant upregulation of ten disulfidptosis-related genes and delineated two distinct subtypes, C1 and C2. Subtype C2 was associated with prolonged survival. Then, prognostic modeling utilizing six genes (TXNRD1, CPS1, S100P, SCGB3A1, CYP24A1, NAPSA) demonstrated predictive power in both training and validation datasets. The nomogram, incorporating the risk model with clinical features, provided a reliable tool for predicting one-year (AUC 0.77), three-year (AUC 0.75), and five-year (AUC 0.78) survival rates. Additionally, chemotherapy sensitivity analysis highlighted significant resistance in the high-risk group, primarily associated with subtype C1. CONCLUSION Our study reveals distinct LUAD subtypes, offers a robust prognostic model, and underscores clinical implications for personalized therapy based on disulfidptosis-related genes expression profiles.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Thoracic Surgery, Chongqing General Hospital, Chongqing, China
| | - Bingbing Zhang
- Department of Thoracic Surgery, Chongqing General Hospital, Chongqing, China
| | - Jin Zhang
- Department of Thoracic Surgery, Chongqing General Hospital, Chongqing, China
| | - Hongbiao Ma
- Department of Thoracic Surgery, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
35
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
36
|
Chen Y, Yin X, Xu R, Ruze R, Song J, Yin C, Hu C, Wang C, Xu Q, Zhao Y. Cancer-Associated Endocrine Cells Participate in Pancreatic Carcinogenesis. Gastroenterology 2024; 167:1167-1182.e23. [PMID: 39048054 DOI: 10.1053/j.gastro.2024.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND & AIMS The pancreas is composed of endocrine and exocrine parts, and its interlacing structure indicates potential interaction between endocrine and exocrine cells. Although the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has been well characterized, the role of pancreatic endocrine cells during carcinogenesis is relatively understudied. METHODS The changes of endocrine cells in PDAC by single-cell transcriptome sequencing, spatial transcriptome sequencing, and multiplex immunohistochemistry were depicted. After that, the interaction between pancreatic carcinogenesis and endocrine changes was explored in orthotopic transplantation mice, KrasLSL-G12DPdx1-Cre mice, and KrasLSL-G12Dp53LoxPPdx1-CreER mice. Finally, we proved the mechanism of the interaction between endocrine and exocrine parts of the pancreas through islet isolation, co-culture in vitro and co-injection in vivo. RESULTS Pancreatic endocrine cells displayed significantly different transcriptomic characteristics and increased interaction with exocrine part in PDAC. Specifically, among all of the changes, pancreatic polypeptide-positive cells showed a sharp increment accompanied by the progression of the cancer lesion, which might be derived from the transdifferentiation of α and β cells. Interestingly, it was proved that PDAC cells were able to induce the transdifferentiation of pancreatic α cells and β cells into glucagon-pancreatic polypeptide and insulin-pancreatic polypeptide double-positive cells, which further promoted carcinogenesis and development of PDAC in a paracrine-dependent manner and formed a reciprocal interaction. CONCLUSIONS This study systematically maps the alteration of pancreatic endocrine cells in PDAC and elucidates the potential endocrine-exocrine interaction mechanisms during PDAC carcinogenesis. In addition, cancer-associated endocrine cells are defined and characterized, thereby further broadening the composition of PDAC microenvironment.
Collapse
MESH Headings
- Animals
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Mice
- Humans
- Tumor Microenvironment
- Coculture Techniques
- Single-Cell Analysis
- Cell Transdifferentiation
- Insulin-Secreting Cells/pathology
- Insulin-Secreting Cells/metabolism
- Transcriptome
- Cell Line, Tumor
- Glucagon-Secreting Cells/pathology
- Glucagon-Secreting Cells/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/genetics
- Gene Expression Regulation, Neoplastic
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Gene Expression Profiling
- Disease Models, Animal
- Mice, Transgenic
Collapse
Affiliation(s)
- Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chenxue Yin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chenglin Hu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China
| | - Chengcheng Wang
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China; Institute of Clinical Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China.
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People's Republic of China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, People's Republic of China.
| |
Collapse
|
37
|
Chang J, Zheng T, Wu C. Early Cancer Detection Through Comprehensive Mapping of Dynamic Tumorigenesis. Cancer Discov 2024; 14:2037-2040. [PMID: 39485248 DOI: 10.1158/2159-8290.cd-24-0831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 11/03/2024]
Abstract
Current strategies for early cancer detection and diagnosis need updating to achieve greater precision, necessitating the creation of a comprehensive evolutionary map of tumorigenesis. This requires establishing high-quality prospective cohorts, systematically collecting samples for integrated spatiotemporal multiomics analyses, and efficiently translating laboratory findings into clinical applications.
Collapse
Affiliation(s)
- Jiang Chang
- Key Laboratory for Environment and Health, Department of Health Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongsen Zheng
- Key Laboratories of Molecular Oncology of Heilongjiang Province, Harbin, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Chinese Academy of Medical Sciences, CAMS Oxford Institute, Beijing, China
| |
Collapse
|
38
|
Wang J, Si J, Zhao Z, Gao C, Liu T, Jia Y, Liu L. SNHG6 facilitates the epithelial-mesenchymal transition and metastatic potential of esophageal squamous carcinoma through miR-26b-5p/ ITGB1 axis. Sci Rep 2024; 14:25005. [PMID: 39443675 PMCID: PMC11499871 DOI: 10.1038/s41598-024-76521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), such as SNHG6, have been identified as crucial regulators in the progression of various cancers, including esophageal squamous cell carcinoma (ESCC). Although the role of SNHG6 in ESCC is not completely understood, our findings demonstrated that SNHG6 expression is upregulated in ESCC tissues compared to adjacent normal tissues. Furthermore, elevated levels of SNHG6 are significantly correlated with higher TNM stage and poorer clinical prognosis in ESCC patients. Functionally, both in vivo and in vitro experiments have shown that knocking down SNHG6 inhibits proliferation, invasion, and metastasis. Luciferase reporter assays and Ago2-RIP assay confirm that SNHG6 functions as a competing endogenous RNA (ceRNA) by sponging miR-26b-5p to modulate ITGB1 expression in ESCC. Given that ITGB1 is instrumental in EMT and metastasis, we assessed the expression of EMT-related proteins. The findings suggest that miR-26b-5p and reduced ITGB1 expression can reverse the EMT induced by lncRNA SHNG6, as demonstrated through rescue analysis. Overall, this study aims to elucidate the molecular mechanisms through which SNHG6 promotes EMT and metastasis in ESCC, providing a novel theoretical foundation for understanding ESCC progression and identifying new targets for improving outcomes in metastatic ESCC.
Collapse
Affiliation(s)
- Jiali Wang
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Jiaxin Si
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Ziyuan Zhao
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Changlin Gao
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Tianxu Liu
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Yunlong Jia
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China
| | - Lihua Liu
- Department of Tumor Immunotherapy, Hebei Medical University Fourth Affiliated Hospital, Hebei Provincial Tumor Hospital, Shijiazhuang, 050035, China.
- China International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050011, China.
| |
Collapse
|
39
|
Mao W, Xu K, Wang K, Zhang H, Ji J, Geng J, Sun S, Gu C, Bhattacharya A, Fang C, Tao T, Chen M, Wu J, Chen S, Sun C, Xu B. Single-cell RNA sequencing and spatial transcriptomics of bladder Ewing sarcoma. iScience 2024; 27:110921. [PMID: 39386756 PMCID: PMC11462044 DOI: 10.1016/j.isci.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Bladder Ewing sarcoma/primitive neuroectodermal tumor (bladder ES/PNET) is a rare and highly malignant tumor associated with a poor prognosis, yet its underlying mechanisms remain poorly understood. Here, we employed a combination of single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), and functional analyses to delve into the pathogenesis of bladder ES/PNET. The investigation revealed the presence of specialized types of epithelial cells (referred to as bladder ES-Epi) and mast cells (referred to as bladder ES-Mast) within bladder ES/PNET in comparison to urothelial carcinoma. Notably, TNFRSF12A exhibited significant upregulation in bladder ES/PNET. Furthermore, mast cells possessed the ability to activate epithelial cells through the TNFSF12-TNFRSF12A ligand-receptor signaling pattern. In addition, Enavatuzumab can significantly inhibit the migratory ability of the Ewing sarcoma cell line RD-ES. This groundbreaking study provides unprecedented mechanistic insights into the progression of bladder ES/PNET and introduces a potential therapeutic avenue for treating this challenging malignancy.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Kangjie Xu
- Central Laboratory Department, Binhai County People’s Hospital, Yancheng 224000, China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Jie Ji
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Si Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Chaoming Gu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng Fang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Tao Tao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Chao Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| |
Collapse
|
40
|
Yang J, Wu B, Li G, Zhang C, Xie Y, Kong W, Zeng Z. Landscape of epithelial cell subpopulations in the human esophageal squamous cell carcinoma microenvironment. Heliyon 2024; 10:e38091. [PMID: 39391485 PMCID: PMC11466536 DOI: 10.1016/j.heliyon.2024.e38091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Aims We sought to reveal the landscape of epithelial cell subpopulations in the human esophageal squamous cell carcinoma microenvironment and investigate their parts on esophageal squamous carcinoma (ESCC) development. Background Epithelial cells play an important role in the occurrence and development of ESCC through multiple mechanisms. While the landscape of epithelial cell subpopulations in ESCC, remains unclear. Objective Exploring the role of epithelial cell subpopulations in ESCC progression. Methods Seurat R package was used for single-cell RNA sequencing (scRNA-seq) data filtering, dimensionality reduction, clustering and differentially expressed genes analysis. Cellmarker database was adopted for cell cluster annotation. Functional enrichment analysis was carried out by Gene Ontology (GO) analysis. InferCNV package was conducted for copy number variation (CNV) of epithelial cell subpopulations in all chromosomal regions. Pseudotime trajectory analysis was implemented for exploring differentiation trajectory of epithelial cells subgroups during the cancer progression. CellChat analysis was used for probing the interactions between epithelial cells and NK/T cells. cellular experiments were performed using Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR), Wound-Healing Assay and transwell. Results 11 major cell subpopulations were identified in ESCC and adjunct tissues. Further reclassification of epithelial cells uncovered 4 subpopulations. Enrichment analysis revealed that highly expressed genes in 4 epithelial cell subpopulations were related to cell proliferation, immune response and angiogenesis. CNV analysis found that UBD + epithelial cells and GAS2L3+ epithelial cells had a higher proportion of CNV. Cell differentiation trajectories disclosed that KRT6C+ and GSTA1+ epithelial cells were in an intermediate state of differentiation, while UBD+ and GAS2L3+ epithelial cells are in an end state of differentiation during ESCC progression. Finally, we found that four epithelial cell subpopulations all inhibited NK/T cells through NECTIN2-TIGIT and CLEC2B-KLRB1. Low ATF3 and DDIT3 mRNA expression inhibited ESCC cell migration and invasion. Conclusion Here, we obtained a through epithelial cell atlas of ESCC at single-cell resolution, explored the role of epithelial cell in ESCC progression, and unveiled immunosuppressive signals to NK/T cells in promoting ESCC. Our findings expand the comprehension of epithelial cells and offer a theoretical guidance for future anti-epithelial cell treatment of ESCC.
Collapse
Affiliation(s)
- Jingrong Yang
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| | - Bo Wu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
- Department of Emergency, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Guo Li
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| | - Chenxi Zhang
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| | - Yongwei Xie
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| | - Wencui Kong
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
- Department of Respiratory Medicine and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
| | - Zhiyong Zeng
- Department of Cardiothoracic Surgery, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, 350025, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
41
|
Ergun P, Samuels TL, Mathison AJ, Plehhova K, Coyle C, Horvath L, Johnston N. Global Transcriptomic Analysis of Topical Sodium Alginate Protection against Peptic Damage in an In Vitro Model of Treatment-Resistant Gastroesophageal Reflux Disease. Int J Mol Sci 2024; 25:10714. [PMID: 39409043 PMCID: PMC11605242 DOI: 10.3390/ijms251910714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
Breakthrough symptoms are thought to occur in roughly half of all gastroesophageal reflux disease (GERD) patients despite maximal acid suppression (proton pump inhibitor, PPI) therapy. Topical alginates have recently been shown to enhance mucosal defense against acid-pepsin insult during GERD. We aimed to examine potential alginate protection of transcriptomic changes in a cell culture model of PPI-recalcitrant GERD. Immortalized normal-derived human esophageal epithelial cells underwent pretreatment with commercial alginate-based anti-reflux medications (Gaviscon Advance or Gaviscon Double Action), a matched-viscosity placebo control, or pH 7.4 buffer (sham) alone for 1 min, followed by exposure to pH 6.0 + pepsin or buffer alone for 3 min. RNA sequencing was conducted, and Ingenuity Pathway Analysis was performed with a false discovery rate of ≤0.01 and absolute fold-change of ≥1.3. Pepsin-acid exposure disrupted gene expressions associated with epithelial barrier function, chromatin structure, carcinogenesis, and inflammation. Alginate formulations demonstrated protection by mitigating these changes and promoting extracellular matrix repair, downregulating proto-oncogenes, and enhancing tumor suppressor expression. These data suggest molecular mechanisms by which alginates provide topical protection against injury during weakly acidic reflux and support a potential role for alginates in the prevention of GERD-related carcinogenesis.
Collapse
Affiliation(s)
- Pelin Ergun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| | - Tina L. Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| | - Angela J. Mathison
- Mellowes Center for Genomic Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Kate Plehhova
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Cathal Coyle
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Lizzie Horvath
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| |
Collapse
|
42
|
Hu S, Hu C, Xu J, Yu P, Yuan L, Li Z, Liang H, Zhang Y, Chen J, Wei Q, Zhang S, Yang L, Su D, Du Y, Xu Z, Bai F, Cheng X. The estrogen response in fibroblasts promotes ovarian metastases of gastric cancer. Nat Commun 2024; 15:8447. [PMID: 39349474 PMCID: PMC11443007 DOI: 10.1038/s41467-024-52615-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
Younger premenopausal women are more prone to developing ovarian metastases (OM) of gastric cancer (GC) than metastases of other organs; however, the molecular mechanisms remain unclear. Here we perform single-cell RNA sequencing on 45 tumor samples from 18 GC patients with OM. Interestingly, fibroblasts in OM of GC express high levels of estrogen receptor (ER) and midkine (MDK), interacting with tumor cells through activating ER-MDK-LRP1 (low-density lipoprotein receptor-related protein 1) signaling axis. Functional experiments demonstrate that estrogen stimulation induces MDK secretion by ovarian fibroblasts, and binding of MDK to LRP1 increases GC cell migration and invasion. Furthermore, in vivo, estrogen stimulation remarkably augments ovarian engraftment and metastasis of LRP1+ GC cells. Collectively, our findings reveal that ER+ ovarian fibroblasts secrete MDK under estrogen influence, driving OM of GC via the MDK-LRP1 axis. Our study holds the potential to catalyze innovative therapeutic strategies aimed at intercepting and managing OM in GC.
Collapse
Affiliation(s)
- Simeng Hu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jingli Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Pengfei Yu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ziyu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Haohong Liang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiahui Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qing Wei
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Litao Yang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dan Su
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yian Du
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
43
|
Liang W, Zhu Z, Xu D, Wang P, Guo F, Xiao H, Hou C, Xue J, Zhi X, Ran R. The burgeoning spatial multi-omics in human gastrointestinal cancers. PeerJ 2024; 12:e17860. [PMID: 39285924 PMCID: PMC11404479 DOI: 10.7717/peerj.17860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024] Open
Abstract
The development and progression of diseases in multicellular organisms unfold within the intricate three-dimensional body environment. Thus, to comprehensively understand the molecular mechanisms governing individual development and disease progression, precise acquisition of biological data, including genome, transcriptome, proteome, metabolome, and epigenome, with single-cell resolution and spatial information within the body's three-dimensional context, is essential. This foundational information serves as the basis for deciphering cellular and molecular mechanisms. Although single-cell multi-omics technology can provide biological information such as genome, transcriptome, proteome, metabolome, and epigenome with single-cell resolution, the sample preparation process leads to the loss of spatial information. Spatial multi-omics technology, however, facilitates the characterization of biological data, such as genome, transcriptome, proteome, metabolome, and epigenome in tissue samples, while retaining their spatial context. Consequently, these techniques significantly enhance our understanding of individual development and disease pathology. Currently, spatial multi-omics technology has played a vital role in elucidating various processes in tumor biology, including tumor occurrence, development, and metastasis, particularly in the realms of tumor immunity and the heterogeneity of the tumor microenvironment. Therefore, this article provides a comprehensive overview of spatial transcriptomics, spatial proteomics, and spatial metabolomics-related technologies and their application in research concerning esophageal cancer, gastric cancer, and colorectal cancer. The objective is to foster the research and implementation of spatial multi-omics technology in digestive tumor diseases. This review will provide new technical insights for molecular biology researchers.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Zhenpeng Zhu
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Peng Wang
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Fei Guo
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haoshan Xiao
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Chenyang Hou
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Rensen Ran
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
44
|
Karunasagara S, Taghizadeh A, Kim SH, Kim SJ, Kim YJ, Taghizadeh M, Kim MY, Oh KY, Lee JH, Kim HS, Hyun J, Kim HW. Tissue Mechanics and Hedgehog Signaling Crosstalk as a Key Epithelial-Stromal Interplay in Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400063. [PMID: 38976559 PMCID: PMC11425211 DOI: 10.1002/advs.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Epithelial-stromal interplay through chemomechanical cues from cells and matrix propels cancer progression. Elevated tissue stiffness in potentially malignant tissues suggests a link between matrix stiffness and enhanced tumor growth. In this study, employing chronic oral/esophageal injury and cancer models, it is demonstrated that epithelial-stromal interplay through matrix stiffness and Hedgehog (Hh) signaling is key in compounding cancer development. Epithelial cells actively interact with fibroblasts, exchanging mechanoresponsive signals during the precancerous stage. Specifically, epithelial cells release Sonic Hh, activating fibroblasts to produce matrix proteins and remodeling enzymes, resulting in tissue stiffening. Subsequently, basal epithelial cells adjacent to the stiffened tissue become proliferative and undergo epithelial-to-mesenchymal transition, acquiring migratory and invasive properties, thereby promoting invasive tumor growth. Notably, transcriptomic programs of oncogenic GLI2, mechano-activated by actin cytoskeletal tension, govern this process, elucidating the crucial role of non-canonical GLI2 activation in orchestrating the proliferation and mesenchymal transition of epithelial cells. Furthermore, pharmacological intervention targeting tissue stiffening proves highly effective in slowing cancer progression. These findings underscore the impact of epithelial-stromal interplay through chemo-mechanical (Hh-stiffness) signaling in cancer development, and suggest that targeting tissue stiffness holds promise as a strategy to disrupt chemo-mechanical feedback, enabling effective cancer treatment.
Collapse
Affiliation(s)
- Shanika Karunasagara
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sang-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
45
|
Lyu P, Gu X, Wang F, Sun H, Zhou Q, Yang S, Yuan W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark Res 2024; 12:73. [PMID: 39075612 PMCID: PMC11287900 DOI: 10.1186/s40364-024-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and are related to tumor proliferation, metastasis, relapse, and drug resistance. With the development of sequencing technologies, single-cell RNA sequencing has become a popular method for identifying CAFs in the tumor microenvironment. Whereas the drawbacks of CAFs, such as the lack of a spatial landscape, still exist, recent research has utilized spatial transcriptomics combined with single-cell RNA sequencing to address this issue. These multiomics analyses can resolve the single-cell resolution problem in spatial transcriptomics. In this review, we summarized the recent literature regarding the targeting of CAFs to address drug resistance, angiogenesis, metabolic reprogramming and metastasis in tumor tissue.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
46
|
Li K, Wang R, Liu GW, Peng ZY, Wang JC, Xiao GD, Tang SC, Du N, Zhang J, Zhang J, Ren H, Sun X, Yang YP, Liu DP. Refining the optimal CAF cluster marker for predicting TME-dependent survival expectancy and treatment benefits in NSCLC patients. Sci Rep 2024; 14:16766. [PMID: 39034310 PMCID: PMC11271481 DOI: 10.1038/s41598-024-55375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/22/2024] [Indexed: 07/23/2024] Open
Abstract
The tumor microenvironment (TME) plays a pivotal role in the onset, progression, and treatment response of cancer. Among the various components of the TME, cancer-associated fibroblasts (CAFs) are key regulators of both immune and non-immune cellular functions. Leveraging single-cell RNA sequencing (scRNA) data, we have uncovered previously hidden and promising roles within this specific CAF subgroup, paving the way for its clinical application. However, several critical questions persist, primarily stemming from the heterogeneous nature of CAFs and the use of different fibroblast markers in various sample analyses, causing confusion and hindrance in their clinical implementation. In this groundbreaking study, we have systematically screened multiple databases to identify the most robust marker for distinguishing CAFs in lung cancer, with a particular focus on their potential use in early diagnosis, staging, and treatment response evaluation. Our investigation revealed that COL1A1, COL1A2, FAP, and PDGFRA are effective markers for characterizing CAF subgroups in most lung adenocarcinoma datasets. Through comprehensive analysis of treatment responses, we determined that COL1A1 stands out as the most effective indicator among all CAF markers. COL1A1 not only deciphers the TME signatures related to CAFs but also demonstrates a highly sensitive and specific correlation with treatment responses and multiple survival outcomes. For the first time, we have unveiled the distinct roles played by clusters of CAF markers in differentiating various TME groups. Our findings confirm the sensitive and unique contributions of CAFs to the responses of multiple lung cancer therapies. These insights significantly enhance our understanding of TME functions and drive the translational application of extensive scRNA sequence results. COL1A1 emerges as the most sensitive and specific marker for defining CAF subgroups in scRNA analysis. The CAF ratios represented by COL1A1 can potentially serve as a reliable predictor of treatment responses in clinical practice, thus providing valuable insights into the influential roles of TME components. This research marks a crucial step forward in revolutionizing our approach to cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Kai Li
- Department of Otorhinolaryngology‑Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Rui Wang
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Guo-Wei Liu
- Department of Thoracic Surgery, Qinghai Provincial People's Hospital, Gonghe Road No. 2, Chengdong District, Xining, 810007, Qinghai, China
| | - Zi-Yang Peng
- School of Future Technology, National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ji-Chang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Guo-Dong Xiao
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, 450052, Henan, China
| | - Shou-Ching Tang
- Section of Hematology Oncology, Department of Internal Medicine, LSUHSC Cancer Center, School of Medicine, 1700 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ning Du
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jia Zhang
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jing Zhang
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hong Ren
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yi-Ping Yang
- Department of Radiotherapy, Shaanxi Provincial Tumor Hospital, 309 Yanta W Rd, Yanta District, Xi'an, 710063, Shaanxi, China.
| | - Da-Peng Liu
- Department of Thoracic Surgery and Oncology, Cancer Centre, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
47
|
Zheng X, Wu W, Zhao Z, Zhang X, Yu S. Single-cell transcriptomic insights into chemotherapy-induced remodeling of the osteosarcoma tumor microenvironment. J Cancer Res Clin Oncol 2024; 150:356. [PMID: 39033089 PMCID: PMC11271355 DOI: 10.1007/s00432-024-05787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/07/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Neoadjuvant chemotherapy serves as an effective strategy for treating osteosarcoma (OS) not only by targeting cancerous cells but also by influencing the tumor's immune and stromal elements. Gaining insights into how chemotherapy reshapes the tumor's local environment is crucial for advancing OS treatment protocols. METHODS Using single-cell RNA sequencing, this study analyzed tumor samples from patients with advanced osteosarcoma collected both before and after chemotherapy. RESULTS The results revealed that chemotherapy caused the remaining OS cells to express higher levels of genes associated with stemness. Additionally, this process enhances the presence of cancer-associated fibroblasts, increasing their ability to modify the extracellular matrix (ECM). Chemotherapy also increases the number of endothelial cells, albeit with compromised differentiation capabilities. Importantly, the treatment reduced the immune cell population, including myeloid and T/NK cells, particularly impacting the subpopulations with tumor-fighting capabilities. CONCLUSION These findings highlight the complex reaction of the tumor environment to chemotherapy, providing valuable insights into how chemotherapy influences OS cells and the tumor microenvironment (TME). This knowledge is essential for understanding OS resistance mechanisms to treatments, potentially guiding the development of novel therapies for managing advanced OS.
Collapse
Affiliation(s)
- Xuejing Zheng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Wence Wu
- Department of Orthopedics, Peking University First Hospital, Beijing, 100021, China
| | - Zhenguo Zhao
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Xinxin Zhang
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
48
|
Um JH, Zheng Y, Mao Q, Nam C, Zhao H, Koh YW, Shin SJ, Park YM, Lin DC. Genomic and single-cell characterization of patient-derived tumor organoid models of head and neck squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601068. [PMID: 39005427 PMCID: PMC11244938 DOI: 10.1101/2024.06.28.601068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) remains a significant health burden due to tumor heterogeneity and treatment resistance, emphasizing the need for improved biological understanding and tailored therapies. This study enrolled 31 HNSCC patients for the establishment of patient-derived tumor organoids (PDOs), which faithfully maintained genomic features and histopathological traits of primary tumors. Long-term culture preserved key characteristics, affirming PDOs as robust representative models. PDOs demonstrated predictive capability for cisplatin treatment responses, correlating ex vivo drug sensitivity with patient outcomes. Bulk and single-cell RNA sequencing unveiled molecular subtypes and intratumor heterogeneity (ITH) in PDOs, paralleling patient tumors. Notably, a hybrid epithelial-mesenchymal transition (hEMT)-like ITH program is associated with cisplatin resistance and poor patient survival. Functional analyses identified amphiregulin (AREG) as a potential regulator of the hybrid epithelial/mesenchymal state. Moreover, AREG contributes to cisplatin resistance via EGFR pathway activation, corroborated by clinical samples. In summary, HNSCC PDOs serve as reliable and versatile models, offer predictive insights into ITH programs and treatment responses, and uncover potential therapeutic targets for personalized medicine.
Collapse
Affiliation(s)
- Jung Hyun Um
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
| | - Qiong Mao
- Clinical Big Data Research Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P.R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, 510120, P.R. China
| | - Chehyun Nam
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Hua Zhao
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young Min Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| |
Collapse
|
49
|
Zhu H, Jin RU. The role of the fibroblast in Barrett's esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol 2024; 40:319-327. [PMID: 38626060 PMCID: PMC11155289 DOI: 10.1097/mog.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
PURPOSE OF REVIEW Barrett's esophagus (BE) is the number one risk factor for developing esophageal adenocarcinoma (EAC), a deadly cancer with limited treatment options that has been increasing in incidence in the US. In this report, we discuss current studies on the role of mesenchyme and cancer-associated fibroblasts (CAFs) in BE and EAC, and we highlight translational prospects of targeting these cells. RECENT FINDINGS New insights through studies using single-cell RNA sequencing (sc-RNA seq) have revealed an important emerging role of the mesenchyme in developmental signaling and cancer initiation. BE and EAC share similar stromal gene expression, as functional classifications of nonepithelial cells in BE show a remarkable similarity to EAC CAFs. Several recent sc-RNA seq studies and novel organoid fibroblast co-culture systems have characterized the subgroups of fibroblasts in BE and EAC, and have shown that these cells can directly influence the epithelium to induce BE development and cancer progression. Targeting the CAFs in EAC with may be a promising novel therapeutic strategy. SUMMARY The fibroblasts in the surrounding mesenchyme may have a direct role in influencing altered epithelial plasticity during BE development and progression to EAC.
Collapse
Affiliation(s)
- Huili Zhu
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
50
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|