1
|
Zhang W, Chen J, Xie L. Optical biosensor arrays based on nanozymes for environmental monitoring and food safety detection: principles, design, and applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:882-891. [PMID: 39749857 DOI: 10.1039/d4ay02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Typical biosensing platforms are based on the "lock-and-key" approach, providing high specificity and sensitivity for environmental and food safety monitoring. However, they are limited in their ability to detect multiple analytes simultaneously. With the use of pattern identification methods, biosensor arrays can detect faint fluctuations caused by multiple analytes with similar properties in complex systems. As a simple and efficient detection tool, optical biosensor arrays have become crucial for on-site and visible environmental and food safety monitoring. To enhance their practical applications, enzyme-like nanomaterial (nanozyme)-based biosensor arrays have been developed and integrated into optical biosensing platforms, leveraging their exposed active sites and tunable catalytic capabilities. For the development of an optical biosensor array, it is essential to incorporate multiple biosensing elements that can specifically interact with analytes to produce distinct "fingerprint" signals, enabling the differentiation of different targets via pattern identification. This review provides a comprehensive overview of nanozyme-based optical biosensor arrays for environmental and food safety monitoring. It explores the selective approaches of nanozyme-based colorimetric and fluorescent biosensor arrays, compares detection platforms utilizing nanozyme systems, and emphasizes the application of nanozyme-based optical biosensor arrays for environmental and food hazard monitoring. By evaluating current trends and summarizing both prospects and challenges, this review offers valuable guidance for the rational design of unique nanozyme-based optical biosensor arrays.
Collapse
Affiliation(s)
- Wei Zhang
- School of Electronic Engineering, Changzhou College of Information Technology, China.
| | - Jiao Chen
- Department of Intelligent Equipment, Changzhou College of Information Technology, China
| | - Ling Xie
- Changzhou University Huaide College, China
| |
Collapse
|
2
|
Cho HH, Jung DH, Heo JH, Lee CY, Jeong SY, Lee JH. Gold Nanoparticles as Exquisite Colorimetric Transducers for Water Pollutant Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19785-19806. [PMID: 37067786 DOI: 10.1021/acsami.3c00627] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gold nanoparticles (AuNPs) are useful nanomaterials as transducers for colorimetric sensors because of their high extinction coefficient and ability to change color depending on aggregation status. Therefore, over the past few decades, AuNP-based colorimetric sensors have been widely applied in several environmental and biological applications, including the detection of water pollutants. According to various studies, water pollutants are classified into heavy metals or cationic metal ions, toxins, and pesticides. Notably, many researchers have been interested in AuNP that detect water pollutants with high sensitivity and selectivity, while offering no adverse environmental issues in terms of AuNP use. This review provides a representative overview of AuNP-based colorimetric sensors for detecting several water pollutants. In particular, we emphasize the advantages of AuNP as colorimetric transducers for water pollutant detection in terms of their low toxicity, high stability, facile processability, and unique optical properties. Next, we discuss the status quo and future prospects of AuNP-based colorimetric sensors for the detection of water pollutants. We believe that this review will promote research and development of AuNP as next-generation colorimetric transducers for water pollutant detection.
Collapse
Affiliation(s)
- Hui Hun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Do Hyeon Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Chae Yeon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang Yun Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
3
|
Huang H, Wu Y, Qian M, Yang X, Qi H. Iridium(III) solvent complex-based electrogenerated chemiluminescence and photoluminescence sensor array for the discrimination of bases in oligonucleotides. Bioelectrochemistry 2023; 150:108368. [PMID: 36634465 DOI: 10.1016/j.bioelechem.2023.108368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Development of rapid and sensitive method for the discrimination of bases in oligonucleotides is of great importance in clinical diagnosis. Here, we demonstrate the first case of single iridium(III) solvent complex-based electrogenerated chemiluminescence (ECL) and photoluminescence (PL) sensor array for the discrimination of bases in oligonucleotides. One iridium (III) solvent complex ([Ir(ppy)2(DMSO)Cl], ppy = 2-phenylpyridine, probe 1) was designed as both ECL and PL probe while five bases (guanine, adenine, cytosine, thymine and uracil) were chosen as analytes. Two-element sensor array was built for the discrimination of five bases based on the fingerprint response of probe 1 to bases via coordination interactions. The combination of unique ECL and PL variations with principal component analysis was applied for the quantitative analysis of five bases in a linear range of 1.0 μM-10 μM and for the effective discrimination of individual base, the mixture of bases and oligonucleotides. Moreover, the sensor array was successfully applied to discriminate different mismatched ss-DNAs from HIV gene (a fully-matched ss-DNA), even at single-base difference. This work demonstrates that the sensor array using single iridium (III) solvent complex is a promising approach for the discrimination of bases with good sensitivity and simpleness in clinical diagnosis.
Collapse
Affiliation(s)
- Hong Huang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yang Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
4
|
Li T, Zhu X, Hai X, Bi S, Zhang X. Recent Progress in Sensor Arrays: From Construction Principles of Sensing Elements to Applications. ACS Sens 2023; 8:994-1016. [PMID: 36848439 DOI: 10.1021/acssensors.2c02596] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The traditional sensors are designed based on the "lock-and-key" strategy with high selectivity and specificity for detecting specific analytes, which however are not suitable for detecting multiple analytes simultaneously. With the help of pattern recognition technologies, the sensor arrays excel in distinguishing subtle changes caused by multitarget analytes with similar structures in a complex system. To construct a sensor array, the multiple sensing elements are undoubtedly indispensable units that will selectively interact with targets to generate the unique "fingerprints" based on the distinct responses, enabling the identification among various analytes through pattern recognition methods. This comprehensive review mainly focuses on the construction strategies and principles of sensing elements, as well as the applications of sensor array for identification and detection of target analytes in a wide range of fields. Furthermore, the present challenges and further perspectives of sensor arrays are discussed in detail.
Collapse
Affiliation(s)
- Tian Li
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueying Zhu
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xin Hai
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao 266071, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
5
|
Tian JH, Hu XY, Hu ZY, Tian HW, Li JJ, Pan YC, Li HB, Guo DS. A facile way to construct sensor array library via supramolecular chemistry for discriminating complex systems. Nat Commun 2022; 13:4293. [PMID: 35879312 PMCID: PMC9314354 DOI: 10.1038/s41467-022-31986-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
Differential sensing, which discriminates analytes via pattern recognition by sensor arrays, plays an important role in our understanding of many chemical and biological systems. However, it remains challenging to develop new methods to build a sensor unit library without incurring a high workload of synthesis. Herein, we propose a supramolecular approach to construct a sensor unit library by taking full advantage of recognition and assembly. Ten sensor arrays are developed by replacing the building block combinations, adjusting the ratio between system components, and changing the environment. Using proteins as model analytes, we examine the discriminative abilities of these supramolecular sensor arrays. Then the practical applicability for discriminating complex analytes is further demonstrated using honey as an example. This sensor array construction strategy is simple, tunable, and capable of developing many sensor units with as few syntheses as possible.
Collapse
Affiliation(s)
- Jia-Hong Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Zong-Ying Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Huang Y, Chen R, Yang S, Chen Y, Lü X. The Mechanism of Interaction Between Gold Nanoparticles and Human Dermal Fibroblasts Based on Integrative Analysis of Transcriptomics and Metabolomics Data. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this paper was to combine transcriptomics and metabolomics to analyze the mechanism of gold nanoparticles (GNPs) on human dermal fibroblasts (HDFs). First, 20-nm GNPs were prepared, and the differentially expressed genes in HDFs were subsequently screened by transcriptome
sequencing technology after 4, 8, and 24 h of treatment with GNPs. By comparing the metabolic pathways in which the metabolites obtained in a previous study were involved, the pathways involving both genes and metabolites were filtered, and the differentially expressed genes and metabolites
with upstream and downstream relationships were screened out. The gene–metabolite–metabolic pathway network was further constructed, and the functions of metabolic pathways, genes and metabolites in the important network were analyzed and experimentally verified. The results of
transcriptome sequencing experiments showed that 1904, 1216 and 489 genes were differentially expressed in HDFs after 4, 8 and 24 h of treatment with GNPs, and these genes were involved in 270, 235 and 163 biological pathways, respectively. Through the comparison and analysis of the metabolic
pathways affected by the metabolites, 7, 3 and 2 metabolic pathways with genes and metabolites exhibiting upstream and downstream relationships were identified. Through analysis of the gene–metabolite–metabolic pathway network, 4 important metabolic pathways, 9 genes and 7 metabolites
were identified. Combined with the results of verification experiments on oxidative stress, apoptosis, the cell cycle, the cytoskeleton and cell adhesion, it was found that GNPs regulated the synthesis of downstream metabolites through upstream genes in important metabolic pathways. GNPs inhibited
oxidative stress and thus did not induce significant apoptosis, but they exerted effects on several cellular functions, including arresting the cell cycle and affecting the cytoskeleton and cell adhesion.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Rong Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Shuci Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Ye Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| |
Collapse
|
7
|
Zhao Y, Li S, Xie B. The Molecular Mechanism of Long Non-Coding RNA (LncRNA) Regulation of Notch Signaling in Glucose-Induced Apoptosis of Human Retinal Vascular Endothelial Cell. J Biomed Nanotechnol 2022; 18:891-897. [PMID: 35715905 DOI: 10.1166/jbn.2022.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diabetes, a global health concern, affects the health of more than 500 million adults. The absence of Notch protein can cause an imbalance in the retinal vascular environment and cause retinal vascular disease. Long noncoding RNA (lncRNA) is known to be involved in the regulation of many signaling pathways. We hope to understand the specific mechanism of apoptosis in retinal vascular endothelial cells (RVECs) by exploring the regulatory effect of lncRNA on the Notch pathway. In this study, we found that RVECs treated with glucose showed increased levels of Notch transcript and protein expression. The lentiviral interference with Notch RNAi reversed this response. When Notch activity decreased, oxidative stress also decreased, accompanied by increased levels of Caspase-9 and Caspase-3 and an increased rate of apoptosis. Therefore, we believe that Notch is involved in the development of diabetic retinopathy and loss of expression promotes apoptosis of human RVECs. By inhibiting the Notch pathway, lncRNA promotes apoptosis of human RVECs in a high-glucose environment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, QingDao 266003, Shandong, PR China
| | - Shouqing Li
- Department of Neuro-Ophthalmology, Weifang Eye Hospital, Weifang 261041, Shandong, PR China
| | - Bihua Xie
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610041, Sichuan, PR China
| |
Collapse
|
8
|
Zhang Y, Wang T, Zhao Y, Guan Q, Wang Z, Zhang L, Liu J. Nucleus-Targeted Nanoparticles Induce Autophagy of Vascular Endothelial Cells in Cervical Spondylosis of Vertebral Artery Type Through PI3K/Akt/mTOR Signaling Pathway. J Biomed Nanotechnol 2022; 18:565-570. [PMID: 35484739 DOI: 10.1166/jbn.2022.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanoparticles are characterized by their large surface area per unit and high dispersion, with excellent affinity and adhesion to the tissue, which help them to contact drugs with tissues. However, the relationship between nuclear-targeted nanoparticles and PI3K/Akt/mTOR pathway, as well as their roles in cervical spondylosis of vertebral artery type (CSA) remain unclear. bEnd.3 cells were in this study exposed to nuclear-targeted nanoparticles, followed by determination of cell biological processes. The role of nuclear-targeted nanoparticles in CSA in relation to PI3K/Akt/mTOR pathway was then analyzed through detection of autophagy-related proteins pathway-related proteins. Nuclear-targeted nanoparticles led to reduced bEnd.3 cell proliferation with IC50 at indicated time points shown as (12.8±0.67), (8.8±0.43), and (4.6±0.42) μmol/L, respectively. Nuclear-targeted nanoparticles blocked bEnd.3 cells in G2/M phase, and induced apoptosis. In addition, nuclear-targeted nanoparticles inhibited the PI3K/Akt/mTOR pathway in the bEnd.3 cells, as evidenced by reduced PI3K, Akt and mTOR levels. Nuclear-targeted nanoparticles decreased the expression of Beclin-1, LC3, p62, Cathepsin D, and ATG5, and increased expression of GSK-3 and Bcl-2. Our present study demonstrated that the nucleartargeted nanoparticles could regulate the growth of bEnd.3 cells in CSA and promote autophagy of cells through blockage of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030000, China
| | - Tao Wang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong, 256600, China
| | - Yanting Zhao
- Department of Blood Transfusion, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu, 211200, China
| | - Qiang Guan
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030000, China
| | - Zhenfeng Wang
- Department of Vascular Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030000, China
| | - Lei Zhang
- Department of Clinical Laboratory, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu, 211200, China
| | - Jiangang Liu
- Department of Oncology, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, Jiangsu, 211200, China
| |
Collapse
|
9
|
Zhang L, Ma X, Liu D, Shan J, Chu Y, Zhang J, Qi X, Huang X, Zou B, Zhou G. Visualized Genotyping from "Sample to Results" Within 25 Minutes by Coupling Recombinase Polymerase Amplification (RPA) With Allele-Specific Invasive Reaction Assisted Gold Nanoparticle Probes Assembling. J Biomed Nanotechnol 2022; 18:394-404. [PMID: 35484746 DOI: 10.1166/jbn.2022.3258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple and rapid genotyping method with less-instrumentation is essential for realizing point-of-care detection of personalized medicine-related gene biomarkers. Herein, we developed a rapid and visualized genotyping method by coupling recombinase polymerase amplification (RPA) with allele-specific invader reaction assisted gold nanoparticle probes assembling. In the method, the DNA targets were firstly amplified by using RPA, which is a rapid isothermal amplification technology. Then an allele-specific invasion reaction was performed to recognize the single nucleotide polymorphisms (SNPs) site in the amplicons, to produce signal molecules that caused discoloration of gold nanoparticle probes. As a result, genotyping was achieved by observing the color change of the reaction by using naked eye without the requirement for any expensive instrument. In order to achieve rapid genotyping detection, the genomic DNA from oral swab lysate samples were used for the RPA templates amplification. In this way, a visualized genotyping from "samples to results" within 25 min was realized. Two clopidogrel related SNPs CYP2C19*2 and CYP2C19*3 of 56 clinical samples were correctly genotyped by using this rapid visualized genotyping assay. In addition, the feasibility for this pathogen genotyping method was also verified by detecting plasmid DNA containing three SARS-COV-2 gene mutation sites, indicating that this method has the potential for clinical sample detection.
Collapse
Affiliation(s)
- Likun Zhang
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xueping Ma
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Danni Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jingwen Shan
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jieyu Zhang
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiemin Qi
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| |
Collapse
|
10
|
Nuriding H, Wang X, Shen Y, Liu Y, Yan M. Fos-Related Antigen 1 May Cause Wnt-Fzd Signaling Pathway-Related Nephroblastoma in Children. J Biomed Nanotechnol 2022; 18:527-534. [PMID: 35484756 DOI: 10.1166/jbn.2022.3220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the role of the primary Fos-related antigen 1 (Fosl-1) oncogene in nephroblastoma by studying 60 childhood nephroblastoma and 58 paraneoplastic carcinoma cases. The Fosl-1 expression was detected using immunohistochemistry. In vitro culture of nephroblastoma cells was performed by viral transfection to establish Fosl-1 overexpression and gene knockout models. Flow cytometry and nano-PCR were used to detect apoptosis and mRNA expression in related pathway genes. Immunohistochemical results showed that the positive expression of Fosl-1 in the nuclei of nephroblastoma tissue was 78%, among which metastasis rate was 61.7%; correspondingly, it was 8%, and 100% in adjacent tissues. The qPCR results indicated that MMP9, Wnt1, and Fzd1 were significantly upregulated after Fosl-1 overexpression compared with the normal embryonic tissue cells, control, and gene knockout groups (P <0.05). Fosl-1 could cause the occurrence, development, and metastasis of childhood nephroblastoma through wingless/int1/Frizzled-related signaling pathways.
Collapse
Affiliation(s)
- Hailiqiguli Nuriding
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Xuemei Wang
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Yiping Shen
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, 02115, Massachusetts, United States
| | - Yu Liu
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| | - Mei Yan
- Department of the First Internal Medicine, Pediatric Center of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, PR China
| |
Collapse
|
11
|
Gao W, Liang L. Effect of Polysaccharide Sulfate-Loaded Poly(lactic-co-glycolic acid) Nanoparticles on Coronary Microvascular Dysfunction of Diabetic Cardiomyopathy. J Biomed Nanotechnol 2022; 18:446-452. [PMID: 35484736 DOI: 10.1166/jbn.2022.3261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diabetic cardiomyopathy (DCM) mainly results from development of coronary microcirculatory dysfunction (CMD). Polysaccharide sulfate (PSS), as one heparin drug, has a variety of biological activities. This study examined the efficacy of a new type of PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NPs) on DCM, in finding a theoretical basis for CMD treatment. After establishment of DCM model, the animals were administrated with PSS, PSS-NPs, normal saline or poly(ethylene glycol)1 (PEG1) through intraperitoneal injection. 8 weeks after injection of streptozotocin (STZ), heart function of rats was assessed by echocardiography. The rat tissues were collected and detected by histological analysis. Quantitative reverse transcription PCR (RT-qPCR) and Western blot analyses determined the levels of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and pro-inflammatory factors. PSS-NPs had a good protective effect on cardiac insufficiency in rats. Administration of PSS-NPs prolonged survival state, and enhanced cardiac function, thereby alleviating the symptoms, and inducing formation of micro vessels. Importantly, it improved the symptoms of DCM patients and their quality of life. Moreover, pro-inflammatory factor levels decreased upon the treatment, accompanied with inactivation of NF-κB signaling pathways, thereby improving DCM. This study demonstrated that the PSS-NPs significantly relieved DCM and restored cardiac function in rats through NF-κB signaling pathways, providing a theoretical basis for development of PSS-NPs, and new treatment ideas for CMD of DCM.
Collapse
Affiliation(s)
- Wei Gao
- Department of Endocrinology, Northern Theater General Hospital, Shenyang City, 110000, Liaoning Province, China
| | - Linlang Liang
- Department of Endocrinology, Northern Theater General Hospital, Shenyang City, 110000, Liaoning Province, China
| |
Collapse
|
12
|
Wang R, Zhou G, Yang Y, Wang S, Gao S, Gao D, Wang X. Prostate-Specific Membrane Antigen-1-Mediated Au@SiO₂@Au Core-Shell Nanoparticles: Targeting Prostate Cancer to Enhance Photothermal Therapy and Fluorescence Imaging. J Biomed Nanotechnol 2022; 18:158-165. [PMID: 35180908 DOI: 10.1166/jbn.2022.3229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The advantages of deep tissue penetration and the high spatial accuracy of photothermal therapy have been widely studied. Gold, as a photothermal material, has received particular attention. Different sizes and shapes of gold have been studied and characterized for their varying photothermal properties. The core-shell structure of gold nanoparticles and silica enhances the photothermal conversion through the coupling effect between gold clusters on the material's surface. With excellent photothermal conversion performance, the core-shell nanoparticles can quickly reach 40 °C in 200 s under the irradiation of 808 nm, 1.5 W·cm-2. The highest conversion temperature of these nanoparticles is 56 °C, and the photothermal conversion rate is 45%. In vitro cell experiments displayed that NPs with targeted function can efficiently aggregate in prostate cancer cells and effectively kill cells. In vitro experiments showed that the tumor cells of mice after photothermal treatment completely disappeared after 15 days, which fully demonstrated the potential of the nanoparticles for targeted photothermal therapy.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Guofeng Zhou
- Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China
| | - Yuchan Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Shiqing Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, PR China
| | - Shanshan Gao
- Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| |
Collapse
|
13
|
Liu L, Liu C, Zhang B, Gao L. Detection of Chymotrypsin Using Peptide Sensor Based on Graphene Oxide Modified with Sulfhydryl Group and Gold Nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj02644a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, GO modified with sulfhydryl group was prepared by thiolation on the surface of GO, which makes a meaningful material. GO with sulfhydryl group combined with gold nanoparticles,...
Collapse
|
14
|
Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: Strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Zhu LN, Cheng R, Kang KW, Chen MY, Zhan T, Wang J. Size-dependent light scattering of CoOOH nanoflakes for convenient and sensitive detection of alkaline phosphatase in human serum. LUMINESCENCE 2021; 36:1317-1326. [PMID: 33870595 DOI: 10.1002/bio.4059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/05/2023]
Abstract
As a natural enzyme, alkaline phosphatase (ALP) plays an essential role in clinicopathological examinations and biomedical research, and is capable of hydrolyzing the phosphate group of l-ascorbic acid-2-phosphate (AAP) to yield l-ascorbic acid (L-AA). L-AA reduced cobalt oxyhydroxide (CoOOH) nanoflakes to Co2+ , leading to a smaller size and weaker light scattering, which could be monitored by electron microscopic images and optical spectra. The indirect detection of ALP was achieved by the reduced light scattering signal of CoOOH nanoflakes. Under optimal conditions, the decrease in scattering intensity was proportional to the ALP concentration over the range 0.1-160 U/L and the detection limit was 0.034 U/L (3σ/k). Compared with other assays, this proposed light scattering method was more convenient and economic for ALP sensing. The method was successfully applied to ALP analysis in human serum samples, and was similar to the results obtained by commercial kits.
Collapse
Affiliation(s)
- Lu Ning Zhu
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing, China.,Chongqing Science and Technology Bureau, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing, China.,College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ru Cheng
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing, China.,Chongqing Science and Technology Bureau, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing, China.,College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Kai Wen Kang
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing, China.,Chongqing Science and Technology Bureau, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing, China.,College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ming Yun Chen
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing, China.,Chongqing Science and Technology Bureau, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing, China.,College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, China
| | - Jian Wang
- Ministry of Education, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Chongqing, China.,Chongqing Science and Technology Bureau, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing, China.,College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Zhang Y, Li Y, Liao W, Peng W, Qin J, Chen D, Zheng L, Yan W, Li L, Guo Z, Wang P, Jiang Q. Citrate-Stabilized Gold Nanorods-Directed Osteogenic Differentiation of Multiple Cells. Int J Nanomedicine 2021; 16:2789-2801. [PMID: 33880024 PMCID: PMC8052123 DOI: 10.2147/ijn.s299515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Gold nanorods (AuNRs) show great potential for versatile biomedical applications, such as stem cell therapy and bone tissue engineering. However, as an indispensable shape-directing agent for the growth of AuNRs, cetyltrimethylammonium bromide (CTAB) is not optimal for biological studies because it forms a cytotoxic bilayer on the AuNR surface, which interferes with the interactions with biological cells. Methods Citrate-stabilized AuNRs with various aspect-ratios (Cit-NRI, Cit-NRII, and Cit-NRIII) were prepared by the combination of end-selective etching and poly(sodium 4-styrenesulfonate)-assisted ligand exchange method. Their effects on osteogenic differentiation of the pre-osteoblastic cell line (MC3T3-E1), rat bone marrow mesenchymal stem cells (rBMSCs), and human periodontal ligament progenitor cells (PDLPs) have been investigated. Potential signaling pathway of citrate-stabilized AuNRs-induced osteogenic effects was also investigated. Results The experimental results showed that citrate-stabilized AuNRs have superior biocompatibility and undergo aspect-ratio-dependent osteogenic differentiation via expression of osteogenic marker genes, alkaline phosphatase (ALP) activity and formation of mineralized nodule. Furthermore, Wnt/β-catenin signaling pathway might provide a potential explanation for the citrate-stabilized AuNRs-mediated osteogenic differentiation. Conclusion These findings revealed that citrate-stabilized AuNRs with great biocompatibility could regulate the osteogenic differentiation of multiple cell types through Wnt/β-catenin signaling pathway, which promote innovative AuNRs in the field of tissue engineering and other biomedical applications.
Collapse
Affiliation(s)
- Yibo Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Yawen Li
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Wei Liao
- Children's Hospital of Nanjing Medical University, Nanjing, 210008, People's Republic of China
| | - Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jianghui Qin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Dongyang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Zhirui Guo
- Lab Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.,State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
| | - Qing Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| |
Collapse
|
17
|
Jing W, Cui X, Kong F, Wei W, Li Y, Fan L, Li X. Fe–N/C single-atom nanozyme-based colorimetric sensor array for discriminating multiple biological antioxidants. Analyst 2021; 146:207-212. [DOI: 10.1039/d0an01447h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fe–C/N single-atom nanozyme with oxidase-like activity was applied to constructed a triple-channel colorimetric sensor array for discriminating l-Cys, GSH, UA, AA and MT.
Collapse
Affiliation(s)
- Wenjie Jing
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Xiangkun Cui
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - Fanbo Kong
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Wei Wei
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| |
Collapse
|
18
|
Li J, Shui Z, Dong L, Shen L, Zhao D, Luo H, Ma Y, Hou C, Huo D. A novel acid-sensitive quantum dot sensor array for the identification of Chinese baijiu. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4789-4797. [PMID: 32955054 DOI: 10.1039/d0ay01454k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The organic acid content plays important roles in the flavor and taste of Chinese baijiu. Developing a detection and discrimination technique for organic acids and employing it as a basis in baijiu classification has great practical significance. We employed 3 kinds of acid-sensitive quantum dots (QDs) to construct a fluorescence sensor array for the detection and identification of organic acids in baijiu. We report the first directional use of array sensing detection technology for the evaluation of organic acids in baijiu. Linear discriminant analysis (LDA) was successfully employed to evaluate the ability of the as-developed sensor array to classify organic acids. The Euclidean distance analysis was introduced to prove the provided sensor array possesses good quantitative detection. On this basis, our sensor array was successfully applied to distinguish 16 kinds of baijiu samples. The results were supported by principal component analysis (PCA), LDA, and systematic cluster analysis (HCA). Furthermore, Pearson correlation results indicated a strong correlation between the detection results and the organic acids in baijiu. This simple and accurate method shows potential for quality control and detection in baijiu factories and markets.
Collapse
Affiliation(s)
- Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li W, Guo Z, Tai Q, Li Y, Zhu Y, Bai T. Rapid and fine tailoring longitudinal surface plasmon resonances of gold nanorods by end-selective oxidation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Li W, Sun X, Zhao X, Wang W, Xu S, Luo X. Rapid pattern recognition of different types of sulphur-containing species as well as serum and bacteria discrimination using Au NCs-Cu2+ complexes. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Sun J, Luo R, Xia Y. Getting rid of NaBH4: Gold seeds reduced by air-stable agents for synthesizing quasi one-dimensional gold nanoparticles. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|