1
|
Zhang E, Li A, Zhang G, Lu W, Zhang Q, Chen L, Jiang L, Ju P, Qu F. A shikimic acid derived carbon dots (SACNDs-FITC) for multi-modal detection and removal of Hg 2+: Probe design, sensing performance, and applications in food analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125765. [PMID: 39862577 DOI: 10.1016/j.saa.2025.125765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The first shikimic acid derived fluorescent carbon dots (SACNDs-FITC) for multi-modal detection and simultaneous removal of Hg2+ is revealed. The fluorescence of SACNDs-FITC centered at 520 nm can be selectively quenched by Hg2+, while the emission centered at 420 nm remains constant which can be used for self-calibration. Naked-eye distinguishable color change from yellow to colourless under daylight and from green to blue under UV light could be observed for SACNDs-FITC in the real-time detection of Hg2+. Novel approaches that combine smartphone automated color hue (RGB and HSV) readout for intelligent Hg2+ analysis was developed. Moreover, SACNDs-FITC could work as an effective absorbent for Hg2+ with an adsorption capacity of 19.24 mg/g. Mechanism studies revealed the success of the post-modification strategy and the crucial role of -NCSN- groups in detecting and adsorbing Hg2+. Most importantly, multi-modal analysis of Hg2+ in celery cabbage and apples was performed using this analytical platform.
Collapse
Affiliation(s)
- Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Anzhang Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Guixue Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Wenhui Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Qingxiang Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Lin Chen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Long Jiang
- Instrumental Analysis & Research Center, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ping Ju
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Fengli Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| |
Collapse
|
2
|
Asghar S, Yu Z, Zhu Z, Zheng D, Zhao Z, Xu Y, Liu X, Yuan C, Li Y, Wang W, Xu J, Teng H, Li J, Yang WC, Chen C. Visualization of Hg 2+ Stress on Plant Health at the Subcellular Level Revealed by a Highly Sensitive Fluorescent Sensor. RESEARCH (WASHINGTON, D.C.) 2025; 8:0570. [PMID: 39776587 PMCID: PMC11704093 DOI: 10.34133/research.0570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/30/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
The presence of Hg2+ causes substantial stress to plants, adversely affecting growth and health by disrupting cell cycle divisions, photosynthesis, and ionic homeostasis. Accurate visualization of the spatiotemporal distribution of Hg2+ in plant tissues is crucial for the management of Hg pollution; however, the related research is still at its early stage. Herein, a small-molecule amphiphilic fluorescent probe (termed LJTP2) was developed for the specific detection of Hg2+ with a high sensitivity (~16 nM). Fluorescent imaging applications with LJTP2 not only detected the dynamic distribution of Hg2+ within plant cells at the subcellular level but also enabled the understanding of cell membrane health under Hg2+ stress. This study introduces a valuable imaging tool for elucidating the molecular mechanism of Hg2+ stress in plants, demonstrating the potential of the application of small-molecule fluorescent probes in plant science.
Collapse
Affiliation(s)
- Sumeera Asghar
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- The Key Laboratory of Plant Resources Conservation Germplasm Innovation in Mountainous Region, College of Life Sciences, Institute of Agro-bioengineering,
Guizhou University, Guiyang 550025, China
- Hubei Hongshan Laboratory, College of Life Science and Technology,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan, China
| | - Zhenyang Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan, China
- College of Chemistry,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zheng Zhu
- Hubei Hongshan Laboratory, College of Life Science and Technology,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dengyue Zheng
- Hubei Hongshan Laboratory, College of Life Science and Technology,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zimo Zhao
- Hubei Hongshan Laboratory, College of Life Science and Technology,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuming Xu
- Hubei Hongshan Laboratory, College of Life Science and Technology,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiao Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan, China
| | - Chao Yuan
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan, China
- School of Environmental Science and Engineering,
Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation Germplasm Innovation in Mountainous Region, College of Life Sciences, Institute of Agro-bioengineering,
Guizhou University, Guiyang 550025, China
| | - Wei Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jianfeng Xu
- Hubei Hongshan Laboratory, College of Life Science and Technology,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huailong Teng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan, China
| | - Jun Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Wuhan, China
- College of Chemistry,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wen-Chao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chunli Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Chemistry,
Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
3
|
Liu XY, Lin YM, Hua FF, Fu YL. Near-infrared fluorescent probe visual detection of Hg 2+ and its application in biological system and ecological system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124983. [PMID: 39159511 DOI: 10.1016/j.saa.2024.124983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Mercury ion (Hg2+), a heavy metal cation with greater toxicity, is widely present in the ecological environment and has become a serious threat to human health and environmental safety. Currently, developing a solution to simultaneously visualize and monitor Hg2+ in environmental samples, including water, soil, and plants, remains a great challenge. In this work, we created and synthesized a near-infrared fluorescent probe, BBN-Hg, and utilized Hg2+ to trigger the partial cleavage of the carbon sulfate ester in BBN-Hg as a sensing mechanism, and the fluorescence intensity of BBN-Hg was significantly enhanced at 650 nm, thus realizing the visualization of Hg2+ with good selectivity (detection limit, 53 nM). In live cells and zebrafish, the probe BBN-Hg enhances the red fluorescence signal in the presence of Hg2+, and successfully performs 3D imaging on zebrafish, making it a powerful tool for detecting Hg2+ in living systems. More importantly, with BBN-Hg, we are able to detect Hg2+ in actual water samples, soil and plant seedling roots. Furthermore, the probe was prepared as a test strip for on-site determination of Hg2+ with the assistance of a smartphone. Therefore, this study offers an easy-to-use and useful method for tracking Hg2+ levels in living organisms and their surroundings.
Collapse
Affiliation(s)
- Xin-Yue Liu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - You-Mei Lin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Fan-Feng Hua
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Ying-Long Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China; Anhui Biochem Pharmaceutical Co., Ltd., Taihe, 236699, China; Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Lai L, Li J, Huang Y, Liu H, Lin X, Huang L, Li D. Accurate and rapid mercury susceptibility detection in aquatic samples using fluorescent probe integrated rhodamine with pyridyl isothiocyanate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124886. [PMID: 39089069 DOI: 10.1016/j.saa.2024.124886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Mercury, one of the various harmful metals, is particularly significant in affecting aquatic organisms, currently gaining more attentions and sparking discussions. In response to the limitations of traditional detections, fluorescent probes have emerged as a promising solution with some advantages, such as weaker background interference, shorter processing time, higher accuracy. Thus, a novel fluorescent probe, FS-Hg-1, has been developed for assessing mercury ion (Hg2+) concentrations in aquatic products. This probe displays specific recognition of mercury ions in fluorescence spectra. Notably, FS-Hg-1 exhibits a distinct color change to pink when combined with Hg2+ (with a 948-fold increase in absorption at 568 nm) and a substantial fluorescence change towards Hg2+ (361-fold increase, excitation at 562 nm, emission at 594 nm) in N, N-dimethylformamide. The probe boasts a detection limit of 0.14 μM and rapid reaction with Hg2+ within 10 s, showing an excellent linear correlation with [Hg2+] in the range of 0 to 10 μM. Through thorough analysis using FS-Hg-1, the results align with those from the standard method (P > 0.05), with spiked recovery rates ranging from 108.4% to 113.2%. With its precise recognition, low detection limit, and remarkable sensitivity, this fluorescent assay proves effective in mercury concentration determination in aquatic samples without interference. The potential of FS-Hg-1 is promising for speedy detection of residual Hg2+ and holds significance in ensuring food safety.
Collapse
Affiliation(s)
- Liqing Lai
- College of Life Sciences, Fujian Normal University, 350117, PR China
| | - Jinyi Li
- College of Life Sciences, Fujian Normal University, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Yudong Huang
- College of Life Sciences, Fujian Normal University, 350117, PR China
| | - Huafeng Liu
- Fujian Inspection and Research Institute for Product Quality, Fuzhou, Fujian Province 350002, PR China
| | - Xinye Lin
- College of Life Sciences, Fujian Normal University, 350117, PR China
| | - Luqiang Huang
- College of Life Sciences, Fujian Normal University, 350117, PR China.
| | - Daliang Li
- College of Life Sciences, Fujian Normal University, 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
5
|
Galhano J, Kurutos A, Dobrikov GM, Duarte MP, Santos HM, Capelo-Martínez JL, Lodeiro C, Oliveira E. Fluorescent polymers for environmental monitoring: Targeting pathogens and metal contaminants with naphthalimide derivatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136107. [PMID: 39405715 DOI: 10.1016/j.jhazmat.2024.136107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Monitoring Hg2+ levels in aqueous environments is crucial to assess the potential methylmercury contamination via bacterial conversion, however, existing methods often require extensive sample treatment and expensive equipment. To mitigate this issue, this study examines the synthesis and application of three naphthalimide-based compounds, with significant fluorescent and solvatochromic behavior (C1, C2, and C3). Compounds C1 and C2 demonstrated a strong affinity for Hg2+ metal ions, with C2 showing selectivity and a strong antibacterial profile, particularly against S. aureus (MIC50 (C2) = 0.01 µg/mL). Moreover, these compounds were incorporated into three polymeric matrices, namely polyvinyl chloride (PVC), poly (methyl methacrylate-co-methacrylic acid) (PMMMA), and Starch, allowing for the development of solid-support sensors/surfaces with a strong antibacterial profile, highlighting the inherent dual-functionality of the compounds. Interestingly, the C2-doped Starch biopolymer detected low concentrations of Hg2+ ions, such as 23 nM in tap water (value within the WHO standards for drinking water), through a rapid spectroscopic evaluation without sample treatment. This biopolymer was generated via a sustainable, green-chemistry-oriented, temperature-dependent water/Starch synthetic route, without the addition of plasticizers and any associated ecotoxicity. The study used sustainable methods for environmental monitoring and antibacterial applications, advancing material science to offer effective, accessible, and eco-friendly solutions for detecting and mitigating mercury pollution and bacterial contaminations, enhancing environmental and health safety.
Collapse
Affiliation(s)
- Joana Galhano
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria; University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski blvd, Sofia 1756, Bulgaria.
| | - Georgi M Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, Sofia 1113, Bulgaria
| | - Maria Paula Duarte
- MEtRICs / NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Hugo M Santos
- PROTEOMASS Scientific Society, Costa da Caparica 2825-466, Portugal
| | | | - Carlos Lodeiro
- PROTEOMASS Scientific Society, Costa da Caparica 2825-466, Portugal.
| | | |
Collapse
|
6
|
Tian J, Tian X, Gong S, Liang Y, Meng Z, Liu W, Xu X, Wang Z, Wang S. A ratiometric fluorescent probe with a large Stokes shift for the detection of Hg2+ and its applications in environmental sample and living system analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1846-1855. [PMID: 38497272 DOI: 10.1039/d3ay02106h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Toxic mercury ions (Hg2+) can cause serious environmental pollution and accumulate in living organisms via the food chain. Therefore, monitoring Hg2+ is crucial in ensuring the safety of ecosystems and organisms. In this work, a novel ratiometric fluorescent probe CMT (5-(4-(diphenylamino)phenyl)-1-(7-hydroxy-coumarin-3-yl)-4-pentene-1,3-dione) based on coumarin was developed for detecting Hg2+, which displayed obvious fluorescence changes, a low detection limit (2.24 × 10-7 M), good selectivity, and a large Stokes shift (255 nm). The CMT probe could detect Hg2+ in real environmental soil and water samples. Furthermore, the CMT probe enabled the naked-eye detection of Hg2+ using test paper experiments. CMT was also applied for fluorescence imaging in living zebrafish and plants. This work provides a highly efficient tool for monitoring Hg2+ in environmental samples and biological systems.
Collapse
Affiliation(s)
- Jixiang Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xuechun Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Weiqi Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Xu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Wang L, Ma Y, Lin W. A coumarin-based fluorescent probe for highly selective detection of hazardous mercury ions in living organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132604. [PMID: 37757555 DOI: 10.1016/j.jhazmat.2023.132604] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
In recent years, heavy metal mercury (II) pollutants have caused serious harm to human health and ecosystems. It has become critical to develop simple and highly selective sensing solutions for monitoring mercury (II). In this work, we designed and developed a novel fluorescent probe Coa-SH using the Hg2+-induced chemical reaction as a sensing mechanism. The probe Coa-SH showed high selectivity for the detection of Hg2+ by desulfurization reactions in solution. The test strips prepared with this probe could be applied to detect mercury ions in aqueous solutions. In addition, the probe Coa-SH provided a tool to detect Hg2+ in living systems. In living cells and zebrafish, the probe turned on bright red fluorescent signals in the presence of mercury ions. Importantly, the probe Coa-SH enabled Hg2+ detection in plant onion roots. This work provides an effective method for monitoring mercury ions in the environment and in living organisms.
Collapse
Affiliation(s)
- Lin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Yanyan Ma
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, Shandong 266061, PR China
| | - Weiying Lin
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, PR China; Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
8
|
Wang Z, Li J, Chen J, Cao Z, Li H, Cao Y, Li Q, She M, Liu P, Zhang S, Li J. A NIR fluorescent probe for imaging thiophenol in the living system and revealing thiophenol-induced oxidative stress. CHINESE CHEM LETT 2023; 34:108507. [DOI: 10.1016/j.cclet.2023.108507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Lai L, Yan F, Chen G, Huang Y, Huang L, Li D. Recent Progress on Fluorescent Probes in Heavy Metal Determinations for Food Safety: A Review. Molecules 2023; 28:5689. [PMID: 37570660 PMCID: PMC10420214 DOI: 10.3390/molecules28155689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
One of the main challenges faced in food safety is the accumulation of toxic heavy metals from environmental sources, which can sequentially endanger human health when they are consumed. It is invaluable to establish a practical assay for the determination of heavy metals for food safety. Among the current detection methods, technology based on fluorescent probes, with the advantages of sensitivity, convenience, accuracy, cost, and reliability, has recently shown pluralistic applications in the food industry, which is significant to ensure food safety. Hence, this review systematically presents the recent progress on novel fluorescent probes in determining heavy metals for food safety over the past five years, according to fluorophores and newly emerging sensing cores, which could contribute to broadening the prospects of fluorescent materials and establishing more practical assays for heavy metal determinations.
Collapse
Affiliation(s)
- Liqing Lai
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| | - Fang Yan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| | - Geng Chen
- Fujian Fishery Resources Monitoring Center, Fuzhou 350117, China; (G.C.); (Y.H.)
| | - Yiwen Huang
- Fujian Fishery Resources Monitoring Center, Fuzhou 350117, China; (G.C.); (Y.H.)
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| | - Daliang Li
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (L.L.); (F.Y.)
| |
Collapse
|
10
|
Li X, Chu D, Wang J, Qi Y, Yuan W, Li J, Zhou Z. A dicyanoisophorone-based ICT fluorescent probe for the detection of Hg 2+ in water/food sample analysis and live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122628. [PMID: 36965244 DOI: 10.1016/j.saa.2023.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/18/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Mercury ions are notoriously difficult to biodegradable, and its abnormal bioaccumulation in the human body through the food chain can cause various diseases. Therefore, the quantitative and real-time detection of Hg2+ is very extremely important. Herein, we have brilliant designed and synthesized (E)-O-(4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-en-1-yl)vinyl)phenyl) O-phenyl carbonothioate (ICM-Hg) as a selective fluorescent probe for Hg2+ detection in real samples and intracellular staining. ICM-Hg displayed high specificity toward Hg2+ by activating the intramolecular charge transfer (ICT) process, resulting in distinguished color change from colorless to bright yellow along with noticeable switch on yellow fluorescence emission. The fluorescent intensity of ICM-Hg at 585 nm shows a well linear relationship in the range of Hg2+ concentration (0-45 μM), and the detection of limit for Hg2+ is calculated to be 231 nM. Promisingly, ICM-Hg can efficiently detect Hg2+ in real samples including tap water, tea, shrimp, and crab with quantitative recovery as well as the intracellular fluorescence imaging.
Collapse
Affiliation(s)
- Xiangqian Li
- School of Chemical & Environmental Engineering, Key Lab of Ecological Restoration in Hilly Areas, Pingdingshan University, Pingdingshan 467000, PR China
| | - Dandan Chu
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China
| | - Juan Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Yueheng Qi
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China
| | - Weiwei Yuan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China.
| | - Zhan Zhou
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, PR China; College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China.
| |
Collapse
|
11
|
Pei S, Li C, Pei X, Zhang X, Chi Y, Zeng W, Zhang Y, Liao X, Chen J. A fluorescent probe based on an enhanced ICT effect for Hg 2+ detection and cell imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37323034 DOI: 10.1039/d3ay00544e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The mercury ion (Hg2+) has hindered society to some extent due to its high biological toxicity, and a rapid method for Hg2+ detection is urgently needed. In the present work, two fluorescent probes, YF-Hg and YF-Cl-Hg, were developed. YF-Cl-Hg was produced by introducing an electron-withdrawing substituent (-Cl) into the structure of YF-Hg. The probe YF-Cl-Hg possesses a larger Stokes shift and a more pronounced UV-vis absorption redshift compared to YF-Hg in a pH = 7.4 environment. The reasons for the superior spectral performance of YF-Cl-Hg over YF-Hg were explored by density functional theory (DFT) calculations and UV-vis absorption spectroscopy. Furthermore, the good biocompatibility suggests that YF-Cl-Hg possesses the potential to be a tool for Hg2+ detection in cells.
Collapse
Affiliation(s)
- Shuchen Pei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Chaozheng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Xinyu Pei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Xiangyang Zhang
- College of Chemistry and Chemical Engineering, Hunan University of Arts and Science, Changde 415000, China
| | - Yuting Chi
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Wenhong Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Yuanyuan Zhang
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jun Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
12
|
Hawtrey T, New EJ. Molecular probes for fluorescent sensing of metal ions in non-mammalian organisms. Curr Opin Chem Biol 2023; 74:102311. [PMID: 37146433 DOI: 10.1016/j.cbpa.2023.102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
While metal ions play an important role in the proper functioning of all life, many questions remain unanswered about exactly how different metals contribute to health and disease. The development of fluorescent probes, which respond to metals, has allowed greater understanding of the cellular location, concentration and speciation of metals in living systems, giving a new appreciation of their function. While the focus of studies using these fluorescent tools has largely been on mammalian organisms, there has been relatively little application of these powerful tools to other organisms. In this review, we highlight recent examples of molecular fluorophores, which have been applied to sensing metals in non-mammalian organisms.
Collapse
Affiliation(s)
- Tom Hawtrey
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
13
|
Hernandez JO, Naeem M, Zaman W. How Does Changing Environment Influence Plant Seed Movements as Populations of Dispersal Vectors Decline? PLANTS (BASEL, SWITZERLAND) 2023; 12:1462. [PMID: 37050088 PMCID: PMC10097094 DOI: 10.3390/plants12071462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Plants differ widely in their ability to find tolerable climatic ranges through seed dispersal, depending on their life-history traits and habitat characteristics. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review on seed dispersal mechanisms was conducted to elucidate plant seed movements amid changing environments. Here, the highest relative count of studies was found in Spain (16.47%), followed by Brazil (14.12%), and the USA (14.12%). The megadiverse, hotspot countries (e.g., Philippines, Vietnam, Myanmar, India, and Indonesia) and Africa (Tanzania, South Africa, Democratic Republic of the Congo) have very low to no data about the reviewed topic. The effects of land use changes, habitat degradation/disturbances, climate, and extreme weather conditions on seed dispersal mechanisms and agents had the highest share of studies across topics and countries. Plant diversity and distribution of anemochorous, endozoochorous, epizoochorous, hydrochorous, myrmecochorous, and ornithochorous species are seriously affected by changing environments due to altered long-distance seed dispersal. The fruit types commonly associated with endozoochory and ornithochory are species with achene, capsule, drupe, fleshy, and nut fruits/seeds, whereas achene, capsule, samara/winged seeds are associated with anemochory. The present review provides a summary of evidence on how plants are affected by climate change as populations of dispersal vectors decline. Finally, recommendations for further study were made based on the identified knowledge gaps.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
14
|
Shen S, Xu W, Lu J, Wang S, Huang Y, Zeng X, Xiao W, Yin J. Recent progress on fluorescent probes for viruses. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
15
|
Jayeoye TJ, Sirimahachai U, Wattanasin P, Rujiralai T. Eco-friendly poly(aniline boronic acid)/gum tragacanth stabilized silver nanoparticles nanocomposite for selective sensing of Hg2+. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Efficient blue light-responsed dithienylethenes with exceptional photochromic performance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Chen W, Chen H, Huang Y, Tan Y, Tan C, Xie Y, Yin J. Molecular Design and Photothermal Application of Thienoisoindigo Dyes with Aggregation-Induced Emission. ACS APPLIED BIO MATERIALS 2022; 5:3428-3437. [PMID: 35748563 DOI: 10.1021/acsabm.2c00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Organic fluorescent dyes with aggregation-induced emission (AIE) property have an extensive application range, especially in the fields of imaging, labeling, and adjusting microprocesses in aggregated environments. In particular, the thienoisoindigo skeleton, which exhibits an outstanding electron-withdrawing capacity in optoelectronic materials, has been defined as a promising AIE candidate. For instance, by installing AIE blocks or other rotatable groups at two terminal sites, such as various arylamine groups, thienoisoindigo derivatives can be efficiently turned to be functional AIE structures. In this work, a thienoisoindigo derivative with AIE characteristics, namely, TII-TPE, was developed. This AIE system was expanded by linking typical AIE fragments, namely, tetraphenylethene, with the proposed thienoisoindigo derivative, which exhibited typical AIE fluorescence in the 600-850 nm range and maintained high photostability. Then, employing the reported derivative TII-TPA coating thienoisoindigo and triphenylamine as a contrast, aggregated TII-TPE and TII-TPA nanoparticles were prepared and demonstrated photothermal conversion efficiencies of 36.2 and 35.6%, respectively. Moreover, both nanoparticles were evaluated as photothermal therapeutic (PTT) agents in a tumor mouse model, which showed to significantly inhibit tumor growth after four treatment cycles in vivo. This work not only presents an enriched thienoisoindigo system but also provides a pattern for subsequent construction of functional AIE molecules.
Collapse
Affiliation(s)
- Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huijuan Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yurou Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P. R. China
| | - Yuan Xie
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization, Shaoguan 512026, P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
18
|
Liu S, Zhang X, Yan C, Zhou P, Zhang L, Li Q, Zhang R, Chen L, Zhang L. A small molecule fluorescent probe for mercury ion analysis in broad low pH range: Spectral, optical mechanism and application studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127701. [PMID: 34775312 DOI: 10.1016/j.jhazmat.2021.127701] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Development of new fluorescent probes for mercury ion analysis in environmental or living organism is undergoing quick growth due to its detrimental toxicity to environmental safety, ecological security, and human being. However, in most cases, the industrial waste water is acidic whereas it remains a great challenge to real-time monitor mercury ion directly at low pH using small molecule fluorescence probe. In this study, we have successfully designed and synthesized the Naph (1, 8-Naphthalimide derivative) -based small molecule probe termed as Naph-NSS capable of monitoring mercury ion in a broad range at low pH (from 2.0 to 7.0). The solid spectral studies demonstrated the high sensitivity and selectivity of the probe towards mercury ion among various species. After binding with Hg2+, the fluorescence of Naph-NSS greatly enhanced, and the mechanism of which was investigated by DFT studies. The probe was able to be loaded on paper strip for instant and fast detection of mercury ions. In addition, the probe is also suitable for detection of mercury ion in environmental samples, living cells and in vivo.
Collapse
Affiliation(s)
- Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Xia Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Chaoxian Yan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Panpan Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Li Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qingzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Renjie Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Liangwei Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
19
|
Sun Y, Zhou X, Sun L, Zhao X, He Y, Gao G, Han W, Zhou J. Lysosome-targeting red fluorescent probe for broad carboxylesterases detection in breast cancer cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Bakhshandeh B, Sorboni SG, Haghighi DM, Ahmadi F, Dehghani Z, Badiei A. New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. CHEMOSPHERE 2022; 287:132243. [PMID: 34537453 DOI: 10.1016/j.chemosphere.2021.132243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Salmonella is one of the most prevalent causing agents of food- and water-borne illnesses, posing an ongoing public health threat. These food-poisoning bacteria contaminate the resources at different stages such as production, aggregation, processing, distribution, as well as marketing. According to the high incidence of salmonellosis, effective strategies for early-stage detection are required at the highest priority. Since traditional culture-dependent methods and polymerase chain reaction are labor-intensive and time-taking, identification of early and accurate detection of Salmonella in food and water samples can prevent significant health economic burden and lessen the costs. The immense potentiality of biosensors in diagnosis, such as simplicity in operation, the ability of multiplex analysis, high sensitivity, and specificity, have driven research in the evolution of nanotechnology, innovating newer biosensors. Carbon nanomaterials enhance the detection sensitivity of biosensors while obtaining low levels of detection limits due to their possibility to immobilize huge amounts of bioreceptor units at insignificant volume. Moreover, conjugation and functionalization of carbon nanomaterials with metallic nanoparticles or organic molecules enables surface functional groups. According to these remarkable properties, carbon nanomaterials are widely exploited in the development of novel biosensors. To be specific, carbon nanomaterials such as carbon nanotubes, graphene and fullerenes function as transducers in the analyte recognition process or surface immobilizers for biomolecules. Herein the potential application of carbon nanomaterials in the development of novel Salmonella biosensors platforms is reviewed comprehensively. In addition, the current problems and critical analyses of the future perspectives of Salmonella biosensors are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Dorrin Mohtadi Haghighi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Zeng X, Chen W, Liu C, Yin J, Yang GF. Fluorescence Probes for Reactive Sulfur Species in Agricultural Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13700-13712. [PMID: 34752105 DOI: 10.1021/acs.jafc.1c05249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfur is an element that is indispensable throughout the growth of plants. In plant cells, reactive sulfur species (RSS) play a vital role in maintaining cellular redox homeostasis and signal transduction. There is demand accordingly for a simple, highly selective, and sensitive method of RSS detection and imaging for monitoring dynamic changes and clarifying the biological functions of RSS in plant systems. Fluorescent analysis based on organic small-molecule fluorescent probes is an effective and specific approach to tracking plant RSS characteristics. This perspective summarizes the recent progress regarding organic small-molecule fluorescent probes for RSS monitoring, including small-molecule biological thiols, hydrogen sulfide, and sulfane sulfurs, in plants; it also discusses their response mechanism toward RSS and their imaging applications in plants across the agricultural chemistry field.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
22
|
Dey N. A simple strategy for the visual detection and discrimination of Hg 2+ and CH 3Hg + species using fluorescent nanoaggregates. Dalton Trans 2021; 50:12563-12569. [PMID: 34137406 DOI: 10.1039/d1dt01455b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescent nanoaggregates (FNAs) based on phenanthroline-based amphiphiles show changes in solution color from colorless to yellow upon addition of both Hg2+ (LOD ∼4 ppb) and CH3Hg+ (LOD ∼18 ppb). However, the extent of fluorescence quenching is more prominent with Hg2+ (∼12 fold) than with CH3Hg+ (∼4 fold). Also, unlike Hg2+, the interaction of CH3Hg+ needs more time, ∼10 min at room temperature. Experimental evidence indicates that both mercury species coordinate with the phenanthroline unit and facilitate the charge transfer interaction while destabilizing the nanoassembly. The lower charge density on CH3Hg+ along with its large size compared to Hg2+ may be the reason for such observations. Interestingly, FNAs show a selective response towards CH3Hg+ when pre-treated with EDTA. Further, analysis of heavy metal pollutants in drinking water and biological samples was performed. High recovery values ranging from 96% to 103.0% were estimated along with relatively small standard deviations (<3%). Low-cost, reusable test strips were designed for rapid, on-site detection of mercury species. Further, the in situ formed metal complexes are allowed to interact with thiol-containing amino acids. As expected, CH3Hg+, being less thiophillic, endures less interaction with cysteine. Mechanistic investigations indicate that thiolated amino acids can bind with the metal ion center and form a tertiary complex (cooperative interaction).
Collapse
Affiliation(s)
- Nilanjan Dey
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan. .,Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad-500078, Telangana, India
| |
Collapse
|
23
|
Huang Y, Chen W, Chung J, Yin J, Yoon J. Recent progress in fluorescent probes for bacteria. Chem Soc Rev 2021; 50:7725-7744. [PMID: 34013918 DOI: 10.1039/d0cs01340d] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Food fermentation, antibiotics, and pollutant degradation are closely related to bacteria. Bacteria play an irreplaceable role in life. However, some bacteria seriously threaten human health and cause large-scale infectious diseases. Therefore, there is a pressing need to develop strategies to accurately monitor bacteria. Technology based on molecular probes and fluorescence imaging is noninvasive, results in little damage, and has high specificity and sensitivity, so it has been widely applied in the detection of bacteria. In this review, we summarize the recent progress in bacterial detection using fluorescence. In particular, we generalize the mechanisms commonly used to design organic fluorescent probes for detecting and imaging bacteria. Moreover, a perspective regarding fluorescent probes for bacterial detection is discussed.
Collapse
Affiliation(s)
- Yurou Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of education, Hubei International Scientific and technological cooperation Base of Pesticide and Green Synthesis, International Joint research center for Intelligent Biosensing Technology and Health, College of chemistry, Central China Normal University, Wuhan 430079, P. R. China and Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul 120-750, Korea.
| |
Collapse
|