1
|
Liu J, Wang Y, He M, Gao Y, Pan Q, Li J. Cerium-based metal-organic framework nanozyme with high oxidase-like activity at neutral pH for discrimination and detection of antioxidants. Biosens Bioelectron 2025:117608. [PMID: 40419415 DOI: 10.1016/j.bios.2025.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/06/2025] [Accepted: 05/18/2025] [Indexed: 05/28/2025]
Abstract
Oxidase-mimicking nanozymes have witnessed extensive applications in biosensing, however, a huge shortcoming is their activity limited by acidic conditions. Herein, a Ce-MOF containing hexanuclear clusters was developed, which exhibited robust oxidase-like activity at neutral pH (0.97 U mg-1) with the extremely high affinity for 3,3',5,5'-tetramethylbenzidine (TMB) (Km: 0.012 mM) and wide temperature adaptability (0-50 °C). Experiment screening and theoretical calculations revealed that the high activity was derived from unsaturated CeIV active sites and the redox cycling of unique Ce4+/Ce3+ node. These factors endow Ce-MOF generating more O2•- species and significantly reducing the energy barrier of the rate-controlling step in the catalytic process. Given the exceptional activity for two chromogenic substrates, a two-channel colorimetric array is constructed to successfully distinguish four antioxidants. The detection was operated within 2 min in ultrapure water at room temperature, showing excellent convenience and efficiency. This study carries significant implications for developing oxidase-mimics with high activity under neutral pH and constructing simple and practical platforms to identify antioxidants in complex samples.
Collapse
Affiliation(s)
- Junxue Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Yufei Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian, 116029, PR China
| | - Mingqin He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Yan Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology and College of Science, Hainan University, Haikou, 570228, PR China.
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, PR China.
| |
Collapse
|
2
|
Xu R, Jiang J, Ding L, Song D, Chen Y. Innovation of Ratiometric Sensing Strategies Based on Graphitic Carbon Nitride. Crit Rev Anal Chem 2025:1-25. [PMID: 40215094 DOI: 10.1080/10408347.2025.2486213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Graphitic carbon nitride (g-C3N4), a π-conjugated semiconductor with visible-light absorption, has emerged as a versatile material for ratiometric sensing due to its thermal/chemical stability, biocompatibility, and tunable optoelectronic properties. This review highlights recent advances in g-C3N4-based ratiometric electrochemiluminescence (ECL), fluorescence (FL), and photoelectrochemical (PEC) sensors for ultrasensitive detection of diverse analytes. Ratiometric ECL platforms achieved remarkable detection limits, such as 0.2 nM for Hg2+ and 59 aM for SARS-CoV-2 RdRp gene, leveraging dual-potential or dual-wavelength strategies. FL sensors enabled selective quantification of analysts, such as Ce3+ (6.4 × 10-8 mol/L) and tetracycline (5.0 nM) via aggregation-induced emission or inner filter effect mechanisms. In PEC sensing, spatial-resolved dual-electrode systems attained ultrahigh sensitivity for Escherichia coli (0.66 cfu/mL) and alpha-fetoprotein (0.2 pg/mL). These g-C3N4-based sensors demonstrated enhanced sensitivity and reliability across environmental, biomedical, and food safety applications. The synergy of g-C3N4's structural advantages and ratiometric design principles demonstrates broad application prospects in fields such as food and environmental safety analysis, as well as early disease diagnosis.
Collapse
Affiliation(s)
- Rui Xu
- College of Chemistry, Jilin University, Changchun, China
| | - Juncai Jiang
- College of Chemistry, Jilin University, Changchun, China
| | - Lan Ding
- College of Chemistry, Jilin University, Changchun, China
| | - Daqian Song
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, China
| | - Yanhua Chen
- College of Chemistry, Jilin University, Changchun, China
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, China
| |
Collapse
|
3
|
Liu S, Yu H, Zhu S, Zhao XE. Copper-based fluorescent nanozyme used to construct a ratiometric sensor for visual detection of thiophanate methyl. Talanta 2025; 285:127417. [PMID: 39708571 DOI: 10.1016/j.talanta.2024.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Although nanozyme has shown great potential in designing fluorescent assays for pesticide residue, most of them are based on single emission, thus affecting the detection accuracy. Herein, a copper-based fluorescent nanozyme (Cu-BH) synthesized with dual-ligand, integrating fluorescence and oxidase-mimic into one spherical nanomaterial, was used firstly to establish a ratiometric approach for visual detection of thiophanate methyl (TM). Cu-BH possesses excellent oxidase-like activities, triggering the oxidation of colorless o-phenylenediamine (OPD) into yellow luminescent products (oxOPD, λem = 564 nm). Besides, the ligand of 2-amino-1,4-benzene-dicarboxylic acid imparts Cu-BH blue fluorescence (λem = 425 nm), which is quenched by oxOPD via inner filtration effect (IFE). The introduction of TM can prevent not only the oxidase-like activity remarkably but also the intrinsic luminescence of Cu-BH slightly because of the complexation of TM with Cu2+. As a result, the fluorescence intensity at 564 nm and 425 nm presents a significant decrease and a slight increase, respectively, producing a ratiometric fluorescent signal (F425/F564). Therefore, a novel ratiometric fluorescent strategy has been proposed to detect TM ranging from 0.1 to 100 μM with detection limit of 0.03 μM (S/N = 3). Besides, visual detection of TM can be achieved by RGB reading with the assistance of smartphone owing to the color variation from yellow to blue. This fluorescent nanozyme-based ratiometric strategy provides a specific method for the detection of TM in food samples.
Collapse
Affiliation(s)
- Shuyi Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China
| | - Hong Yu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China
| | - Shuyun Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Xian-En Zhao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| |
Collapse
|
4
|
Xie L, Wu H, Li Y, Shi L, Liu Y. Recent Development of Nanozymes for Combating Bacterial Drug Resistance: A Review. Adv Healthc Mater 2025; 14:e2402659. [PMID: 39388414 DOI: 10.1002/adhm.202402659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/31/2024] [Indexed: 10/12/2024]
Abstract
The World Health Organization has warned that without effective action, deaths from drug-resistant bacteria can exceed 10 million annually, making it the leading cause of death. Conventional antibiotics are becoming less effective due to rapid bacterial drug resistance and slowed new antibiotic development, necessitating new strategies. Recently, materials with catalytic/enzymatic properties, known as nanozymes, have been developed, inspired by natural enzymes essential for bacterial eradication. Unlike recent literature reviews that broadly cover nanozyme design and biomedical applications, this review focuses on the latest advancements in nanozymes for combating bacterial drug resistance, emphasizing their design, structural characteristics, applications in combination therapy, and future prospects. This approach aims to promote nanozyme development for combating bacterial drug resistance, especially towards clinical translation.
Collapse
Affiliation(s)
- Lingping Xie
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
| | - Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Gu Y, Yan H, Bai T, Rao D, Yang Y, Hu H, Li L, Guo L, Zeng Y. Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-Fe 3O 4 nanozyme with enhanced peroxidase-like activity. Mikrochim Acta 2025; 192:64. [PMID: 39789155 DOI: 10.1007/s00604-024-06907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
A novel Ru-Fe3O4 nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-Fe3O4 nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-Fe3O4 was found to be superior compared to Fe3O4, Rh-Fe3O4, and Pd-Fe3O4. Ru-Fe3O4 provided excellent POD-like activity with Michaelis constants of 0.00645 mM and 0.66714 mM for substrates of 3,3',5,5'-tetramethylbenzidine and H2O2, respectively. The density functional theory calculation showed that Ru-Fe3O4 had better H2O2 decomposition reactivity compared to Fe3O4. Compared with Fe3O4, the adsorbed H2O2 molecules underwent decomposition more readily on the Ru-Fe3O4 catalytic surface facilitating the occurrence of the H2O2 catalytic reaction, further suggesting the excellent POD-like activity of Ru-Fe3O4. The coordination and electrostatic interactions of Ru-Fe3O4 and TM promoted their binding, contributing to TM covering Ru-Fe3O4 catalytic site and inhibiting the POD-like activity of Ru-Fe3O4. As a result, the sensitive and selective detection of TM using Ru-Fe3O4 by a colorimetric method was achieved. The Ru-Fe3O4 nanozyme displayed a good linear correlation, with a linear detection range and a detection limit of 0.1-100 and 0.03 μg/mL, respectively. The Ru-Fe3O4 nanozyme was used for the determination of TM in soil and water samples with success.
Collapse
Affiliation(s)
- Yiwen Gu
- College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Huixiang Yan
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
| | - Tianwen Bai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Daoyuan Rao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Hongyu Hu
- College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| |
Collapse
|
6
|
Zhang F, Gao Y, Ren E, Fang L, Yang W, Zhang L, Wang Z. Paper-based multicolor sensor for on-site quantitative detection of organophosphate pesticides based on acetylcholinesterase-mediated paper-based Au 3+-etching of gold nanobipyramids and CIELab color space. Talanta 2025; 281:126925. [PMID: 39305765 DOI: 10.1016/j.talanta.2024.126925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
On-site quantitative detection of organophosphorus pesticides (OPs) is crucial for safeguarding food and public safety. This study presents a novel acetylcholinesterase (AChE)-mediated paper-based Au3+-etching of gold nanobipyramids (AuNBPs) system. The system employs a long-term storable AuNBPs-deposited nylon membrane embedded within a portable and temperature-controlled paper-based analytical device. This system, coupled with a colorimeter-based quantitative method, enables the development of a practical paper-based multicolor sensor (PMS) for on-site quantitative detection of three common OPs (paraoxon, dichlorvos, and trichlorfon). In the absence of OPs, AChE hydrolyzes acetylthiocholine to thiocholine, which reduces Au3+ to Au+. The presence of OPs inhibits AChE activity, thereby preserving Au3+ to etch AuNBPs on nylon membranes, accompanied by multicolor changes. These color changes can be simply quantified by measuring the a∗ parameter of the CIELab color space using a portable colorimeter. Under optimal conditions, the PMS displayed eight OPs-corresponding color changes with a minimum detectable concentration of 1.0-10 μg/L (visual observation) and limits of detection of 0.8-7.2 μg/L (colorimeter) and 0.2-3.4 μg/L (UV-vis spectrometry). The PMS successfully determined the OPs in vegetable and rice samples with recoveries of 89.0-109 % and RSDs (n = 5) of <6 %. These results were consistent with those obtained using the HPLC-MS method. The PMS demonstrates excellent portability, AuNBPs stability, detection sensitivity, and reproducibility, making it a promising tool for the on-site quantitative detection of OPs residues in food. Furthermore, the paper-based etching system coupled with the colorimeter-based quantitative method provides a valuable reference to develop practical PMSs for various targets in diverse fields.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yu Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Enxi Ren
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ling Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Liaoyuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
7
|
Zhou X, Huang S, Guo W, Liu W, Wen M, Shang L. Multicolor Gold Clusterzyme-Enabled Construction of Ratiometric Fluorescent Sensor Array for Visual Biosensing. Anal Chem 2024; 96:18873-18879. [PMID: 39546635 DOI: 10.1021/acs.analchem.4c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The simultaneous detection of multiple bioanalytes with similar structures has been a long-standing challenge for biological research and disease diagnosis. Bioreceptor-inspired sensor arrays provide an attractive and competitive solution for addressing this challenge, but applying this technique to biosensing in practical application scenarios is complicated by many factors such as the lack of robust probes, interference from the biological matrix, and difficulty for on-site analysis. In this work, by taking advantage of the intrinsic fluorescence and enzyme-mimic properties of gold nanoclusters (AuNCs), we report the design of an innovative ratiometric sensor array toward enhanced fluorescent visual biosensing. With biologically important phosphates as an example, we show that the present fluorescent clusterzyme-based ratiometric sensor array could effectively discriminate and detect eight types of phosphates. In particular, AuNCs with three different emission colors (blue, green, and red) and good peroxidase-mimic properties were employed as the sensing units, and the presence of phosphates affected both the intrinsic fluorescence and the enzymatic activity of these AuNCs, yielding distinct optical responses in a ratiometric manner. Moreover, a portable sensor array was established by further integrating these fluorescent clusterzymes into a hydrogel matrix, which could visually identify different phosphates based on their distinct fluorescence color changes. Consequently, the point-of-care diagnosis of urinary tract infections at different levels was achieved by analyzing urinary microbial ATP via the present strategy. This study illustrates the great potential of clusterzyme-based fluorescent sensor arrays as a promising biosensing platform for disease diagnosis.
Collapse
Affiliation(s)
- Xiaomeng Zhou
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Saijin Huang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenfeng Guo
- Department of Nephrology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an 710038, China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mengyao Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Liu Y, Zou L, Niu H, Li Z, Ren H, Zhang X, Liao H, Zhou Z, Zhang X, Huang X, Pan H, Rong S, Ma H. Graphite Phase Carbon Nitride Nanosheets-Based Fluorescent Sensors for Analysis and Detection. Crit Rev Anal Chem 2024:1-13. [PMID: 39589754 DOI: 10.1080/10408347.2024.2431222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Fluorescent sensors reflect information such as the concentration or content of the analysis by interacting with a specific recognition group to change the signal of the fluorophore. It has attracted much attention because of its advantages of high sensitivity, fast detection speed and low cost, and it has become an effective alternative to traditional detection methods. Graphitic phase carbon nitride nanosheets (g-CNNs) are a class of carbon-based fluorescent nanomaterials derived from bulk graphite phase carbon nitride (g-C3N4), which have attracted much attention from scholars because of their advantages of low cost, simple fabrication, high quantum yield, strong stability and nontoxicity. Functional modified g-CNNs can greatly improve the photocatalytic performance. At present, although there have been some researches on fluorescent sensors based on g-CNNs. Nevertheless, there are few reviews about the g-CNNs-based fluorescent sensors. Therefore, in addition to summarizing the sensing mechanism of fluorescent sensors (such as photoinduced electron transfer, fluorescence resonance energy transfer, and intramolecular charge transfer) and the advantages and disadvantages of common signal substances, this paper focused on the application progress of g-CNNs-based fluorescent sensors in the field of analysis and detection.
Collapse
Affiliation(s)
- Yanan Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lina Zou
- Nursing School, Mudanjiang Medical University, Mudanjiang, China
| | - Huiru Niu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zheng Li
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Huanyu Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hao Liao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zhiren Zhou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xueqing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojing Huang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
9
|
Li JX, Chai TQ, Chen GY, Luo ML, Wan JB, Yang FQ. A novel dual-ligand copper-based nanoflower for the colorimetric and fluorescence detection of 2,4-dichlorophenol, epinephrine and hydrogen peroxide. Anal Chim Acta 2024; 1330:343298. [PMID: 39489978 DOI: 10.1016/j.aca.2024.343298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Nanozymes have the advantages of cost effective, simple synthesis, high durability and stability, and have been widely used in various fields. However, only a few nanomaterials with multiple enzyme-like activity have been reported, and most of the currently developed nanozymes are usually used in colorimetric or fluorescence analysis depending on a single colorimetric or fluorescence signal output. In this study, a copper-based dual-ligand biomimetic nanoflower (Cu-MN) was constructed, which demonstrated potential multiple enzyme-like activity, and was applied to the multi-mode detection of 2,4-dichlorophenol (2,4-DP), epinephrine (EP), and H2O2. RESULTS The laccase-like activity of Cu-MN can catalyze the conversion of 2,4-DP and EP, resulting in the formation of red and yellow-brown oxidation products with distinct UV absorption peaks at 510 nm and 485 nm, respectively. Furthermore, the fluorescence emission peak at 426 nm of Cu-MN can be dynamic quenched during substrate oxidation due to the fluorescence internal filtration effect (IFE). Therefore, a dual-mode analysis method was constructed to detect 2,4-DP and EP by fluorescence and ultraviolet colorimetry, which was successfully applied in natural lake water and rabbit plasma analysis, respectively. Furthermore, a colorimetric sensing strategy based on the peroxidase-like activity of Cu-MN was developed and successfully applied to the monitoring of H2O2 in hydrogen peroxide disinfectant. Additionally, the visualization analysis method was also established by RGB reading of the smartphone. SIGNIFICANCE AND NOVELTY In brief, inspired by the fluorescence characteristics of 2-aminoterephthallc acid and the imidazole group of 2-methylimidazole, a novel copper-based dual-ligand biomimetic nanoflower (Cu-MN) was prepared and used to establish multi-mode method for the detection of 2,4-DP, EP, and H2O2, which opens up new avenues for its applications in bioanalysis and environmental monitoring.
Collapse
Affiliation(s)
- Jia-Xin Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
10
|
Feng K, Wang G, Wang S, Ma J, Wu H, Ma M, Zhang Y. Breaking the pH Limitation of Nanozymes: Mechanisms, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401619. [PMID: 38615261 DOI: 10.1002/adma.202401619] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Although nanozymes have drawn great attention over the past decade, the activities of peroxidase-like, oxidase-like, and catalase-like nanozymes are often pH dependent with elusive mechanism, which largely restricts their application. Therefore, a systematical discussion on the pH-related catalytic mechanisms of nanozymes together with the methods to overcome this limitation is in need. In this review, various nanozymes exhibiting pH-dependent catalytic activities are collected and the root causes for their pH dependence are comprehensively analyzed. Subsequently, regulatory concepts including catalytic environment reconstruction and direct catalytic activity improvement to break this pH restriction are summarized. Moreover, applications of pH-independent nanozymes in sensing, disease therapy, and pollutant degradation are overviewed. Finally, current challenges and future opportunities on the development of pH-independent nanozymes are suggested. It is anticipated that this review will promote the further design of pH-independent nanozymes and broaden their application range with higher efficiency.
Collapse
Affiliation(s)
- Kaizheng Feng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Guancheng Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Shi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Jingyuan Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| |
Collapse
|
11
|
Li DY, Chen L, Li CY, Zhang J, Zhao Y, Yang YH, Yang T. Nanoplasmonic biosensors for multicolor visual analysis of acetylcholinesterase activity and drug inhibitor screening in point-of-care testing. Biosens Bioelectron 2024; 247:115912. [PMID: 38096721 DOI: 10.1016/j.bios.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
The monitoring of acetylcholinesterase (AChE) activity and the screening of its inhibitors are significance of the diagnosis and drug therapy of nervous diseases. A metal ions-mediated signal amplification strategy was developed for the highly sensitive and multicolor assay of AChE activity and visually screening its drug inhibitors. After the specific reaction between AChE and acetylthiocholine (ATCh), the hydrolysis product thiocholine (TCh) can directly and decompose the α-FeOOH nanorods (NRs) to release amounts of Fe2+, which was regarded as Fenton reagent to efficiently catalyze H2O2 to produce ·OH. Then, the as-formed ·OH can further largely shorten the gold nanobipyramids (Au NBPs), generating a series of palpable color variations. The linear range for AChE activity was 0.01-500.0 U/L with the limit of detection as low as 0.0074 U/L. The vivid visual effects could be easily distinguished for the multicolor assay of AChE activity by naked eye in visible light. To achieve the point-of-care testing, Au NBPs were further assembled on polymeric electrospun nanofibrous films (ENFs) surface as test strips for the easy-to-use test of AChE activity by RGB values with a smartphone. Fascinatingly, this proposed strategy can be used for the visual screening AChE inhibitors or non-inhibitors. Comparing with the clinical drugs (rivastigmine tartrate, and donepezil), some natural alkaloids such as evodiamine, caffeine, camptothecin, and berberine hydrochloride were selected as inhibitor modes to confirm the drug screening capability of this method. This proposed strategy may have great potential in the other disease-related enzymatic biomarkers assay and the rapid screening of drug therapy.
Collapse
Affiliation(s)
- De Yan Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Lu Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Cai Yan Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Yun Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, Yunnan Province, PR China.
| |
Collapse
|
12
|
Xiao J, Shi F, Zhang Y, Peng M, Xu J, Li J, Chen Z, Yang Z. A MOF nanozyme-mediated acetylcholinesterase-free colorimetric strategy for direct detection of organophosphorus pesticides. Chem Commun (Camb) 2024; 60:996-999. [PMID: 38168820 DOI: 10.1039/d3cc05381d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Although some simple and rapid colorimetric methods have been developed to detect organophosphorus pesticides (OPs), the difficult extraction and easy denaturation of acetylcholinesterase (AChE) are still drawbacks needing to be overcome. Here, we propose a MOF nanozyme-mediated AChE-free colorimetric strategy for the direct detection of OPs. In the presence of OPs (pirimiphos-methyl as a model), the intense blue of oxidized 3,3',5,5'-tetramethylbenzidine (TMB) becomes light due to the quenching effect of OPs towards hydroxyl radicals (˙OH) that are generated by the decomposition of H2O2 catalyzed by the Cu4Co6 ZIF nanozyme with excellent peroxidase (POD)-like activity. The developed colorimetric sensor exhibits assay performance and offers a universal and promising analysis strategy for detecting OPs in practical samples.
Collapse
Affiliation(s)
- Jiaxiang Xiao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | - Feng Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Maoying Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Jinming Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Juan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| |
Collapse
|
13
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
14
|
Wang J, Han J, Wang J, Lv X, Fan D, Dong S. A cost-effective, "mix & act" G-quadruplex/Cu (II) metal-nanozyme-based ratiometric fluorescent platform for highly sensitive and selective cysteine/bleomycin detection and multilevel contrary logic computing. Biosens Bioelectron 2024; 244:115801. [PMID: 37924655 DOI: 10.1016/j.bios.2023.115801] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Versatile nanozymes with fascinating catalytic properties provide inspiring and effective options for biosensing and pharmaceutical analysis. Herein, we report the first nanozyme-based ratiometric fluorescent platform for cysteine (Cys) and bleomycin (BLM) detection by harnessing the cost-effective and "mix & act" G-quadruplex/Cu(II) (G4/Cu) metal-nanozyme with satisfactory peroxidase-like activity, which was fully proven by circular dichroism (CD), electron paramagnetic resonance (EPR) spectra and reactive oxygen species (ROS) scavenging experiments. Based on the catalytic oxidation of G4/Cu metal-nanozyme toward two fluorescent substrates (Amplex Ultrared, AU; Scopoletin, Sc) with opposite responses in the presence of H2O2, and the specific interaction between Cu2+ and targets, we achieved the highly sensitive detection of Cys and BLM. Through recording the fluorescence changes of AU (emission at 590 nm, F590) and Sc (emission at 465 nm, F465), we obtained good linear relationships between ratiometric fluorescence values (F590/F465) and variable contents of targets, resulting in the competitive LODs of Cys (6.7 nM) and BLM (10 nM), respectively. Moreover, this platform presented high selectivity (without the need for masking agent) and acceptable performance in human serum samples. Furthermore, a library of DNA contrary logic pairs (CLPs) and multilevel concatenated circuits were fabricated based on the reverse dual-output of the above platform, enriching the building blocks of biocomputing. This work not only enlightened the design of affordable, "mix & act" type nanozyme-based ratiometric biosensors with high reliability, but also facilitated the pluralistic application of nucleic acid-templated nanozymes to innovative biocomputing.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
15
|
Chai H, Li Y, Yu K, Yuan Z, Guan J, Tan W, Ma J, Zhang X, Zhang G. Two-Site Enhanced Porphyrinic Metal-Organic Framework Nanozymes and Nano-/Bioenzyme Confined Catalysis for Colorimetric/Chemiluminescent Dual-Mode Visual Biosensing. Anal Chem 2023; 95:16383-16391. [PMID: 37881841 DOI: 10.1021/acs.analchem.3c03872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The rational design of efficient nanozymes and the immobilization of enzymes are of great significance for the construction of high-performance biosensors based on nano-/bioenzyme catalytic systems. Herein, a novel V-TCPP(Fe) metal-organic framework nanozyme with a two-dimensional nanosheet morphology is rationally designed by using V2CTx MXene as a metal source and iron tetrakis(4-carboxyphenyl)porphine (FeTCPP) ligand as an organic linker. It exhibits enhanced peroxidase- and catalase-like activities and luminol-H2O2 chemiluminescent (CL) behavior. Based on the experimental and theoretical results, these excellent enzyme-like activities are derived from the two-site synergistic effect between V nodes and FeTCPP ligands in V-TCPP(Fe). Furthermore, a confined catalytic system is developed by zeolitic imidazole framework (ZIF) coencapsulation of the V-TCPP(Fe) nanozyme and bioenzyme. Using the acetylcholinesterase (AChE) as a model, our constructed V-TCPP(Fe)/AChE@ZIF confined catalytic system was successfully used for the colorimetric/CL dual-mode visual biosensing of organophosphorus pesticides. This work is expected to provide new insights into the design of efficient nanozymes and confined catalytic systems, encouraging applications in catalysis and biosensing.
Collapse
Affiliation(s)
- Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yujie Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Kun Yu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Zhishuang Yuan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jing Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Weiqiang Tan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jiping Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Guangyao Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
16
|
Huang H, Han MH, Gu Q, Wang JD, Zhao H, Zhai BW, Nie SM, Liu ZG, Fu YJ. Identification of pancreatic lipase inhibitors from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Orbitrap MS and in vitro validation. Food Chem 2023; 426:136630. [PMID: 37352710 DOI: 10.1016/j.foodchem.2023.136630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Pancreatic lipase inhibitors can reduce blood lipids by inactivating the catalytic activity of human pancreatic lipase, a key enzyme involved in triglyceride hydrolysis, which helps control some dyslipidemic diseases. The ability of Eucommia ulmoides tea to improve fat-related diseases is closely related to the natural inhibitory components of pancreatic lipase contained in the tea. In this study, fifteen pancreatic lipase inhibitors were screened and identified from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Q-Exactive Orbitrap/MS. Four representative components of geniposidic acid, quercetin-3-O-sambuboside, isochlorogenic acid A, and quercetin with high binding degrees were further verified by nanoscale differential scanning fluorimetry (nanoDSF) and enzyme inhibitory assays. The results of flow cytometry showed that they could significantly reduce the activity of pancreatic lipase in AR42J cells induced by palmitic acid in a concentration-dependent manner. Our findings suggest that Eucommia ulmoides tea may be a promising resource for pancreatic lipase inhibitors of natural origin.
Collapse
Affiliation(s)
- Han Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Ming-Hao Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qi Gu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Heng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Bo-Wen Zhai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Si-Ming Nie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhi-Guo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
17
|
Shen Y, Gao X, Chen H, Wei Y, Yang H, Gu Y. Ultrathin C 3N 4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131171. [PMID: 36913745 DOI: 10.1016/j.jhazmat.2023.131171] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Engineering efficient dual-mode portable sensor with built-in cross reference correction is of great significance for onsite reliable and precise detection of organophosphorus pesticides (OPs) and evading the false-positive outputs, especially in emergency case. Currently, most nanozyme-based sensors for OPs monitoring primarily replied on the peroxidase-like activity, which involved unstable and toxic H2O2. In this scenario, a hybrid oxidase-like 2D fluorescence nanozyme (PtPdNPs@g-C3N4) was yielded by in situ growing PtPdNPs in the ultrathin two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheet. When acetylcholinesterase (AChE) hydrolyzed acetylthiocholine (ATCh) to thiocholine (TCh), it ablated O2-• from the dissolved O2 catalyzed by PtPdNPs@g-C3N4's oxidase-like activity, hampering the oxidation of o-phenylenediamine (OPD) into 2,3-diaminophenothiazine (DAP). Consequently, with the increasing concentration of OPs which inhibited the blocking effect by inactivating AChE, the produced DAP caused an apparent color change and a dual-color ratiometric fluorescence change in the response system. Through integrating into a smartphone, a H2O2-free 2D nanozyme-based onsite colorimetric and fluorescence dual-mode visual imaging sensor for OPs was proposed with acceptable results in real samples, which holds vast promise for further development of commercial point-of-care testing platform in early warning and controlling of OPs pollution for safeguarding environmental health and food safety.
Collapse
Affiliation(s)
- Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China.
| | - Xiang Gao
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Huanhuan Chen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
18
|
Liu W, Zhang D, Zhang F, Hao Z, Li Y, Shao M, Zhang R, Li X, Zhang L. Self-enhanced peroxidase-like activity in a wide pH range enabled by heterostructured Au/MOF nanozymes for multiple ascorbic acid-related bioenzyme analyses. Analyst 2023; 148:1579-1586. [PMID: 36892478 DOI: 10.1039/d3an00017f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Nanozymes, a class of catalytic nanomaterials, have shown great potential to substitute natural enzymes in various applications. Nevertheless, the pursuit of high-efficiency peroxidase-like activity in a wide pH range is one of the major challenges existing in designing nanozymes. A feasible strategy is to construct an artificial active center by using porous materials as stable supporting structures, which can actively modulate biocatalytic activities via their porous atomic structures and more active sites. Herein, a gold nanoparticles/metal-organic framework (MOF) heterostructure was prepared using UiO-66 as a stable support structure (Au NPs/UiO-66), which demonstrates enhanced peroxidase-like activity, ∼8.95 times higher than that of pure Au NPs. Strikingly, Au NPs/UiO-66 exhibits excellent stability (maintains above 80% activity at 40-70 °C and retains 93% activity after 3 months of storage) and sustained high relative activity (above 90%) over a pH range of 5.0-9.0 due to the homogeneous dispersibility of free-ligand Au NPs and the strong chemical interaction between the Au NPs and the UiO-66 host. Moreover, a colorimetric assay of ascorbic acid (AA) and three AA-related biological enzymes was developed based on Au NPs/UiO-66 nanozyme, which has a good linear detection range and excellent anti-interference ability. This work provides important guidance for the expansion of metal NPs/MOF heterostructure nanozymes and their application prospects in the development of biosensors.
Collapse
Affiliation(s)
- Wendong Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Dingding Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Fanghua Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuyan Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Mingzheng Shao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China.
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
19
|
MnO2 nanosheet-assisted ratiometric fluorescence probe for the detection of sulfide based on silicon nanoparticles and o-phenylenediamine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Chen X, Liao J, Lin Y, Zhang J, Zheng C. Nanozyme's catalytic activity at neutral pH: reaction substrates and application in sensing. Anal Bioanal Chem 2023:10.1007/s00216-023-04525-w. [PMID: 36633622 DOI: 10.1007/s00216-023-04525-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Nanozymes exhibit their great potential as alternatives to natural enzymes. In addition to catalytic activity, nanozymes also need to have biologically relevant catalytic reactions at physiological pH to fit in the definition of an enzyme and to achieve efficient analytical applications. Previous reviews in the nanozyme field mainly focused on the catalytic mechanisms, activity regulation, and types of catalytic reactions. In this paper, we discuss efforts made on the substrate-dependent catalytic activity of nanozymes at neutral pH. First, the discrepant catalytic activities for different substrates are compared, where the key differences are the characteristics of substrates and the adsorption of substrates by nanozymes at different pH. We then reviewed efforts to enhance reaction activity for model chromogenic substrates and strategies to engineer nanomaterials to accelerate reaction rates for other substrates at physiological pH. Finally, we also discussed methods to achieve efficient sensing applications at neutral pH using nanozymes. We believe that the nanozyme is catching up with enzymes rapidly in terms of reaction rates and reaction conditions. Designing nanozymes with specific catalysis for efficient sensing remains a challenge.
Collapse
Affiliation(s)
- Xueshan Chen
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jing Liao
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China.,College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
21
|
Fluorescence color transformation of trans-4-[4-(N,N'-dimethylamino)styryl]pyridine-loaded UiO-66 for monitorable drug release. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Zhang Y, Liu Y, Yang Y, Li L, Tao X, Song E. Rapid detection of pathogenic bacteria based on a universal dual-recognition FRET sensing system constructed with aptamer-quantum dots and lectin-gold nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Wang Y, Xue Y, Zhao Q, Wang S, Sun J, Yang X. Colorimetric Assay for Acetylcholinesterase Activity and Inhibitor Screening Based on Metal–Organic Framework Nanosheets. Anal Chem 2022; 94:16345-16352. [DOI: 10.1021/acs.analchem.2c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Li Y, Sun J, Huang L, Liu S, Wang S, Zhang D, Zhu M, Wang J. Nanozyme-encoded luminescent detection for food safety analysis: An overview of mechanisms and recent applications. Compr Rev Food Sci Food Saf 2022; 21:5077-5108. [PMID: 36200572 DOI: 10.1111/1541-4337.13055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
With the rapid growth in global food production, delivery, and consumption, reformative food analytical techniques are required to satisfy the monitoring requirements of speed and high sensitivity. Nanozyme-encoded luminescent detections (NLDs) integrating nanozyme-based rapid detections with luminescent output signals have emerged as powerful methods for food safety monitoring, not only because of their preeminent performance in analysis, such as rapid, facile, low background signal, and ultrasensitive, but also due to their strong attractiveness for future sensing research. However, the lack of a full understanding of the fundamentals of NLDs for food safety detection technologies limits their further application. In this review, a systematic overview of the mechanisms of NLDs and their applications in the food industry is summarized, which covers the nanozyme-mimicking types and their luminescent signal generation mechanisms, as well as their applications in monitoring common foodborne contaminants. As demonstrated by previous studies, NLDs are bridging the gap to practical-oriented food analytical technologies and various opportunities to improve their food analytical performance to be considered in the future are proposed.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lunjie Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mingqiang Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Zhao L, Suo Z, He B, Huang Y, Liu Y, Wei M, Jin H. A fluorescent aptasensor based on nitrogen-doped carbon supported palladium and exonuclease III-assisted signal amplification for sensitive detection of AFB1. Anal Chim Acta 2022; 1226:340272. [DOI: 10.1016/j.aca.2022.340272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/01/2022]
|
26
|
Zhao Y, Wen Y, Hu X, Zhang B. A Colorimetric Immunoassay Based on g-C 3N 4@Fe 3O 4 Nanocomposite for Detection of Carcinoembryonic Antigen. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:6966470. [PMID: 35127195 PMCID: PMC8816607 DOI: 10.1155/2022/6966470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
We proposed a colorimetric immunosensor based on g-C3N4@Fe3O4 nanocomposite-mediated transformation strategy for sensitive detection of carcinoembryonic antigen (CEA). The g-C3N4@Fe3O4 nanocomposite was synthesized and characterized by the scanning electron microscope (SEM), energy dispersive X-ray spectra (EDX), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Fe3+ derived from g-C3N4@Fe3O4 nanocomposite could combine with sodium salicylate to form purple complex products. Based on this color development, the sandwich colorimetric immunoassay was built by utilizing g-C3N4@Fe3O4 nanocomposite as nanolabels on the microplate. With the increasement of CEA concentration, the purple color showed a gradient change. Under optimal conditions, the linearity range is 0.001-50 ng/mL with the detection limit of 0.35 pg/mL for CEA. More importantly, the colorimetric immunoassay has good selectivity, specificity, repeatability, and stability.
Collapse
Affiliation(s)
- Yanling Zhao
- Shanxi Medical University, Taiyuan 030001, China
| | - Yanfei Wen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xing Hu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bing Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|