1
|
Xie Y, Huang J, Yang M, Zhang Y, Zhang X, Xu W, Cao J, Zhu L. Nucleic acid-mediated SERS Biosensors: Signal enhancement strategies and applications. Biosens Bioelectron 2025; 282:117519. [PMID: 40300343 DOI: 10.1016/j.bios.2025.117519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/08/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Surface Enhanced Raman Spectroscopy (SERS) is a powerful spectroscopic analysis technique applied in various fields due to its high selectivity, ultra-high sensitivity, and non-destructiveness. As natural biological macromolecules, nucleic acids perform a significant role in SERS biosensing. In this review, we first summarize how nucleic acids mediate the signal enhancement of SERS biosensors from three aspects: substrate self-assembly, analyte biorecognition, and molecular amplification. Among them, SERS substrates can be self-assembled by both DNA modification and coordination or electrostatic interactions. In the field of biorecognition, analyte biorecognition based on three nucleic acid recognition elements can enhance SERS signals by regulating the distance of analytes or Raman reporter molecules to the SERS substrate. In addition, nucleic acid-based enzyme and enzyme-free amplification can enhance SERS signals by enlarging the quantity of analytes or its nucleic acid intermediates. Subsequently, multidimensional applications of nucleic acid-mediated SERS signal enhancement in biomedicine, food safety, and environmental monitoring are listed. Finally, the current challenges and future exploration of nucleic acid-mediated SERS signal enhancement are discussed.
Collapse
Affiliation(s)
- Yushi Xie
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jiaqiang Huang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Min Yang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Beijing Laboratory for Food Quality and Safety, Key Laboratory of Safety Assessment of Genetically, Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Geriatrics (Hepatobiliary Diseases), China General Technology Group, Beijing, 100073, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, China.
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Sun J, Li Z, Chen Y, Chang Y, Yang M, Zhong W. Enhancing Analysis of Extracellular Vesicles by Microfluidics. Anal Chem 2025; 97:6922-6937. [PMID: 40133233 DOI: 10.1021/acs.analchem.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Extracellular vesicles (EVs) play crucial roles in intercellular communication and hold great promise as biomarkers for noninvasive disease diagnosis. Intensive research efforts have been devoted to discovering the EV subpopulations responsible for specific functions or with enhanced effectiveness as disease markers, through extensive EV purification and content analysis. However, their high heterogeneity in size and cargo composition poses significant challenges for reaching such goals. Isolation methods like ultracentrifugation and size-exclusion chromatography, as well as content analysis approaches like polymerase chain reaction and enzyme-linked immunosorbent assay, have made significant contributions to improving our understanding of EV biology. Nonetheless, these methods face limitations in isolation efficiency, EV purity, and detection sensitivity and specificity due to issues like large sample consumption, unsatisfactory purity, and insufficient resolution in EV subtyping. Microfluidic technology presents promising solutions to these challenges, leveraging their intrinsic capabilities in precise flow and external energy field manipulation, sample compartmentalization, and signal enhancement at the micro- and nanoscale. Hence, this review summarizes the recent developments in microfluidics-enabled EV analysis, paying special attention to the unique microfluidic features exploited. Strategies such as viscoelastic and inertial flow, fluid mixing, and external-field-assisted approaches in improving EV purification, as well as compartmentalization and micro/nanostructures for enhancing EV detection, are examined. Furthermore, the current limitations and potential future directions are discussed to inspire advancements in this rapidly developing field.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen 518057, P. R. China
| | | | | | | | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, P. R. China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen 518057, P. R. China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | | |
Collapse
|
3
|
Chen B, Qiu X. Surface-Enhanced Raman Scattering (SERS) for exosome detection. Clin Chim Acta 2025; 568:120148. [PMID: 39842651 DOI: 10.1016/j.cca.2025.120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Exosomes, nanoscale extracellular vesicles secreted by various cells, are abundantly present in biological fluids. They have been identified as carriers of specific molecules, suggesting their potential role in early disease detection. However, their clinical application is hindered by several challenges, including the need for large sample volumes for enrichment, limitations of traditional detection methods, and the complexity involved in phenotype analysis and separation. OBJECTIVE This review aims to explore the application of Surface-Enhanced Raman Scattering (SERS) technology in exosome detection. SERS, known for its unique photonic properties and high sensitivity, offers a promising solution for detecting exosomes without the need for large sample volumes or extensive phenotypic analysis. This review focuses on the real-time and non-invasive assessment capabilities of SERS in exosome detection, providing insights into its potential for early disease diagnosis. CONCLUSION The review concludes by emphasizing the potential of SERS-based exosome detection in advancing early disease diagnosis. By overcoming existing challenges, SERS technology offers a promising approach for the development of sensitive and specific diagnostic assays, contributing to better patient outcomes and personalized medicine.
Collapse
Affiliation(s)
- Biqing Chen
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081 PR China
| | - Xiaohong Qiu
- Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081 PR China.
| |
Collapse
|
4
|
Liu YJ, Kyne M, Kang C, Wang C. Raman spectroscopy in extracellular vesicles analysis: Techniques, applications and advancements. Biosens Bioelectron 2025; 270:116970. [PMID: 39603214 DOI: 10.1016/j.bios.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Raman spectroscopy provides a robust approach for detailed analysis of the chemical and molecular profiles of extracellular vesicles (EVs). Recent advancements in Raman techniques have significantly enhanced the sensitivity and accuracy of EV characterization, enabling precise detection and profiling of molecular components within EV samples. This review introduces and compares various Raman-based techniques for EV characterization. These include Raman spectroscopy (RS), which provides fundamental molecular information; Raman trapping analysis (RTA), which combines optical trapping with Raman scattering for the manipulation and analysis of individual EVs; surface-enhanced Raman spectroscopy (SERS), which enhances the Raman signal through the use of metallic nanostructures, significantly improving sensitivity; and microfluidic SERS, which integrates SERS with microfluidic platforms to allow high-throughput, label-free analysis of EVs in biological fluids. In addition to comparing various Raman techniques, this review provides a comprehensive analysis that includes comparisons of machine learning methods, EV isolation techniques, and characterization strategies. By integrating these approaches, the review presents a holistic perspective on Raman-based EV analysis, covering profiling, purity, heterogeneity and size analysis as well as imaging. The combined assessment of Raman technologies with advanced computational and experimental methodologies supports the development of more robust diagnostic and therapeutic applications involving EVs.
Collapse
Affiliation(s)
- Ya-Juan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Michelle Kyne
- School of Chemistry, National University of Ireland, Galway, Galway, H91 CF50, Ireland
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| | - Cheng Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China; Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
5
|
Zhand S, Goss DM, Cheng YY, Warkiani ME. Recent Advances in Microfluidics for Nucleic Acid Analysis of Small Extracellular Vesicles in Cancer. Adv Healthc Mater 2025; 14:e2401295. [PMID: 39707658 DOI: 10.1002/adhm.202401295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Small extracellular vesicles (sEVs) are membranous vesicles released from cellular structures through plasma membrane budding. These vesicles contain cellular components such as proteins, lipids, mRNAs, microRNAs, long-noncoding RNA, circular RNA, and double-stranded DNA, originating from the cells they are shed from. Ranging in size from ≈25 to 300 nm and play critical roles in facilitating cell-to-cell communication by transporting signaling molecules. The discovery of sEVs in bodily fluids and their involvement in intercellular communication has revolutionized the fields of diagnosis, prognosis, and treatment, particularly in diseases like cancer. Conventional methods for isolating and analyzing sEVs, particularly their nucleic acid content face challenges including high costs, low purity, time-consuming processes, limited standardization, and inconsistent yield. The development of microfluidic devices, enables improved precision in sorting, isolating, and molecular-level separation using small sample volumes, and offers significant potential for the enhanced detection and monitoring of sEVs associated with cancer. These advanced techniques hold great promise for creating next-generation diagnostic and prognostic tools given their possibility of being cost-effective, simple to operate, etc. This comprehensive review explores the current state of research on microfluidic devices for the detection of sEV-derived nucleic acids as biomarkers and their translation into practical point-of-care and clinical applications.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dale Mark Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Theranostics, Sechenov First Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
Hu J, Gao D. Recent Advances in Aptamer-Based Microfluidic Biosensors for the Isolation, Signal Amplification and Detection of Exosomes. SENSORS (BASEL, SWITZERLAND) 2025; 25:848. [PMID: 39943486 PMCID: PMC11820184 DOI: 10.3390/s25030848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
Exosomes carry diverse tumor-associated molecular information that can reflect real-time tumor progression, making them a promising tool for liquid biopsy. However, traditional methods for exosome isolation and detection often rely on large, expensive equipment and are time-consuming, limiting their practical applicability in clinical settings. Microfluidic technology offers a versatile platform for exosome analysis, with advantages such as seamless integration, portability and reduced sample volumes. Aptamers, which are single-stranded oligonucleotides with high affinity and specificity for target molecules, have been frequently employed in the development of aptamer-based microfluidics for the isolation, signal amplification, and quantitative detection of exosomes. This review summarizes recent advances in aptamer-based microfluidic strategies for exosome analysis, including (1) strategies for on-chip exosome capture mediated by aptamers combined with nanomaterials or nanointerfaces; (2) aptamer-based on-chip signal amplification techniques, such as enzyme-free hybridization chain reaction (HCR), rolling circle amplification (RCA), and DNA machine-assisted amplification; and (3) various aptamer-assisted detection methods, such as fluorescence, electrochemistry, surface-enhanced Raman scattering (SERS), and magnetism. The limitations and advantages of these methods are also summarized. Finally, future challenges and directions for the clinical analysis of exosomes based on aptamer-based microfluidics are discussed.
Collapse
Affiliation(s)
- Jessica Hu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School and Open FIESTA, Tsinghua University, Shenzhen 518055, China;
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School and Open FIESTA, Tsinghua University, Shenzhen 518055, China;
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China
| |
Collapse
|
7
|
Fan R, Chen S, Lan F, Li W, Zhu Y, Zhang L, Zhang Y, Li L. Surface-Enhanced Raman Scattering (SERS)-based biosensors for advanced extracellular vesicle detection: A review. Anal Chim Acta 2025; 1336:343264. [PMID: 39788643 DOI: 10.1016/j.aca.2024.343264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Extracellular Vesicles (EVs), as nano-scale vesicles rich in biological information, hold an indispensable status in the biomedical field. However, due to the intrinsic small size and low abundance of EVs, their effective detection presents significant challenges. Although various EV detection techniques exist, their sensitivity and ease of operation still need enhancement. RESULTS Surface-Enhanced Raman Scattering (SERS) is known for its high sensitivity and specificity. It stands out in tackling the challenges that traditional EV detection methods face. In this review, we focus on the application of SERS-based biosensors in EV detection. It provides a detailed introduction to the recognition and capture of EVs, strategies for mediating signal amplification, and detection of EV biomarkers. Finally, the challenges and prospects of SERS-based biosensors are discussed. SIGNIFICANCE SERS-based biosensor enhances the Raman signal, allowing for the detection of biomarkers at low concentrations. This capability reveals its substantial potential in identifying EVs and analyzing molecular data. It paves the path for advanced EV detection.
Collapse
Affiliation(s)
- Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Siting Chen
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Fei Lan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yitong Zhu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Wu Y, Wang Y, Mo T, Liu Q. Surface-enhanced Raman scattering-based strategies for tumor markers detection: A review. Talanta 2024; 280:126717. [PMID: 39167940 DOI: 10.1016/j.talanta.2024.126717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The presence of malignant tumors poses a significant threat to people's life and well-being. As biochemical parameters indicate the occurrence and development of tumors, tumor markers play a pivotal role in early cancer detection, treatment, prognosis, efficient monitoring, and other aspects. Surface-enhanced Raman scattering (SERS) is considered a potent tool for the detection of tumor markers owing to its exceptional advantages encompassing high sensitivity, superior selectivity, rapid analysis speed, and photobleaching resistance nature. This review aims to provide a comprehensive understanding of SERS applications in the detection of tumor markers. Firstly, we introduce the SERS enhancement mechanism, classification of active substrates, and SERS detection techniques. Secondly, the latest research progress of in vitro SERS detection of different types of tumor markers in body fluids and the application of SERS imaging in biomedical imaging are highlighted in sections of the review. Finally, according to the current status of SERS detection of tumor markers, the challenges and problems of SERS in biomedical detection are discussed, and insights into future developments in SERS are offered.
Collapse
Affiliation(s)
- Yafang Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yinglin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
9
|
Jia H, Meng W, Gao R, Wang Y, Zhan C, Yu Y, Cong H, Yu L. Integrated SERS-Microfluidic Sensor Based on Nano-Micro Hierarchical Cactus-like Array Substrates for the Early Diagnosis of Prostate Cancer. BIOSENSORS 2024; 14:579. [PMID: 39727845 DOI: 10.3390/bios14120579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy (SERS) was designed and fabricated for the detection of exosome concentrations in Lymph Node Carcinoma of the Prostate (LNCaP). Double layers of polystyrene (PS) microspheres were self-assembled onto a polyethylene terephthalate (PET) film to form an ordered cactus-like nanoarray for detection and analysis. By combining EpCAM aptamer-labeled SERS nanoprobes and a CD63 aptamer-labeled CAS, a 'sandwich' structure was formed and applied to the microfluidic chips, further enhancing the Raman scattering signal of Raman reporter molecules. The results indicate that the integrated microfluidic sensor exhibits a good linear response within the detection concentration range of 105 particles μL-1 to 1 particle μL-1. The detection limit of exosomes in cancer cells can reach 1 particle μL-1. Therefore, we believed that the CAS integrated microfluidic sensor offers a superior solution for the early diagnosis and therapeutic intervention of prostate cancer.
Collapse
Affiliation(s)
- Huakun Jia
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Weiyang Meng
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Rongke Gao
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yeru Wang
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Changbiao Zhan
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yiyue Yu
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Haojie Cong
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Liandong Yu
- State Key Laboratory of Chemical Safety, College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
10
|
Jian H, Wang X, Li J, Liu L, Zeng H, Li P, Tang D, Tang J. Versatile Bovine Serum Albumin as Ingenious Electron Operator-Enhanced Photoelectrochemical Biosensing for Ultrasensitive Detection of miRNA. Anal Chem 2024; 96:14660-14668. [PMID: 39180758 DOI: 10.1021/acs.analchem.4c03377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Bovine serum albumin (BSA) has been widely used in biosensors as a blocking agent. Herein, conformist BSA was first exploited as an ingenious operator to enhance the photocurrent response of (2Z,2'Z)-2,2'-(1,4-phenylene)bis(3-(4-(bis(4-methoxyphenyl)amino)phenyl)acrylonitrile) (TPDCN)-based photoelectrochemical (PEC) platform via manipulating the electron transfer process of the detection system. Concretely, the presence of target molecules triggered catalytic hairpin assembly reaction and subsequently powered terminal deoxynucleotidyl transferase-mediated signal amplification to produce the AgNP@BSA-DNA dendrimer nanostructure. After being treated with HNO3, a large amount of BSA could be released from the dendrimer nanostructure. When they were transferred to the TPDCN-based PEC platform, the photocurrent response of the biosensor was largely enhanced because BSA can manipulate the electrons of TPDCN via a well-matched energy level to form a new electron transfer track. Meanwhile, tryptophan (Trp) in BSA could be oxidized to quinone Trp-O under photoirradiation, which can facilitate the oxidation of ascorbate and generate more H+ to promote the migration of photogenerated electrons. As a result, the proposed PEC biosensor exhibits excellent analytical performance for detection of miRNA-21 (as a model target) over a wide linear range of 0.01 to 10,000 pM with detection limit as low as 4.7 fM. Overall, this strategy provides a new perspective on constructing efficient PEC biosensors, which expands the potential applications in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Huixin Jian
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Xiaoman Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jinjin Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Liping Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Haisen Zeng
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Ping Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education of China and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Tang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
11
|
Li Y, Jiang G, Wan Y, Dauda SAA, Pi F. Tailoring strategies of SERS tags-based sensors for cellular molecules detection and imaging. Talanta 2024; 276:126283. [PMID: 38776777 DOI: 10.1016/j.talanta.2024.126283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
As an emerging nanoprobe, surface enhanced Raman scattering (SERS) tags hold significant promise in sensing and bioimaging applications due to their attractive merits of anti-photobleaching ability, high sensitivity and specificity, multiplex, and low background capabilities. Recently, several reviews have proposed the application of SERS tags in different fields, however, the specific sensing strategies of SERS tags-based sensors for cellular molecules have not yet been systematically summarized. To provide beneficial and comprehensive insights into the advanced SERS tags technique at the cellular level, this review systematically elaborated on the latest advances in SERS tags-based sensors for cellular molecules detection and imaging. The general SERS tags-based sensing strategies for biomolecules and ions were first introduced according to molecular classes. Then, aiming at such molecules located in the extracellular, cellular membrane and intracellular regions, the tailored strategies by designing and manipulating SERS tags were summarized and explored through several key examples. Finally, the challenges and perspectives of developing high performance of advanced SERS tags were briefly discussed to provide effective guidance for further development and extended applications.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Sa-Adu Abiola Dauda
- School of Allied Health Sciences, University for Development Studies, P.O. Box 1883, Tamale, Ghana
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
12
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
13
|
Sun X, Chen Y, Li H, Xing W, Chen M, Wang J, Ye L. A cubic DNA nanocage probe for in situ analysis of miRNA-10b in tumor-derived extracellular vesicles. Chem Commun (Camb) 2024; 60:4777-4780. [PMID: 38597795 DOI: 10.1039/d4cc01049c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A cubic DNA nanocage probe is able to enter EVs derived from MDA-MB-231 cells and react with miRNA-10b. The probe-loaded EVs were employed to monitor the process of entry of miRNA-10b into MCF-10A cells, allowing visualization of EV-mediated intercellular communication of miRNA-10b between the cancer cells.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Yafei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Haiyan Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Wei Xing
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100 Lund, Sweden.
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, P. R. China.
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box124, 22100 Lund, Sweden.
| |
Collapse
|
14
|
Xia L, Huang Y, Wang Q, Wang X, Wang Y, Wu J, Li Y. Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research. Analyst 2024; 149:2526-2541. [PMID: 38623605 DOI: 10.1039/d4an00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.
Collapse
Affiliation(s)
- Ling Xia
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yujiang Huang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Qiuying Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yunpeng Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Yang Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland
| |
Collapse
|
15
|
Shen J, Ma Z, Xu J, Xue T, Lv X, Zhu G, Huang B. Exosome Isolation and Detection: From Microfluidic Chips to Nanoplasmonic Biosensor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38676635 DOI: 10.1021/acsami.3c19396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Exosomes are becoming more widely acknowledged as significant circulating indicators for the prognosis and diagnosis of cancer. Circulating exosomes are essential to the development and spread of cancer, according to a growing body of research. Using existing technology, characterizing exosomes is quite difficult. Therefore, a direct, sensitive, and targeted approach to exosome detection will aid in illness diagnosis and prognosis. The review discusses the new strategies for exosome isolation and detection technologies from microfluidic chips to nanoplasmonic biosensors, analyzing the advantages and limitations of these new technologies. This review serves researchers to better understand exosome isolation and detection methods and to help develop better exosome isolating and detecting devices for clinical applications.
Collapse
Affiliation(s)
- Jianing Shen
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Zhengtai Ma
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| | - Jiaqi Xu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Tianhao Xue
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xiaoqing Lv
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
| | - Guixian Zhu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Beiju Huang
- Key Laboratory of Optoelectronic Materials and Devices, Chinese Academy of Sciences, Beijing 100083, China
- College of Materials Science and Optoelectronic Technology, University of Chinese, Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Issatayeva A, Farnesi E, Cialla-May D, Schmitt M, Rizzi FMA, Milanese D, Selleri S, Cucinotta A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024; 267:125198. [PMID: 37722343 DOI: 10.1016/j.talanta.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Genomic biomarkers of cancer are based on changes in nucleic acids, which include abnormal expression levels of some miRNAs, point mutations in DNA sequences, and altered levels of DNA methylation. The presence of tumor-related nucleic acids in body fluids (blood, saliva, or urine) makes it possible to achieve a non-invasive early-stage cancer diagnosis. Currently existing techniques for the discovery of nucleic acids require complex, time-consuming, costly assays and have limited multiplexing abilities. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that is able to provide molecular specificity combined with trace sensitivity. SERS has gained research attention as a tool for the detection of nucleic acids because of its promising potential: label-free SERS can decrease the complexity of assays currently used with fluorescence-based detection due to the absence of the label, while labeled SERS may outperform the gold standard in terms of the multiplexing ability. The first papers about SERS-based methods for the measurement of genomic biomarkers were written in 2008, and since then, more than 150 papers have been published. The aim of this paper is to review and evaluate the proposed SERS-based methods in terms of their level of development and their potential for liquid biopsy application, as well as to contribute to their further evolution by attracting research attention to the field. This goal will be reached by grouping, on the basis of their experimental protocol, all the published manuscripts on the topic and evaluating each group in terms of its limit of detection and applicability to real body fluids. Thus, the methods are classified according to their working principles into five main groups, including capture-based, displacement-based, sandwich-based, enzyme-assisted, and specialized protocols.
Collapse
Affiliation(s)
- Aizhan Issatayeva
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy.
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | | | - Daniel Milanese
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Stefano Selleri
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Annamaria Cucinotta
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| |
Collapse
|
17
|
Yu Y, Liang C, Wan QQ, Jin D, Liu X, Zhang Z, Sun ZY, Zhang GJ. Integrated FET sensing microsystem for specific detection of pancreatic cancer exosomal miRNA10b. Anal Chim Acta 2023; 1284:341995. [PMID: 37996166 DOI: 10.1016/j.aca.2023.341995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023]
Abstract
Tumor-derived exosome (TD-Ex) serves as a crucial early diagnostic biomarker of pancreatic cancer (PC). However, accurate identification of TD-Ex from PC is still a challenging work. In this paper, a detection microsystem that integrates magnetic separation and FET biosensor is developed, which is capable of selectively separating TD-Ex of PC from the plasma and detecting exosomal miRNA10b in a sensitive and specific manner. The magnetic beads were functionalized with dual antibody (GPC-1 antibody and EpCAM antibody), enabling selective recognition and capture of PC-derived exosomes. On the other hand, a peptide nucleic acid (PNA)- functionalized reduced graphene oxide field-effect transistor (RGO FET) biosensor was subsequently utilized to detect the exosomal miRNA10b, which is highly expressed in PC- derived exosomes. This system could achieve a low detection limit down to 78 fM, and selectively identify miRNA10b from single-base mismatched miRNA. In addition, 40 clinical plasma samples were tested with this microsystem, and the results indicate that it could effectively distinguish PC patients from healthy individuals. The assay combines specific capture and enrichment of PC-derived exosomes with sensitive and selective detection of exosomal miRNA, showing its potential to be used as an effective scheme for PC early diagnosis.
Collapse
Affiliation(s)
- Yi Yu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Chunzi Liang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | | | - Dan Jin
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Xi Liu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, 100871, China.
| | - Zhong-Yue Sun
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, China.
| |
Collapse
|
18
|
Yuan Z, Liu X, Deng S, He G, Zhang J, He Q, Chi Y, Jiang X, Xia X, Deng R. Single-Cell Genotyping of Single-Nucleotide Mutations Using In Situ Allele-Specific Loop-Mediated Isothermal Amplification. ACS Sens 2023; 8:4315-4322. [PMID: 37862679 DOI: 10.1021/acssensors.3c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Single-nucleotide mutations (SNMs) in the bacterial genome may cause antibiotic resistance. The visualization of SNMs can indicate antibiotic resistance phenotypes at the single-cell level but remains challenging. Herein, we proposed an in situ allele-specific isothermal amplification proceeded inside cells, allowing us to image bacterial genes with single-nucleotide resolution. The primer for loop-mediated isothermal amplification (LAMP) was designed with artificial mismatch bases to serve as an allele-specific probe, endowing LAMP to specifically amplify genes with SNMs. Due to the high amplification efficiency of LAMP, the method termed AlleLAMP can generate high gain for imaging SNMs and precisely quantify mutated quinolone-resistant Salmonella in bacterial mixture. We utilized AlleLAMP to survey the selection of antibiotic resistance under the preservative stress and found that the mutant quinolone-resistant strain owned a survival advantage over the wild-type quinolone-sensitive strain under the stress of preservatives. AlleLAMP can serve as a single-cell tool for analyzing the relationship between bacterial genotype and phenotype.
Collapse
Affiliation(s)
- Zilan Yuan
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xinmiao Liu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jiaqi Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiue Jiang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
19
|
Zhang Y, Zhao L, Li Y, Wan S, Yuan Z, Zu G, Peng F, Ding X. Advanced extracellular vesicle bioinformatic nanomaterials: from enrichment, decoding to clinical diagnostics. J Nanobiotechnology 2023; 21:366. [PMID: 37798669 PMCID: PMC10557264 DOI: 10.1186/s12951-023-02127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane nanoarchitectures generated by cells that carry a variety of biomolecules, including DNA, RNA, proteins and metabolites. These characteristics make them attractive as circulating bioinformatic nanocabinets for liquid biopsy. Recent advances on EV biology and biogenesis demonstrate that EVs serve as highly important cellular surrogates involved in a wide range of diseases, opening up new frontiers for modern diagnostics. However, inefficient methods for EV enrichment, as well as low sensitivity of EV bioinformatic decoding technologies, hinder the use of EV nanocabinet for clinical diagnosis. To overcome these challenges, new EV nanotechnology is being actively developed to promote the clinical translation of EV diagnostics. This article aims to present the emerging enrichment strategies and bioinformatic decoding platforms for EV analysis, and their applications as bioinformatic nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Yawei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Liang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
20
|
Yang N, Zhao C, Kong L, Zhang B, Han C, Zhang Y, Qian X, Qin W. Absolute Quantification of Dynamic Cellular Uptake of Small Extracellular Vesicles via Lanthanide Element Labeling and ICP-MS. Anal Chem 2023; 95:11934-11942. [PMID: 37527423 DOI: 10.1021/acs.analchem.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Small extracellular vesicles (sEVs) are increasingly reported to play important roles in numerous physiological and pathological processes. Cellular uptake of sEVs is of great significance for functional regulation in recipient cells. Although various sEV quantification, labeling, and tracking methods have been reported, it is still highly challenging to quantify the absolute amount of cellular uptake of sEVs and correlate this information with phenotypic variations in the recipient cell. Therefore, we developed a novel strategy using lanthanide element labeling and inductively coupled plasma-mass spectrometry (ICP-MS) for the absolute and sensitive quantification of sEVs. This strategy utilizes the chelation interaction between Eu3+ and the phosphate groups on the sEV membrane for specific labeling. sEVs internalized by cells can then be quantified by ICP-MS using a previously established linear relationship between the europium content and the particle numbers. High Eu labeling efficiency and stability were demonstrated by various evaluations, and no structural or functional alterations in the sEVs were discovered after Eu labeling. Application of this method revealed that 4020 ± 171 sEV particles/cell were internalized by HeLa cells at 37 °C and 61% uptake inhibition at 4 °C. Further investigation led to the quantitative differential analysis of sEV cellular uptake under the treatment of several chemical endocytosis inhibitors. A 23% strong inhibition indicated that HeLa cells uptake sEVs mainly through the macropinocytosis pathway. This facile labeling and absolute quantification strategy of sEVs with ppb-level high sensitivity is expected to become a potential tool for studying the functions of sEVs in intracellular communication and cargo transportation.
Collapse
Affiliation(s)
- Ningli Yang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chuanping Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Linlin Kong
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Baoying Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Chunguang Han
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Yangjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
21
|
Surappa S, Multani P, Parlatan U, Sinawang PD, Kaifi J, Akin D, Demirci U. Integrated "lab-on-a-chip" microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers. LAB ON A CHIP 2023; 23:2942-2958. [PMID: 37314731 PMCID: PMC10834032 DOI: 10.1039/d2lc01076c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liquid biopsy has garnered considerable attention as a complementary clinical tool for the early detection, molecular characterization and monitoring of cancer over the past decade. In contrast to traditional solid biopsy techniques, liquid biopsy offers a less invasive and safer alternative for routine cancer screening. Recent advances in microfluidic technologies have enabled handling of liquid biopsy-derived biomarkers with high sensitivity, throughput, and convenience. The integration of these multi-functional microfluidic technologies into a 'lab-on-a-chip' offers a powerful solution for processing and analyzing samples on a single platform, thereby reducing the complexity, bio-analyte loss and cross-contamination associated with multiple handling and transfer steps in more conventional benchtop workflows. This review critically addresses recent developments in integrated microfluidic technologies for cancer detection, highlighting isolation, enrichment, and analysis strategies for three important sub-types of cancer biomarkers: circulating tumor cells, circulating tumor DNA and exosomes. We first discuss the unique characteristics and advantages of the various lab-on-a-chip technologies developed to operate on each biomarker subtype. This is then followed by a discussion on the challenges and opportunities in the field of integrated systems for cancer detection. Ultimately, integrated microfluidic platforms form the core of a new class of point-of-care diagnostic tools by virtue of their ease-of-operation, portability and high sensitivity. Widespread availability of such tools could potentially result in more frequent and convenient screening for early signs of cancer at clinical labs or primary care offices.
Collapse
Affiliation(s)
- Sushruta Surappa
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Priyanka Multani
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Ugur Parlatan
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Prima Dewi Sinawang
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jussuf Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Demir Akin
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
- Center for Cancer Nanotechnology Excellence for Translational Diagnostics (CCNE-TD), School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Lab, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
22
|
Ngo L, Pham LQA, Tukova A, Hassanzadeh-Barforoushi A, Zhang W, Wang Y. Emerging integrated SERS-microfluidic devices for analysis of cancer-derived small extracellular vesicles. LAB ON A CHIP 2023. [PMID: 37314042 DOI: 10.1039/d3lc00156c] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer-derived small extracellular vesicles (sEVs) are specific subgroups of lipid bilayer vesicles secreted from cancer cells to the extracellular environment. They carry distinct biomolecules (e.g., proteins, lipids and nucleic acids) from their parent cancer cells. Therefore, the analysis of cancer-derived sEVs can provide valuable information for cancer diagnosis. However, the use of cancer-derived sEVs in clinics is still limited due to their small size, low amounts in circulating fluids, and heterogeneous molecular features, making their isolation and analysis challenging. Recently, microfluidic technology has gained great attention for its ability to isolate sEVs in minimal volume. In addition, microfluidics allows the isolation and detection of sEVs to be integrated into a single device, offering new opportunities for clinical application. Among various detection techniques, surface-enhanced Raman scattering (SERS) has emerged as a promising candidate for integrating with microfluidic devices due to its ultra-sensitivity, stability, rapid readout, and multiplexing capability. In this tutorial review, we start with the design of microfluidics devices for isolation of sEVs and introduce the key factors to be considered for the design, and then discuss the integration of SERS and microfluidic devices by providing descriptive examples of the currently developed platforms. Lastly, we discuss the current limitations and provide our insights for utilising integrated SERS-microfluidics to isolate and analyse cancer-derived sEVs in clinical settings.
Collapse
Affiliation(s)
- Long Ngo
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Le Que Anh Pham
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | | | - Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
23
|
Amini Y, Ghazanfari V, Heydari M, Shadman MM, Khamseh AG, Khani MH, Hassanvand A. Computational fluid dynamics simulation of two-phase flow patterns in a serpentine microfluidic device. Sci Rep 2023; 13:9483. [PMID: 37301919 DOI: 10.1038/s41598-023-36672-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
In the current research work, the flow behavior of a liquid-liquid extraction (LLE) process in a serpentine microchannel was analyzed. The simulation was performed using a 3D model and the results were found to be consistent with experimental data. The impact of the flow of chloroform and water on the flow model was also examined. The data indicate that once the aqua and organic phases flow rates are low and similar, a slug flow pattern is observed. However, as the overall flow rate raises, the slug flow transforms into parallel plug flow or droplet flow. An increment in the aqua flows while maintaining a constant organic phase flow rate results in a transition from slug flow to either droplet flow or plug flow. Finally, the patterns of flow rate in the serpentine micro-channel were characterized and depicted. The results of this study will provide valuable insights into the behavior of two-phase flow patterns in serpentine microfluidic devices. This information can be used to optimize the design of microfluidic devices for various applications. Furthermore, the study will demonstrate the applicability of CFD simulation in investigating the behavior of fluids in microfluidic devices, which can be a cost-effective and efficient alternative to experimental studies.
Collapse
Affiliation(s)
- Younes Amini
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Valiyollah Ghazanfari
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mehran Heydari
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mohammad Mahdi Shadman
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - A Gh Khamseh
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mohammad Hassan Khani
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Amin Hassanvand
- Department of Polymer Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran
| |
Collapse
|
24
|
Chen W, Li T, Chen C, Zhang J, Ma Z, Hou W, Yao Y, Mao W, Liu C, Kong D, Tang S, Shen W. Three-dimensional ordered DNA network constructed by a biomarker pair for accurate monitoring of colorectal cancer. Biosens Bioelectron 2023; 232:115335. [PMID: 37087986 DOI: 10.1016/j.bios.2023.115335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Precise and early screening of colorectal cancer (CRC) is one crucial yet challenging task for its treatment, and the analysis of multi-targets of CRC in a single assay with high accuracy is essential for pathological research and clinical diagnosis. Here, a CRC-related biomarker pair, microRNA-211 (miRNA-211) and H2S, was detected by constructing a three-dimensional (3D) ordered DNA network. First, trace amount of miRNA-211 could initiate a hybridization chain reaction-based amplification process. A highly ordered 3D DNA network was formed based on the organized assembly of DNA-cube frameworks that were constructed by DNA origamis and Ag nanoparticles (NPs) encapsulated inside. In the presence of the H2S, Ag NPs within the network can be etched to generate Ag2S quantum dots, which could be better visualized in fluorescence in situ cell imaging. Using the 3D DNA ordered network as the sensing platform, it can acquire dual analysis of biomolecule (miRNA-211) and inorganic gas (H2S) in vitro, overcoming the limitations of single type of biomarker detection in a single assay. This assay achieved a wide linearity range of H2S from 0.05 to 10 μM, and exhibited a low limit of detection of 4.78 nM. This strategy allows us to acquire the spatial distributions of H2S and miRNA expression levels in living CRC cells simultaneously, providing a highly sensitive and selective tool for early screening and monitoring of CRC.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tingting Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Ziyu Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Weilin Hou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Wei Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| |
Collapse
|
25
|
Zhang B, Li H, Kong L, Yang N, Yang S, Qi L, Liu T, Wang X, Qin W. Tandem enrichment of serum exosomes and exosomal RNA with titanium dioxide. J Chromatogr A 2023; 1693:463882. [PMID: 36857982 DOI: 10.1016/j.chroma.2023.463882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Exosomes have great potential as biomarker carriers for disease diagnosis and prognosis. In recent years, exosomal RNA (exoRNA) has become a promising candidate for the early diagnosis and prognosis of cancers, and its pathophysiological roles in various diseases have been revealed. For example, exosome-derived mRNAs, miRNAs, circRNAs, and lncRNAs function as signalling molecules to regulate tumour growth, angiogenesis, invasion, metastasis, and the response to chemotherapy. However, the isolation of exosomes and exoRNA with high quality and purity remains challenging due to the relatively small size of exosomes and the limited amount of RNA in exosomes. In this work, we developed a novel tandem enrichment method to isolate exoRNA from serum based on the specific interaction between titanium dioxide (TiO2) and the phosphate groups on the lipid bilayer of exosomes and of the exoRNA. TiO2-based RNA isolation was first demonstrated and optimized in HeLa cells. A total of 130.9 ± 8.34 µg of RNA was rapidly enriched from approximately 5 × 106 HeLa cells within 10 min. This was a 41.5% higher yield than that using a commercial Ultrapure RNA Kit. TiO2-based tandem enrichment of exoRNA was then performed using human serum, obtaining 64.53±3.41 ng of exoRNA from 500 µL of human serum within 30 min. A total of 2,137,902 reads, including seven types of exoRNAs, were identified from the exosomes. This method is compatible with various downstream RNA processing techniques and does not use toxic or irritating reagents, such as phenol or chloroform, providing a simple, economical, rapid, and safe approach for exoRNA extraction from biological samples.
Collapse
Affiliation(s)
- Baoying Zhang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Hang Li
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Linlin Kong
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Ningli Yang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Shengjie Yang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Lu Qi
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China
| | - Tong Liu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China.
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, PR China.
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, PR China.
| |
Collapse
|
26
|
Chen M, Lin S, Zhou C, Cui D, Haick H, Tang N. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization. Adv Healthc Mater 2023; 12:e2202437. [PMID: 36541411 DOI: 10.1002/adhm.202202437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale membrane vesicles, which contain a wide variety of cargo such as proteins, miRNAs, and lipids. A growing body of evidence suggests that EVs are promising biomarkers for disease diagnosis and therapeutic strategies. Although the excellent clinical value, their use in personalized healthcare practice is not yet feasible due to their highly heterogeneous nature. Taking the difficulty of isolation and the small size of EVs into account, the characterization of EVs at a single-particle level is both imperative and challenging. In a bid to address this critical point, more research has been directed into a microfluidic platform because of its inherent advantages in sensitivity, specificity, and throughput. This review discusses the biogenesis and heterogeneity of EVs and takes a broad view of state-of-the-art advances in microfluidics-based EV research, including not only EV separation, but also the single EV characterization of biophysical detection and biochemical analysis. To highlight the advantages of microfluidic techniques, conventional technologies are included for comparison. The current status of artificial intelligence (AI) for single EV characterization is then presented. Furthermore, the challenges and prospects of microfluidics and its combination with AI applications in single EV characterization are also discussed. In the foreseeable future, recent breakthroughs in microfluidic platforms are expected to pave the way for single EV analysis and improve applications for precision medicine.
Collapse
Affiliation(s)
- Mingrui Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Zhou
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ning Tang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
27
|
Wang M, Liu H, Ren J, Huang Y, Deng Y, Liu Y, Chen Z, Chow FWN, Leung PHM, Li S. Enzyme-Assisted Nucleic Acid Amplification in Molecular Diagnosis: A Review. BIOSENSORS 2023; 13:bios13020160. [PMID: 36831926 PMCID: PMC9953907 DOI: 10.3390/bios13020160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Infectious diseases and tumors have become the biggest medical challenges in the 21st century. They are driven by multiple factors such as population growth, aging, climate change, genetic predispositions and more. Nucleic acid amplification technologies (NAATs) are used for rapid and accurate diagnostic testing, providing critical information in order to facilitate better follow-up treatment and prognosis. NAATs are widely used due their high sensitivity, specificity, rapid amplification and detection. It should be noted that different NAATs can be selected according to different environments and research fields; for example, isothermal amplification with a simple operation can be preferred in developing countries or resource-poor areas. In the field of translational medicine, CRISPR has shown great prospects. The core component of NAAT lies in the activity of different enzymes. As the most critical material of nucleic acid amplification, the key role of the enzyme is self-evident, playing the upmost important role in molecular diagnosis. In this review, several common enzymes used in NAATs are compared and described in detail. Furthermore, we summarize both the advances and common issues of NAATs in clinical application.
Collapse
Affiliation(s)
- Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yunqi Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuan Liu
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
28
|
Liu J, Zhang L, Zeng W, Zhang L, He N, Lu Z. High-throughput quantitative detection of triple-negative breast cancer-associated expressed miRNAs by rolling circle amplification on fluorescence-encoded microspheres. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Advances in application and innovation of microfluidic platforms for pharmaceutical analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Meggiolaro A, Moccia V, Brun P, Pierno M, Mistura G, Zappulli V, Ferraro D. Microfluidic Strategies for Extracellular Vesicle Isolation: Towards Clinical Applications. BIOSENSORS 2022; 13:bios13010050. [PMID: 36671885 PMCID: PMC9855931 DOI: 10.3390/bios13010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) are double-layered lipid membrane vesicles released by cells. Currently, EVs are attracting a lot of attention in the biological and medical fields due to their role as natural carriers of proteins, lipids, and nucleic acids. Thus, they can transport useful genomic information from their parental cell through body fluids, promoting cell-to-cell communication even between different organs. Due to their functionality as cargo carriers and their protein expression, they can play an important role as possible diagnostic and prognostic biomarkers in various types of diseases, e.g., cancers, neurodegenerative, and autoimmune diseases. Today, given the invaluable importance of EVs, there are some pivotal challenges to overcome in terms of their isolation. Conventional methods have some limitations: they are influenced by the starting sample, might present low throughput and low purity, and sometimes a lack of reproducibility, being operator dependent. During the past few years, several microfluidic approaches have been proposed to address these issues. In this review, we summarize the most important microfluidic-based devices for EV isolation, highlighting their advantages and disadvantages compared to existing technology, as well as the current state of the art from the perspective of the use of these devices in clinical applications.
Collapse
Affiliation(s)
- Alessio Meggiolaro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Matteo Pierno
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Giampaolo Mistura
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Davide Ferraro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
31
|
Zheng H, Ding Q, Li C, Chen W, Chen X, Lin Q, Wang D, Weng Y, Lin D. Recent progress in surface-enhanced Raman spectroscopy-based biosensors for the detection of extracellular vesicles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4161-4173. [PMID: 36254847 DOI: 10.1039/d2ay01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are a type of mediator that enables intercellular communication. Moreover, EVs carry critical molecular information from parental cells, making them ideal biomarkers for clinical screening and diagnosis. Currently, several sensing technologies have been established to sensitively detect EVs. Among them, surface-enhanced Raman spectroscopy (SERS) has become a powerful analytical tool with high sensitivity and low detection limits. In this review, we first cover the biological characteristics of EVs and the principle of SERS amplification. Then, we describe the recent progress in SERS technology applied to detect EVs, including direct label-free methods and indirect labeling strategies, in which substrate fabrication and nanoprobe assembly were emphasized. Furthermore, SERS technology could also be used to characterize or monitor the behavior of programmable EVs. Finally, we discuss the prospects and issues to be addressed for the development of SERS technology for EV analysis.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Qin Ding
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| | - Chen Li
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Xiaoqiang Chen
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Qin Lin
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Desheng Wang
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Youliang Weng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
32
|
Yin S, Chen A, Ding Y, Song J, Chen R, Zhang P, Yang C. Recent advances in exosomal RNAs analysis towards diagnostic and therapeutic applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Zhang Z, Ma X, Zhu J, Yan R, Miao P. Roll-to-Roll DNA Nanomachine for Ultrasensitive Electrochemical Determination of miRNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11130-11135. [PMID: 36045009 DOI: 10.1021/acs.langmuir.2c02102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are a family of endogenous noncoding RNAs with the functions of gene regulation, which serve as promising markers for a range of diseases such as diabetic foot ulcers, cancers, etc. In this work, we engineered a roll-to-roll DNA nanomachine for highly sensitive electrochemical detection of miRNA. A dumbbell-structured DNA probe could be transitioned to be wheel-structured conformation upon target recognition, which rolls around track strands on the surface of gold nanoparticles (AuNPs) in the presence of nicking endonuclease. The resulting single strands on AuNPs are activated for the second round of rolling at the DNA-modified electrode interface, leading to the variation of electrochemical responses. The roll-to-roll amplification behavior allows a wide detection range with a limit of detection as low as 10 aM. The practicability is also demonstrated by the application in human serum samples with satisfactory results. It is expected that the proposed electrochemical method offers a new paradigm to develop miRNA assays based on DNA nanotechnology.
Collapse
Affiliation(s)
- Zhenming Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xin Ma
- Department of Orthopedic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jinwen Zhu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Ruhong Yan
- Department of Clinical Laboratory, Suzhou Science & Technology Town Hospital, Nanjing Medical University, Suzhou 215153, P.R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| |
Collapse
|
34
|
Wang C, Zhang D, Yang H, Shi L, Li L, Yu C, Wei J, Ding Q. A light-activated magnetic bead strategy utilized in spatio-temporal controllable exosomes isolation. Front Bioeng Biotechnol 2022; 10:1006374. [PMID: 36147530 PMCID: PMC9486319 DOI: 10.3389/fbioe.2022.1006374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-derived exosomes are considered as a key biomarker in the field of liquid biopsy. However, conventional separation techniques such as ultracentrifugation, co-precipitation and column chromatography cannot isolate samples with high throughput, while traditional immunomagnetic separation techniques, due to steric effect of magnetic beads, reducing sensitivity of exosomes optical detection. Herein, we provide a novel and simple nanoplatform for spatiotemporally controlling extraction and elution of exosomes via magnetic separation and light-activated cargo release. In this system, magnetic beads are co-modified by photoresponsive groups -nitrobenzyl group and aptamers that are compatible with CD63-a highly expressed exosomal surface-specific protein. Through exosomes extracted from cell model and nude mice xenograft tumor model morphological characterization and proteomic analysis, results showed that our novel magnetic bead system outperformed current ultracentrifugation in serum exosome extraction in terms of extraction time, yield, and proportion of populations with high CD63 expression. This strategy may be a powerful tool for exosome isolation in clinical liquid biopsies of cancer disease.
Collapse
Affiliation(s)
- Chenhan Wang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Duoteng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Haiyan Yang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
- *Correspondence: Qiang Ding, ; Changmin Yu, ; Jifu Wei,
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Qiang Ding, ; Changmin Yu, ; Jifu Wei,
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- *Correspondence: Qiang Ding, ; Changmin Yu, ; Jifu Wei,
| |
Collapse
|
35
|
Li J, Cai R, Tan W. A Novel ECL Sensing System for Ultrahigh Sensitivity miRNA-21 Detection Based on Catalytic Hairpin Assembly Cascade Nonmetallic SPR Effect. Anal Chem 2022; 94:12280-12285. [DOI: 10.1021/acs.analchem.2c03238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Lin J, Xu L, Zheng Y, Wu D, Yue J. Imitation-mussel fluorescent silicon quantum dots for selective labeling and imaging of bacteria and biofilms. Front Bioeng Biotechnol 2022; 10:971682. [PMID: 36032721 PMCID: PMC9411794 DOI: 10.3389/fbioe.2022.971682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Selective labeling of distinct bacteria and biofilm is poised for the fundamental understanding of bacterial activities, interactions, and coupled phenomena occurring at the microscale. However, a simple and effective way to achieve selective bacterial labeling is still lacking. Herein, we report a fluorescence probe with core-shell nanostructure that has polydopamine (PDA) coating on the surface of fluorescent silicon quantum dots (SiQDs@PDA). The surface of the SiQDs@PDA can be functionalized by various molecules (2-mercaptoethylamine hydrochloride, PEG, d-alanine, glucose amide) through different strategies (Michael addition, π-π interaction, and ion–ion interaction). Importantly, the d-alanine (D-Ala)- and gluconamide (Glc)-functionalized SiQDs@PDA fluorescence probes are capable of selectively labeling gram-positive and gram-negative bacteria, as well as their biofilms. The excellent performance in universal functionalization and selective labeling and imaging of bacteria and their biofilms demonstrate that SiQDs@PDA are a promising fluorescence tool in microbe research.
Collapse
Affiliation(s)
| | | | | | - Dalin Wu
- *Correspondence: Dalin Wu, ; Jun Yue,
| | - Jun Yue
- *Correspondence: Dalin Wu, ; Jun Yue,
| |
Collapse
|
37
|
Di K, Fan B, Gu X, Huang R, Khan A, Liu C, Shen H, Li Z. Highly efficient and automated isolation technology for extracellular vesicles microRNA. Front Bioeng Biotechnol 2022; 10:948757. [PMID: 36032725 PMCID: PMC9399425 DOI: 10.3389/fbioe.2022.948757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miRNA) in extracellular vesicles (EVs) has great potential to be a promising marker in liquid biopsy. However, the present EV isolation methods, such as ultracentrifugation, have complicated and long-time operation, which impedes research on EV miRNA. The downstream complex miRNA extraction process will also significantly increase the detection cycle and loss. We first established a simple automated technique to efficiently extract target miRNAs in EVs from plasma based on Fe3O4@TiO2 beads with high affinity and capture efficiency. We combined a heat-lysis method for quick and simple EV miRNA extraction and detection. The results indicated that our method has more RNA yield than TRIzol or a commercial kit and could complete EV enrichment and miRNA extraction in 30 min. Through the detection of miRNA-21, healthy people and lung cancer patients were distinguished, which verified the possibility of the application in clinical detection. The automated isolation technology for EV miRNA has good repeatability and high throughput, with great application potential in clinical diagnosis.
Collapse
Affiliation(s)
- Kaili Di
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinrui Gu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongrong Huang
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chang Liu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Han Shen, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Han Shen, ; Zhiyang Li,
| |
Collapse
|
38
|
Fan B, Gu J, Wu J, Sun Y, Huang R, Shen H, Zhang X, Li Z. Circulating Abnormal Extracellular Vesicles: Their Mechanism for Crossing Blood-Brain Barrier, Effects on Central Nervous System and Detection Methods. J Biomed Nanotechnol 2022; 18:640-659. [PMID: 35715917 DOI: 10.1166/jbn.2022.3293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Central nervous system (CNS) diseases are difficult to treat and harmful. Many CNS diseases are secondary to peripheral diseases, such as tumor brain metastases (BMS), viral infections and inflammation of the brain, and their pathogenic factors travel through the circulatory system to the brain, eventually leading to lesions. Extracellular vesicles (EVs) play an important role in this process. Recent studies have shown that, extracellular EVs can effectively cross the blood- brain barrier (BBB) through endocytosis and they transmit molecular signals in cell-to-cell communication. Abnormal EVs produced in the lesion portion transport pathogenic factors, including miRNAs, proteins, and virions into the CNS. These pathogenic factors participate in cellular pathways to interfere with homeostasis or are themselves pathogens that directly damage CNS. In addition, different or specific pathological molecules in EVs are potential disease markers. We herein reviewed pathways through which the abnormal EVs cross BBB and adverse effects of abnormal exosomes. We also and summarized their existing detection techniques, so as to provide basis for prevention and early diagnosis of secondary diseases.
Collapse
Affiliation(s)
- Boyue Fan
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Jiaqi Gu
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Jie Wu
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Yifan Sun
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Rongrong Huang
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Han Shen
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Xu Zhang
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Zhiyang Li
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| |
Collapse
|