1
|
Mathuram TL. GSK-3: An "Ace" Among Kinases. Cancer Biother Radiopharm 2024; 39:619-631. [PMID: 38746994 DOI: 10.1089/cbr.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024] Open
Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase known to participate in the regulation of β-catenin signaling (Wnt signaling). This aids in the establishment of a multicomponent destruction complex that stimulates phosphorylation, leading to the destruction of β-catenin. Evidence about the role of increasingly active β-catenin signaling is involved in many forms of human cancer. The understanding of GSK-3 remains elusive as recent research aims to focus on developing potent GSK-3 inhibitors to target this kinase. Objective: This short review aims to highlight the regulation of GSK-3 with emphasis on Wnt signaling while highlighting its interaction with miRNAs corresponding to pluripotency and epithelial mesenchymal transition substantiating this kinase as an "Ace" among kinases in regulation of cellular processes. Result: Significant findings of miRNA regulation by GSK-3 exemplify the underpinnings of kinase-mediated transcriptional regulation in cancers. Conclusion: The review provides evidence on the role of GSK-3 as a possible master regulator of proteins and noncoding RNA, thereby implicating the fate of a cell.
Collapse
|
2
|
Gao XC, Zhou BH, Ji ZX, Li Q, Liu HN. Canopy FGF signaling regulator 3 affects prognosis, immune infiltration, and PI3K/AKT pathway in colon adenocarcinoma. World J Gastrointest Oncol 2024; 16:3284-3298. [PMID: 39072149 PMCID: PMC11271795 DOI: 10.4251/wjgo.v16.i7.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a malignant tumor of the digestive system. The mechanisms underlying COAD development and progression are still largely unknown. AIM To identify the role of canopy FGF signaling regulator 3 (CNPY3) in the development and progression of COAD by using bioinformatic tools and functional experiments. METHODS Bioinformatic data were downloaded from public databases. The associations of clinicopathological features, survival, and immune function with the expression of CNPY3 were analyzed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set Enrichment Analysis were used to explore the related pathways. Then, quantitative real-time PCR and immunohistochemistry were used for validation of CNPY3 expression in clinical samples and tumor cell lines. Cell lines with CNPY3 knockdown were constructed to further analyze gene functions. The functional experiments included proliferation, invasion, migration and apoptosis assays. RESULTS In both the TCGA cohort and the merged dataset, elevated CNPY3 expression was observed in tumor tissues. High CNPY3 expression correlated with adverse survival and compromised immune functions. Functional enrichment analysis suggested that the pro-oncogenic properties of CNPY3 might be linked to the PI3K-AKT signaling pathway. CNPY3 expression was validated at both the RNA and protein levels. Functional assays indicated that cell proliferation, invasion, and migration were inhibited and cell apoptosis was promoted after CNPY3 knockdown. Additionally, Western blot results revealed the downregulation of key proteins in the PI3K/AKT pathway following CNPY3 knockdown. PI3K/AKT pathway activator reversed the decrease in proliferation, invasion, and migration and the increase in apoptosis. Notably, CNPY3 knockdown still affected the cells when the pathway was inhibited. CONCLUSION This study showed that CNPY3 is upregulated in COAD and might regulate COAD development and progression by the PI3K/AKT pathway. Thus, CNPY3 might be a promising therapeutic target.
Collapse
Affiliation(s)
- Xu-Can Gao
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| | - Biao-Huan Zhou
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| | - Zhou-Xin Ji
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| | - Qiang Li
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| | - Hui-Ning Liu
- Department of Anorectal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong Province, China
| |
Collapse
|
3
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
4
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
5
|
Zhang X, Yu X. Crosstalk between Wnt/β-catenin signaling pathway and DNA damage response in cancer: a new direction for overcoming therapy resistance. Front Pharmacol 2023; 14:1230822. [PMID: 37601042 PMCID: PMC10433774 DOI: 10.3389/fphar.2023.1230822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Wnt signaling plays an important role in regulating the biological behavior of cancers, and many drugs targeting this signaling have been developed. Recently, a series of research have revealed that Wnt signaling could regulate DNA damage response (DDR) which is crucial for maintaining the genomic integrity in cells and closely related to cancer genome instability. Many drugs have been developed to target DNA damage response in cancers. Notably, different components of the Wnt and DDR pathways are involved in crosstalk, forming a complex regulatory network and providing new opportunities for cancer therapy. Here, we provide a brief overview of Wnt signaling and DDR in the field of cancer research and review the interactions between these two pathways. Finally, we also discuss the possibility of therapeutic agents targeting Wnt and DDR as potential cancer treatment strategies.
Collapse
Affiliation(s)
| | - Xiaofeng Yu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Wu C, Ma S, Zhao B, Qin C, Wu Y, Di J, Suo L, Fu X. Drivers of plateau adaptability in cashmere goats revealed by genomic and transcriptomic analyses. BMC Genomics 2023; 24:428. [PMID: 37528361 PMCID: PMC10391913 DOI: 10.1186/s12864-023-09333-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/25/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The adaptive evolution of plateau indigenous animals is a current research focus. However, phenotypic adaptation is complex and may involve the interactions between multiple genes or pathways, many of which remain unclear. As a kind of livestock with important economic value, cashmere goat has a high ability of plateau adaptation, which provides us with good materials for studying the molecular regulation mechanism of animal plateau adaptation. RESULTS In this study, 32 Jiangnan (J) and 32 Tibetan (T) cashmere goats were sequenced at an average of 10. Phylogenetic, population structure, and linkage disequilibrium analyses showed that natural selection or domestication has resulted in obvious differences in genome structure between the two breeds. Subsequently, 553 J vs. T and 608 T vs. J potential selected genes (PSGs) were screened. These PSGs showed potential relationships with various phenotypes, including myocardial development and activity (LOC106502520, ATP2A2, LOC102181869, LOC106502520, MYL2, ISL1, and LOC102181869 genes), pigmentation (MITF and KITLG genes), hair follicles/hair growth (YAP1, POGLUT1, AAK1, HES1, WNT1, PRKAA1, TNKS, WNT5A, VAX2, RSPO4, CSNK1G1, PHLPP2, CHRM2, PDGFRB, PRKAA1, MAP2K1, IRS1, LPAR1, PTEN, PRLR, IBSP, CCNE2, CHAD, ITGB7, TEK, JAK2, and FGF21 genes), and carcinogenesis (UBE2R2, PIGU, DIABLO, NOL4L, STK3, MAP4, ADGRG1, CDC25A, DSG3, LEPR, PRKAA1, IKBKB, and ABCG2 genes). Phenotypic analysis showed that Tibetan cashmere goats has finer cashmere than Jiangnan cashmere goats, which may allow cashmere goats to better adapt to the cold environment in the Tibetan plateau. Meanwhile, KRTs and KAPs expression in Jiangnan cashmere goat skin was significantly lower than in Tibetan cashmere goat. CONCLUSIONS The mutations in these PSGs maybe closely related to the plateau adaptation ability of cashmere goats. In addition, the expression differences of KRTs and KAPs may directly determine phenotypic differences in cashmere fineness between the two breeds. In conclusion, this study provide a reference for further studying plateau adaptive mechanism in animals and goat breeding.
Collapse
Affiliation(s)
- Cuiling Wu
- Key Laboratory of Special Environments Biodiversity Application and Regulation in Xinjiang, School of Life Sciences, Xinjiang Normal University, Xinjiang, Urumqi, 830017, China
| | - Shengchao Ma
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
- College of Animal Science, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chongkai Qin
- Xinjiang Aksu Prefecture Animal Husbandry Technology Extension Center, Xinjiang Aksu, 843000, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa, 850009, China
| | - Jiang Di
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Tibet Lhasa, 850009, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Xinjiang, Urumqi, 830011, China.
| |
Collapse
|
7
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
8
|
Bayat H, Pourgholami MH, Rahmani S, Pournajaf S, Mowla SJ. Synthetic miR-21 decoy circularized by tRNA splicing mechanism inhibited tumorigenesis in glioblastoma in vitro and in vivo models. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:432-444. [PMID: 37181451 PMCID: PMC10173299 DOI: 10.1016/j.omtn.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Glioblastoma multiforme (GBM) is the deadliest primary central nervous system tumor. miRNAs (miRs), a class of non-coding RNAs, are considered pivotal post-transcriptional regulators of cell signaling pathways. miR-21 is a reliable oncogene that promotes tumorigenesis of cancer cells. We first performed an in silico analysis on 10 microarray datasets retrieved from TCGA and GEO databases to elucidate top differentially expressed miRs. Furthermore, we generated a circular miR-21 decoy, CM21D, using the tRNA-splicing mechanism in GBM cell models, U87 and C6. The inhibitory efficacy of CM21D with that of a linear form, LM21D, was compared under in vitro conditions and an intracranial C6 rat glioblastoma model. miR-21 significantly overexpressed in GBM samples and confirmed in GBM cell models using qRT-PCR. CM21D was more efficient than LM21D at inducing apoptosis, inhibiting cell proliferation and migration, and interrupting the cell cycle by restoring the expression of miR-21 target genes at RNA and protein levels. Moreover, CM21D suppressed tumor growth more effectively than LM21D in the C6-rat GBM model (p < 0.001). Our findings validate miR-21 as a promising therapeutic target for GBM. The introduced CM21D by sponging miR-21 reduced tumorigenesis of GBM and can be considered a potential RNA-base therapy to inhibit cancers.
Collapse
Affiliation(s)
- Hadi Bayat
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | | | - Saeid Rahmani
- School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| |
Collapse
|
9
|
Williams KS, Secomb TW, El-Kareh AW. An autonomous mathematical model for the mammalian cell cycle. J Theor Biol 2023; 569:111533. [PMID: 37196820 DOI: 10.1016/j.jtbi.2023.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
A mathematical model for the mammalian cell cycle is developed as a system of 13 coupled nonlinear ordinary differential equations. The variables and interactions included in the model are based on detailed consideration of available experimental data. A novel feature of the model is inclusion of cycle tasks such as origin licensing and initiation, nuclear envelope breakdown and kinetochore attachment, and their interactions with controllers (molecular complexes involved in cycle control). Other key features are that the model is autonomous, except for a dependence on external growth factors; the variables are continuous in time, without instantaneous resets at phase boundaries; mechanisms to prevent rereplication are included; and cycle progression is independent of cell size. Eight variables represent cell cycle controllers: the Cyclin D1-Cdk4/6 complex, APCCdh1, SCFβTrCP, Cdc25A, MPF, NuMA, the securin-separase complex, and separase. Five variables represent task completion, with four for the status of origins and one for kinetochore attachment. The model predicts distinct behaviors corresponding to the main phases of the cell cycle, showing that the principal features of the mammalian cell cycle, including restriction point behavior, can be accounted for in a quantitative mechanistic way based on known interactions among cycle controllers and their coupling to tasks. The model is robust to parameter changes, in that cycling is maintained over at least a five-fold range of each parameter when varied individually. The model is suitable for exploring how extracellular factors affect cell cycle progression, including responses to metabolic conditions and to anti-cancer therapies.
Collapse
Affiliation(s)
| | - Timothy W Secomb
- BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
10
|
Cai Z, Shen Z, Zhao J, Zhang H, Guo Z, Xia Q, Liang H, Liu J, Tan L, Sheng H, Zhu S. AQP8 may affect glioma proliferation and growth by regulating GSK-3β phosphorylation and nuclear transport of β-catenin. Int J Dev Neurosci 2023. [PMID: 37081713 DOI: 10.1002/jdn.10261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
PURPOSE The purpose of this work is to examine the impact of AQP8 on the proliferation and development of human glioma cell lines A172 and U251 and to determine if aquaporin 8 (AQP8) is associated with GSK-3β phosphorylation and nuclear transport of β-catenin in the Wnt signaling pathway. METHODS AQP8 knockdown cell lines were constructed using a CRISPR/Cas9 double vector lentivirus infection. SAM/dCas9 was used to construct AQP8 overexpression cell lines and the CV084 lentivirus vector was used to construct AQP8 rescue cell lines. AQP8 and its mRNA, and phosphorylated GSK-3β, β-catenin, and other related proteins, were detected using western blot and qRT-PCR. Glioma cell apoptosis was detected using Hoechst 33342 dye. The migration of glioma cells was discovered using a wound healing assay. β-catenin localization in cells was detected using immunofluorescence staining. RESULTS The proliferative and migratory capacities of A172 and U251 cells were significantly enhanced after AQP8 overexpression. The Wnt signaling pathways appeared to have higher levels of phosphorylated GSK-3β and β-catenin, and a rise in the fluorescence intensity ratio of β-catenin in the nucleus and cytoplasm, which suggests that β-catenin translocated into the nucleus, while AQP8 knockdown produced the opposite effect. Further, overexpression of AQP8 in AQP8 knockdown cell lines rescued the reduction of related protein levels caused by AQP8 knockdown. CONCLUSION High AQP8 expression promotes proliferation and growth of glioma cells, a process associated with phosphorylation of GSK-3β and nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Ziling Cai
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Zihao Shen
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Zhao
- Xi'an Hospital of TCM, Xi'an, Shaanxi, China
| | - Hao Zhang
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Zhen Guo
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Qingqian Xia
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Hang Liang
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Junnan Liu
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Lihao Tan
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Huajun Sheng
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Shujuan Zhu
- Department of Human Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Alam A, Smith SC, Gobalakrishnan S, McGinn M, Yakovlev VA, Rabender CS. Uncoupled nitric oxide synthase activity promotes colorectal cancer progression. Front Oncol 2023; 13:1165326. [PMID: 36998441 PMCID: PMC10046306 DOI: 10.3389/fonc.2023.1165326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Increased levels of reactive oxygen/nitrogen species are one hallmark of chronic inflammation contributing to the activation of pro-inflammatory/proliferative pathways. In the cancers analyzed, the tetrahydrobiopterin:dihydrobiopterin ratio is lower than that of the corresponding normal tissue, leading to an uncoupled nitric oxide synthase activity and increased generation of reactive oxygen/nitrogen species. Previously, we demonstrated that prophylactic treatment with sepiapterin, a salvage pathway precursor of tetrahydrobiopterin, prevents dextran sodium sulfate-induced colitis in mice and associated azoxymethane-induced colorectal cancer. Herein, we report that increasing the tetrahydrobiopterin:dihydrobiopterin ratio and recoupling nitric oxide synthase with sepiapterin in the colon cancer cell lines, HCT116 and HT29, inhibit their proliferation and enhance cell death, in part, by Akt/GSK-3β-mediated downregulation of β-catenin. Therapeutic oral gavage with sepiapterin of mice bearing azoxymethane/dextran sodium sulfate-induced colorectal cancer decreased metabolic uptake of [18F]-fluorodeoxyglucose and enhanced apoptosis nine-fold in these tumors. Immunohistochemical analysis of both mouse and human tissues indicated downregulated expression of key enzymes in tetrahydrobiopterin biosynthesis in the colorectal cancer tumors. Human stage 1 colon tumors exhibited a significant decrease in the expression of quinoid dihydropteridine reductase, a key enzyme involved in recycling tetrahydrobiopterin suggesting a potential mechanism for the reduced tetrahydrobiopterin:dihydrobiopterin ratio in these tumors. In summary, sepiapterin treatment of colorectal cancer cells increases the tetrahydrobiopterin:dihydrobiopterin ratio, recouples nitric oxide synthase, and reduces tumor growth. We conclude that nitric oxide synthase coupling may provide a useful therapeutic target for treating patients with colorectal cancer.
Collapse
Affiliation(s)
- Asim Alam
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven C. Smith
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Mina McGinn
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vasily A. Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Christopher S. Rabender
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
12
|
Mikhailov VF, Shulenina LV. Regulation of Gene Activity Is One of the Mechanisms for Changing Radiosensitivity. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
13
|
Tan Y, Jiang C, Jia Q, Wang J, Huang G, Tang F. A novel oncogenic seRNA promotes nasopharyngeal carcinoma metastasis. Cell Death Dis 2022; 13:401. [PMID: 35461306 PMCID: PMC9035166 DOI: 10.1038/s41419-022-04846-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant cancer in southern China that has highly invasive and metastatic features and causes high mortality, but the underlying mechanisms of this malignancy remain unclear. In this study, we utilized ChIP-Seq to identify metastasis-specific super enhancers (SEs) and found that the SE of LOC100506178 existed only in metastatic NPC cells and powerfully aggravated NPC metastasis. This metastatic SE transcribed into lncRNA LOC100506178, and it was verified as a seRNA through GRO-Seq. Furthermore, SE-derived seRNA LOC100506178 was found to be highly expressed in metastatic NPC cells and NPC lymph node metastatic tissues. Knockdown of seRNA LOC100506178 arrested the invasion and metastasis of NPC cells in vitro and in vivo, demonstrating that seRNA LOC100506178 accelerates the acquisition of NPC malignant phenotype. Mechanistic studies revealed that seRNA LOC100506178 specifically interacted with the transcription factor hnRNPK and modulated the expression of hnRNPK. Further, hnRNPK in combination with the promoter region of MICAL2 increased Mical2 transcription. Knockdown of seRNA LOC100506178 or hnRNPK markedly repressed MICAL2, Vimentin and Snail expression and upregulated E-cadherin expression. Overexpression of seRNA LOC100506178 or hnRNPK markedly increased MICAL2, Vimentin and Snail expression and decreased E-cadherin expression. Therefore, seRNA LOC100506178 may promote MICAL2 expression by upregulating hnRNPK, subsequently enhancing EMT process and accelerating the invasion and metastasis of NPC cells. seRNA LOC100506178 has the potential to serve as a novel prognostic biomarker and therapeutic target in NPC patients.
Collapse
Affiliation(s)
- Yuan Tan
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Chonghua Jiang
- Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Qunying Jia
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
| | - Jing Wang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
| | - Ge Huang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
| | - Faqing Tang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China.
| |
Collapse
|
14
|
Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front Immunol 2022; 13:793610. [PMID: 35265070 PMCID: PMC8899012 DOI: 10.3389/fimmu.2022.793610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin conjugating enzyme E2 is an important component of the post-translational protein ubiquitination pathway, which mediates the transfer of activated ubiquitin to substrate proteins. UBE2L3, also called UBcH7, is one of many E2 ubiquitin conjugating enzymes that participate in the ubiquitination of many substrate proteins and regulate many signaling pathways, such as the NF-κB, GSK3β/p65, and DSB repair pathways. Studies on UBE2L3 have found that it has an abnormal expression in many diseases, mainly immune diseases, tumors and Parkinson's disease. It can also promote the occurrence and development of these diseases. Resultantly, UBE2L3 may become an important target for some diseases. Herein, we review the structure of UBE2L3, and its mechanism in diseases, as well as diseases related to UBE2L3 and discuss the related challenges.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengdong Huo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yating Liu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruiliang Su
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
15
|
Shi K, Cao L, Liu F, Xie S, Wang S, Huang Y, Lei C, Nie Z. Amplified and label-free electrochemical detection of a protease biomarker by integrating proteolysis-triggered transcription. Biosens Bioelectron 2021; 190:113372. [PMID: 34116447 DOI: 10.1016/j.bios.2021.113372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 10/25/2022]
Abstract
Cell-free synthetic biology provides a promising strategy for developing high-performance biosensors by integrating with advanced testing technologies. However, the combination of synthetic biology with electrochemical testing techniques is still underdeveloped. Here, we proposed an electrochemical biosensor for the label-free and ultrasensitive detection of target protease biomarker by coupling a protease-responsive RNA polymerase (PR) for signal amplification. Taking tumor biomarker matrix metalloprotease-2 (MMP-2) as a model protease, we employed PR to transduce each proteolysis reaction mediated by MMP-2 into multiple programmable RNA outputs that can be captured by the DNA probes immobilized on a gold electrode. Moreover, the captured RNAs are designed to contain a guanine-rich sequence that can form G-quadruplex and bind to hemin in the presence of potassium ions. In this scenario, the activity of MMP-2 is converted and amplified into the electrochemical signals of hemin. Under the optimal conditions, this PR-based electrochemical biosensor enabled the sensitive detection of MMP-2 in a wide linear dynamic range from 10 fM to 1.0 nM, with a limit of detection of 7.1 fM. Moreover, the proposed biosensor was further applied in evaluating MMP-2 activities in different cell cultures and human tissue samples, demonstrating its potential in the analysis of protease biomarkers in complex clinical samples.
Collapse
Affiliation(s)
- Kai Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Lei Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Fang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Shiyi Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Shuo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China.
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
16
|
Ubiquitin-Specific Protease 29 Regulates Cdc25A-Mediated Tumorigenesis. Int J Mol Sci 2021; 22:ijms22115766. [PMID: 34071237 PMCID: PMC8198132 DOI: 10.3390/ijms22115766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Cell division cycle 25A (Cdc25A) is a dual-specificity phosphatase that is overexpressed in several cancer cells and promotes tumorigenesis. In normal cells, Cdc25A expression is regulated tightly, but the changes in expression patterns in cancer cells that lead to tumorigenesis are unknown. In this study, we showed that ubiquitin-specific protease 29 (USP29) stabilized Cdc25A protein expression in cancer cell lines by protecting it from ubiquitin-mediated proteasomal degradation. The presence of USP29 effectively blocked polyubiquitination of Cdc25A and extended its half-life. CRISPR-Cas9-mediated knockdown of USP29 in HeLa cells resulted in cell cycle arrest at the G0/G1 phase. We also showed that USP29 knockdown hampered Cdc25A-mediated cell proliferation, migration, and invasion of cancer cells in vitro. Moreover, NSG nude mice transplanted with USP29-depleted cells significantly reduced the size of the tumors, whereas the reconstitution of Cdc25A in USP29-depleted cells significantly increased the tumor size. Altogether, our results implied that USP29 promoted cell cycle progression and oncogenic transformation by regulating protein turnover of Cdc25A.
Collapse
|
17
|
Identification of the 3-lncRNA Signature as a Prognostic Biomarker for Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21249359. [PMID: 33302562 PMCID: PMC7764807 DOI: 10.3390/ijms21249359] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant carcinomas in the world, and metastasis is the main cause of CRC-related death. However, the molecular network involved in CRC metastasis remains poorly understood. Long noncoding RNA (lncRNA) plays a vital role in tumorigenesis and may act as a competing endogenous RNA (ceRNA) to affect the expression of mRNA by suppressing miRNA function. In this study, we identified 628 mRNAs, 144 lncRNAs, and 25 miRNAs that are differentially expressed (DE) in metastatic CRC patients compared with nonmetastatic CRC patients from the Cancer Genome Atlas (TCGA) database. Functional enrichment analyses confirmed that the identified DE mRNAs are extensively involved in CRC tumorigenesis and migration. By bioinformatics analysis, we constructed a metastasis-associated ceRNA network for CRC that includes 28 mRNAs, 12 lncRNAs, and 15 miRNAs. We then performed multivariate Cox regression analysis on the ceRNA-related DE lncRNAs and identified a 3-lncRNA signature (LINC00114, LINC00261, and HOTAIR) with the greatest prognostic value for CRC. Clinical feature analysis and functional enrichment analysis further proved that these three lncRNAs are involved in CRC tumorigenesis. Finally, we used Transwell, Cell Counting Kit (CCK)-8, and colony formation assays to clarify that the inhibition of LINC00114 promotes the migratory, invasive, and proliferative abilities of CRC cells. The results of the luciferase assay suggest that LINC00114 is the direct target of miR-135a, which also verified the ceRNA network. In summary, this study provides a metastasis-associated ceRNA network for CRC and suggests that the 3-lncRNA signature may be a useful candidate for the diagnosis and prognosis of CRC.
Collapse
|
18
|
Gürbüz BÇ, Topal CS, Sobay R, Alkurt G, Zemheri IE. Molecular and immunohistochemical evaluation of BAP-1 antibody in bladder cancer and comparison with luminal-basal subtyping. Pathol Res Pract 2020; 217:153308. [PMID: 33341088 DOI: 10.1016/j.prp.2020.153308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023]
Abstract
AIM Molecular subtyping has become increasingly important in bladder cancer, and it is mainly divided into "luminal" and "basal" types. Despite the large amount of studies about the molecular pathway of bladder cancer, there are few studies about BAP-1. The aim of this study is to evaluate the BAP-1 expression molecularly and immunohistochemically and compare it with GATA-3 and CK5/6 immunohistochemical stains. MATERIALS AND METHOD A BAP-1 antibody was applied by western blotting to the tumor and normal tissues of 11 patients with known primary bladder tumors. The paraffin blocks of 150 non-invasive and 150 invasive tumor tissues were selected from transurethral resection materials. BAP-1, GATA-3, and CK5/6 immunohistochemical stains were applied to them, and the results were evaluated. RESULTS The protein expression levels of BAP-1 increased more in the tumor tissues compared to the normal tissues. The immunohistochemical BAP-1 expression was strong in the muscle-invasive group. The immunohistochemical GATA-3 expression was higher in the non-invasive group, and the CK5/6 expression was higher in the muscle-invasive group. The GATA-3 and CK5/6 immunohistochemical stains had a negative correlation in the muscle-invasive group. The immunohistochemical expression of BAP-1 had no correlation with GATA-3 and CK5/6 in all groups. CONCLUSIONS Molecular subtyping has become increasingly important in bladder cancer and it is mainly divided into "luminal" and "basal" type. Despite the large amount of studies about molecular pathway of the bladder cancer, there are a few studies about BAP-1. The aim of this study is to evaluate the BAP-1 expression molecularly and immunohistochemically and compare it with GATA-3 and CK5/6 immunohistochemical stains.
Collapse
Affiliation(s)
- Begüm Çalım Gürbüz
- Health Sciences University Umraniye Training and Research Hospital, Pathology Department, Elmalıkent Mahallesi, Adem Yavuz Caddesi, 34764, Ümraniye Eğitim ve Araştırma Hastanesi, Patoloji Bölümü, Ümraniye, İstanbul, Turkey.
| | - Cumhur Selçuk Topal
- Health Sciences University Umraniye Training and Research Hospital, Pathology Department, Elmalıkent Mahallesi, Adem Yavuz Caddesi, 34764, Ümraniye Eğitim ve Araştırma Hastanesi, Patoloji Bölümü, Ümraniye, İstanbul, Turkey
| | - Resul Sobay
- Health Sciences University Umraniye Training and Research Hospital, Urology Department, Elmalıkent Mahallesi, Adem Yavuz Caddesi, 34764, Ümraniye Eğitim ve Araştırma Hastanesi, Üroloji Bölümü, Ümraniye, İstanbul, Turkey
| | - Gizem Alkurt
- Health Sciences University Umraniye Training and Research Hospital, Genomic Laboratory (GLAB), Elmalıkent Mahallesi, Adem Yavuz Caddesi, 34764, Ümraniye Eğitim ve Araştırma Hastanesi, GLAB, Ümraniye, İstanbul, Turkey
| | - Itır Ebru Zemheri
- Health Sciences University Umraniye Training and Research Hospital, Pathology Department, Elmalıkent Mahallesi, Adem Yavuz Caddesi, 34764, Ümraniye Eğitim ve Araştırma Hastanesi, Patoloji Bölümü, Ümraniye, İstanbul, Turkey
| |
Collapse
|
19
|
GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118659. [PMID: 31978503 DOI: 10.1016/j.bbamcr.2020.118659] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is an evolutionarily conserved serine/threonine kinase, functioning in numerous cellular processes including cell proliferation, DNA repair, cell cycle, signaling and metabolic pathways. GSK-3β is implicated in different diseases including inflammation, neurodegenerative disease, diabetes and cancers. GSK-3β is involved in biological processes of tumorigenesis, therefore, it is rational that GSK-3β inhibitors were employed to target malignant tumors. The effects of GSK-3β inhibitors in combination of radiation and chemotherapeutic drugs have been reported in various types of cancers, suggesting GSK-3β would play important roles in cancer treatments. GSK-3β is involved in multiple signal pathway including Wnt/β-catenin, PI3K/PTEN/AKT and Notch. GSK-3β also functions in DNA repair through phosphorylation of DNA repair factors and affecting their binding to chromatin. This review focuses on the molecular mechanism of GSK-3β in DNA repair, special in base excision repair and double-strands break repair, the roles of GSK-3β in inhibition of apoptosis through activation of NF-κB, and the effects of GSK-3β inhibitors on radio- and chemosensitization of various types of cancers. This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.
Collapse
|
20
|
Fouad S, Wells OS, Hill MA, D'Angiolella V. Cullin Ring Ubiquitin Ligases (CRLs) in Cancer: Responses to Ionizing Radiation (IR) Treatment. Front Physiol 2019; 10:1144. [PMID: 31632280 PMCID: PMC6781834 DOI: 10.3389/fphys.2019.01144] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple cancer types, including disseminated and aggressive diseases in the palliative setting. Radiotherapy efficacy could be improved in combination with drugs that regulate the ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal factors regulating the cancer and normal tissue response to IR. Here, we summarize the findings on the involvement of CRLs in the response of cancer cells to IR, and we discuss the therapeutic approaches to target the CRLs which could be exploited in the clinic.
Collapse
Affiliation(s)
- Shahd Fouad
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen S Wells
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mark A Hill
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Vincenzo D'Angiolella
- Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Pu L, Su L, Kang X. The efficacy of cisplatin on nasopharyngeal carcinoma cells may be increased via the downregulation of fibroblast growth factor receptor 2. Int J Mol Med 2019; 44:57-66. [PMID: 31115494 PMCID: PMC6559331 DOI: 10.3892/ijmm.2019.4193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/12/2019] [Indexed: 11/06/2022] Open
Abstract
Cisplatin is one of the primary compounds used in the treatment of nasopharyngeal carcinoma (NPC), and fibroblast growth factor receptor 2 (FGFR2) has emerged to be a promising target for treatment in various tumors. Therefore, the present study aimed to explore whether the expression levels of FGFR2 in NPC tissues and cell lines were altered, and whether the efficiency of cisplatin was increased following the downregulation of FGFR2. The downregulation of FGFR2 was achieved by transfection with a small interfering RNA against FGFR2. Tissues of patients with NPC were analyzed by immunohistochemistry. Cell viability was examined using a Cell Counting Kit‑8 assay. Cell cycle analysis was performed using flow cytometry. mRNA and protein levels were measured by reverse transcription quantitative polymerase chain reaction and western blot analysis, respectively. FGFR2 was observed to be overexpressed in cancer tissues of patients with NPC and in the NPC SUNE1, C666‑1, 6‑10B and HNE‑3 cell lines, and resulted in an unfavorable prognosis. Cisplatin treatment decreased cell viability and increased FGFR2 expression. The silencing of FGFR2 was demonstrated to augment the effects of cisplatin treatment, including decreasing the cell viability and inducing cell cycle arrest, which involved the increase and decrease of the durations of G1 and S phases, respectively, and a decrease in the expression levels of cyclin D1 and CDC25A, and increasing the rate of apoptosis via the intrinsic apoptosis pathway, as demonstrated by the upregulation of cleaved caspase‑3 and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein and downregulation of Bcl‑2, in SUNE1 and C666‑1 cell lines. FGFR2 was overexpressed in the cancer tissues of patients with NPC and in NPC cell lines, resulting in an unfavorable prognosis. The downregulation of FGFR2 decreased cell viability via cell cycle arrest at G1 phase, and increased the efficacy of the cisplatin‑based induction of apoptosis through the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Li Pu
- Department of Otolaryngology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Lizhong Su
- Department of Otolaryngology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xixun Kang
- Department of Otolaryngology, Head and Neck Surgery, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518106, P.R. China
| |
Collapse
|
22
|
Zhou S, Li Y, Lu J, Chen C, Wang W, Wang L, Zhang Z, Dong Z, Tang F. Nuclear factor-erythroid 2-related factor 3 (NRF3) is low expressed in colorectal cancer and its down-regulation promotes colorectal cancer malignance through activating EGFR and p38/MAPK. Am J Cancer Res 2019; 9:511-528. [PMID: 30949407 PMCID: PMC6448064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 3 (NRF3), a nuclear transcription factor, has been implicated in various cellular processes including carcinogenesis. However, mechanisms underlying its regulation in carcinogenesis are unclear. Herein, we found that NRF3 is lowly expressed in colorectal cancer (CRC) tissues and cells, and NRF3 low-expressions in CRC tissue samples are associated with CRC carcinogenesis and poor patient outcomes. Nrf3-knockdown increased CRC cell growth, colony formation, and cell motility and invasion, and Nrf3-knockin dramatically decreased CRC cell growth and colony formation. Mechanistically, NRF3 increased CRC cell apoptosis and arrested cell G2/M stage. NRF3 was found to be reversely with epidermal growth factor receptor (EGFR) and p38. Strikingly, Nrf3-knockin dramatically decreased phosphorylated-EGFR at Tyrosine845 (pEGFR Tyr845) and phosphorylated-p38 at Threonine180/Tyrosine182 (p-p38 Thr180/Tyr182) expressions, and Nrf3-knockdown increased pEGFR Tyr845 and p-p38 Thr180/Tyr182. Moreover, NRF3 regulated EGFR and p38 down-stream molecules, protein kinase B (AKT), activating transcription factor (ATF) 2, and C/EBP homologous protein (CHOP) expressions. NRF3 loss-increased CRC growth through EGFR and p38 was confirmed in nude mice. Collectively, NRF3-loss in CRC cell increases EGFR and p38 phosphorylation activation, enhances cell proliferation and decreases cell apoptosis, and finally promotes CRC malignance.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, China
| | - Yuejin Li
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, China
| | - Jinping Lu
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
| | - Chan Chen
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, China
| | - Lei Wang
- Department of Clinical Laboratory, Changsha Central HospitalChangsha 410013, China
| | - Zhenlin Zhang
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
| | - Zigang Dong
- Hormel Institute, University of Minnesota801 16 Avenue NE, Austin, MN 55912, USA
| | - Faqing Tang
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan UniversityZhuhai 519000, Guangdong, China
- Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, China
| |
Collapse
|
23
|
Kim SH, Song Y, Seo HR. GSK-3β regulates the endothelial-to-mesenchymal transition via reciprocal crosstalk between NSCLC cells and HUVECs in multicellular tumor spheroid models. J Exp Clin Cancer Res 2019; 38:46. [PMID: 30709379 PMCID: PMC6359813 DOI: 10.1186/s13046-019-1050-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/21/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chemotherapy used for patients with unresectable lung tumors remains largely palliative due to chemoresistance, which may be due to tumor heterogeneity. Recently, multiple studies on the crosstalk between lung cancer cells and their tumor microenvironment (TME) have been conducted to understand and overcome chemoresistance in lung cancer. METHODS In this study, we investigated the effect of reciprocal crosstalk between lung cancer cells and vascular endothelial cells using multicellular tumor spheroids (MCTSs) containing lung cancer cells and HUVECs. RESULTS Secretomes from lung cancer spheroids significantly triggered the endothelial-to-mesenchymal transition (EndMT) process in HUVECs, compared to secretomes from monolayer-cultured lung cancer cells. Interestingly, expression of GSK-3β-targeted genes was altered in MCTSs and inhibition of this activity by a GSK-3β inhibitor induced reversion of EndMT in lung tumor microenvironments. Furthermore, we observed that HUVECs in MCTSs significantly increased the compactness of the spheroids and exhibited strong resistance against Gefitinib and Cisplatin, relative to fibroblasts, by facilitating the EndMT process in HUVECs. Subsequently, EndMT reversion contributed to control of chemoresistance, regardless of the levels of soluble transforming growth factor (TGF)-β. Using the MCTS xenograft mouse model, we demonstrated that inhibition of GSK-3β reduces lung cancer volume, and in combination with Gefitinib, has a synergistic effect on lung cancer therapy. CONCLUSION In summary, these findings suggest that targeting EndMT through GSK-3β inhibition in HUVECs might represent a promising therapeutic strategy for lung cancer therapy.
Collapse
MESH Headings
- Animals
- Apoptosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Coculture Techniques
- Culture Media, Conditioned/pharmacology
- Drug Resistance, Neoplasm
- Epithelial-Mesenchymal Transition
- Glycogen Synthase Kinase 3 beta/genetics
- Glycogen Synthase Kinase 3 beta/metabolism
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Phosphorylation
- Signal Transduction
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Se-Hyuk Kim
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Yeonhwa Song
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Haeng Ran Seo
- Cancer Biology Laboratory, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| |
Collapse
|
24
|
Song Z, Han X, Zou H, Zhang B, Ding Y, Xu X, Zeng J, Liu J, Gong A. PTEN-GSK3β-MOB1 axis controls neurite outgrowth in vitro and in vivo. Cell Mol Life Sci 2018; 75:4445-4464. [PMID: 30069702 PMCID: PMC11105474 DOI: 10.1007/s00018-018-2890-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
Mps One binder 1 (MOB1) is a core component of NDR/LATS kinase and a positive regulator of the Hippo signaling pathway. However, its role in neurite outgrowth still remains to be clarified. Here, we confirmed, for the first time, that MOB1 promoted neurite outgrowth and was involved in functional recovery after spinal cord injury (SCI) in mice. Mechanistically, we found that MOB1 stability was regulated by the PTEN-GSK3β axis. The MOB1 protein was significantly up-regulated in PTEN-knockdown neuronal cells. This effect was dependent on the lipid phosphatase activity of PTEN. Moreover, MOB1 was found to be a novel substrate for GSK3β that is phosphorylated on serine 146 and degraded via the ubiquitin-proteasome system (UPS). Finally, in vivo lentiviral-mediated silencing of PTEN promoted neurite outgrowth and functional recovery after SCI and this effect was reversed by down-regulation of MOB1. Taken together, this study provided mechanistic insight into how MOB1 acts as a novel and a necessary regulator in PTEN-GSK3β axis that controls neurite outgrowth after SCI.
Collapse
Affiliation(s)
- Zhiwen Song
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xiu Han
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Hongjun Zou
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Ya Ding
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xu Xu
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Jian Zeng
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jinbo Liu
- Department of Orthopaedics, School of Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
25
|
Zhou S, Lu J, Li Y, Chen C, Cai Y, Tan G, Peng Z, Zhang Z, Dong Z, Kang T, Tang F. MNAT1 is overexpressed in colorectal cancer and mediates p53 ubiquitin-degradation to promote colorectal cancer malignance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:284. [PMID: 30477538 PMCID: PMC6258412 DOI: 10.1186/s13046-018-0956-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/12/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND MNAT1 (menage a trois 1, MAT1), a cyclin-dependent kinase-activating kinase (CAK) complex, high expresses in various cancers and is involved in cancer pathogenesis. However, mechanisms underlying its regulation in carcinogenesis are unclear. METHODS The tissue microarray of colorectal cancer (CRC) was used to evaluate MNAT1 expressions in CRC tissues using immunohistochemistry, CRC cell lines were also detected MNAT1 expression using Western-blotting. MNAT1 and shMNAT1 vectors were constructed, and transfected into CRC cells. Cell growths of the transfected cells were observed using MTT and colony formation. The affects of MNAT1 on p53 expression were analyzed using Western-blotting and Real-time PCR. Immunoprecipitation assay was used to analyze the interaction p53 and MNAT1, and Western-blotting was used to test the effects of MNAT1 on p53 downstream molecules. The apoptosis of CRC cells with MNAT1 or shMNAT1 were analyzed using flow cytometry. BABL/c athymic nude mice were used to observe the effect of MNAT1 on CRC cell growth in vivo. RESULTS MNAT1 was found to be overexpressed in CRC tissues and cells, and MNAT1 expressions in CRC tissue samples were associated with CRC carcinogenesis and poor patient outcomes. MNAT1-knockin increased CRC cell growth and colony formation, and MNAT1-knockdown dramatically decreased cell motility and invasion. MNAT1 physically interacted with p53, MNAT1 also increased the interaction of MDM2 with p53. Strikingly, MNAT1 mediated p53 ubiquitin-degradation. MNAT1 shortened p53 half-life, and ectopic MNAT1 expression decreased p53 protein stability. Moreover, MNAT1 induced RAD51 and reduced p21, cleaved-caspase3, cleaved-PARP and BAX expression. MNAT1 inhibited CRC cell apoptosis. shMANT1 decreased tumor growths in nude mice following p53 increase. CONCLUSION MNAT1 binds to p53, mediates p53 ubiquitin-degradation through MDM2, increases cell growth and decreases cell apoptosis, and finally promotes CRC malignance. MNAT1 binding to p53 and mediating p53 ubiquitin-degradation axis represents a novel molecular joint in the p53 pathway.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Clinical Laboratory, Hunan Cancer Hospital &The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.,Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Jinping Lu
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Yuejin Li
- Department of Clinical Laboratory, Hunan Cancer Hospital &The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Chan Chen
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Yongqiang Cai
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Gongjun Tan
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Zhengke Peng
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Zhenlin Zhang
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Zigang Dong
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital &The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
26
|
Lu J, Li Y, Wu Y, Zhou S, Duan C, Dong Z, Kang T, Tang F. MICAL2 Mediates p53 Ubiquitin Degradation through Oxidating p53 Methionine 40 and 160 and Promotes Colorectal Cancer Malignance. Theranostics 2018; 8:5289-5306. [PMID: 30555547 PMCID: PMC6276083 DOI: 10.7150/thno.28228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Molecule interacting with CasL2 (MICAL2), a microtubule-associated monooxygenase, is highly expressed in various cancers and is involved in cancer pathogenesis, but the mechanisms underlying its regulation in carcinogenesis are unclear. In this study, we aim to clarify the mechanism by which MICAL2 participates in colorectal cancer (CRC) and identify novel markers for predicting prognosis of CRC patients. Methods: The value of MICAL2 in CRC prognosis was determined by immunohistochemical analysis of a CRC biopsy array. A short hairpin RNA target MICAL2 (shMICAL2) was designed to knock down MICAL2 expression and observe MICAL2's function on CRC cell growth. mRNA expression array was used to screen target molecules of MICAL2. HCT116 p53+/+ and HCT116 p53-/- cells were used to confirm whether MICAL2 exerts its oncogenic effect through p53. The in vivo effect of MICAL2 on CRC growth was assessed by subcutaneously injecting MICAL2-knockout CRC cells into the dorsal flank of each mouse. Immunofluorescence was used to observe the effect of MICAL2 on p53 cellular location. Reverse-phase nano ESI-LCMS analysis was used to investigate if MICAL2 mediates p53 oxidation. Results: MICAL2 was found to be highly expressed in CRC tissues, and its expression was associated with CRC carcinogenesis and poor patient outcome. MICAL2-knockdown decreased growth and colony formation of CRC cells, which was linked with cell cycle arrest and apoptosis. MICAL2 physically interacted with p53 and retained p53 in the cytoplasm. MICAL2 shortened the half-life of p53, and ectopic MICAL2 expression decreased p53 protein stability through ubiquitin degradation. MICAL2 was also found to oxidize p53 at methionine 40 and 160, which mediated p53 ubiquitin degradation. MICAL2-promoted CRC growth in vivo was confirmed in nude mice. Conclusion: MICAL2 binds to p53, retains p53 in the cytoplasm and oxidizes it at Met 40 and 160, promotes p53 ubiquitination, and decreases p53 function. MICAL2-reduced p53 promotes CRC development.
Collapse
Affiliation(s)
- Jinping Lu
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
- Department of Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| | - Yuejin Li
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Shan Zhou
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Chaojun Duan
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Zigang Dong
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Faqing Tang
- Department of Clinical Laboratory, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, China
- Department of Clinical Laboratory and Medical Research Center, Zhuhai Hospital, Jinan University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
27
|
Patel VK, Lamothe B, Ayres ML, Gay J, Cheung J, Balakrishnan K, Ivan C, Morse J, Nelson M, Keating MJ, Wierda WG, Marszalek JR, Gandhi V. Pharmacodynamics and proteomic analysis of acalabrutinib therapy: similarity of on-target effects to ibrutinib and rationale for combination therapy. Leukemia 2018; 32:920-930. [PMID: 29099493 PMCID: PMC5871548 DOI: 10.1038/leu.2017.321] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 02/06/2023]
Abstract
Acalabrutinib, a highly selective Bruton's tyrosine kinase inhibitor, is associated with high overall response rates and durable remission in previously treated chronic lymphocytic leukemia (CLL); however, complete remissions were limited. To elucidate on-target and pharmacodynamic effects of acalabrutinib, we evaluated several laboratory endpoints, including proteomic changes, chemokine modulation and impact on cell migration. Pharmacological profiling of samples from acalabrutinib-treated CLL patients was used to identify strategies for achieving deeper responses, and to identify additive/synergistic combination regimens. Peripheral blood samples from 21 patients with relapsed/refractory CLL in acalabrutinib phase I (100-400 mg/day) and II (100 mg BID) clinical trials were collected prior to and on days 8 and 28 after treatment initiation and evaluated for plasma chemokines, reverse phase protein array, immunoblotting and pseudoemperipolesis. The on-target pharmacodynamic profile of acalabrutinib in CLL lymphocytes was comparable to ibrutinib in measures of acalabrutinib-mediated changes in CCL3/CCL4 chemokine production, migration assays and changes in B-cell receptor signaling pathway proteins and other downstream survival proteins. Among several CLL-targeted agents, venetoclax, when combined with acalabrutinib, showed optimal complementary activity in vitro, ex vivo and in vivo in TCL-1 adoptive transfer mouse model system of CLL. These findings support selective targeting and combinatorial potential of acalabrutinib.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adoptive Transfer/methods
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- Benzamides/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Cell Movement/drug effects
- Chemokine CCL3/metabolism
- Chemokine CCL4/metabolism
- Clinical Trials, Phase I as Topic
- Clinical Trials, Phase II as Topic
- Combined Modality Therapy/methods
- Drug Resistance, Neoplasm/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mice
- Piperidines
- Protein Kinase Inhibitors/administration & dosage
- Protein-Tyrosine Kinases/metabolism
- Proteomics
- Pyrazines/administration & dosage
- Pyrazoles/administration & dosage
- Pyrimidines/administration & dosage
- Signal Transduction/drug effects
- Sulfonamides/administration & dosage
Collapse
Affiliation(s)
- Viral Kumar Patel
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Betty Lamothe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mary L. Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason Gay
- Institute of Applied Cancer Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Kumudha Balakrishnan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joshua Morse
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mark Nelson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joseph R. Marszalek
- Institute of Applied Cancer Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
28
|
Wang SB, Venkatraman V, Crowgey EL, Liu T, Fu Z, Holewinski R, Ranek M, Kass DA, O'Rourke B, Van Eyk JE. Protein S-Nitrosylation Controls Glycogen Synthase Kinase 3β Function Independent of Its Phosphorylation State. Circ Res 2018; 122:1517-1531. [PMID: 29563102 DOI: 10.1161/circresaha.118.312789] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 01/11/2023]
Abstract
RATIONALE GSK-3β (glycogen synthase kinase 3β) is a multifunctional and constitutively active kinase known to regulate a myriad of cellular processes. The primary mechanism to regulate its function is through phosphorylation-dependent inhibition at serine-9 residue. Emerging evidence indicates that there may be alternative mechanisms that control GSK-3β for certain functions. OBJECTIVES Here, we sought to understand the role of protein S-nitrosylation (SNO) on the function of GSK-3β. SNO-dependent modulation of the localization of GSK-3β and its ability to phosphorylate downstream targets was investigated in vitro, and the network of proteins differentially impacted by phospho- or SNO-dependent GSK-3β regulation and in vivo SNO modification of key signaling kinases during the development of heart failure was also studied. METHODS AND RESULTS We found that GSK-3β undergoes site-specific SNO both in vitro, in HEK293 cells, H9C2 myoblasts, and primary neonatal rat ventricular myocytes, as well as in vivo, in hearts from an animal model of heart failure and sudden cardiac death. S-nitrosylation of GSK-3β significantly inhibits its kinase activity independent of the canonical phospho-inhibition pathway. S-nitrosylation of GSK-3β promotes its nuclear translocation and access to novel downstream phosphosubstrates which are enriched for a novel amino acid consensus sequence motif. Quantitative phosphoproteomics pathway analysis reveals that nuclear GSK-3β plays a central role in cell cycle control, RNA splicing, and DNA damage response. CONCLUSIONS The results indicate that SNO has a differential effect on the location and activity of GSK-3β in the cytoplasm versus the nucleus. SNO modification of GSK-3β occurs in vivo and could contribute to the pathobiology of heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Sheng-Bing Wang
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Vidya Venkatraman
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.).,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| | - Erin L Crowgey
- Department of Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE (E.L.C.)
| | - Ting Liu
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | | | - Ronald Holewinski
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.).,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| | - Mark Ranek
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - David A Kass
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Brian O'Rourke
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.)
| | - Jennifer E Van Eyk
- From the Department of Medicine (S.-B.W., V.V., T.L., R.H., M.R., D.A.K., B.O'R., J.E.V.E.) .,Johns Hopkins University, Baltimore, MD; Department of Medicine, Advanced Clinical Biosystems Research Institute, The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (V.V., R.H., J.E.V.E.)
| |
Collapse
|
29
|
Zhou ZX, Zhang ZP, Tao ZZ, Tan TZ. miR-632 Promotes Laryngeal Carcinoma Cell Proliferation, Migration, and Invasion Through Negative Regulation of GSK3β. Oncol Res 2018; 28:21-31. [PMID: 29562960 PMCID: PMC7851529 DOI: 10.3727/096504018x15213142076069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Laryngeal cancer, one of the most common head and neck malignancies, is an aggressive neoplasm. Increasing evidence has demonstrated that microRNAs (miRNAs) exert important roles in oncogenesis and progression of diverse types of human cancers. miR-632, a tumor-related miRNA, has been reported to be dysregulated and implicated in human malignancies; however, its biological role in laryngeal carcinoma remains to be elucidated. The present study aimed at exploring the role of miR-632 in laryngeal cancer and clarifying the potential molecular mechanisms involved. In the current study, miR-632 was found to be significantly upregulated both in laryngeal cancer tissues and laryngeal cancer cell lines. Functional studies demonstrated that miR-632 accelerated cell proliferation and colony formation, facilitated cell migration and invasion, and enhanced the expression of cell proliferation-associated proteins, cyclin D1 and c-myc. Notably, miR-632 could directly bind to the 3′-untranslated region (3′-UTR) of glycogen synthase kinase 3β (GSK3β) to suppress its expression in laryngeal cancer cells. Mechanical studies revealed that miR-632 promoted laryngeal cancer cell proliferation, migration, and invasion through negative modulation of GSK3β. Pearson’s correlation analysis revealed that miR-632 expression was inversely correlated with GSK3β mRNA expression in laryngeal cancer tissues. Taken together, our findings suggest that miR-632 functions as an oncogene in laryngeal cancer and may be used as a novel therapeutic target for laryngeal cancer.
Collapse
Affiliation(s)
- Zhong-Xin Zhou
- Department of Otorhinolaryngology, Renmin Hospital of Wuhan UniversityWuhan, HubeiP.R. China
| | - Zu-Ping Zhang
- Department of Otorhinolaryngology, Liaocheng People's HospitalLiaocheng, ShandongP.R. China
| | - Ze-Zhang Tao
- Department of Otorhinolaryngology, Renmin Hospital of Wuhan UniversityWuhan, HubeiP.R. China
| | - Ting-Zhao Tan
- Department of Oncology, Liaocheng Tumor HospitalLiaocheng, ShandongP.R. China
| |
Collapse
|
30
|
Hu X, Li Z, Ding Y, Geng Q, Xiahou Z, Ru H, Dong MQ, Xu X, Li J. Chk1 modulates the interaction between myosin phosphatase targeting protein 1 (MYPT1) and protein phosphatase 1cβ (PP1cβ). Cell Cycle 2018; 17:421-427. [PMID: 29262732 PMCID: PMC5927650 DOI: 10.1080/15384101.2017.1418235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 01/05/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is an instrumental kinase that modulates many aspects of the cell cycle. Previous investigations have indicated that Plk1 is a target of the DNA damage response, and Plk1 inhibition is dependent on ATM/ATR and Chk1. But the exact mechanism remains elusive. In a proteomic screen to identify Chk1-interacting proteins, we found that myosin phosphatase targeting protein 1 (MYPT1) was present in the immunocomplex. MYPT1 is phosphorylated by CDK1, thus recruiting protein phosphatase 1β (PP1cβ) to dephosphorylate and inactivate Plk1. Here we identified that Chk1 directly interacts with MYPT1 and preferentially phosphorylates MYPT1 at Ser20, which is essential for MYPT1-PP1cβ interaction and subsequent Plk1 dephosphorylation. Phosphorylation of Ser20 is abolished during mitotic damage when Chk1 is inhibited. The degradation of MYPT1 is also regulated by Chk1 phosphorylation. Our results thus unveil the underlying machinery that attenuates Plk1 activity during mitotic damage through Chk1-induced phosphorylation of MYPT1.
Collapse
Affiliation(s)
- Xiaomei Hu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhe Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qizhi Geng
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhikai Xiahou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huanwei Ru
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
31
|
Huang Y, Hu K, Zhang S, Dong X, Yin Z, Meng R, Zhao Y, Dai X, Zhang T, Yang K, Liu L, Huang K, Shi S, Zhang Y, Chen J, Wu G, Xu S. S6K1 phosphorylation-dependent degradation of Mxi1 by β-Trcp ubiquitin ligase promotes Myc activation and radioresistance in lung cancer. Theranostics 2018; 8:1286-1300. [PMID: 29507620 PMCID: PMC5835936 DOI: 10.7150/thno.22552] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Rationale: Mxi1 is regarded as a potential tumor suppressor protein that antagonizes the transcriptional activity of proto-oncogene Myc. However, the clinical significances and underlying mechanisms by which Mxi1 is regulated in lung cancer remain poorly understood. Methods: Mass spectrometry analysis and immunoprecipitation assay were utilized to detect the protein-protein interaction. The phosphorylation of Mxi1 was evaluated by in vitro kinase assays. Poly-ubiquitination of Mxi1 was examined by in vivo ubiquitination assay. Lung cancer cells stably expressing wild-type Mxi1 or Mxi1-S160A were used for functional analyses. The expression levels of Mxi1 and S6K1 were determined by immunohistochemistry in lung cancer tissues and adjacent normal lung tissues. Results: We found that Mxi1 is downregulated and correlated with poor prognosis in lung cancer. Using tandem affinity purification technology, we provided evidence that β-Trcp E3 ubiquitin ligase interacts with and promotes the ubiquitination and degradation of Mxi1. Furthermore, we demonstrated that Mxi1 is phosphorylated at S160 site by the protein kinase S6K1 and subsequently degraded via the ubiquitin ligase β-Trcp. Moreover, a phosphorylation mutant form of Mxi1 (Mxi1-S160A), which cannot be degraded by S6K1 and β-Trcp, is much more stable and efficient in suppressing the transcriptional activity of Myc and radioresistance in lung cancer cells. More importantly, a strong inverse correlation between S6K1 and Mxi1 expression was observed in human lung cancer tissues. Conclusion: Our findings not only establish a crosstalk between the mTOR/S6K1 signaling pathway and Myc activation, but also suggest that targeting S6K1/Mxi1 pathway is a promising therapeutic strategy for the treatment of lung cancer.
Collapse
|
32
|
Lozada EM, Andrysik Z, Yin M, Redilla N, Rice K, Stambrook PJ. Acetylation and deacetylation of Cdc25A constitutes a novel mechanism for modulating Cdc25A functions with implications for cancer. Oncotarget 2018; 7:20425-39. [PMID: 26967250 PMCID: PMC4991465 DOI: 10.18632/oncotarget.7966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
The dual specificity phosphatase Cdc25A is a key regulator of the cell cycle that promotes cell cycle progression by dephosphorylating and activating cyclin-dependent kinases. In response to genotoxicants, Cdc25A undergoes posttranslational modifications which contribute to its proteasome-mediated degradation and consequent cell cycle checkpoint arrest. The most thoroughly studied Cdc25A modification is phosphorylation. We now provide the first evidence that Cdc25A can be acetylated and that it directly interacts with the ARD1 acetyltransferase which acetylates Cdc25A both biochemically and in cultured cells. When acetylated, Cdc25A has an extended half-life. We have also identified the class IV histone deacetylase, HDAC11, as a Cdc25A deacetylase. We further show that DNA damage, such as exposure to methyl methanesulfonate (MMS), etoposide or arsenic, increases Cdc25A acetylation. Importantly, this acetylation modulates Cdc25A phosphatase activity and its function as a cell cycle regulator, and may reflect a cellular response to DNA damage. Since Cdc25A, ARD1, and HDAC11 are frequently dysregulated in multiple types of cancer, our findings may provide insight into a novel mechanism in carcinogenesis.
Collapse
Affiliation(s)
- Enerlyn M Lozada
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Zdenek Andrysik
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.,Current affiliation: Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Moying Yin
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Nicholas Redilla
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Kathryn Rice
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| |
Collapse
|
33
|
Shen T, Zhou H, Shang C, Luo Y, Wu Y, Huang S. Ciclopirox activates ATR-Chk1 signaling pathway leading to Cdc25A protein degradation. Genes Cancer 2018; 9:39-52. [PMID: 29725502 PMCID: PMC5931253 DOI: 10.18632/genesandcancer.166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/11/2018] [Indexed: 02/05/2023] Open
Abstract
Ciclopirox olamine (CPX), an off-patent anti-fungal drug, has been found to inhibit the G1-cyclin dependent kinases partly by increasing the phosphorylation and degradation of Cdc25A. However, little is known about the molecular target(s) of CPX responsible for Cdc25A degradation. Here, we show that CPX induced the degradation of Cdc25A neither by increasing CK1α or decreasing DUB3 expression, nor via activating GSK3β, but through activating Chk1 in rhabdomyosarcoma (Rh30) and breast carcinoma (MDA-MB-231) cells. This is strongly supported by the findings that inhibition of Chk1 with TCS2312 or knockdown of Chk1 profoundly attenuated CPX-induced Cdc25A degradation in the cells. Furthermore, we observed that CPX caused DNA damage, which was independent of reactive oxygen species (ROS) induction, but related to iron chelation. CPX treatment resulted in the activation of ataxia telangiectasia mutated (ATM) and ATM-and RAD3-related (ATR) kinases. Treatment with Ku55933 (a selective ATM inhibitor) failed to prevent CPX-induced Chk1 phosphorylation and Cdc25A degradation. In contrast, knockdown of ATR conferred high resistance to CPX-induced Chk1 phosphorylation and Cdc25A degradation. Therefore, the results suggest that CPX-induced degradation of Cdc25A is attributed to the activation of ATR-Chk1 signaling pathway, a consequence of iron chelation-induced DNA damage.
Collapse
Affiliation(s)
- Tao Shen
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- State Key Laboratory of Biotherapy / Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yang Wu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- State Key Laboratory of Biotherapy / Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
34
|
Liu H, Luo Q, Cui H, Deng H, Kuang P, Lu Y, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Sodium fluoride causes hepatocellular S-phase arrest by activating ATM-p53-p21 and ATR-Chk1-Cdc25A pathways in mice. Oncotarget 2017; 9:4318-4337. [PMID: 29435105 PMCID: PMC5796976 DOI: 10.18632/oncotarget.23093] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022] Open
Abstract
In this study, experimental pathology, flow cytometry (FCM), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB) were used to evaluate the effects of sodium fluoride (NaF) on hepatocellular cell cycle progression in mice. A total of 240 ICR mice were divided equally into four groups; the experimental groups received 12, 24, or 48 mg/kg NaF intragastrically for 42 days, while the control group received distilled water. Doses of NaF above 12 mg/kg increased the percentage of cells in S phase (S-phase arrest), reduced percentages of cells in G0/G1 or G2/M phase, and activated the ATM-p53-p21 and ATR-Chk1-Cdc25A pathways. Activation of these pathways was characterized by up-regulation of ATM, p53, p21, ATR, and Chk1 mRNA and protein expression, and down-regulation of Cdc25A, cyclin E, cyclin A, CDK2, CDK4, and proliferating cell nuclear antigen (PCNA) mRNA and protein expression. These results indicate that NaF caused S-phase arrest by activating the ATM-p53-p21 and ATR-Chk1-Cdc25A pathways.
Collapse
Affiliation(s)
- Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Qin Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Ping Kuang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yujiao Lu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, China
| |
Collapse
|
35
|
Hong H, Chen F, Qiao Y, Yan Y, Zhang R, Zhu Z, Li H, Fan Y, Xu G. GSK-3β activation index is a potential indicator for recurrent inflammation of chronic rhinosinusitis without nasal polyps. J Cell Mol Med 2017; 21:3633-3640. [PMID: 28714566 PMCID: PMC5706567 DOI: 10.1111/jcmm.13274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/13/2017] [Indexed: 11/29/2022] Open
Abstract
Chronic rhinosinusitis without nasal polyps (CRSsNP) is one of the most common otorhinolaryngologic diseases worldwide. However, the underlying mechanism remains unclear. In this study, the expression of glycogen synthase kinase 3 (GSK-3) was quantitatively evaluated in patients with CRSsNP (n = 20) and healthy controls (n = 20). The mRNA levels of GSK-3α and GSK-3β were examined by qPCR, the immunoreactivities of GSK-3β and nuclear factor-κB (NF-κB) were examined by immunohistochemistry (IHC) staining, and the protein levels of GSK-3β, phospho-GSK-3β (p-GSK-3β, s9) and NF-κB were examined using Western blot analysis. We found that GSK-3 was highly expressed in both CRSsNP and control groups without significant difference in both GSK-3β mRNA and protein levels. However, when compared with healthy control group, the GSK-3β activation index, defined as the ratio of GSK-3β over p-GSK-3β, was significantly decreased, whereas the NF-κB protein abundance was significantly increased in CRSsNP group (P < 0.05). Strikingly, the GSK-3β activation index, was highly correlated with NF-κB protein level, as well as CT scores in CRSsNP group (P < 0.05). It was also highly correlated with the mRNA expressions of inflammation-related genes, including T-bet, IFN-γ and IL-4 in CRSsNP group (P < 0.05). Our findings suggest that GSK-3β activation index, reflecting the inhibitory levels of GSK-3β through phosphorylation, may be a potential indicator for recurrent inflammation of CRSsNP, and that the insufficient inhibitory phosphorylation of GSK-3β may play a pivotal role in the pathogenesis of CRSsNP.
Collapse
Affiliation(s)
- Haiyu Hong
- Department of Otolaryngology and Head Neck Surgery of the First Hospital Affiliated with Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat‐sen UniversityZhuhaiGuangdongChina
| | - Fenghong Chen
- Department of Otolaryngology and Head Neck Surgery of the First Hospital Affiliated with Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yongkang Qiao
- Department of PhysiologyYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Yan Yan
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat‐sen UniversityZhuhaiGuangdongChina
- Department of OtolaryngologyYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Rongkai Zhang
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat‐sen UniversityZhuhaiGuangdongChina
| | - Zhe Zhu
- Department of Stem Cell Biology and Regenerative MedicineLerner Research InstituteCleveland ClinicClevelandOHUSA
| | - Huabin Li
- Department of Otolaryngology and Head Neck Surgery of the First Hospital Affiliated with Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Department of OtolaryngologyHead and Neck SurgeryAffiliated Eye, Ear, Nose and Throat HospitalFudan UniversityShanghaiChina
| | - Yunping Fan
- Department of Otolaryngology and Head Neck Surgery of the Fifth Hospital Affiliated with Sun Yat‐sen UniversityZhuhaiGuangdongChina
| | - Geng Xu
- Department of Otolaryngology and Head Neck Surgery of the First Hospital Affiliated with Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
36
|
Xu M, Tang X, Guo J, Sun W, Tang F. Reversal effect of adenovirus-mediated human interleukin 24 transfection on the cisplatin resistance of A549/DDP lung cancer cells. Oncol Rep 2017; 38:2843-2851. [PMID: 29048638 PMCID: PMC5780038 DOI: 10.3892/or.2017.6002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
Interleukin-24 (IL-24) is a tumor-suppressor gene that has been documented in human melanoma cells. IL-24 has marked antitumor activities on various types of human cancer, but its underlying mechanism remains unclear. In the present, we investigated the effects of human IL-24 (hIL-24) on the chemotherapy resistance of lung cancer cells. The cisplatin (DDP)-resistant lung carcinoma cell line A549/DDP was subjected to adenovirus-mediated transfection with the human IL-24 gene (Ad-hIL-24). The growth-inhibitory and apoptotic effects of Ad-hIL-24 on A549/DDP cells were observed, and the expression levels of AKT, phosphorylated-AKT (p-AKT) and P-glycoprotein (P-gp) were detected. Ad-hIL-24 significantly decreased the levels of p-AKT and P-gp, and effectively inhibited A549/DDP cell growth. Furthermore, A549/DDP cells exhibited a significantly increased rate of apoptosis, as well as G2/M-phase arrest, following transfection with Ad-hIL-24, and these effects were increased in cells treated with Ad-IL-24 combined with DDP when compared with those treated with Ad-hIL-24 or DDP alone. These results suggest that hIL-24 can reverse the DDP resistance of lung cancer cells, and that the associated mechanism involves the induction of apoptosis and G2/M-phase arrest through the phosphoinositide3-kinase (PI3K)/AKT signaling pathway, as well as a decrease in drug resistance through P-gp expression.
Collapse
Affiliation(s)
- Mingju Xu
- Department of Clinical Laboratory of Zhuhai Hospital, Jinan University and Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Xioawei Tang
- Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Jinjin Guo
- Zhuhai Campus, Zunyi Medical College, Zhuhai, Guangdong 519041, P.R. China
| | - Wangbang Sun
- Zhuhai Campus, Zunyi Medical College, Zhuhai, Guangdong 519041, P.R. China
| | - Faqing Tang
- Department of Clinical Laboratory of Zhuhai Hospital, Jinan University and Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
37
|
Lai CY, Yu GS, Xu Y, Wu X, Heng BL, Xue YJ, Su ZX. Engrailed-2 promoter hyper-methylation is associated with its downregulation in clear cell renal cell carcinoma. Oncol Lett 2017; 14:6888-6894. [PMID: 29151918 DOI: 10.3892/ol.2017.7000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/27/2017] [Indexed: 11/06/2022] Open
Abstract
In a previous study by the present authors, it was identified that the expression of engrailed-2 (EN2) gene was downregulated in clear cell renal cell carcinoma (cc-RCC). The aim of the present study was to determine whether aberrant methylation was the mechanism underlying the silencing of EN2 gene in cc-RCC. A total of forty paired cc-RCC tissues, four cc-RCC cell lines and one normal human proximal tubule epithelial cell line were evaluated for EN2 gene methylation status using methylation-specific polymerase chain reaction (PCR). Following treatment with 5-Aza-dc, reverse transcription-quantitative PCR and western blot analysis were performed to examine the expression of EN2. Furthermore, cell proliferation, apoptosis and invasion assays were conducted to analyze the inhibitory effects of EN2 re-expression in 786-O cells. The results of the present study demonstrated that hyper-methylation of EN2 was identified in 12/40 cc-RCC tissues and all cc-RCC cell lines. The methylation status of the EN2 gene was revealed to be associated with histological grade and tumor size in cc-RCC. Following 5-Aza-dc treatment, demethylation of the EN2 gene was identified in 786-O cells, in conjunction with EN2 re-expression. Furthermore, re-activation of the EN2 gene markedly inhibited the proliferative and invasive capacities of cc-RCC. The results of the present study demonstrated that the EN2 gene promoter was hyper-methylated in cc-RCC, which may underlie the silencing of the EN2 gene in cc-RCC.
Collapse
Affiliation(s)
- Cai-Yong Lai
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China.,Department of Urology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, P.R. China
| | - Gan-Shen Yu
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yin Xu
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xun Wu
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Bao-Li Heng
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yi-Jun Xue
- Department of Urology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, P.R. China
| | - Ze-Xuan Su
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
38
|
Gao S, Li S, Duan X, Gu Z, Ma Z, Yuan X, Feng X, Wang H. Inhibition of glycogen synthase kinase 3 beta (GSK3β) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol Carcinog 2017; 56:2301-2316. [PMID: 28574599 DOI: 10.1002/mc.22685] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/13/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022]
Abstract
Although GSK3β has been reported to have contrasting effects on the progression of different tumors, it's possible functions in esophageal squamous cell carcinoma (ESCC) and the related molecular mechanisms remain unknown. Here, we investigated the expression, function, and molecular mechanism of GSK3β in the development of ESCC in vitro and in vivo. Though the expression of total GSK3β was significantly increased, the phosphorylated (inactivated) form of GSK3β (Ser9) was concurrently decreased in the cancerous tissues of patients with ESCC compared with controls, suggesting that GSK3β activity was enhanced in cancerous tissues. Further pathological data analysis revealed that higher GSK3β expression was associated with poorer differentiation, higher metastasis rates, and worse prognosis of ESCC. These results were confirmed in different ESCC cell lines using a pharmacological inhibitor and specific siRNA to block GSK3β. Using a cancer phospho-antibody array, we found that STAT3 is a target of GSK3β. GSK3 inhibition reduced STAT3 phosphorylation, and overexpression of constitutively active GSK3β had the opposite effect. Moreover, STAT3 inhibition mimicked the effects of GSK3β inhibition on ESCC cell migration and viability, while overexpression of a plasmid encoding mutant STAT3 (Y705F) abrogated these effects, and these results were further substantiated by clinicopathological data. In addition, a GSK3 inhibitor (LiCl) and/or STAT3 inhibitor (WP-1066) efficiently suppressed the growth of ESCC cells in a xenograft tumor model. Altogether, these results reveal that higher GSK3β expression promotes ESCC progression through STAT3 in vitro and in vivo, and GSK3β-STAT3 signaling could be a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Shuoguo Li
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Xiaoxian Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Zhen Gu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Zhikun Ma
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Xiaoshan Feng
- Henan Key Laboratory of Cancer Epigenetics; Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical college of Henan University of Science and Technology, Luoyang, China
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
39
|
Giráldez S, Galindo-Moreno M, Limón-Mortés MC, Rivas AC, Herrero-Ruiz J, Mora-Santos M, Sáez C, Japón MÁ, Tortolero M, Romero F. G 1/S phase progression is regulated by PLK1 degradation through the CDK1/βTrCP axis. FASEB J 2017; 31:2925-2936. [PMID: 28360195 DOI: 10.1096/fj.201601108r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 03/08/2017] [Indexed: 12/12/2022]
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase involved in several stages of the cell cycle, including the entry and exit from mitosis, and cytokinesis. Furthermore, it has an essential role in the regulation of DNA replication. Together with cyclin A, PLK1 also promotes CDH1 phosphorylation to trigger its ubiquitination and degradation, allowing cell cycle progression. The PLK1 levels in different type of tumors are very high compared to normal tissues, which is consistent with its role in promoting proliferation. Therefore, several PLK1 inhibitors have been developed and tested for the treatment of cancer. Here, we further analyzed PLK1 degradation and found that cytoplasmic PLK1 is ubiquitinated and subsequently degraded by the SCFβTrCP/proteasome. This procedure is triggered when heat shock protein (HSP) 90 is inhibited with geldanamycin, which results in misfolding of PLK1. We also identified CDK1 as the major kinase involved in this degradation. Our work shows for the first time that HSP90 inhibition arrests cell cycle progression at the G1/S transition. This novel mechanism inhibits CDH1 degradation through CDK1-dependent PLK1 destruction by the SCFβTrCP/proteasome. In these conditions, CDH1 substrates do not accumulate and cell cycle arrests, providing a novel pathway for regulation of the cell cycle at the G1-to-S boundary.-Giráldez, S., Galindo-Moreno, M., Limón-Mortés, M. C., Rivas, A. C., Herrero-Ruiz, J., Mora-Santos, M., Sáez, C., Japón, M. Á., Tortolero, M., Romero, F. G1/S phase progression is regulated by PLK1 degradation through the CDK1/βTrCP axis.
Collapse
Affiliation(s)
- Servando Giráldez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - María Galindo-Moreno
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - A Cristina Rivas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Joaquín Herrero-Ruiz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Miguel Á Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain
- Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Maria Tortolero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain;
| |
Collapse
|
40
|
MicroRNA-330-3p promotes cell invasion and metastasis in non-small cell lung cancer through GRIA3 by activating MAPK/ERK signaling pathway. J Hematol Oncol 2017. [PMID: 28629431 PMCID: PMC5477161 DOI: 10.1186/s13045-017-0493-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Brain metastasis (BM) is associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). Recent studies demonstrated that microRNA-330-3p (miR-330-3p) was involved in NSCLC brain metastasis (BM). However, the exact parts played by miR-330-3p in BM of NSCLC remain unknown. Discovery and development of biomarkers and elucidation of the mechanism underlying BM in NSCLC is critical for effective prophylactic interventions. Here, we evaluated the expression and biological effects of miR-330-3p in NSCLC cells and explored the underlying mechanism of miR-330-3p in promoting cell migration and invasion in NSCLC. Methods Stable over-expression and knockdown of miR-330-3p in NSCLC cells was constructed with lentivirus. Expression levels of miR-330-3p in NSCLC cells were quantified by quantitive real-time PCR (qRT-PCR). The effects of miR-330-3p on NSCLC cells were investigated using assays of cell viability, migration, invasion, cell cycle, apoptosis, western blotting, immunohistochemical, and immunofluorescence staining. A xenograft nude mouse model and in situ brain metastasis model were used to observe tumor growth and brain metastasis. The potential target of miR-330-3p in NSCLC cells was explored using the luciferase reporter assay, qRT-PCR, and western blotting. The miR-330-3p targets were identified using bioinformatics analysis and verified by luciferase reporter assay. The correlation between GRIA3 and DNA methyltransferase (DNMT) 1 and DNMT3A was tested by RT-PCR, western blotting, and co-immunoprecipitation (IP). Results miR-330-3p was significantly up-regulated in NSCLC cell lines. MTT assay, transwell migration, and invasion assays showed that miR-330-3p promoted the growth, migration, and invasion of NSCLC cells in vitro and induced tumor growth and metastasis in vivo. Luciferase reporter assays showed that GRIA3 was a target of miR-330-3p. qRT-PCR and western blotting exhibited that miR-330-3p promoted the growth, invasion, and migration of NSCLC cells by activating mitogen-activated protein kinase (MAPK)/extracellular-regulated protein kinases (ERK) signaling pathway. Furthermore, miR-330-3p up-regulated the total DNA methylation in NSCLC cells, and co-IP-demonstrated GRIA3 was directly related with DNMT1 and DNMT3A. Conclusions miR-330-3p promoted the progression of NSCLC and might be a potential target for the further research of NSCLC brain metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0493-0) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Liao SY, Chiang CW, Hsu CH, Chen YT, Jen J, Juan HF, Lai WW, Wang YC. CK1δ/GSK3β/FBXW7α axis promotes degradation of the ZNF322A oncoprotein to suppress lung cancer progression. Oncogene 2017; 36:5722-5733. [PMID: 28581525 DOI: 10.1038/onc.2017.168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
Overexpression of Cys2His2 zinc-finger 322A (ZNF322A) oncogenic transcription factor is associated with lung tumorigenesis. However, the mechanism of ZNF322A overexpression remains poorly understood. Here, we discover that protein stability of ZNF322A is regulated by coordinated phosphorylation and ubiquitination through the CK1δ/GSK3β/FBXW7α axis. CK1δ and GSK3β kinases sequentially phosphorylate ZNF322A at serine-396 and then serine-391. Moreover, the doubly phosphorylated ZNF322A protein creates a destruction motif for the ubiquitin ligase FBXW7α leading to ZNF322A protein destruction. Overexpression of FBXW7α induces ZNF322A protein degradation, thereby blocks ZNF322A transcription activity and suppresses ZNF322A-induced tumor growth and metastasis in vitro and in vivo. Clinically, overexpression of ZNF322A correlates with low FBXW7α or defective CK1δ/GSK3β-mediated phosphorylation in lung cancer patients. Multivariate Cox regression analysis indicates that patients with ZNF322A high/FBXW7 low expression profile can be used as an independent factor to predict the clinical outcome in lung cancer patients. Our results reveal a new mechanism of ZNF322A oncoprotein destruction regulated by the CK1δ/GSK3β/FBXW7α axis. Deregulation of this signaling axis results in ZNF322A overexpression and promotes cancer progression.
Collapse
Affiliation(s)
- S-Y Liao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - C-W Chiang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - C-H Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Y-T Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - J Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H-F Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - W-W Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Y-C Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
42
|
Zhu J, Wang S, Chen Y, Li X, Jiang Y, Yang X, Li Y, Wang X, Meng Y, Zhu M, Ma X, Huang C, Wu R, Xie C, Geng S, Wu J, Zhong C, Han H. miR-19 targeting of GSK3β mediates sulforaphane suppression of lung cancer stem cells. J Nutr Biochem 2017; 44:80-91. [PMID: 28431267 DOI: 10.1016/j.jnutbio.2017.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/21/2017] [Accepted: 02/25/2017] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) play a central role in the development of cancer. The canonical Wnt/β-catenin pathway is critical for maintaining stemness of CSCs. Phytochemicals from dietary compounds possess anti-CSCs properties and have been characterized as promising therapeutic agents for the prevention and treatment of many cancers. To date, the involvement and function of miR-19, a key oncogenic miRNA, in regulating Wnt/β-catenin pathway and lung CSCs has not been defined. Meanwhile, the effect of sulforaphane (SFN) on lung CSCs also remains to be elucidated. Here, we reported that lung CSCs up-regulated miR-19a and miR-19b expression. Overexpression of miR-19a/19b enhanced the ability of tumorsphere formation, up-regulated the expression of lung CSCs markers, increased Wnt/β-catenin pathway activation and β-catenin/TCF transcriptional activity in lung CSCs. In contrary, down-regulation of miR-19 suppressed lung CSCs activity and Wnt/β-catenin activation. We further revealed that miR-19 activated Wnt/β-catenin pathway by directly targeting GSK3β, the key negative modulator of this pathway. Moreover, we showed that SFN exhibited inhibitory effect on lung CSCs through suppressing miR-19 and Wnt/β-catenin pathway. Taken together, these data illustrate the role of miR-19 in regulating lung CSCs traits and miR-19/GSK3β/β-catenin axis in SFN intervention of lung CSCs. Findings from this study could provide important new insights into the molecular mechanisms of lung CSCs regulation as well as its target intervention.
Collapse
Affiliation(s)
- Jianyun Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shijia Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ye Jiang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xue Yang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoqian Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Ma
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cong Huang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Hongyu Han
- Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
43
|
Abstract
Ciclopirox olamine (CPX), an off-patent fungicide, has recently been identified as a novel anticancer agent. However, the molecular mechanism underlying its anticancer action remains to be elucidated. Here we show that CPX inhibits cell proliferation in part by downregulating the protein level of Cdc25A in tumor cells. Our studies revealed that CPX did not significantly reduce Cdc25A mRNA level or Cdc25A protein synthesis, but remarkably promoted Cdc25A protein degradation. This resulted in inhibition of G1-cyclin dependent kinases (CDKs), as evidenced by increased inhibitory phosphorylation of G1-CDKs. Since Cdc25A degradation is tightly related to its phosphorylation status, we further examined whether CPX alters Cdc25A phosphorylation. The results showed that CPX treatment increased the phosphorylation of Cdc25A (S76 and S82), but only Cdc25A-S82A mutant was resistant to CPX-induced degradation. Furthermore, ectopic expression of Cdc25A-S82A partially conferred resistance to CPX inhibition of cell proliferation. Therefore, our findings indicate that CPX inhibits cell proliferation at least in part by promoting Cdc25A degradation.
Collapse
|
44
|
Ferratge S, Ha G, Carpentier G, Arouche N, Bascetin R, Muller L, Germain S, Uzan G. Initial clonogenic potential of human endothelial progenitor cells is predictive of their further properties and establishes a functional hierarchy related to immaturity. Stem Cell Res 2017; 21:148-159. [PMID: 28499264 DOI: 10.1016/j.scr.2017.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/24/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) generate in vitro Endothelial Colony Forming Cells (ECFCs) combining features of endothelial and stem/progenitor cells. Their angiogenic properties confer them a therapeutic potential for treating ischemic lesions. They may be isolated from umbilical cord blood (CB-ECFCs) or peripheral adult blood (AB-ECFCs). It is generally accepted that CB-ECFCs are more clonogenic, proliferative and angiogenic than AB-ECFCs. Nevertheless, only a few studies have focused on the functional heterogeneity of CB-ECFCs from different individuals. Moreover, AB-ECFC loss of function is yet to be precisely described. We have focused on these two issues that are critical for clinical perspectives. The detailed clonogenic profile of CB-ECFCs and AB-ECFCs was obtained and revealed a high inter individual heterogeneity and the absence of correlation with age. Most CB-ECFCs yielded initial colonies and had functional properties similar to those of AB-ECFCs. Conversely, a high clonogenicity was associated with an enhanced proliferative and angiogenic potential and stemness gene overexpression, confirming that immaturity, lost by AB-ECFCs, was a prerequisite to functionality. We thus demonstrated the importance of selecting CB-ECFCs according to specific criteria, and we propose using the initial clonogenicity as a relevant marker of their potential efficacy on vascular repair.
Collapse
Affiliation(s)
| | - Guillaume Ha
- INSERM U1197, Hôpital Paul Brousse, Villejuif, France
| | - Gilles Carpentier
- ERL CNRS 9215, Laboratoire CRRET, Université Paris Est Créteil, Faculté des Sciences et Technologies, Créteil, France
| | | | - Rümeyza Bascetin
- Center for Interdisciplinary Research in Biology, Collège de France, Paris, France; Inserm U1050, Paris, France; CNRS UMRS 7241, Paris, France
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology, Collège de France, Paris, France; Inserm U1050, Paris, France; CNRS UMRS 7241, Paris, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology, Collège de France, Paris, France; Inserm U1050, Paris, France; CNRS UMRS 7241, Paris, France
| | - Georges Uzan
- INSERM U1197, Hôpital Paul Brousse, Villejuif, France.
| |
Collapse
|
45
|
Regulation of SOX10 stability via ubiquitination-mediated degradation by Fbxw7α modulates melanoma cell migration. Oncotarget 2017; 6:36370-82. [PMID: 26461473 PMCID: PMC4742183 DOI: 10.18632/oncotarget.5639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/29/2015] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of SOX10 was reported to be correlated with the progression of multiple cancer types, including melanocytic tumors and tumors of the nervous system. However, the mechanisms by which SOX10 is dysregulated in these tumors are poorly understood. In this study, we report that SOX10 is a direct substrate of Fbxw7α E3 ubiquitin ligase, a tumor suppressor in multiple cancers. Fbxw7α promotes SOX10 ubiquitination-mediated turnover through CPD domain of SOX10. Besides, GSK3β phosphorylates SOX10 at CPD domain and facilitates Fbxw7α-mediated SOX10 degradation. Moreover, SOX10 protein levels were inversely correlated with Fbxw7α in melanoma cells, and modulation of Fbxw7α levels regulated the expression of SOX10 and its downstream gene MIA. More importantly, SOX10 reversed Fbxw7α-mediated suppression of melanoma cell migration. This study provides evidence that the tumor suppressor Fbxw7α is the E3 ubiquitin ligase responsible for the degradation of SOX10, and suggests that reduced Fbxw7α might contribute to the upregulation of SOX10 in melanoma cells.
Collapse
|
46
|
Hu B, Wang X, Hu S, Ying X, Wang P, Zhang X, Wang J, Wang H, Wang Y. miR-21-mediated Radioresistance Occurs via Promoting Repair of DNA Double Strand Breaks. J Biol Chem 2017; 292:3531-3540. [PMID: 28096467 DOI: 10.1074/jbc.m116.772392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
miR-21, as an oncogene that overexpresses in most human tumors, is involved in radioresistance; however, the mechanism remains unclear. Here, we demonstrate that miR-21-mediated radioresistance occurs through promoting repair of DNA double strand breaks, which includes facilitating both non-homologous end-joining (NHEJ) and homologous recombination repair (HRR). The miR-21-promoted NHEJ occurs through targeting GSK3B (a novel target of miR-21), which affects the CRY2/PP5 pathway and in turn increases DNA-PKcs activity. The miR-21-promoted HRR occurs through targeting both GSK3B and CDC25A (a known target of miR-21), which neutralizes the effects of targeting GSK3B-induced CDC25A increase because GSK3B promotes degradation of both CDC25A and cyclin D1, but CDC25A and cyclin D1 have an opposite effect on HRR. A negative correlation of expression levels between miR-21 and GSK3β exists in a subset of human tumors. Our results not only elucidate miR-21-mediated radioresistance, but also provide potential new targets for improving radiotherapy.
Collapse
Affiliation(s)
- Baocheng Hu
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Xiang Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Shuofeng Hu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaomin Ying
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ping Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Xiangming Zhang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Jian Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Hongyan Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia 30322.
| |
Collapse
|
47
|
Sakurikar N, Thompson R, Montano R, Eastman A. A subset of cancer cell lines is acutely sensitive to the Chk1 inhibitor MK-8776 as monotherapy due to CDK2 activation in S phase. Oncotarget 2016; 7:1380-94. [PMID: 26595527 PMCID: PMC4811467 DOI: 10.18632/oncotarget.6364] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
DNA damage activates Checkpoint kinase 1 (Chk1) to halt cell cycle progression thereby preventing further DNA replication and mitosis until the damage has been repaired. Consequently, Chk1 inhibitors have emerged as promising anticancer therapeutics in combination with DNA damaging drugs, but their single agent activity also provides a novel approach that may be particularly effective in a subset of patients. From analysis of a large panel of cell lines, we demonstrate that 15% are very sensitive to the Chk1 inhibitor MK-8776. Upon inhibition of Chk1, sensitive cells rapidly accumulate DNA double-strand breaks in S phase in a CDK2- and cyclin A-dependent manner. In contrast, resistant cells can continue to grow for at least 7 days despite continued inhibition of Chk1. Resistance can be circumvented by inhibiting Wee1 kinase and thereby directly activating CDK2. Hence, sensitivity to Chk1 inhibition is regulated upstream of CDK2 and correlates with accumulation of CDC25A. We conclude that cells poorly tolerate CDK2 activity in S phase and that a major function of Chk1 is to ensure it remains inactive. Indeed, inhibitors of CDK1 and CDK2 arrest cells in G1 or G2, respectively, but do not prevent progression through S phase demonstrating that neither kinase is required for S phase progression. Inappropriate activation of CDK2 in S phase underlies the sensitivity of a subset of cell lines to Chk1 inhibitors, and this may provide a novel therapeutic opportunity for appropriately stratified patients.
Collapse
Affiliation(s)
- Nandini Sakurikar
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Ruth Thompson
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Ryan Montano
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Alan Eastman
- Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
48
|
Santha S, Davaakhuu G, Basu A, Ke R, Das S, Rana A, Rana B. Modulation of glycogen synthase kinase-3β following TRAIL combinatorial treatment in cancer cells. Oncotarget 2016; 7:66892-66905. [PMID: 27602497 PMCID: PMC5341845 DOI: 10.18632/oncotarget.11834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
Glycogen Synthase Kinase-3β (GSK3β) is a serine/threonine kinase, known to regulate various cellular processes including proliferation, differentiation, survival, apoptosis as well as TRAIL-resistance. Thus pathways that can modulate GSK3β axis are important targets for cancer drug development. Our earlier studies have shown that combinatorial treatment with Troglitazone (TZD) and TRAIL can induce apoptosis in TRAIL-resistant cancer cells. The current studies were undertaken to investigate whether GSK3β pathway was modulated during this apoptosis. Our results indicated an increase in inhibitory GSK3βSer9 phosphorylation during apoptosis, mediated via AKT. At a later time, however, TZD alone and TRAIL-TZD combination produced a dramatic reduction of GSK3β expression, which was abolished by cycloheximide. Luciferase assays with GSK3β-luc promoter reporter showed that TZD can effectively antagonize GSK3β promoter activity. Since TZD is a ligand for transcription factor PPARγ and can activate AMPK, we determined their roles on antagonism of GSK3β. Knockdown of PPARγ was unable to restore GSK3β expression or antagonize GSK3βSer9 phosphorylation. Although pretreatment with Compound C (pharmacological inhibitor of AMPK) partially rescued GSK3β expression, knockdown of AMPKα1 or α2 alone or in combination were ineffective. These studies suggested a novel PPARγ-AMPK-independent mechanism of targeting GSK3β by TZD, elucidation of which might provide newer insights to improve our understanding of TRAIL-resistance.
Collapse
Affiliation(s)
- Sreevidya Santha
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gantulga Davaakhuu
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Aninda Basu
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Subhasis Das
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
49
|
Hypoxia-induced epithelial-mesenchymal transition is regulated by phosphorylation of GSK3-β via PI3 K/Akt signaling in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:719-730. [PMID: 27614812 DOI: 10.1016/j.oooo.2016.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Epithelial-mesenchymal transition (EMT) plays an important role in cancer invasion and metastasis induced by hypoxia. Here, we examined whether phosphorylation of GSK3-β via phosphoinositide 3-kinase (PI3 K)/Akt signaling is involved in enhancing the hypoxia-induced EMT in oral squamous cell carcinoma (OSCC). STUDY DESIGN Experiments were performed in OSCC cell lines (HSC-2, HSC-3, HSC-4, SAS, and HO-1-U-1) under normoxic or hypoxic conditions. The EMT was assessed by Matrigel invasion assays and wound healing assays. OSCC cell lines (HSC-2 and HSC-4) overexpressing hypoxia-inducible factor (HIF)-1α were established to examine the effects of HIF-1α on EMT-related factors. Immunohistochemical staining was performed to examine phosphorylation of GSK3-β in 33 cases of tongue squamous cell carcinoma. RESULTS Under hypoxic conditions, OSCC cell lines exhibited HIF-1α expression and showed evidence of the EMT. In cells overexpressing HIF-1α, the levels of phospho-Akt and phospho-GSK3-β were increased, resulting in induction of the EMT. Inhibition of GSK3-β phosphorylation suppressed these effects. Moreover, the intensity of pGSK3-β staining was significantly increased with cN stage and cTNM stage in patients with tongue squamous cell carcinoma. CONCLUSIONS Our data showed that the hypoxia-induced EMT in OSCC was enhanced by GSK3-β phosphorylation, suggesting that GSK3-β may be important in the invasion and metastasis of OSCC.
Collapse
|
50
|
Liu T, Li WM, Wang WP, Sun Y, Ni YF, Xing H, Xia JH, Wang XJ, Zhang ZP, Li XF. Inhibiting CREPT reduces the proliferation and migration of non-small cell lung cancer cells by down-regulating cell cycle related protein. Am J Transl Res 2016; 8:2097-2113. [PMID: 27347318 PMCID: PMC4891423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 06/06/2023]
Abstract
It has been reported that CREPT acts as a highly expressed oncogene in a variety of tumors, affecting cyclin D1 signal pathways. However, the distribution and clinical significance of CREPT in NSCLC remains poorly understood. Our study focused on the role of CREPT on the regulation ofnon-small cell lung cancer (NSCLC). We found that CREPT mRNA and protein expression was significantly increased in NSCLC compared with adjacent lung tissues and was increased in various NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line. siRNA-induced knockingdown of CREPT significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in S phase. Moreover, CREPT knocking down affected the expression of cell cycle proteins including c-mycand CDC25A. Finally, we found there were obvious correlations between CREPT with c-myc expression in histological type, differentiation, and pTNM stages of NSCLC (P<0.05, rs>0.3). Immunohistofluorescence studies demonstrated a co-localization phenomenon when CREPT and c-myc were expressed. Thus, we propose that CREPT may promote NSCLC cell growth and migration through the c-myc and CDC25A signaling molecules.
Collapse
Affiliation(s)
- Tao Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Wei-Miao Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Wu-Ping Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Yun-Feng Ni
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Hao Xing
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Jing-Hua Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Xue-Jiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Zhi-Pei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Xiao-Fei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| |
Collapse
|