1
|
Lin WJ, Yu H, Pathak A. Gradients in cell density and shape transitions drive collective cell migration into confining environments. SOFT MATTER 2025; 21:719-728. [PMID: 39784299 PMCID: PMC11715644 DOI: 10.1039/d3sm01240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate development processes, tumor invasion, and wound healing. Naturally, the traversal of cell collective through confining environments involves crowding due to narrowing spaces, which seems tenuous given the conventional inverse relationship between cell density and migration. However, the physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in a system of contiguous microchannels of varying confinements, we show that epithelial (MCF10A) monolayers accumulate higher cell density and undergo fluid-like shape transitions before entering narrower channels. However, overexpression of breast cancer oncogene ErbB2 did not require such accumulation of cell density to migrate across matrix confinement. While wild-type MCF10A cells migrated faster in narrow channels, this confinement sensitivity was reduced after +ErbB2 mutation or with constitutively active RhoA. This physical interpretation of collective cell migration as density and shape transitions in granular matter could advance our understanding of complex living systems.
Collapse
Affiliation(s)
- Wan-Jung Lin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| | - Hongsheng Yu
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| |
Collapse
|
2
|
Hu Y, Zhao Z, Xie Q, Li H, Zhang C, He X, Ma Y, Zhang C, Li Q, Shi C. JARID1D-dependent androgen receptor and JunD signaling activation of osteoclast differentiation inhibits prostate cancer bone metastasis through demethylating H3K4. Theranostics 2025; 15:1320-1337. [PMID: 39816691 PMCID: PMC11729558 DOI: 10.7150/thno.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: Bone metastasis and skeletal-related complications are primary causes of mortality in advanced-stage prostate cancer (PCa). Epigenetic regulation, particularly histone modification, plays a key role in this process; however, the underlying mechanisms remain elusive. Methods and Results: In mouse models, JARID1D was an important mediator of both visceral and bone metastases. Chromatin immunoprecipitation (ChIP) and immunofluorescence (IF) techniques showed that the H3K4me3 demethylation activity of JARID1D is a key factor in the dynamic regulation of androgen receptor (AR) expression. Further analysis using western blotting and bone culture systems indicated that knocking down JARID1D enhanced the expression of monoamine oxidase A (MAOA) through the AR signaling pathway, leading to increased secretion of the nuclear factor kappa B (NF-κB) ligand receptor activator (RANKL) by PCa cells. This in turn promotes osteoclast differentiation and facilitates bone metastasis. In addition, single-cell sequencing results indicated that a reduction in JARID1D levels directly affected osteoclasts, stimulated JunD transcription, and accelerated PCa bone metastasis progression. Finally, both in vivo and in vitro experiments confirmed that the JARID1D agonist JIB-04 effectively blocked these molecular pathways, thereby delaying the onset of bone metastasis in PCa. Conclusions: These insights provide a theoretical foundation for targeting JARID1D and related molecules in the treatment of PCa bone metastasis.
Collapse
Affiliation(s)
- Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi 710032, China
| | - Zhite Zhao
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qinghua Xie
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chenyang Zhang
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Gansu University of Traditional Chinese Medicine, Lanzhou 730030, China
| | - Xinglin He
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Gansu University of Traditional Chinese Medicine, Lanzhou 730030, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi 710032, China
| | - Qinlong Li
- Department of Pathology, School of Basic Medicine and Xijing Hospital, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi 710032, China
| |
Collapse
|
3
|
Saito Y, Xiao Y, Yao J, Li Y, Liu W, Yuzhalin AE, Shyu YM, Li H, Yuan X, Li P, Zhang Q, Li Z, Wei Y, Yin X, Zhao J, Kariminia SM, Wu YC, Wang J, Yang J, Xia W, Sun Y, Jho EH, Chiao PJ, Hwang RF, Ying H, Wang H, Zhao Z, Maitra A, Hung MC, DePinho RA, Yu D. Targeting a chemo-induced adaptive signaling circuit confers therapeutic vulnerabilities in pancreatic cancer. Cell Discov 2024; 10:109. [PMID: 39468013 PMCID: PMC11519973 DOI: 10.1038/s41421-024-00720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/28/2024] [Indexed: 10/30/2024] Open
Abstract
Advanced pancreatic ductal adenocarcinomas (PDACs) respond poorly to all therapies, including the first-line treatment, chemotherapy, the latest immunotherapies, and KRAS-targeting therapies. Despite an enormous effort to improve therapeutic efficacy in late-stage PDAC patients, effective treatment modalities remain an unmet medical challenge. To change the status quo, we explored the key signaling networks underlying the universally poor response of PDAC to therapy. Here, we report a previously unknown chemo-induced symbiotic signaling circuit that adaptively confers chemoresistance in patients and mice with advanced PDAC. By integrating single-cell transcriptomic data from PDAC mouse models and clinical pathological information from PDAC patients, we identified Yap1 in cancer cells and Cox2 in stromal fibroblasts as two key nodes in this signaling circuit. Co-targeting Yap1 in cancer cells and Cox2 in stroma sensitized PDAC to Gemcitabine treatment and dramatically prolonged survival of mice bearing late-stage PDAC, whereas simultaneously inhibiting Yap1 and Cox2 only in cancer cells was ineffective. Mechanistically, chemotherapy triggers non-canonical Yap1 activation by nemo-like kinase in 14-3-3ζ-overexpressing PDAC cells and increases secretion of CXCL2/5, which bind to CXCR2 on fibroblasts to induce Cox2 and PGE2 expression, which reciprocally facilitate PDAC cell survival. Finally, analyses of PDAC patient data revealed that patients who received Statins, which inhibit Yap1 signaling, and Cox2 inhibitors (including Aspirin) while receiving Gemcitabine displayed markedly prolonged survival compared to others. The robust anti-tumor efficacy of Statins and Aspirin, which co-target the chemo-induced adaptive circuit in the tumor cells and stroma, signifies a unique therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yohei Saito
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendao Liu
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Arseniy E Yuzhalin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yueh-Ming Shyu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongzhong Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuedong Yin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Zhao
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed M Kariminia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao-Chung Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinyang Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Rosa F Hwang
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Huamin Wang
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongming Zhao
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anirban Maitra
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Departments of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
4
|
Varlı M, Bhosle SR, Kim E, Yang Y, Taş İ, Zhou R, Pulat S, Gamage CDB, Park SY, Ha HH, Kim H. Usnic Acid Targets 14-3-3 Proteins and Suppresses Cancer Progression by Blocking Substrate Interaction. JACS AU 2024; 4:1521-1537. [PMID: 38665668 PMCID: PMC11040559 DOI: 10.1021/jacsau.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The anticancer therapeutic effects of usnic acid (UA), a lichen secondary metabolite, have been demonstrated in vitro and in vivo. However, the mechanism underlying the anticancer effect of UA remains to be clarified. In this study, the target protein of UA was identified using a UA-linker-Affi-Gel molecule, which showed that UA binds to the 14-3-3 protein. UA binds to 14-3-3, causing the degradation of proteasomal and autophagosomal proteins. The interaction of UA with 14-3-3 isoforms modulated cell invasion, cell cycle progression, aerobic glycolysis, mitochondrial biogenesis, and the Akt/mTOR, JNK, STAT3, NF-κB, and AP-1 signaling pathways in colorectal cancer. A peptide inhibitor of 14-3-3 blocked or regressed the activity of UA and inhibited its effects. The results suggest that UA binds to 14-3-3 isoforms and suppresses cancer progression by affecting 14-3-3 targets and phosphorylated proteins.
Collapse
Affiliation(s)
- Mücahit Varlı
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Suresh R. Bhosle
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eunae Kim
- College
of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju 61452, Republic of Korea
| | - Yi Yang
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Chathurika D. B. Gamage
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyung-Ho Ha
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
5
|
Rodrigues-Junior DM, Moustakas A. Unboxing the network among long non-coding RNAs and TGF-β signaling in cancer. Ups J Med Sci 2024; 129:10614. [PMID: 38571882 PMCID: PMC10989219 DOI: 10.48101/ujms.v129.10614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 04/05/2024] Open
Abstract
Deeper analysis of molecular mechanisms arising in tumor cells is an unmet need to provide new diagnostic and therapeutic strategies to prevent and treat tumors. The transforming growth factor β (TGF-β) signaling has been steadily featured in tumor biology and linked to poor prognosis of cancer patients. One pro-tumorigenic mechanism induced by TGF-β is the epithelial-to-mesenchymal transition (EMT), which can initiate cancer dissemination, enrich the tumor stem cell population, and increase chemoresistance. TGF-β signals via SMAD proteins, ubiquitin ligases, and protein kinases and modulates the expression of protein-coding and non-coding RNA genes, including those encoding larger than 500 nt transcripts, defined as long non-coding RNAs (lncRNAs). Several reports have shown lncRNAs regulating malignant phenotypes by directly affecting epigenetic processes, transcription, and post-transcriptional regulation. Thus, this review aims to update and summarize the impact of TGF-β signaling on the expression of lncRNAs and the function of such lncRNAs as regulators of TGF-β signaling, and how these networks might impact specific hallmarks of cancer.
Collapse
Affiliation(s)
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Kuang X, Salinger A, Benavides F, Muller WJ, Dent SYR, Koutelou E. USP22 overexpression fails to augment tumor formation in MMTV-ERBB2 mice but loss of function impacts MMTV promoter activity. PLoS One 2024; 19:e0290837. [PMID: 38236941 PMCID: PMC10796002 DOI: 10.1371/journal.pone.0290837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 01/22/2024] Open
Abstract
The Ubiquitin Specific Peptidase 22 (USP22), a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) histone modifying complex, is overexpressed in multiple human cancers, but how USP22 impacts tumorigenesis is not clear. We reported previously that Usp22 loss in mice impacts execution of several signaling pathways driven by growth factor receptors such as erythroblastic oncogene B b2 (ERBB2). To determine whether changes in USP22 expression affects ERBB2-driven tumorigenesis, we introduced conditional overexpression or deletion alleles of Usp22 into mice bearing the Mouse mammary tumor virus-Neu-Ires-Cre (MMTV-NIC) transgene, which drives both rat ERBB2/NEU expression and Cre recombinase activity from the MMTV promoter resulting in mammary tumor formation. We found that USP22 overexpression in mammary glands did not further enhance primary tumorigenesis in MMTV-NIC female mice, but increased lung metastases were observed. However, deletion of Usp22 significantly decreased tumor burden and increased survival of MMTV-NIC mice. These effects were associated with markedly decreased levels of both Erbb2 mRNA and protein, indicating Usp22 loss impacts MMTV promoter activity. Usp22 loss had no impact on ERBB2 expression in other settings, including MCF10A cells bearing a Cytomegalovirus (CMV)-driven ERBB2 transgene or in human epidermal growth factor receptor 2 (HER2)+ human SKBR3 and HCC1953 cells. Decreased activity of the MMTV promoter in MMTV-NIC mice correlated with decreased expression of known regulatory factors, including the glucocorticoid receptor (GR), the progesterone receptor (PR), and the chromatin remodeling factor Brahma-related gene-1 (BRG1). Together our findings indicate that increased expression of USP22 does not augment the activity of an activated ERBB2/NEU transgene but impacts of Usp22 loss on tumorigenesis cannot be assessed in this model due to unexpected effects on MMTV-driven Erbb2/Neu expression.
Collapse
Affiliation(s)
- Xianghong Kuang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrew Salinger
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - William J. Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Sharon Y. R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center/UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States of America
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
7
|
Wu LL, Yuan SF, Lin QY, Chen GM, Zhang W, Zheng WE, Lin HL. Construction and validation of risk model of EMT-related prognostic genes for kidney renal clear cell carcinoma. J Gene Med 2023; 25:e3549. [PMID: 37271571 DOI: 10.1002/jgm.3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Kidney renal clear cell carcinoma (KIRC) is a prevalent type of urological malignancy. The present study aimed to predict biomarkers for KIRC. METHODS We collected transcriptomic and clinical information for KIRC from The Cancer Genome Atlas and GSE22541 cohorts. RESULTS Unsupervised clustering of 35 epithelial-mesenchymal transformation (EMT)-related differentially expressed gene profiles divided samples into two clusters with distinct immune characteristics. Six genes (IL20RB, DDC, ANKRD36BP2, F2RL1, TEK, and AMN) were found to construct a prognostic risk model using multivariate Cox regression analysis. Kaplan-Meier analysis suggested the better prognosis of the KIRC patients in the low-risk group than that in the high-risk group. Immune infiltration analyses was conducted using xCell and single-sample gene set enrichment analysis, indicating that the risk score was associated with the immune microenvironment of the KIRC. Prognostic marker gene-targeted medications with high drug sensitivity were predicted in KIRC patients. CONCLUSIONS In summary, the present study identified IL20RB, DDC, ANKRD36BP2, F2RL1, TEK, and AMN as prognostic biomarkers, providing insight into immunotherapy and gene-targeted drugs of KIRC.
Collapse
Affiliation(s)
- Li Li Wu
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shao-Fei Yuan
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiu-Yan Lin
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guang-Ming Chen
- Department of Urology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wu Zhang
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-E Zheng
- Department of Chemoradiation and Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hua Long Lin
- Department of Medical Oncology, Rui'an People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
9
|
Cao F, Jiang Y, Chang L, Du H, Chang D, Pan C, Huang X, Yu D, Zhang M, Fan Y, Bian X, Li K. High-throughput functional screen identifies YWHAZ as a key regulator of pancreatic cancer metastasis. Cell Death Dis 2023; 14:431. [PMID: 37452033 PMCID: PMC10349114 DOI: 10.1038/s41419-023-05951-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Pancreatic cancer is a leading cause of cancer death due to its early metastasis and limited response to the current therapies. Metastasis is a complicated multistep process, which is determined by complex genetic alterations. Despite the identification of many metastasis-related genes, distinguishing the drivers from numerous passengers and establishing the causality in cancer pathophysiology remains challenging. Here, we established a high-throughput and piggyBac transposon-based genetic screening platform, which enables either reduced or increased expression of chromosomal genes near the incorporation site of the gene search vector cassette that contains a doxycycline-regulated promoter. Using this strategy, we identified YWHAZ as a key regulator of pancreatic cancer metastasis. We demonstrated that functional activation of Ywhaz by the gene search vector led to enhanced metastatic capability in mouse pancreatic cancer cells. The metastasis-promoting role of YWHAZ was further validated in human pancreatic cancer cells. Overexpression of YWHAZ resulted in more aggressive metastatic phenotypes in vitro and a shorter survival rate in vivo by modulating epithelial-to-mesenchymal transition. Hence, our study established a high-throughput screening method to investigate the functional relevance of novel genes and validated YWHAZ as a key regulator of pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Fang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yunpeng Jiang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Chang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Endoscopy Center, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Hongzhen Du
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - De Chang
- Department of Pulmonary and Critical Care Medicine, 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chunxiao Pan
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Xiaozheng Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Donglin Yu
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Mi Zhang
- Department of Pulmonary and Critical Care Medicine, 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yongna Fan
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China
| | - Xiaocui Bian
- Department of Pathology, Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, China.
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
10
|
Almeida JA, Mathur J, Lee YL, Sarker B, Pathak A. Mechanically primed cells transfer memory to fibrous matrices for invasion across environments of distinct stiffness and dimensionality. Mol Biol Cell 2023; 34:ar54. [PMID: 36696158 PMCID: PMC10208097 DOI: 10.1091/mbc.e22-10-0469] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Cells sense and migrate across mechanically dissimilar environments throughout development and disease progression. However, it remains unclear whether mechanical memory of past environments empowers cells to navigate new, three-dimensional extracellular matrices. Here, we show that cells previously primed on stiff, compared with soft, matrices generate a higher level of forces to remodel collagen fibers and promote invasion. This priming advantage persists in dense or stiffened collagen. We explain this memory-dependent, cross-environment cell invasion through a lattice-based model wherein stiff-primed cellular forces remodel collagen and minimize energy required for future cell invasion. According to our model, cells transfer their mechanical memory to the matrix via collagen alignment and tension, and this remodeled matrix informs future cell invasion. Thus, memory-laden cells overcome mechanosensing of softer or challenging future environments via a cell-matrix transfer of memory. Consistent with model predictions, depletion of yes-associated protein destabilizes the cellular memory required for collagen remodeling before invasion. We release tension in collagen fibers via laser ablation and disable fiber remodeling by lysyl-oxidase inhibition, both of which disrupt cell-to-matrix transfer of memory and hamper cross-environment invasion. These results have implications for cancer, fibrosis, and aging, where a potential cell-to-matrix transfer of mechanical memory of cells may generate a prolonged cellular response.
Collapse
Affiliation(s)
- José A. Almeida
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO 63130
| | - Ye Lim Lee
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO 63130
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO 63130
| |
Collapse
|
11
|
Lin WJ, Pathak A. Transitions in density, pressure, and effective temperature drive collective cell migration into confining environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536258. [PMID: 37090663 PMCID: PMC10120636 DOI: 10.1101/2023.04.10.536258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate processes of development, tumor invasion, and wound healing. Naturally, traversal of cell collective through confining environments involves crowding due to the narrowing space, which seems tenuous given the conventional inverse relationship between cell density and migration. However, physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in contiguous microchannels, we show that epithelial (MCF10A) monolayers accumulate higher cell density before entering narrower channels; however, overexpression of breast cancer oncogene +ErbB2 reduced this need for density accumulation across confinement. While wildtype MCF10A cells migrated faster in narrow channels, this confinement sensitivity reduced after +ErbB2 mutation or with constitutively-active RhoA. The migrating collective developed pressure differentials upon encountering microchannels, like fluid flow into narrowing spaces, and this pressure dropped with their continued migration. These transitions of pressure and density altered cell shapes and increased effective temperature, estimated by treating cells as granular thermodynamic system. While +RhoA cells and those in confined regions were effectively warmer, cancer-like +ErbB2 cells remained cooler. Epithelial reinforcement by metformin treatment increased density and temperature differentials across confinement, indicating that higher cell cohesion could reduce unjamming. Our results provide experimental evidence for previously proposed theories of inverse relationship between density and motility-related effective temperature. Indeed, we show across cell lines that confinement increases pressure and effective temperature, which enable migration by reducing density. This physical interpretation of collective cell migration as granular matter could advance our understanding of complex living systems.
Collapse
|
12
|
Pu Z, Zhao Q, Chen J, Xie Y, Mou L, Zha X. Single-cell RNA analysis to identify five cytokines signaling in immune-related genes for melanoma survival prognosis. Front Immunol 2023; 14:1148130. [PMID: 37026000 PMCID: PMC10070796 DOI: 10.3389/fimmu.2023.1148130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Melanoma is one of the deadliest skin cancers. Recently, developed single-cell sequencing has revealed fresh insights into melanoma. Cytokine signaling in the immune system is crucial for tumor development in melanoma. To evaluate melanoma patient diagnosis and treatment, the prediction value of cytokine signaling in immune-related genes (CSIRGs) is needed. In this study, the machine learning method of least absolute selection and shrinkage operator (LASSO) regression was used to establish a CSIRG prognostic signature of melanoma at the single-cell level. We discovered a 5-CSIRG signature that was substantially related to the overall survival of melanoma patients. We also constructed a nomogram that combined CSIRGs and clinical features. Overall survival of melanoma patients can be consistently predicted with good performance as well as accuracy by both the 5-CSIRG signature and nomograms. We compared the melanoma patients in the CSIRG high- and low-risk groups in terms of tumor mutation burden, infiltration of the immune system, and gene enrichment. High CSIRG-risk patients had a lower tumor mutational burden than low CSIRG-risk patients. The CSIRG high-risk patients had a higher infiltration of monocytes. Signaling pathways including oxidative phosphorylation, DNA replication, and aminoacyl tRNA biosynthesis were enriched in the high-risk group. For the first time, we constructed and validated a machine-learning model by single-cell RNA-sequencing datasets that have the potential to be a novel treatment target and might serve as a prognostic biomarker panel for melanoma. The 5-CSIRG signature may assist in predicting melanoma patient prognosis, biological characteristics, and appropriate therapy.
Collapse
Affiliation(s)
- Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qing Zhao
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiaqun Chen
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Yubin Xie
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Lisha Mou
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
- *Correspondence: Lisha Mou, ; Xushan Zha,
| | - Xushan Zha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Lisha Mou, ; Xushan Zha,
| |
Collapse
|
13
|
Interactions between 14-3-3 Proteins and Actin Cytoskeleton and Its Regulation by microRNAs and Long Non-Coding RNAs in Cancer. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
14-3-3s are a family of structurally similar proteins that bind to phosphoserine or phosphothreonine residues, forming the central signaling hub that coordinates or integrates various cellular functions, thereby controlling many pathways important in cancer, cell motility, cell death, cytoskeletal remodeling, neuro-degenerative disorders and many more. Their targets are present in all cellular compartments, and when they bind to proteins they alter their subcellular localization, stability, and molecular interactions with other proteins. Changes in environmental conditions that result in altered homeostasis trigger the interaction between 14-3-3 and other proteins to retrieve or rescue homeostasis. In circumstances where these regulatory proteins are dysregulated, it leads to pathological conditions. Therefore, deeper understanding is needed on how 14-3-3 proteins bind, and how these proteins are regulated or modified. This will help to detect disease in early stages or design inhibitors to block certain pathways. Recently, more research has been devoted to identifying the role of MicroRNAs, and long non-coding RNAs, which play an important role in regulating gene expression. Although there are many reviews on the role of 14-3-3 proteins in cancer, they do not provide a holistic view of the changes in the cell, which is the focus of this review. The unique feature of the review is that it not only focuses on how the 14-3-3 subunits associate and dissociate with their binding and regulatory proteins, but also includes the role of micro-RNAs and long non-coding RNAs and how they regulate 14-3-3 isoforms. The highlight of the review is that it focuses on the role of 14-3-3, actin, actin binding proteins and Rho GTPases in cancer, and how this complex is important for cell migration and invasion. Finally, the reader is provided with super-resolution high-clarity images of each subunit of the 14-3-3 protein family, further depicting their distribution in HeLa cells to illustrate their interactions in a cancer cell.
Collapse
|
14
|
Obsilova V, Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front Mol Biosci 2022; 9:1016071. [PMID: 36188227 PMCID: PMC9523730 DOI: 10.3389/fmolb.2022.1016071] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| |
Collapse
|
15
|
Flick Jaecker F, Almeida JA, Krull CM, Pathak A. Nucleoli in epithelial cell collectives respond to tumorigenic, spatial, and mechanical cues. Mol Biol Cell 2022; 33:br19. [PMID: 35830599 PMCID: PMC9582805 DOI: 10.1091/mbc.e22-02-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cancer cells are known to have larger nucleoli, consistent with their higher transcriptional and translational demands. Meanwhile, on stiff extracellular matrix, normal epithelial cells can exhibit genomic and proteomic mechanoactivation toward tumorigenic transformations, such as epithelial-mesenchymal transition and enhanced migration. However, while nucleolar bodies regulate the protein synthesis required for mechanosensation, it remains unknown whether mechanical and spatial extracellular cues can in turn alter nucleoli. Here, we culture mammary epithelial cell sheets on matrices of varying stiffness and show that cancer cells have more nucleoli, with nucleoli occupying larger areas compared with normal cells. By contrast, within normal epithelial sheets, stiffer matrices and leader positioning of cells induce larger nucleolar areas and more nucleolar bodies over time. The observed leader-follower nucleolar differences stem from distinct rates of cell cycle progression. In the nucleoplasm, leader cells on stiffer matrices exhibit higher heterochromatin marker expression and DNA compaction around nucleolar bodies. Overall, our findings advance the emerging framework of cellular mechanobiology in which mechanical cues from the extracellular matrix transmit into the nucleoplasm to alter nucleolar composition, potentially resulting in mechanosensitive ribosomal biogenesis. Ultimately, this proposed mechanosensitivity of nucleoli and associated protein synthesis could have wide implications in disease, development, and regeneration.
Collapse
Affiliation(s)
| | - José A Almeida
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Carly M Krull
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science and.,Department of Biomedical Engineering, Washington University, St. Louis, MO 63130
| |
Collapse
|
16
|
Wei L, Hu N, Ye M, Xi Z, Wang Z, Xiong L, Yang N, Shen Y. Overexpression of 14-3-3ζ primes disease recurrence, metastasis and resistance to chemotherapy by inducing epithelial-mesenchymal transition in NSCLC. Aging (Albany NY) 2022; 14:5838-5854. [PMID: 35876652 PMCID: PMC9365555 DOI: 10.18632/aging.204188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
The prognosis of non-small cell lung cancer (NSCLC) is disappointing because disease recurrence and distant metastasis inevitably occurred. The aim of the present study is to identify novel biomarkers predicting tumor recurrence and metastasis. The 14-3-3ζ protein has been extensively described as a tumor promoter in a panel of solid tumors, including NSCLC. However, there is a big gap regarding the knowledge between 14-3-3ζ and NSCLC recurrence. In this study, we found that overexpression of 14-3-3ζ was more frequent in NSCLC tumor tissues with tumor recurrence. By using scratch healing assay and transwell assay, we demonstrated that NSCLC cells with high expression of 14-3-3ζ gained increased motile and invasive capacity, whereas siRNA-mediated knockdown of endogenous 14-3-3ζ abrogated cancer cell dissemination. Intriguingly, we found that NSCLC cells underwent epithelial-mesenchymal transition (EMT) after the induction of 14-3-3ζ in vitro and in vivo. These findings could be readily recaptured in clinical setting since we showed that NSCLC tumor specimen with high expression of 14-3-3ζ revealed biological features of EMT. Overexpression of 14-3-3ζ also enhanced the phosphorylation of Akt and promoted the proliferation of NSCLC cell lines. In agreement with this notion, we reported that NSCLC cells with high expression of 14-3-3ζ became resistant to chemotherapy-induced apoptosis. These findings strongly suggested that 14-3-3ζ as a novel biomarker predicting risks of disease recurrence and screening 14-3-3ζ status may be a promising approach to select patients who experienced high risks of cancer recurrence and resistance to chemotherapy.
Collapse
Affiliation(s)
- Lingyun Wei
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Nan Hu
- Department of Stomatology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Mingxiang Ye
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zhilong Xi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zhen Wang
- Department of Radiation Oncology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Lei Xiong
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Nan Yang
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| |
Collapse
|
17
|
EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat Commun 2022; 13:2543. [PMID: 35538070 PMCID: PMC9091212 DOI: 10.1038/s41467-022-30105-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Bone metastases occur in 50-70% of patients with late-stage breast cancers and effective therapies are needed. The expression of enhancer of zeste homolog 2 (EZH2) is correlated with breast cancer metastasis, but its function in bone metastasis hasn't been well-explored. Here we report that EZH2 promotes osteolytic metastasis of breast cancer through regulating transforming growth factor beta (TGFβ) signaling. EZH2 induces cancer cell proliferation and osteoclast maturation, whereas EZH2 knockdown decreases bone metastasis incidence and outgrowth in vivo. Mechanistically, EZH2 transcriptionally increases ITGB1, which encodes for integrin β1. Integrin β1 activates focal adhesion kinase (FAK), which phosphorylates TGFβ receptor type I (TGFβRI) at tyrosine 182 to enhance its binding to TGFβ receptor type II (TGFβRII), thereby activating TGFβ signaling. Clinically applicable FAK inhibitors but not EZH2 methyltransferase inhibitors effectively inhibit breast cancer bone metastasis in vivo. Overall, we find that the EZH2-integrin β1-FAK axis cooperates with the TGFβ signaling pathway to promote bone metastasis of breast cancer.
Collapse
|
18
|
Pennington KL, McEwan CM, Woods J, Muir CM, Pramoda Sahankumari AG, Eastmond R, Balasooriya ER, Egbert CM, Kaur S, Heaton T, McCormack KK, Piccolo SR, Kurokawa M, Andersen JL. SGK2, 14-3-3, and HUWE1 Cooperate to Control the Localization, Stability, and Function of the Oncoprotein PTOV1. Mol Cancer Res 2021; 20:231-243. [PMID: 34654719 DOI: 10.1158/1541-7786.mcr-20-1076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/20/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
PTOV1 is an oncogenic protein, initially identified in prostate cancer, that promotes proliferation, cell motility, and invasiveness. However, the mechanisms that regulate PTOV1 remain unclear. Here, we identify 14-3-3 as a PTOV1 interactor and show that high levels of 14-3-3 expression, like PTOV1, correlate with prostate cancer progression. We discover an SGK2-mediated phosphorylation of PTOV1 at S36, which is required for 14-3-3 binding. Disruption of the PTOV1-14-3-3 interaction results in an accumulation of PTOV1 in the nucleus and a proteasome-dependent reduction in PTOV1 protein levels. We find that loss of 14-3-3 binding leads to an increase in PTOV1 binding to the E3 ubiquitin ligase HUWE1, which promotes proteasomal degradation of PTOV1. Conversely, our data suggest that 14-3-3 stabilizes PTOV1 protein by sequestering PTOV1 in the cytosol and inhibiting its interaction with HUWE1. Finally, our data suggest that stabilization of the 14-3-3-bound form of PTOV1 promotes PTOV1-mediated expression of cJun, which drives cell-cycle progression in cancer. Together, these data provide a mechanism to understand the regulation of the oncoprotein PTOV1. IMPLICATIONS: These findings identify a potentially targetable mechanism that regulates the oncoprotein PTOV1.
Collapse
Affiliation(s)
- Katie L Pennington
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Colten M McEwan
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah.
| | - James Woods
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Colin M Muir
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - A G Pramoda Sahankumari
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Riley Eastmond
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Eranga R Balasooriya
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Christina M Egbert
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Sandeep Kaur
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Tyler Heaton
- Department of Biology, Brigham Young University, Provo, Utah
| | - Katherine K McCormack
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | | | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Joshua L Andersen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah.
| |
Collapse
|
19
|
Wan D, Zhang Y, Yu Q, Li F, Zhuo J. 14-3-3ζ promoted invasion and lymph node metastasis of breast invasive ductal carcinoma with HER2 overexpression. Pathol Res Pract 2021; 227:153619. [PMID: 34560418 DOI: 10.1016/j.prp.2021.153619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND HER2 was a recognized oncogene that promoted the development and metastasis of breast cancer, but its positive expression rate in invasive ductal carcinoma (IDC) was much lower than that in ductal carcinoma in situ (DCIS). The correlation between the occurrence and development of breast cancer and the amplification and overexpression of HER2 gene alone was still controversial. 14-3-3ζ had a strong protein binding ability and a variety of functions, mainly through the interaction with other proteins to exert its unique biological activities. However, influence and interaction relationship of the two proteins on the development of IDC was not clear. Furthermore, the mutual effect mechanism of synergy effect on lymph node metastasis of IDC was not known well too. METHODS Immunohistochemistry experiment was performed to detect expression status of 14-3-3ζ, HER2, TGF-β, p53 and Gli2 in paraffin-embedded samples respectively, including 30 cases of normal breast tissue, 30 cases of usual ductal hyperplasia (UDH), 30 cases of atypical ductal hyperplasia (ADH), 30 cases of DCIS and 120 cases of IDC. RESULTS The positive expression rates of 14-3-3ζ/HER2 in Normal group, UDH group, ADH group, DCIS group and IDC group were 30%/0.00%, 26.7%/0.00%, 53.3%/33.3%, 46.7%/53.3% and 50%/24.2%, respectively. Compared with Normal group or UDH group, the expression of 14-3-3ζ was significantly increased in ADH, DCIS and IDC groups. 14-3-3ζ was overexpressed in only 4 of the 16 DCIS cases with HER2 overexpression (25.0%, 4/16), but it was overexpressed in 7 of the 9 IDC cases with DCIS (77.8%, 7/9). Among HER2 overexpression cases, 14-3-3ζ overexpression was significantly different between DCIS group and IDC with DCIS group (P = 0.017). In 18 IDC cases with lymph node metastasis and HER2 overexpression, 14-3-3ζ was overexpressed in 15 cases (83.3%, 15/18), while in the 11 IDC cases without lymph node metastasis, 14-3-3ζ and HER2 were overexpressed in only 5 cases (45.5%, 5/11). Co-overexpression of 14-3-3ζ and HER2 was positively correlated with occurrence of lymph node metastasis (P = 0.048). TGF-β was overexpressed in both precancerous lesion group and IDC group compared with normal group. Compared with the IDC group without lymph node metastasis, TGF-β expression was significantly increased in the IDC group with lymph node metastasis (P = 0.015). In IDC cases with 14-3-3ζ and HER2 co-overexpression, the expression of p53 in IDC with lymph node metastasis was significantly decreased (P = 0.010), while the expression of Gli2 was significantly increased compared with IDC cases without lymph node metastasis (P = 0.038). The co-overexpression of 14-3-3ζ and HER2 was positively correlated with ER negative expression (P < 0.001) and PR negative expression (P = 0.038), respectively. CONCLUSION 14-3-3ζ synergistic with HER2 could promote the occurrence and development of breast IDC and induce the lymph node metastasis of IDC, suggesting that combined overexpression of 14-3-3ζ and HER2 would lead to higher invasion and metastasis risk of breast cancer. It was speculated that the combined detection of 14-3-3ζ and HER2 would be one of the key factors affecting the clinical treatment decision and prognosis.
Collapse
Affiliation(s)
- Dan Wan
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| | - Yutao Zhang
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China.
| | - Qin Yu
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| | - Feng Li
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| | - Junju Zhuo
- Department of Pathology, The First People's Hospital of Zigong, shang yi hao yi zhi lu 42#, Zigong 643099, Sichuan Province, China
| |
Collapse
|
20
|
Park E, Kim YT, Kim S, Nam EJ, Cho NH. Immunohistochemical and genetic characteristics of HPV-associated endocervical carcinoma with an invasive stratified mucin-producing carcinoma (ISMC) component. Mod Pathol 2021; 34:1738-1749. [PMID: 34103667 DOI: 10.1038/s41379-021-00829-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022]
Abstract
Invasive stratified mucin-producing carcinoma (ISMC) is a recently described entity of human papillomavirus (HPV)-associated endocervical adenocarcinoma with phenotypic plasticity and aggressive clinical behavior. To identify the cell of origin of ISMC, we investigated the immunohistochemical expression of cervical epithelial cell markers (CK7, PAX8, CK5/6, p63, and CK17), stemness markers (ALDH1 and Nanog), and epithelial-mesenchymal transition (EMT) markers (Snail, Twist, and E-cadherin) in 10 pure and mixed type ISMCs with at least 10% of ISMC component in the entire tumor, seven usual type endocervical adenocarcinomas (UEAs), and seven squamous cell carcinomas (SCCs). In addition, targeted sequencing was performed in 10 ISMCs. ISMC was significantly associated with larger tumor size (p = 0.011), more frequent lymphovascular invasion and lymph node metastasis (p < 0.001), higher FIGO stage (p = 0.022), and a tendency for worse clinical outcomes (p = 0.056) compared to other HPV-associated subtypes. ISMC showed negative or borderline positivity for PAX8, CK5/6, and p63, which were distinct from UEA and SCC (p < 0.01). Compared to UEA and SCC, ISMC showed higher expression for ALDH1 (p = 0.119 for UEA and p = 0.009 for SCC), Snail (p = 0.036), and Twist (p = 0.119), and tended to show decreased E-cadherin expression (p = 0.083). In next-generation sequencing analysis, ISMC exhibited frequent STK11, MET, FANCA, and PALB2 mutations compared to conventional cervical carcinomas, and genes related to EMT and stemness were frequently altered. EMT-prone and stemness characteristics and peripheral expression of reserve cell and EMT markers of ISMC suggest its cervical reserve cell origin. We recommend PAX8, CK5/6, and p63 as diagnostic triple biomarkers for ISMC. These findings highlight the distinct biological basis of ISMC.
Collapse
Affiliation(s)
- Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Tae Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Ji Nam
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
21
|
Huang J, Tian F, Song Y, Cao M, Yan S, Lan X, Cui Y, Cui Y, Cui Y, Jia D, Cai L, Xing Y, Wang X. A feedback circuit comprising EHD1 and 14-3-3ζ sustains β-catenin/c-Myc-mediated aerobic glycolysis and proliferation in non-small cell lung cancer. Cancer Lett 2021; 520:12-25. [PMID: 34217785 DOI: 10.1016/j.canlet.2021.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022]
Abstract
Mammalian Eps15 homology domain 1 (EHD1) participates in the development of non-small cell lung cancer (NSCLC). However, its role in mediating aerobic glycolysis remains unclear. Herein, microarray analysis revealed that EHD1 expression was significantly correlated with the glycolysis/gluconeogenesis pathway. Clinically, EHD1 expression was positively correlated with the maximum standard uptake value (SUVmax) in 18F-FDG PET/CT scans. Additionally, EHD1 knockdown inhibited aerobic glycolysis and proliferation in vitro and in vivo. Furthermore, Wnt/β-catenin signaling was identified as a critical EHD1-regulated pathway. Co-IP, native gel electrophoresis, and immunoblotting showed that EHD1 contributed to 14-3-3 dimerization via 14-3-3ζ and subsequent activation of β-catenin/c-Myc signaling. Analysis of the EHD1 regulatory region via ENCODE revealed the potential for c-Myc recruitment, leading to transcriptional activation of EHD1 and formation of an EHD1/14-3-3ζ/β-catenin/c-Myc positive feedback circuit. Notably, blocking this circuit with a Wnt/β-catenin inhibitor dramatically inhibited tumor growth in vivo. The positive correlations among EHD1, 14-3-3ζ, c-Myc, and LDHA were further confirmed in NSCLC tissues. Collectively, our study demonstrated that EHD1 activates a 14-3-3ζ/β-catenin/c-Myc regulatory circuit that synergistically promotes aerobic glycolysis and may constitute a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Ying Song
- Department of Dermatology, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, 150036, China
| | - Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Shi Yan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Xiuwen Lan
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yimeng Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yaowen Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yue Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Dexin Jia
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| | - Xin Wang
- PET/CT-MRI Centre, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China.
| |
Collapse
|
22
|
Zhang L, Yao J, Wei Y, Zhou Z, Li P, Qu J, Badu-Nkansah A, Yuan X, Huang YW, Fukumura K, Mao X, Chang WC, Saunus J, Lakhani S, Huse JT, Hung MC, Yu D. Blocking immunosuppressive neutrophils deters pY696-EZH2-driven brain metastases. Sci Transl Med 2021; 12:12/545/eaaz5387. [PMID: 32461334 DOI: 10.1126/scitranslmed.aaz5387] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
The functions of immune cells in brain metastases are unclear because the brain has traditionally been considered "immune privileged." However, we found that a subgroup of immunosuppressive neutrophils is recruited into the brain, enabling brain metastasis development. In brain metastatic cells, enhancer of zeste homolog 2 (EZH2) is highly expressed and phosphorylated at tyrosine-696 (pY696)-EZH2 by nuclear-localized Src tyrosine kinase. Phosphorylation of EZH2 at Y696 changes its binding preference from histone H3 to RNA polymerase II, which consequently switches EZH2's function from a methyltransferase to a transcription factor that increases c-JUN expression. c-Jun up-regulates protumorigenic inflammatory cytokines, including granulocyte colony-stimulating factor (G-CSF), which recruits Arg1+- and PD-L1+ immunosuppressive neutrophils into the brain to drive metastasis outgrowth. G-CSF-blocking antibodies or immune checkpoint blockade therapies combined with Src inhibitors impeded brain metastasis in multiple mouse models. These findings indicate that pY696-EZH2 can function as a methyltransferase-independent transcription factor to facilitate the brain infiltration of immunosuppressive neutrophils, which could be clinically targeted for brain metastasis treatment.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhifen Zhou
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingkun Qu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Akosua Badu-Nkansah
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Wen Huang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Kazutaka Fukumura
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xizeng Mao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Jodi Saunus
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia
| | - Sunil Lakhani
- Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia.,Pathology Queensland, The Royal Brisbane & Women's Hospital, Herston, QLD 4029, Australia
| | - Jason T Huse
- Department of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.,Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
23
|
Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, Duan Y, Seewaldt VL, Yu D. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res 2021; 11:2005-2024. [PMID: 34094666 PMCID: PMC8167687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023] Open
Abstract
Prevention of estrogen receptor-negative (ER-) breast cancer is an unmet challenge, although tamoxifen and aromatase inhibitors can successfully decrease the incidence of ER-positive (ER+) breast cancer. PI3K pathway activation has been detected in tamoxifen-resistant ER- breast lesions of patients. Here, we further ratified that the PI3K pathway is significantly activated in premalignant ER- breast lesions compared with paired normal tissues of patients, which prompted our assessment of targeting PI3K on inhibition of ER- mammary tumor initiation and progression. Both genetic knockdown of PIK3CA or intervention with low-doses of a PI3K inhibitor (GDC-0941) prevented the dysplasia phenotype of semi-transformed human ER- mammary epithelial cells in 3-dimensional culture in vitro. Importantly, low-dose GDC-0941 treatment significantly delayed mammary tumor initiation in the MMTV-neu mouse model without exhibiting discernable adverse effects. Interestingly, increased CD8+/GZMB+ T-cells were detected in mammary tissue after GDC-0941 treatment, suggesting enhanced immune surveillance. Mechanistically, elevated expression of potent T-cell chemo-attractants, including CCL5 and CXCL10, were detected both in vitro and in vivo after GDC-0941 treatment. Furthermore, inhibition of PI3K significantly increased T-cell recruitment in a CCL5/CXCL10-dependent manner. In human ER- breast cancer, PI3K activation is correlated with significantly reduced CCL5, CXCL10 and CD8A expression, suggesting that the decreased CD8+ T-cell recruitment and escape of immune surveillance may contribute to ER- breast cancer development. In summary, our study indicates that low-dose PI3K inhibitor treatment may intervene early stage ER- breast cancer development by enhancing immune surveillance via CCL5/CXCL10.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Current address: Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical SciencesGuangzhou, Guangdong, China
| | - Yuan Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yi Xiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Xiangliang Yuan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Ping Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Xiao Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yimin Duan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Victoria L Seewaldt
- Department of Population Sciences, City of HopeDuarte, California, USA
- Comprehensive Cancer Center, City of HopeDuarte, California, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical SciencesHouston, Texas, USA
| |
Collapse
|
24
|
He L, Araj E, Peng Y. HER2 Positive and HER2 Negative Classical Type Invasive Lobular Carcinomas: Comparison of Clinicopathologic Features. Curr Oncol 2021; 28:1608-1617. [PMID: 33923191 PMCID: PMC8161831 DOI: 10.3390/curroncol28030150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) positive (+) classical type invasive lobular carcinoma (cILC) of the breast is extremely rare and its clinicopathologic features have not been well characterized. We compared features of HER2(+) and HER2 negative (-) cILCs. A total of 29 cases were identified from the clinical database at our institution from 2011-2019; 9 were HER2(+) cILC tumors and 20 were HER2(-) cILC tumors. The results reveal that HER2(+) cILC group had significantly increased Ki-67 expression and reduced estrogen receptor (ER) expression compared to HER2(-) cILC group (both p < 0.05). In addition, HER2(+) cILCs tended to be diagnosed at a younger age and more common in the left breast, and appeared to have a higher frequency of nodal or distant metastases. These clinicopathologic features suggest HER2(+) cILC tumors may have more aggressive behavior than their HER2(-) counterpart although both groups of tumors showed similar morphologic features. Future directions of the study: (1) To conduct a multi-institutional study with a larger case series of HER2(+) cILC to further characterize its clinicopathologic features; (2) to compare molecular profiles by next generation sequencing (NGS) assay between HER2(+) cILC and HER2(-) cILC cases to better understand tumor biology of this rare subset of HER2(+) breast cancer; and (3) to compare molecular characteristics of HER2(+) cILC and HER2(+) high grade breast cancer in conjunction with status of tumor response to anti-HER2 therapy to provide insight to management of this special type of low grade breast cancer to avoid unnecessary treatment and related toxicity.
Collapse
Affiliation(s)
- Lin He
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (E.A.)
| | - Ellen Araj
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (E.A.)
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (E.A.)
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75235, USA
| |
Collapse
|
25
|
YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood 2021; 136:468-479. [PMID: 32187357 DOI: 10.1182/blood.2019004147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
High protein load is a feature of multiple myeloma (MM), making the disease exquisitely sensitive to proteasome inhibitor (PIs). Despite the success of PIs in improving patient outcome, the majority of patients develop resistance leading to progressive disease; thus, the need to investigate the mechanisms driving the drug sensitivity vs resistance. With the well-recognized chaperone function of 14-3-3 proteins, we evaluated their role in affecting proteasome activity and sensitivity to PIs by correlating expression of individual 14-3-3 gene and their sensitivity to PIs (bortezomib and carfilzomib) across a large panel of MM cell lines. We observed a significant positive correlation between 14-3-3ε expression and PI response in addition to a role for 14-3-3ε in promoting translation initiation and protein synthesis in MM cells through binding and inhibition of the TSC1/TSC2 complex, as well as directly interacting with and promoting phosphorylation of mTORC1. 14-3-3ε depletion caused up to a 50% reduction in protein synthesis, including a decrease in the intracellular abundance and secretion of the light chains in MM cells, whereas 14-3-3ε overexpression or addback in knockout cells resulted in a marked upregulation of protein synthesis and protein load. Importantly, the correlation among 14-3-3ε expression, PI sensitivity, and protein load was observed in primary MM cells from 2 independent data sets, and its lower expression was associated with poor outcome in patients with MM receiving a bortezomib-based therapy. Altogether, these observations suggest that 14-3-3ε is a predictor of clinical outcome and may serve as a potential target to modulate PI sensitivity in MM.
Collapse
|
26
|
Salazar Y, Zheng X, Brunn D, Raifer H, Picard F, Zhang Y, Winter H, Guenther S, Weigert A, Weigmann B, Dumoutier L, Renauld JC, Waisman A, Schmall A, Tufman A, Fink L, Brüne B, Bopp T, Grimminger F, Seeger W, Pullamsetti SS, Huber M, Savai R. Microenvironmental Th9 and Th17 lymphocytes induce metastatic spreading in lung cancer. J Clin Invest 2021; 130:3560-3575. [PMID: 32229721 DOI: 10.1172/jci124037] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/24/2020] [Indexed: 01/10/2023] Open
Abstract
Immune microenvironment plays a critical role in lung cancer control versus progression and metastasis. In this investigation, we explored the effect of tumor-infiltrating lymphocyte subpopulations on lung cancer biology by studying in vitro cocultures, in vivo mouse models, and human lung cancer tissue. Lymphocyte conditioned media (CM) induced epithelial-mesenchymal transition (EMT) and migration in both primary human lung cancer cells and cell lines. Correspondingly, major accumulation of Th9 and Th17 cells was detected in human lung cancer tissue and correlated with poor survival. Coculturing lung cancer cells with Th9/Th17 cells or exposing them to the respective CM induced EMT in cancer cells and modulated the expression profile of genes implicated in EMT and metastasis. These features were reproduced by the signatory cytokines IL-9 and IL-17, with gene regulatory profiles evoked by these cytokines partly overlapping and partly complementary. Coinjection of Th9/Th17 cells with tumor cells in WT, Rag1-/-, Il9r-/-, and Il17ra-/- mice altered tumor growth and metastasis. Accordingly, inhibition of IL-9 or IL-17 cytokines by neutralizing antibodies decreased EMT and slowed lung cancer progression and metastasis. In conclusion, Th9 and Th17 lymphocytes induce lung cancer cell EMT, thereby promoting migration and metastatic spreading and offering potentially novel therapeutic strategies.
Collapse
Affiliation(s)
- Ylia Salazar
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Xiang Zheng
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - David Brunn
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Hartmann Raifer
- Institute for Medical Microbiology and.,CoreFacility Flow Cytometry, University of Marburg, Marburg, Germany
| | | | | | - Hauke Winter
- Translational Research Unit, Thoraxklinik at Heidelberg University, member of the DZL, Heidelberg, Germany
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Benno Weigmann
- Department of Medicine 1, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Laure Dumoutier
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Anja Schmall
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Amanda Tufman
- Respiratory Medicine and Thoracic Oncology, Internal Medicine V, Ludwig-Maximilians-University of Munich and Thoracic Oncology Centre, member of the DZL, Munich, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, Wetzlar, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany. Research Center for Immunotherapy and University Medical Center, Johannes Gutenberg-University, Mainz, Germany. German Cancer Consortium, Heidelberg, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, member of the DZL, member of CPI, Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, member of the DZL, member of CPI, Justus Liebig University, Giessen, Germany.,Institute or Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, member of the DZL, member of CPI, Justus Liebig University, Giessen, Germany
| | | | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), member of Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany.,Department of Internal Medicine, member of the DZL, member of CPI, Justus Liebig University, Giessen, Germany.,Institute or Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
27
|
Gong Y, Wei Z, Liu J. MiRNA-1225 Inhibits Osteosarcoma Tumor Growth and Progression by Targeting YWHAZ. Onco Targets Ther 2021; 14:15-27. [PMID: 33442263 PMCID: PMC7797335 DOI: 10.2147/ott.s282485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Osteosarcoma is the most common bone tumor and is characterized by the presence of malignant mesenchymal cells produced in the bone stroma. MiRNAs are known to function as post-transcriptional negative regulators of gene expression. Emerging evidence showed that miR-1225-5P functions as a tumor suppressor in several types of cancers. The detailed mechanisms of which miR-1225-5P suppresses tumor growth are not fully understood. The objective of the present study was to test the hypothesis that miR-1225-5P inhibits osteosarcoma cell growth in vitro and tumor growth in vivo by targeting YWHAZ expression. Methods Real-time PCR and Western blot were carried out to test the expression of miR-1225-5P and YWHAZ in osteosarcoma cell lines. Luciferase assay was used to demonstrate whether miR-1225-5P targets YWHAZ 3ʹ UTR. To assess the function of miR-1225-5P in human osteosarcoma cell lines, gain-of-function and loss-of-function of miR-1225-5P were performed by transfecting miR-1225-5P mimic or miR-1225-5P inhibitor into osteosarcoma cell lines. Furthermore, cell cycle analysis was performed to elucidate the possible mechanisms of the action of miR-1225-5P and YWHAZ in human osteosarcoma cells. The potential therapeutic effect of miR-1225-5p was tested in human osteosarcoma xenograft mouse model, by intravenous injection of miR-1225-5P into nude mice. Tumor sizes were measured and lung metastasis was counted after the mice were sacrificed. Results The expression of miR-1225-5P was inversely correlated with the expression of YWHAZ in human osteosarcoma cell lines. Database search revealed that miR-1225-5P targeted YWHAZ 3ʹ UTR. Transfection of miR-1225-5P mimic downregulated YWHAZ expression, which was demonstrated by real-time PCR, Western blot and luciferase assay. Over-expression of miR-1225-5P reduced human osteosarcoma cell growth, migration and invasion by downregulating YWHAZ expression. Cell growth, migration and invasion were increased by inhibiting miR-1225-5P in human osteosarcoma cells. The inhibition of cell growth, migration and invasion was rescued by over-expression of YWHAZ in osteosarcoma cells. Cell cycle analysis revealed that miR-1225-5P inhibited G1/G0 phase exit. In vivo xenograft model demonstrated that miR-1225-5P inhibited in vivo osteosarcoma tumor growth and lung metastasis. Conclusion Our findings suggested that miR-1225-5P inhibits osteosarcoma cell growth in vitro and tumor growth in vivo by targeting YWHAZ. This study suggested that miR-1225-5P can serve as a potential therapeutic method for treating osteosarcoma.
Collapse
Affiliation(s)
- Yubao Gong
- Department of Orthopedics, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhengren Wei
- Department of Pharmacology, Basic Medical School, Jilin University, Changchun 130021, People's Republic of China
| | - Jianguo Liu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
28
|
Coban B, Bergonzini C, Zweemer AJM, Danen EHJ. Metastasis: crosstalk between tissue mechanics and tumour cell plasticity. Br J Cancer 2021; 124:49-57. [PMID: 33204023 PMCID: PMC7782541 DOI: 10.1038/s41416-020-01150-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the fact that different genetic programmes drive metastasis of solid tumours, the ultimate outcome is the same: tumour cells are empowered to pass a series of physical hurdles to escape the primary tumour and disseminate to other organs. Epithelial-to-mesenchymal transition (EMT) has been proposed to drive the detachment of individual cells from primary tumour masses and facilitate the subsequent establishment of metastases in distant organs. However, this concept has been challenged by observations from pathologists and from studies in animal models, in which partial and transient acquisition of mesenchymal traits is seen but tumour cells travel collectively rather than as individuals. In this review, we discuss how crosstalk between a hybrid E/M state and variations in the mechanical aspects of the tumour microenvironment can provide tumour cells with the plasticity required for strategies to navigate surrounding tissues en route to dissemination. Targeting such plasticity provides therapeutic opportunities to combat metastasis.
Collapse
Affiliation(s)
- Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
29
|
Cui J, Song Y, Han X, Hu J, Chen Y, Chen X, Xu X, Xing Y, Lu H, Cai L. Targeting 14-3-3ζ Overcomes Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Lung Adenocarcinoma via BMP2/Smad/ID1 Signaling. Front Oncol 2020; 10:542007. [PMID: 33123465 PMCID: PMC7571474 DOI: 10.3389/fonc.2020.542007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Background: The 14-3-3ζ protein, which acts as a putative oncoprotein, has been found to promote the proliferation, metastasis, and chemoresistance of cancer cells in several cancers including lung adenocarcinoma (LUAD); however, its significance in epidermal growth factor receptor–tyrosine kinase inhibitor (EGFR-TKI) resistance remains unknown. Methods: The Cancer Genome Atlas (TCGA) database was used to determine 14-3-3ζ expression in pancancer and LUAD. 14-3-3ζ and ID1 expression was then examined in clinical LUAD samples by immunohistochemistry (IHC). Lentiviral transfection with 14-3-3ζ-specific small hairpin RNA (shRNA) was used to establish stable 14-3-3ζ knockdown gefitinib-resistant PC9 (PC9/GR) and H1975 cell lines. The effect of 14-3-3ζ knockdown on reversing EGFR-TKI resistance was determined in vitro by Cell Counting Kit-8 (CCK-8), wound healing, Transwell assays, and flow cytometry. A xenograft tumor model was established to evaluate the role of 14-3-3ζ in EGFR-TKI resistance. Microarray analysis results showed multiple pathways regulated by 14-3-3ζ-shRNA. Results: In the present study, we demonstrated that based on the TCGA, pancancer and LUAD 14-3-3ζ expression was elevated and predicted unfavorable prognosis. In addition, high 14-3-3ζ expression was associated with advanced T stage, TNM stage, presence of lymph node metastasis and, importantly, poor treatment response to EGFR-TKIs in LUAD patients with EGFR-activating mutations. 14-3-3ζ shRNA sensitized EGFR-TKI-resistant human LUAD cells to gefitinib and reversed epithelial-to-mesenchymal transition (EMT). After 14-3-3ζ depletion, bone morphogenetic protein (BMP) signaling activation was decreased in EGFR-TKI-resistant cells in microarray analysis, which was further validated by Western blot analysis. Furthermore, the expression of 14-3-3ζ positively correlates with ID1 expression in human EGFR-mutant LUAD patient samples. In vivo, there was a reduction in the tumor burden in mice treated with 14-3-3ζ shRNA and gefitinib compared to mice treated with gefitinib alone. Conclusion: Our work uncovers a hitherto unappreciated role of 14-3-3ζ in EGFR-TKI resistance. This study might provide a potential therapeutic approach for treating LUAD patients harboring EGFR mutations.
Collapse
Affiliation(s)
- Jinfang Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejiao Han
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Hu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbo Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaomin Xu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hailing Lu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
30
|
Pi J, Wang W, Ji M, Wang X, Wei X, Jin J, Liu T, Qiang J, Qi Z, Li F, Liu Y, Ma Y, Si Y, Huo Y, Gao Y, Chen Y, Dong L, Su R, Chen J, Rao S, Yi P, Yu S, Wang F, Yu J. YTHDF1 Promotes Gastric Carcinogenesis by Controlling Translation of FZD7. Cancer Res 2020; 81:2651-2665. [PMID: 32788173 DOI: 10.1158/0008-5472.can-20-0066] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/08/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals that regulates homeostasis and function of modified RNA transcripts. Here, we aimed to investigate the role of YTH m6A RNA-binding protein 1 (YTHDF1), a key regulator of m6A methylation in gastric cancer tumorigenesis. Multiple bioinformatic analyses of different human cancer databases identified key m6A-associated genetic mutations that regulated gastric tumorigenesis. YTHDF1 was mutated in about 7% of patients with gastric cancer, and high expression of YTHDF1 was associated with more aggressive tumor progression and poor overall survival. Inhibition of YTHDF1 attenuated gastric cancer cell proliferation and tumorigenesis in vitro and in vivo. Mechanistically, YTHDF1 promoted the translation of a key Wnt receptor frizzled7 (FZD7) in an m6A-dependent manner, and mutated YTHDF1 enhanced expression of FZD7, leading to hyperactivation of the Wnt/β-catenin pathway and promotion of gastric carcinogenesis. Our results demonstrate the oncogenic role of YTHDF1 and its m6A-mediated regulation of Wnt/β-catenin signaling in gastric cancer, providing a novel approach of targeting such epigenetic regulators in this disease. SIGNIFICANCE: This study provides a rationale for controlling translation of key oncogenic drivers in cancer by manipulating epigenetic regulators, representing a novel and efficient strategy for anticancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2651/F1.large.jpg.
Collapse
Affiliation(s)
- Jingnan Pi
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Ji
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueju Wei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaqi Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Qi
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng Li
- Department of Molecular Biology, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Shanxi, China
| | - Yue Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yufeng Gao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiying Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Dong
- Department of Systems Biology and Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, California
| | - Rui Su
- Department of Systems Biology and Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, California
| | - Jianjun Chen
- Department of Systems Biology and Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, California
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyang Yu
- State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China. .,The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, China.,Medical Epigenetic Research Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Hua W, Ten Dijke P, Kostidis S, Giera M, Hornsveld M. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cell Mol Life Sci 2020; 77:2103-2123. [PMID: 31822964 PMCID: PMC7256023 DOI: 10.1007/s00018-019-03398-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/10/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
Metastasis is the most frequent cause of death in cancer patients. Epithelial-to-mesenchymal transition (EMT) is the process in which cells lose epithelial integrity and become motile, a critical step for cancer cell invasion, drug resistance and immune evasion. The transforming growth factor-β (TGFβ) signaling pathway is a major driver of EMT. Increasing evidence demonstrates that metabolic reprogramming is a hallmark of cancer and extensive metabolic changes are observed during EMT. The aim of this review is to summarize and interconnect recent findings that illustrate how changes in glycolysis, mitochondrial, lipid and choline metabolism coincide and functionally contribute to TGFβ-induced EMT. We describe TGFβ signaling is involved in stimulating both glycolysis and mitochondrial respiration. Interestingly, the subsequent metabolic consequences for the redox state and lipid metabolism in cancer cells are found to be in favor of EMT as well. Combined we illustrate that a better understanding of the mechanistic links between TGFβ signaling, cancer metabolism and EMT holds promising strategies for cancer therapy, some of which are already actively being explored in the clinic.
Collapse
Affiliation(s)
- Wan Hua
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Marten Hornsveld
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
32
|
Lin Y, Sun L, Ye X. Expression of yhwaz and gene regulation network in hepatocellular carcinoma. Oncol Lett 2020; 19:3971-3981. [PMID: 32382342 PMCID: PMC7202284 DOI: 10.3892/ol.2020.11481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/09/2020] [Indexed: 11/09/2022] Open
Abstract
The adaptor protein 14-3-3ζ is encoded by the yhwaz gene and implicated in a wide range of biological processes. In tumorigenesis, 14-3-3ζ recognizes specific phosphorylation motifs and interacts with hundreds of target proteins and is, thus, involved in the regulation of tumor proliferation, migration and differentiation. In the present study, bioinformatics tools were used to analyze data from The Cancer Genome Atlas and Gene Expression Omnibus databases and the expression of yhwaz, and gene regulation networks were identified as potentially relevant in hepatocellular carcinoma (HCC). In HCC, yhwaz expression was demonstrated to be upregulated and significantly associated with poor prognosis. Expression levels of microRNAs targeting yhwaz were associated with improved prognosis in patients with liver cancer. Gene networks that are regulated by yhwaz were found to be involved in cell cycle regulation and tumorigenesis, indicating the potential use of the expression levels of yhwaz in liver tissue as predictive biomarkers in patients with liver cancer. In the present study, yhwaz was identified as a gene of interest through data mining gene expression databases and its involvement in regulatory networks in HCC was indicated. Therefore, further in vitro and in vivo studies on the role of yhwaz in the carcinogenesis of HCC would be greatly beneficial.
Collapse
Affiliation(s)
- Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang 325027, P.R. China
| | - Ling Sun
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224000, P.R. China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
33
|
Chen J, Lin Q, Ni T, Zhao J, Lin F, Lu X, Lv Y, Ren S, Liu Z, Zhang T, He S, Shen D, Mao W. NLK interacts with 14‑3‑3ζ to restore the expression of E‑cadherin. Oncol Rep 2020; 43:1845-1852. [PMID: 32236580 PMCID: PMC7160556 DOI: 10.3892/or.2020.7557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/28/2020] [Indexed: 01/06/2023] Open
Abstract
The Nemo‑like kinase (NLK), a conserved serine/threonine kinase, plays a critical role in the regulation of a variety of transcription factors, with important roles in determining cell fate. Although recent studies have demonstrated decreased expression patterns of NLK in various types of human cancer, the functional mechanism of NLK in cancer development has not been elucidated. Here, in the present study overexpression of NLK was found to inhibit the growth and migration of the non‑small cell lung cancer A549 cell line. NLK was subsequently found to interact with 14‑3‑3ζ (also known as YWHAZ), which is responsible for E‑cadherin silencing during epithelial‑mesenchymal transition (EMT). Furthermore, NLK overexpression was able to restore the expression of E‑cadherin inhibited by 14‑3‑3ζ. Notably, NLK interacts with 14‑3‑3ζ and prevents its dimerization, which is essential for 14‑3‑3ζ stability and function. By fusing two copies of the 14‑3‑3ζ gene, via a Gly‑rich linker, a non‑dissociable dimer of 14‑3‑3ζ was formed. It was found that NLK was unable to restore the expression of E‑cadherin inhibited by the overexpression of the fused dimer of 14‑3‑3ζ. In addition, the increased ability of migration induced by the overexpression of fused 14‑3‑3ζ dimer could not be altered by NLK overexpression. The results from the present study indicate that NLK is a negative regulator of 14‑3‑3ζ and plays a tumor suppressive role in the inhibition of cancer cell migration.
Collapse
Affiliation(s)
- Jie Chen
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Qingfeng Lin
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Tingting Ni
- Department of Oncology, Nantong Tumor Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Jiyi Zhao
- Department of Gastroenterology, The Jiangyin Clinical College of XuZhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Feng Lin
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Xiangdong Lu
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Ye Lv
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Shujuan Ren
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Zhili Liu
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Ting Zhang
- Department of Central Laboratory, The Jiangyin Clinical College of XuZhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Shuyan He
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Dong Shen
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| | - Weidong Mao
- Department of Oncology, The Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, P.R. China
| |
Collapse
|
34
|
Chen J, Li N, Liu B, Ling J, Yang W, Pang X, Li T. Pracinostat (SB939), a histone deacetylase inhibitor, suppresses breast cancer metastasis and growth by inactivating the IL-6/STAT3 signalling pathways. Life Sci 2020; 248:117469. [PMID: 32109485 DOI: 10.1016/j.lfs.2020.117469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
AIMS Histone deacetylases inhibitors have shown favorable antitumor activity in clinical investigations. In the present study, we assessed the effects of a novel hydroxamic acid-based HDAC inhibitor, SB939, on breast cancer metastasis and tumor growth and characterized the underlying molecular mechanisms. MAIN METHODS MTS, Wound-healing, and Transwell chamber invasion assays were used to detect the inhibition effects of SB939 on proliferation, migration, and invasion of breast cancer cells. Western blot, cellular immunofluorescence, and EMSA were used to explore the molecular mechanism of SB939 in suppressing breast cancer metastasis. MDA-MB-231 subcutaneous tumor-bearing model of nude mice and the spontaneous metastasis model of breast cancer were both applied to verify in vivo anti-tumor growth and anti-metastatic effects. KEY FINDINGS Our results demonstrated that SB939 at 0.5-1 μmol/L markedly impaired the chemotactic motility of breast cancer cells. SB939 reversed epithelial-mesenchymal transition (EMT) process, as evidenced by upregulation E-cadherin expression and downregulation expressions of N-cadherin and vimentin through increasing the levels of ac-histone H3 and H4 and drecreasing the expressiongs of HDAC 5 and 4. This cascade inhibition mediated by SB939 was well interpreted by inactivating phosphorylation of STAT3, blocking its DNA-binding activity, and decreasing the expressions of STAT3-dependent target genes, including MMP2 and MMP9. Furhtermore, we found that SB939 significantly inhibited breast cancer metastasis and tumor growth in vivo and showed superior anti-tumor properties compared with SAHA in two breast cancer animal models. SIGNIFICANCE Our findings indicate that SB939 may be an effective therapeutic option for treating advanced breast cancer.
Collapse
Affiliation(s)
- Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Na Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China; Center for neurological diseases, The First People's Hospital of Shizuishan, Shizuishan 753200, China
| | - Boxia Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Jun Ling
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Wenjun Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan 750004, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Tao Li
- Department of Oncology, General Hospital of the Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
35
|
Gan Y, Ye F, He XX. The role of YWHAZ in cancer: A maze of opportunities and challenges. J Cancer 2020; 11:2252-2264. [PMID: 32127952 PMCID: PMC7052942 DOI: 10.7150/jca.41316] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
YWHAZ (also named 14-3-3ζ) is a central hub protein for many signal transduction pathways and plays a significant role in tumor progression. Accumulating evidences have demonstrated that YWHAZ is frequently up-regulated in multiple types of cancers and acts as an oncogene in a wide range of cell activities including cell growth, cell cycle, apoptosis, migration, and invasion. Moreover, YWHAZ was reported to be regulated by microRNAs (miRNAs) or long non-coding RNAs and exerted its malignant functions by targeting downstream molecules like protein kinase, apoptosis proteins, and metastasis-related molecules. Additionally, YWHAZ may be a potential biomarker of diagnosis, prognosis and chemoresistance in several cancers. Targeting YWHAZ by siRNA, shRNA or miRNA was reported to have great help in suppressing malignant properties of cancer cells. In this review, we perform literature and bioinformatics analysis to reveal the oncogenic role and molecular mechanism of YWHAZ in cancer, and discuss the potential clinical applications of YWHAZ concerning diagnosis, prognosis, and therapy in malignant tumors.
Collapse
Affiliation(s)
- Yun Gan
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Ye
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Kim JH, Pegoraro AF, Das A, Koehler SA, Ujwary SA, Lan B, Mitchel JA, Atia L, He S, Wang K, Bi D, Zaman MH, Park JA, Butler JP, Lee KH, Starr JR, Fredberg JJ. Unjamming and collective migration in MCF10A breast cancer cell lines. Biochem Biophys Res Commun 2020; 521:706-715. [PMID: 31699371 PMCID: PMC6937379 DOI: 10.1016/j.bbrc.2019.10.188] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Each cell comprising an intact, healthy, confluent epithelial layer ordinarily remains sedentary, firmly adherent to and caged by its neighbors, and thus defines an elemental constituent of a solid-like cellular collective [1,2]. After malignant transformation, however, the cellular collective can become fluid-like and migratory, as evidenced by collective motions that arise in characteristic swirls, strands, ducts, sheets, or clusters [3,4]. To transition from a solid-like to a fluid-like phase and thereafter to migrate collectively, it has been recently argued that cells comprising the disordered but confluent epithelial collective can undergo changes of cell shape so as to overcome geometric constraints attributable to the newly discovered phenomenon of cell jamming and the associated unjamming transition (UJT) [1,2,5-9]. Relevance of the jamming concept to carcinoma cells lines of graded degrees of invasive potential has never been investigated, however. Using classical in vitro cultures of six breast cancer model systems, here we investigate structural and dynamical signatures of cell jamming, and the relationship between them [1,2,10,11]. In order of roughly increasing invasive potential as previously reported, model systems examined included MCF10A, MCF10A.Vector; MCF10A.14-3-3ζ; MCF10.ErbB2, MCF10AT; and MCF10CA1a [12-15]. Migratory speed depended on the particular cell line. Unsurprisingly, for example, the MCF10CA1a cell line exhibited much faster migratory speed relative to the others. But unexpectedly, across different cell lines higher speeds were associated with enhanced size of cooperative cell packs in a manner reminiscent of a peloton [9]. Nevertheless, within each of the cell lines evaluated, cell shape and shape variability from cell-to-cell conformed with predicted structural signatures of cell layer unjamming [1]. Moreover, both structure and migratory dynamics were compatible with previous theoretical descriptions of the cell jamming mechanism [2,10,11,16,17]. As such, these findings demonstrate the richness of the cell jamming mechanism, which is now seen to apply across these cancer cell lines but remains poorly understood.
Collapse
Affiliation(s)
| | | | - Amit Das
- Northeastern University, MA, USA
| | | | | | - Bo Lan
- Harvard School of Public Health, MA, USA
| | | | - Lior Atia
- Harvard School of Public Health, MA, USA
| | - Shijie He
- Mass General Hospital and Harvard Medical School, USA
| | | | | | | | | | - James P Butler
- Harvard School of Public Health, MA, USA; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kyu Ha Lee
- The Forsyth Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
37
|
Yeh HW, Lee SS, Chang CY, Lang YD, Jou YS. A New Switch for TGFβ in Cancer. Cancer Res 2019; 79:3797-3805. [PMID: 31300476 DOI: 10.1158/0008-5472.can-18-2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/17/2018] [Accepted: 05/08/2019] [Indexed: 11/16/2022]
Abstract
The TGFβ cytokine plays dichotomous roles during tumor progression. In normal and premalignant cancer cells, the TGFβ signaling pathway inhibits proliferation and promotes cell-cycle arrest and apoptosis. However, the activation of this pathway in late-stage cancer cells could facilitate the epithelial-to-mesenchymal transition, stemness, and mobile features to enhance tumorigenesis and metastasis. The opposite functions of TGFβ signaling during tumor progression make it a challenging target to develop anticancer interventions. Nevertheless, the recent discovery of cellular contextual determinants, especially the binding partners of the transcription modulators Smads, is critical to switch TGFβ responses from proapoptosis to prometastasis. In this review, we summarize the recently identified contextual determinants (such as PSPC1, KLF5, 14-3-3ζ, C/EBPβ, and others) and the mechanisms of how tumor cells manage the context-dependent autonomous TGFβ responses to potentiate tumor progression. With the altered expression of some contextual determinants and their effectors during tumor progression, the aberrant molecular prometastatic switch might serve as a new class of theranostic targets for developing anticancer strategies.
Collapse
Affiliation(s)
- Hsi-Wen Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Szu-Shuo Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Chieh-Yu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
38
|
Phosphorylation of 14-3-3ζ links YAP transcriptional activation to hypoxic glycolysis for tumorigenesis. Oncogenesis 2019; 8:31. [PMID: 31076568 PMCID: PMC6510816 DOI: 10.1038/s41389-019-0143-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/24/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxic microenvironment deregulates metabolic homeostasis in cancer cells albeit the underlying mechanisms involved in this process remain hitherto enigmatic. 14-3-3ζ/Yes-associated protein (YAP) axis plays a principal role in malignant transformation and tumor development. Here, we report that hypoxia disassembles 14-3-3ζ from YAP and thereby promotes YAP nuclear localization mediated by ERK2, which directly binds to the D-site of mitogen-activated protein kinase (MAPK) docking domain in 14-3-3ζ Leu98/100 and phosphorylates 14-3-3ζ at Ser37. When localizing in nucleus, YAP recruits at pyruvate kinase M2 (PKM2) gene promoter with hypoxia-inducible factor 1α (HIF-1α), for which PKM2 transcription is required. 14-3-3ζ Ser37 phosphorylation is instrumental for the hypoxia-induced glucose uptake, lactate production, and clonogenicity of pancreatic ductal adenocarcinoma (PDAC) cells, as well as tumorigenesis in mice. The 14-3-3ζ Ser37 phosphorylation positively correlates with p-ERK1/2 activity and HIF-1α expression in clinical samples from patients with PDAC and predicts unfavorable prognosis. Our findings underscore an appreciable linkage between YAP transcriptional activation and hypoxic glycolysis governed by ERK2-dependent 14-3-3ζ Ser37 phosphorylation for malignant progression of PDAC.
Collapse
|
39
|
Down-regulation of 14-3-3zeta reduces proliferation and
increases apoptosis in human glioblastoma. Cancer Gene Ther 2019; 27:399-411. [DOI: 10.1038/s41417-019-0097-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 11/08/2022]
|
40
|
Yu CC, Li CF, Chen IH, Lai MT, Lin ZJ, Korla PK, Chai CY, Ko G, Chen CM, Hwang T, Lee SC, Sheu JJC. YWHAZ amplification/overexpression defines aggressive bladder cancer and contributes to chemo-/radio-resistance by suppressing caspase-mediated apoptosis. J Pathol 2019; 248:476-487. [PMID: 30945298 PMCID: PMC6767422 DOI: 10.1002/path.5274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 01/04/2023]
Abstract
The objective of this study was to characterize the oncogenic actions of a recently identified cancer‐associated gene YWHAZ (also named as 14‐3‐3 ζ/δ) in urothelial carcinomas of the urinary bladder (UCUB). A genome‐wide study revealed YWHAZ to be involved in the amplicon at 8q22.3, and its genetic amplification was detected predominantly in muscle‐invasive bladder cancer (MIBC). Immunohistochemical staining confirmed the association of YWHAZ overexpression with higher tumor stages, lymph node/vascular invasion, and mitotic activity. Univariate and multivariate analyses further indicated the prognostic potential of YWHAZ for more aggressive cancer types. Both gene set enrichment analysis and STRING network studies suggested involvement of YWHAZ in regulating caspase‐mediated apoptosis. Ectopic expression of YWHAZ in bladder cells with low endogenous YWHAZ levels boosted cell resistance to doxorubicin and cisplatin, as well as to ionizing radiation. Conversely, YWHAZ‐knockdown using specific shRNA in cells with high endogenous YWHAZ levels diminished survival activity, suppressing cell growth and increasing cell death. Our findings confirm the essential role played by YWHAZ in sustaining cell proliferation during chemo/radiotherapy. Treatments based on anti‐YWHAZ strategies may thus be beneficial for UCUB patients overexpressing YWHAZ. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan.,Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - I-Hsuan Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Zi-Jun Lin
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Praveen K Korla
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Grace Ko
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan
| | - Shan-Chih Lee
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jim J-C Sheu
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan.,Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
41
|
Zhang Y, Chen J, Wang Y, Wang D, Cong W, Lai BS, Zhao Y. Multilayer network analysis of miRNA and protein expression profiles in breast cancer patients. PLoS One 2019; 14:e0202311. [PMID: 30946749 PMCID: PMC6448837 DOI: 10.1371/journal.pone.0202311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
MiRNAs and proteins play important roles in different stages of breast tumor development and serve as biomarkers for the early diagnosis of breast cancer. A new algorithm that combines machine learning algorithms and multilayer complex network analysis is hereby proposed to explore the potential diagnostic values of miRNAs and proteins. XGBoost and random forest algorithms were employed to screen the most important miRNAs and proteins. Maximal information coefficient was applied to assess intralayer and interlayer connection. A multilayer complex network was constructed to identify miRNAs and proteins that could serve as biomarkers for breast cancer. Proteins and miRNAs that are nodes in the network were subsequently categorized into two network layers considering their distinct functions. The betweenness centrality was used as the first measurement of the importance of the nodes within each single layer. The degree of the nodes was chosen as the second measurement to map their signalling pathways. By combining these two measurements into one score and comparing the difference of the same candidate between normal tissue and cancer tissue, this novel multilayer network analysis could be applied to successfully identify molecules associated with breast cancer.
Collapse
Affiliation(s)
- Yang Zhang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Jiannan Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Yu Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Dehua Wang
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Weihui Cong
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Bo Shiun Lai
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Yi Zhao
- Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| |
Collapse
|
42
|
Guo F, Gao Y, Sui G, Jiao D, Sun L, Fu Q, Jin C. miR-375-3p/YWHAZ/β-catenin axis regulates migration, invasion, EMT in gastric cancer cells. Clin Exp Pharmacol Physiol 2018; 46:144-152. [PMID: 30353914 DOI: 10.1111/1440-1681.13047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
YWHAZ (14-3-3ζ) plays crucial roles in regulating proliferation, apoptosis, migration, and invasion of gastric cancer (GC) cells. However, its extensive roles and potential mechanisms in GC cells remain unknown, and need to be researched deeply. In this study, we focus on the role of miR-375/YWHAZ axis in migration, invasion and epithelial-to-mesenchymal transition (EMT) of GC cells. YWHAZ level was assessed by western blot and qPCR assays in GC cells. Scratch and transwell assays were used to determine the migration and invasion of GC cells. The protein levels of correlative molecules were detected by western blot. The regulation of miR-375 on the expression of its target gene YWHAZ was verified by dual-luciferase report system. According to the results, knockdown of YWHAZ inhibited the migration, invasion and EMT of GC cells. Moreover, silencing of YWHAZ restrained the activation of wnt/β-catenin signalling pathway. YWHAZ was confirmed to be a target gene of miR-375, and its expression was regulated by miR-375 in GC cells. Transfection of miR-375 inhibitor promoted the migration, invasion, EMT and activation of wnt/β-catenin pathway in GC cells, which was suppressed by inhibition of YWHAZ. Taken together, this study suggests that miR-375/YWHAZ axis may be served as a novel therapeutic target for GC patients.
Collapse
Affiliation(s)
- Feng Guo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guoqing Sui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dan Jiao
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lina Sun
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qingfeng Fu
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Mathur J, Sarker B, Pathak A. Predicting Collective Migration of Cell Populations Defined by Varying Repolarization Dynamics. Biophys J 2018; 115:2474-2485. [PMID: 30527449 PMCID: PMC6302036 DOI: 10.1016/j.bpj.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/23/2023] Open
Abstract
Collective migration of heterogeneous cell populations is an essential aspect of fundamental biological processes, including morphogenesis, wound healing, and tumor invasion. Through experiments and modeling, it has been shown that cells attain front-rear polarity, generate forces, and form adhesions to migrate. However, it remains unclear how the ability of individual cells in a population to dynamically repolarize themselves into new directions could regulate the collective response. We present a vertex-based model in which each deformable cell randomly chooses a new polarization direction after every defined time interval, elongates, proportionally generates forces, and causes collective migration. Our simulations predict that cell types that repolarize at longer time intervals attain more elongated shapes, migrate faster, deform the cell sheet, and roughen the leading edge. By imaging collectively migrating epithelial cell monolayers at high temporal resolution, we found longer repolarization intervals and elongated shapes of cells at the leading edge compared to those within the monolayer. Based on these experimental measurements and simulations, we defined aggressive mutant leader cells by long repolarization interval and minimal intercellular contact. The cells with frequent and random repolarization were defined as normal cells. In simulations with uniformly dispersed leader cells in a normal cell population at a 1:10 ratio, the resulting migration and deformation of the heterogeneous cell sheet remained low. However, when the 10% mutant leaders were placed only at the leading edge, we predicted a rise in the migration of an otherwise normal cell sheet. Our model predicts that a repolarization-based definition of leader cells and their placement within a healthy population can generate myriad modes of collective cell migration, which can enhance our understanding of collective cell migration in disease and development.
Collapse
Affiliation(s)
- Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri.
| |
Collapse
|
44
|
Pennington KL, Chan TY, Torres MP, Andersen JL. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018; 37:5587-5604. [PMID: 29915393 PMCID: PMC6193947 DOI: 10.1038/s41388-018-0348-3] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
14-3-3 proteins are a family of structurally similar phospho-binding proteins that regulate essentially every major cellular function. Decades of research on 14-3-3s have revealed a remarkable network of interacting proteins that demonstrate how 14-3-3s integrate and control multiple signaling pathways. In particular, these interactions place 14-3-3 at the center of the signaling hub that governs critical processes in cancer, including apoptosis, cell cycle progression, autophagy, glucose metabolism, and cell motility. Historically, the majority of 14-3-3 interactions have been identified and studied under nutrient-replete cell culture conditions, which has revealed important nutrient driven interactions. However, this underestimates the reach of 14-3-3s. Indeed, the loss of nutrients, growth factors, or changes in other environmental conditions (e.g., genotoxic stress) will not only lead to the loss of homeostatic 14-3-3 interactions, but also trigger new interactions, many of which are likely stress adaptive. This dynamic nature of the 14-3-3 interactome is beginning to come into focus as advancements in mass spectrometry are helping to probe deeper and identify context-dependent 14-3-3 interactions-providing a window into adaptive phosphorylation-driven cellular mechanisms that orchestrate the tumor cell's response to a variety of environmental conditions including hypoxia and chemotherapy. In this review, we discuss emerging 14-3-3 regulatory mechanisms with a focus on post-translational regulation of 14-3-3 and dynamic protein-protein interactions that illustrate 14-3-3's role as a stress-adaptive signaling hub in cancer.
Collapse
Affiliation(s)
- K L Pennington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
45
|
Bremer T, Whitworth PW, Patel R, Savala J, Barry T, Lyle S, Leesman G, Linke SP, Jirström K, Zhou W, Amini RM, Wärnberg F. A Biological Signature for Breast Ductal Carcinoma In Situ to Predict Radiotherapy Benefit and Assess Recurrence Risk. Clin Cancer Res 2018; 24:5895-5901. [PMID: 30054280 DOI: 10.1158/1078-0432.ccr-18-0842] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) patients and their physicians currently face challenging treatment decisions with limited information about the individual's subsequent breast cancer risk or treatment benefit. The DCISionRT biological signature developed in this study provides recurrence risk and predicts radiotherapy (RT) benefit for DCIS patients following breast-conserving surgery (BCS). EXPERIMENTAL DESIGN A biological signature that calculates an individualized Decision Score (DS) was developed and cross-validated in 526 DCIS patients treated with BCS ± RT. The relationship was assessed between DS and 10-year risk of invasive breast cancer (IBC) or any ipsilateral breast event (IBE), including IBC or DCIS. RT benefit was evaluated by risk group and as a function of DS. RESULTS The DS was significantly associated with IBC and IBE risk, HR (per 5 units) of 4.2 and 3.1, respectively. For patients treated without RT, DS identified a Low Group with 10-year IBC risk of 4% (7% IBE) and an Elevated Risk Group with IBC risk of 15% (23% IBE). In analysis of DS and RT by group, the Elevated Risk Group received significant RT benefit, HR of 0.3 for IBC and IBE. In a clinicopathologically low-risk subset, DS reclassified 42% of patients into the Elevated Risk Group. In an interaction analysis of DS and RT, patients with elevated DS had significant RT benefit over baseline. CONCLUSIONS The DS was prognostic for risk and predicted RT benefit for DCIS patients. DS identified a clinically meaningful low-risk group and a group with elevated 10-year risks that received substantial RT benefit over baseline.
Collapse
Affiliation(s)
| | | | - Rakesh Patel
- Good Samaritan Cancer Center, Los Gatos, California
| | | | - Todd Barry
- Spectrum Pathology, Inc., Mission Viejo, California
| | - Stephen Lyle
- University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | - Karin Jirström
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Wenjing Zhou
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fredrik Wärnberg
- Department of Surgical Sciences, Uppsala University, Department of Surgery, Uppsala Academic Hospital, Uppsala, Sweden.
| |
Collapse
|
46
|
Brown CY, Dayan S, Wong SW, Kaczmarek A, Hope CM, Pederson SM, Arnet V, Goodall GJ, Russell D, Sadlon TJ, Barry SC. FOXP3 and miR-155 cooperate to control the invasive potential of human breast cancer cells by down regulating ZEB2 independently of ZEB1. Oncotarget 2018; 9:27708-27727. [PMID: 29963231 PMCID: PMC6021232 DOI: 10.18632/oncotarget.25523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Control of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155. Interestingly, neither FOXP3 nor miR-155 directly altered the expression of ZEB1. In breast cancer cells repression of ZEB2, independently of ZEB1, resulted in reduced expression of a mesenchymal marker, Vimentin and reduced invasion. However, there was no de-repression of E-cadherin and migration was enhanced. Small interfering RNAs targeting ZEB2 suggest that this was a direct effect of ZEB2 and not FOXP3/miR-155. In normal human mammary epithelial cells, depletion of endogenous FOXP3 resulted in de-repression of ZEB2, accompanied by upregulated expression of vimentin, increased E-cadherin expression and cell morphological changes. We suggest that FOXP3 may help maintain normal breast epithelial characteristics through regulation of ZEB2, and loss of FOXP3 in breast cancer cells results in deregulation of ZEB2.
Collapse
Affiliation(s)
- Cheryl Y. Brown
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Sonia Dayan
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Soon Wei Wong
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Adrian Kaczmarek
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Christopher M. Hope
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
| | - Stephen M. Pederson
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Victoria Arnet
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Gregory J. Goodall
- Gene Regulation Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, 5006 SA, Australia
| | - Darryl Russell
- Research Centre for Reproductive Health, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
| | - Timothy J. Sadlon
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| | - Simon C. Barry
- Discipline of Paediatrics, School of Medicine, Women’s and Children’s Hospital, University of Adelaide, Adelaide, 5006 SA, Australia
- Molecular Immunology, Robinson Research Institute, School of Medicine, University of Adelaide, Adelaide, 5005 SA, Australia
- Department of Gastroenterology, WCHN, Adelaide, 5006 SA, Australia
| |
Collapse
|
47
|
Li M, Lu H, Liu X, Meng Q, Zhao Y, Chen X, Hu J, Liu W, Cai L. Overexpression of 14-3-3ζ in lung tissue predicts an improved outcome in patients with lung adenocarcinoma. Oncol Lett 2018; 16:1051-1058. [PMID: 29963182 DOI: 10.3892/ol.2018.8742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/02/2017] [Indexed: 12/16/2022] Open
Abstract
One of the factors limiting the survival rate of patients with lung cancer is the high risk for recurrence following surgical resection. Previous studies indicate that 14-3-3ζ is a central cellular hub protein that regulates multiple signaling pathways involved in cancer progression. The present study evaluated the prognostic significance of 14-3-3ζ in patients with lung adenocarcinoma. The expression of 14-3-3ζ and E-cadherin, an important protein involved in the epithelial-mesenchymal transition, was evaluated by immunohistochemistry in lung tumor tissues and adjacent normal lung tissues resected from 123 patients with lung adenocarcinoma. The correlation between the two proteins, their association with clinicopathological features and their prognostic significance were subsequently analyzed. Within these parameters, an overall survival (OS) prediction model was constructed using multivariate Cox proportional hazards regression. The expression of 14-3-3ζ was upregulated in lung adenocarcinoma, in contrast to E-cadherin, which was downregulated in lung adenocarcinoma tissues compared with normal tissues. In addition, the expression of 14-3-3ζ was positively correlated with that of E-cadherin (r=0.256, P=0.012) and differentiation (P<0.001). Increased E-cadherin expression was indicative of smaller tumor size and greater differentiation, and the overexpression of 14-3-3ζ and E-cadherin were associated with longer OS (P=0.010 and P=0.006, respectively). Finally, a multivariate analysis revealed that TNM stage and 14-3-3ζ were independent prognostic indicators (P<0.001 and P=0.026, respectively). 14-3-3ζ may function as a tumor suppressor associated with E-cadherin upregulation and could be used as a prognostic biomarker for resected lung adenocarcinoma. These findings provide a novel insight on potential intervention strategies for patients with lung cancer.
Collapse
Affiliation(s)
- Man Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China.,Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Hailing Lu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaolian Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China.,Department of General Oncology, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Qingwei Meng
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Yanbin Zhao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Jing Hu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
48
|
Zhou Z, Li M, Zhang L, Zhao H, Şahin Ö, Chen J, Zhao JJ, Songyang Z, Yu D. Oncogenic Kinase-Induced PKM2 Tyrosine 105 Phosphorylation Converts Nononcogenic PKM2 to a Tumor Promoter and Induces Cancer Stem-like Cells. Cancer Res 2018; 78:2248-2261. [PMID: 29440169 PMCID: PMC5932213 DOI: 10.1158/0008-5472.can-17-2726] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/27/2017] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
The role of pyruvate kinase M2 isoform (PKM2) in tumor progression has been controversial. Previous studies showed that PKM2 promoted tumor growth in xenograft models; however, depletion of PKM2 in the Brca1-loss-driven mammary tumor mouse model accelerates tumor formation. Because oncogenic kinases are frequently activated in tumors and PKM2 phosphorylation promotes tumor growth, we hypothesized that phosphorylation of PKM2 by activated kinases in tumor cells confers PKM2 oncogenic function, whereas nonphosphorylated PKM2 is nononcogenic. Indeed, PKM2 was phosphorylated at tyrosine 105 (Y105) and formed oncogenic dimers in MDA-MB-231 breast cancer cells, whereas PKM2 was largely unphosphorylated and formed nontumorigenic tetramers in nontransformed MCF10A cells. PKM2 knockdown did not affect MCF10A cell growth but significantly decreased proliferation of MDA-MB-231 breast cancer cells with tyrosine kinase activation. Multiple kinases that are frequently activated in different cancer types were identified to phosphorylate PKM2-Y105 in our tyrosine kinase screening. Introduction of the PKM2-Y105D phosphomimetic mutant into MCF10A cells induced colony formation and the CD44hi/CD24neg cancer stem-like cell population by increasing Yes-associated protein (YAP) nuclear localization. ErbB2, a strong inducer of PKM2-Y105 phosphorylation, boosted nuclear localization of YAP and enhanced the cancer stem-like cell population. Treatment with the ErbB2 kinase inhibitor lapatinib decreased PKM2-Y105 phosphorylation and cancer stem-like cells, impeding PKM2 tumor-promoting function. Taken together, phosphorylation of PKM2-Y105 by activated kinases exerts oncogenic functions in part via activation of YAP downstream signaling to increase cancer stem-like cell properties.Significance: These findings reveal PKM2 promotes tumorigenesis by inducing cancer stem-like cell properties and clarify the paradox of PKM2's dichotomous functions in tumor progression. Cancer Res; 78(9); 2248-61. ©2018 AACR.
Collapse
Affiliation(s)
- Zhifen Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Hong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Özgür Şahin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Chen
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Jean J Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Oncology in South China, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
- Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
49
|
Zhao JF, Zhao Q, Hu H, Liao JZ, Lin JS, Xia C, Chang Y, Liu J, Guo AY, He XX. The ASH1-miR-375-YWHAZ Signaling Axis Regulates Tumor Properties in Hepatocellular Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:538-553. [PMID: 29858089 PMCID: PMC5944419 DOI: 10.1016/j.omtn.2018.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a worldwide malignance, and the underlying mechanisms of this disease are not fully elucidated. In this study, the existence and function of achaete-scute homolog-1 (ASH1)-miR-375-YWHAZ signaling axis in HCC were determined. Our experiments and the Cancer Genome Atlas (TCGA) sequencing data analyses showed that ASH1 and miR-375 were significantly downregulated, whereas YWHAZ was significantly upregulated in HCC. Furthermore, we found that ASH1 positively regulates miR-375, and miR-375 directly downregulates its target YWHAZ. Gain- and loss-of-function study demonstrated ASH1 and miR-375 function as tumor suppressors, whereas YWHAZ acts as an oncogene in HCC. Animal experiment indicated that YWHAZ small interfering RNAs (siRNAs) (si-YWHAZ) delivered by nanoliposomes could suppress the growth of hepatoma xenografts and was well tolerant by nude mice. Further studies revealed that YWHAZ was involved in several protein networks, such as cell autophagy, epithelial-mesenchymal transition (EMT), apoptosis, cell cycle, invasion, and migration. In addition, the patient group with ASH1-high-expression-miR-375-high-expression-YWHAZ-low-expression was correlated with a better clinical prognosis compared with the opposite expression group. In conclusion, we proved the existence of ASH1-miR-375-YWHAZ signaling axis and interpreted its important role in driving HCC tumor progression.
Collapse
Affiliation(s)
- Juan-Feng Zhao
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Hu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Zhi Liao
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju-Sheng Lin
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Xia
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
50
|
Zhao Y, Qiao W, Wang X, Yin H, Cui J, Cui Y, Chen X, Hu J, Lu H, Meng Q, Wang Y, Cai L. 14-3-3ζ/TGFβR1 promotes tumor metastasis in lung squamous cell carcinoma. Oncotarget 2018; 7:82972-82984. [PMID: 27764818 PMCID: PMC5347746 DOI: 10.18632/oncotarget.12690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/17/2016] [Indexed: 12/27/2022] Open
Abstract
14-3-3ζ is involved in tumor cell growth and apoptosis. However, the mechanism of 14-3-3ζ in lung squamous cell carcinoma (SCC) metastasis has not been illuminated. In our studies, we found that the expression of 14-3-3ζ was highly expressed in lung SCC compared to normal lung tissues. High expression of 14-3-3ζ was associated with pTNM stage (p<0.05) and lymph node metastasis (p<0.05). Furthermore, the expression of 14-3-3ζ protein was associated with high levels of TGFβR1 protein (p=0.005), and pSMAD3 (p=0.033). Lung SCC patients with high 14-3-3ζ expression have significantly shorter OS and DFS compared to patients with low 14-3-3ζ expression. Additionally, 14-3-3ζ knockdown inhibited cell proliferation, migratory and invasive properties of human lung SCC cells. TGFβR1 was involved in 14-3-3ζ-mediated cell proliferation and metastasis of lung SCC cells. Additionally, sh-14-3-3ζ can suppress tumor growth and metastasis in vivo. Thus, these data provide the evidence that 14-3-3ζ promote tumor metastasis and might be a prognostic biomarker and target for therapeutic strategy in lung SCC.
Collapse
Affiliation(s)
- Yanbin Zhao
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Wenbo Qiao
- The Department of radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xiaoyuan Wang
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Hang Yin
- The Department of radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Jianqi Cui
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yue Cui
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xuesong Chen
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Jing Hu
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Hailing Lu
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Qingwei Meng
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yan Wang
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Li Cai
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| |
Collapse
|