1
|
Ding Y, Chen Y, Zhang J, Wang Q, Zhu S, Jiang J, He C, Wang J, Tou L, Zheng J, Chen B, Hu S, Yu X, Wang H, Lu Y, Kong M, Chen Y, Wang H, Zhang H, Xu H, Teng F, Shen X, Xu N, Ruan J, Zhou Z, Lu J, Teng L. Blood Biomarker-Based Predictive Indicator for Liver Metastasis in Alpha-Fetoprotein-Producing Gastric Cancer and Multi-Omics Tumor Microenvironment Insights. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e03499. [PMID: 40433893 DOI: 10.1002/advs.202503499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/22/2025] [Indexed: 05/29/2025]
Abstract
Alpha-fetoprotein-producing gastric cancer (AFPGC) is a rare but highly aggressive subtype of gastric cancer. Patients with AFPGC are at high risk of liver metastasis, and the tumor microenvironment (TME) is complex. A multicenter retrospective study is conducted from January 2011 to December 2021 and included 317 AFPGC patients. Using a multivariable logistic regression model, a nomogram for predicting liver metastasis is built. By combining AFP and the neutrophil-lymphocyte ratio (NLR), we developed a novel and easily applicable predictive indicator, termed ANLiM score, for liver metastasis in AFPGC. An integrated multi-omics analysis, including whole-exome sequencing and proteomic analysis, is conducted and revealed an immunosuppressive TME in AFPGC with liver metastasis. Single-cell RNA sequencing and multiplex immunofluorescence identified the potential roles of tumor-associated neutrophils and tertiary lymphoid structures in shaping the immune microenvironment. These findings are validated in a real-world cohort receiving anti-programmed cell death 1 (anti-PD-1) therapy, which showed concordant effectiveness. In addition, the ANLiM score is also identified as a promising biomarker for predicting immunotherapy efficacy. Overall, a blood biomarker-based predictive indicator is developed for liver metastasis and immunotherapy response in AFPGC. The findings on immune microenvironmental alterations for AFPGC with liver metastasis provide new insights for optimizing immunotherapy strategies.
Collapse
Affiliation(s)
- Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Qingrui Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310000, China
| | - Songting Zhu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310000, China
| | - Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jincheng Wang
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Laizhen Tou
- Department of Gastrointestinal Surgery, Lishui Central Hospital, the Fifth Hospital Affiliated to Wenzhou Medical University, Lishui, 323000, China
| | - Jingwei Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Bicheng Chen
- Department of General Surgery, Jinyun People's Hospital, Lishui, 323000, China
| | - Sizhe Hu
- Department of Gastrointestinal Surgery, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang People's Hospital, Jinhua, 321000, China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yimin Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Hongxia Xu
- Innovation Institute for Artificial Intelligence in Medicine and Liangzhu Laboratory, School of medicine, Zhejiang University, Hangzhou, 310000, China
| | - Fei Teng
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Zhan Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310000, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
2
|
Yang LJ, Zhang J, Chen QP, Pan EG, Huang ZJ, Yin XF, Wang T, He QY, Wang Y. Metastatic colorectal cancer cell preferentially secrets ribosomes, eukaryotic initiation factors and tRNA ligases via extracellular vesicles and aberrantly activate macrophages. Int J Biol Macromol 2025; 311:143938. [PMID: 40328398 DOI: 10.1016/j.ijbiomac.2025.143938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/08/2025]
Abstract
Metastatic colorectal cancer (mCRC) is an aggressive solid tumor that frequently communicates with tumor-associated macrophage (TAM). Extracellular vesicle (EV) is critical mediator in their cross-talk, however, the difference in EV proteome released by CRC cells with different metastatic potential remains unclear. We found that high metastatic potential CRC cells (mCRCHigh, SW620 and HCT116) significantly induced macrophage transform and activation, as compared to relatively low metastatic potential CRC cells (mCRCLow, Caco2). With Super-SILAC-based quantitative proteomics, the altered proteins in EV of mCRCHigh were primarily enriched in protein translation-associated macromolecules, with more than half of known protein-translation machines like ribosomal subunits (40S and 60S), eukaryotic initiation factors and tRNA ligases were identified. Sequencing of translating mRNAs (ribosome nascent-chain complex-bound mRNAs, RNC-mRNAs) suggested that mCRCHigh-derived EVs exhibited stronger effect on TAM transform by promoting the protein-translation ratio (TR) of TAM-associated genes compared to mCRCLow-derived EVs. Pretreatment of cycloheximide to suppress the endogenous protein translation could not restore the TR and TAM phenotype boosted by mCRCHigh-derived EVs. Taken together, we revealed the active role of EVs secreted from aggressive CRC cells in transforming macrophages. The release of protein translation macromolecules by EVs likely serves as functional unit to promote the translation of specific genes.
Collapse
Affiliation(s)
- Li-Juan Yang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Ping Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - En-Guang Pan
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zi-Jia Huang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Department of Radiology, The First Affiliated Hospital of Jinan University and College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Yan D, Hou Y, Lei X, Xiao H, Zeng Z, Xiong W, Fan C. The Impact of Polyunsaturated Fatty Acids in Cancer and Therapeutic Strategies. Curr Nutr Rep 2025; 14:46. [PMID: 40085324 DOI: 10.1007/s13668-025-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW Cancer is a disease influenced by both genetic and environmental factors, with dietary lipids being a significant contributing factor. This review summarizes the role of polyunsaturated fatty acids (PUFAs) in the mechanism of tumor occurrence and development, and elucidate the role of PUFAs in tumor treatment. RECENT FINDINGS PUFAs exert their impact on cancer through altering lipid composition in cell membranes, interacting with cell membrane lipid receptors, directly modulating gene expression in the cell nucleus, and participating in the metabolism of lipid mediators. Most omega-3 PUFAs are believed to inhibit cell proliferation, promote cancer cell death, suppress cancer metastasis, alter energy metabolism, inhibit tumor microenvironment inflammation, and regulate immune responses involving macrophages, T cells, NK cells, and others. However, certain omega-6 PUFAs exhibit weaker anti-tumor effects and may even promote tumor development, such as by fostering inflammatory tumor microenvironment and enhancing tumor cell proliferation. PUFAs play important roles in hallmarks of cancer including tumor cell proliferation, cell death, migration and invasion, energy metabolism remodeling, epigenetics, and immunity. These findings provide insights into the mechanisms of cancer development and offers options for dietary management of cancer.
Collapse
Affiliation(s)
- Dong Yan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Yingshan Hou
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Xinyi Lei
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Hao Xiao
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China.
- Department of Histology and Embryology, School of Basic Medicine Sciences, Central South University, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
4
|
Chong Y, Zhou H, Zhang P, Xue L, Du Q, Chong T, Wang Z. Establishing cM0 (i+) stage criteria in localized renal cell carcinoma based on postoperative circulating tumor cells monitoring. BMC Cancer 2025; 25:436. [PMID: 40069681 PMCID: PMC11895218 DOI: 10.1186/s12885-025-13815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The diagnostic criteria for cM0 (i+) stage proposed by American Joint Committee on Cancer (AJCC) in renal cell carcinoma (RCC) still remains unclear. The present study aimed to establish and validate the criteria of cM0 (i+) stage based on postoperative circulating tumor cells (CTCs) monitoring in patients with localized renal cell carcinoma (LRCC). MATERIALS AND METHODS This study enrolled 204 patients with LRCC who received partial or radical nephrectomy from January 2015 to November 2021. Cases were randomly divided into test set and validation set. The correlation between clinicopathological features and CTCs counts were analyzed and prognostic variables were determined by Lasso regression. Receiver operating characteristic curve of the prognosis-related CTCs terms were plotted to determine their optimal cut-off value to establish the criteria of cM0 (i+) stage. Its clinical prognostic significance was explored by Kaplan-Meier analysis and Log-rank test. The above analysis was conducted by SPSS26.0 software and R Studio software. P < 0.05 was considered to be statistically significant. RESULTS A total of 204 patients were analyzed in this study.There were no significant differences in variables between the validation and test sets (P>0.05). Total CTCs, mesenchymal CTCs (MCTCs), and CTCs showing a progressive trend were selected as the diagnostic basis for the cM0 (i+) stage through correlation analysis and Lasso regression. The cM0 (i+) stage identified patients meeting the following criteria simultaneously: (1) total CTCs ≥ 6; (2) MCTCs ≥ 1; and (3) a demonstrated trend of progression in either total CTCs or MCTCs. In the validation group, Kaplan-Meier analysis showed that patients with cM0 (i+) stage had significantly shorter progression-free survival than the control group(P<0.05). The results of multivariate Cox regression analysis also showed cM0 (i+) was an independent risk factor for postoperative progression of LRCC patients [12.448 (1.874-82.666) P < 0.05]. Its 1-3 years' prediction discrimination is better than that of UISS score and SSIGN score, which was also verified in the validation set. CONCLUSION The study proposed a diagnostic criterion for M0 (i+) stage in LRCC based on postoperative CTCs monitoring. It was identified as an independent risk factor for postoperative progression and demonstrated potential advantages over the UISS and SSIGN scores in internal validation.
Collapse
Affiliation(s)
- Yue Chong
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, Xin Cheng district, Xi'an, Shaanxi, 710004, China
| | - Haibin Zhou
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, Xin Cheng district, Xi'an, Shaanxi, 710004, China
- Department of Urology, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Peng Zhang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, Xin Cheng district, Xi'an, Shaanxi, 710004, China
| | - Li Xue
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, Xin Cheng district, Xi'an, Shaanxi, 710004, China
| | - Qiao Du
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, Xin Cheng district, Xi'an, Shaanxi, 710004, China
- Baoji People's Hospital, Baoji, 721001, Shaanxi, China
| | - Tie Chong
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, Xin Cheng district, Xi'an, Shaanxi, 710004, China
| | - Zhenlong Wang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi Wu Road, Xin Cheng district, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
5
|
Xu X, Gan J, Gao Z, Li R, Huang D, Lin L, Luo Y, Yang Q, Xu J, Li Y, Fang Q, Peng T, Wang Y, Xu Z, Huang A, Hong H, Lei F, Huang W, Leng J, Li T, Bo X, Chen H, Li C, Gu J. 3D genome landscape of primary and metastatic colorectal carcinoma reveals the regulatory mechanism of tumorigenic and metastatic gene expression. Commun Biol 2025; 8:365. [PMID: 40038385 PMCID: PMC11880527 DOI: 10.1038/s42003-025-07647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Colorectal carcinoma (CRC) is a deadly cancer with an aggressive nature, and how CRC tumor cells manage to translocate and proliferate in a new tissue environment remains not fully understood. Recently, higher-order chromatin structures and spatial genome organization are increasingly implicated in diseases including cancer, but in-depth studies of three-dimensional genome (3D genome) of metastatic cancer are currently lacking, preventing the understanding of the roles of genome organization during metastasis. Here we perform multi-omics profiling of matched normal colon, primary tumor, lymph node metastasis, liver metastasis and normal liver tissue from CRC patients using Hi-C, ATAC-seq and RNA-seq technologies. We find that widespread alteration of 3D chromatin structure is accompanied by dysregulation of genes including SPP1 during the tumorigenesis or metastasis of CRC. Remarkably, the hierarchy of topological associating domain (TAD) changes dynamically, which challenges the traditional view that the TAD structure between tumor and normal tissue is conservative. In addition, we define compartment stability score to measure large-scale alteration in metastatic tumors. To integrate multi-omics data and recognize candidate genes driving cancer metastasis, a pipeline is developed based on Hi-C, RNA-seq and ATAC-seq data. And three candidate genes ARL4C, FLNA, and RGCC are validated to be associated with CRC cell migration and invasion using in vitro knockout experiments. Overall, these data resources and results offer new insights into the involvement of 3D genome in cancer metastasis.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Academy of Military Medical Sciences, Beijing, China
| | - Jingbo Gan
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Ruifeng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Dandan Huang
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
- Department of Oncology, Peking University Shougang Hospital, Beijing, China
| | - Lin Lin
- Academy of Military Medical Sciences, Beijing, China
| | - Yawen Luo
- Academy of Military Medical Sciences, Beijing, China
| | - Qian Yang
- Academy of Military Medical Sciences, Beijing, China
| | - Jingxuan Xu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
| | - Yaru Li
- Academy of Military Medical Sciences, Beijing, China
| | - Qing Fang
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Ting Peng
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Yaqi Wang
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zihan Xu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - An Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Haopeng Hong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Fuming Lei
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Wensheng Huang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
| | - Jianjun Leng
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China
- Department of Hepatopancreatobiliary Surgery, Peking University Shougang Hospital, Beijing, China
| | - Tingting Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing, China.
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China.
| | - Jin Gu
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China.
- Center for Precision Diagnosis and Treatment of Colorectal Carcinoma and Inflammatory Diseases, Peking University Health Science Center, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- Peking University International Cancer Institute, Beijing, China.
| |
Collapse
|
6
|
Cote AL, Munger CJ, Ringel AE. Emerging insights into the impact of systemic metabolic changes on tumor-immune interactions. Cell Rep 2025; 44:115234. [PMID: 39862435 DOI: 10.1016/j.celrep.2025.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors. We also examine how metabolic diseases influence cancer progression, metastasis, and treatment. Finally, we consider how metabolic interventions can be deployed to improve immunotherapy. The overall goal is to highlight how metabolic heterogeneity in the human population shapes the immune response to cancer.
Collapse
Affiliation(s)
- Andrea L Cote
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Chad J Munger
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Alison E Ringel
- Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Ibrahim S, Umer Khan M, Khurram I, Rehman R, Rauf A, Ahmad Z, Aljohani ASM, Al Abdulmonem W, Quradha MM. Navigating PROTACs in Cancer Therapy: Advancements, Challenges, and Future Horizons. Food Sci Nutr 2025; 13:e70011. [PMID: 39898116 PMCID: PMC11786021 DOI: 10.1002/fsn3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Proteolysis Targeting Chimeras (PROTACs) have revolutionized cancer therapy by offering a selective and innovative approach to degrade key oncogenic proteins associated with various malignancies. These hybrid molecules exploit the ubiquitin-proteasome system, facilitating the degradation of target proteins through an event-driven mechanism, thereby overcoming drug resistance and enhancing selectivity. With diverse targets including androgen receptors, BTK, estrogen receptors, BET proteins, and BRAF, PROTACs offer a versatile strategy for personalized cancer treatment. Advantages of PROTACs over traditional small molecule inhibitors include their ability to operate at lower concentrations, catalyzing the degradation of multiple proteins of interest with reduced cytotoxicity. Notably, PROTACs address challenges associated with traditionally "undruggable" targets, expanding the therapeutic landscape of cancer therapy. Ongoing preclinical and clinical studies highlight the transformative potential of PROTACs, with promising results in prostate, breast, lung, melanoma, and colorectal cancers. Despite their potential, challenges persist in optimizing physicochemical properties and enhancing bioavailability. Further research is needed to refine PROTAC design and address complexities in molecule development. Nevertheless, the development of oral androgen receptor PROTACs represents a significant milestone, demonstrating the feasibility and efficacy of this innovative therapeutic approach. This review provides a comprehensive overview of PROTACs in cancer therapy, emphasizing their mechanism of action, advantages, and challenges. As PROTAC research progresses, continued exploration in both preclinical and clinical settings will be crucial to unlocking their full therapeutic potential and shaping the future of personalized cancer treatment.
Collapse
Affiliation(s)
- Saooda Ibrahim
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- Centre for Applied Molecular BiologyUniversity of the PunjabLahorePakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Iqra Khurram
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- Centre for Applied Molecular BiologyUniversity of the PunjabLahorePakistan
| | - Raima Rehman
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabiKhyber PakhtunkhwaPakistan
| | - Zubair Ahmad
- Department of ChemistryUniversity of SwabiSwabiKhyber PakhtunkhwaPakistan
| | - Abdullah S. M. Aljohani
- Department of Medical BiosciencesCollege of Veterinary Medicine, Qassim UniversityBuraydahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of PathologyCollege of Medicine, Qassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
8
|
Maan M, Jaiswal N, Liu M, Saavedra HI, Chellappan SP, Dutta M. TBK1 Reprograms Metabolism in Breast Cancer: An Integrated Omics Approach. J Proteome Res 2025; 24:121-133. [PMID: 39670797 DOI: 10.1021/acs.jproteome.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Metabolic rewiring is required for cancer cells to survive in harsh microenvironments and is considered to be a hallmark of cancer. Specific metabolic adaptations are required for a tumor to become invasive and metastatic. Cell division and metabolism are inherently interconnected, and several cell cycle modulators directly regulate metabolism. Here, we report that TBK1, which is a noncanonical IKK kinase with known roles in cell cycle regulation and TLR signaling, affects cellular metabolism in cancer cells. While TBK1 is reported to be overexpressed in several cancers and its enhanced protein level correlates with poor prognosis, the underlying molecular mechanism involved in the tumor-promoting role of TBK1 is not fully understood. In this study, we show a novel role of TBK1 in regulating cancer cell metabolism using combined metabolomics, transcriptomics, and pharmacological approaches. We find that TBK1 mediates the regulation of nucleotide and energy metabolism through aldo-keto reductase B10 (AKRB10) and thymidine phosphorylase (TYMP) genes, suggesting that this TBK1-mediated metabolic rewiring contributes to its oncogenic function. In addition, we find that TBK1 inhibitors can act synergistically with AKRB10 and TYMP inhibitors to reduce cell viability. These findings raise the possibility that combining these inhibitors might be beneficial in combating cancers that show elevated levels of TBK1.
Collapse
Affiliation(s)
- Meenu Maan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
- New York University - Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Neha Jaiswal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
- Roswell Park Comprehensive Cancer Center, Buffalo, New York 1420, United States
| | - Min Liu
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2347, Puerto Rico
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, Florida 33612, United States
| | - Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science Pilani (BITS Pilani) - Dubai Campus, Academic City, Dubai, P.O. Box 345055, United Arab Emirates
| |
Collapse
|
9
|
Nturubika BDD, Logan J, Johnson IRD, Moore C, Li KL, Tang J, Lam G, Parkinson-Lawrence E, Williams DB, Chakiris J, Hindes M, Brooks RD, Miles MA, Selemidis S, Gregory P, Weigert R, Butler L, Ward MP, Waugh DJJ, O’Leary JJ, Brooks DA. Components of the Endosome-Lysosome Vesicular Machinery as Drivers of the Metastatic Cascade in Prostate Cancer. Cancers (Basel) 2024; 17:43. [PMID: 39796673 PMCID: PMC11718918 DOI: 10.3390/cancers17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer remains a significant global health concern, with over 1.4 million new cases diagnosed and more than 330,000 deaths each year. The primary clinical challenge that contributes to poor patient outcomes involves the failure to accurately predict and treat at the onset of metastasis, which remains an incurable stage of the disease. This review discusses the emerging paradigm that prostate cancer metastasis is driven by a dysregulation of critical molecular machinery that regulates endosome-lysosome homeostasis. Endosome and lysosome compartments have crucial roles in maintaining normal cellular function but are also involved in many hallmarks of cancer pathogenesis, including inflammation, immune response, nutrient sensing, metabolism, proliferation, signalling, and migration. Here we discuss new insight into how alterations in the complex network of trafficking machinery, responsible for the microtubule-based transport of endosomes and lysosomes, may be involved in prostate cancer progression. A better understanding of endosome-lysosome dynamics may facilitate the discovery of novel strategies to detect and manage prostate cancer metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- Bukuru Dieu-Donne Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jessica Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ian R. D. Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jingying Tang
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Giang Lam
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Emma Parkinson-Lawrence
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Desmond B. Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - James Chakiris
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Madison Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Philip Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa Butler
- South Australian ImmunoGENomics Cancer Institute, Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5000, Australia;
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mark P. Ward
- Department of Pathology, The Coombe Women and Infants University Hospital, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - David J. J. Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - Douglas A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| |
Collapse
|
10
|
El Boustani M, Mouawad N, Abou Alezz M. AP3M2: A key regulator from the nervous system modulates autophagy in colorectal cancer. Tissue Cell 2024; 91:102593. [PMID: 39488930 DOI: 10.1016/j.tice.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Colorectal cancer (CRC) affects approximately a million people annually with a mortality rate of 50 %, accounting for 8 % of cancer-related deaths globally. Molecular characterization by The Cancer Genome Atlas could be useful in these tumor subtypes to reveal "druggable" genes. Our study focuses on the significance of the AP3M2 gene (adaptor-related protein complex 3 subunit mu 2) as a potential oncogene by employing RNA interference to inactivate AP3M2. AP3M2, inplicated in protein trafficking to lysosomes pathway and specialized organelles in neuronal cells, was amplified in CRC cell lines. The Knockdown of AP3M2 significantly reduced the viability of three CRC cell lines HCT-116, CACO2, and HT29. Intriguingly, our findings revealed an interaction between AP3M2 expression and autophagy-related genes, as well as reactive oxygen species (ROS) levels in CRC cell lines. These results suggest that targeting AP3M2 could provide a powerful strategy for CRC treatment through autophagy-ROS mechanism.
Collapse
Affiliation(s)
- Maguie El Boustani
- Nephrology and Dialysis Unit, Genomics of Renal Diseases and Hypertension Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nayla Mouawad
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, Padua, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Datta N, Vp S, Parvathy K, A S S, Maliekal TT. ALDH1A1 as a marker for metastasis initiating cells: A mechanistic insight. Exp Cell Res 2024; 442:114213. [PMID: 39173941 DOI: 10.1016/j.yexcr.2024.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Since metastasis accounts for the majority of cancer morbidity and mortality, attempts are focused to block metastasis and metastasis initiating cellular programs. It is generally believed that hypoxia, reactive oxygen species (ROS) and the dysregulated redox pathways regulate metastasis. Although induction of epithelial to mesenchymal transition (EMT) can initiate cell motility to different sites other than the primary site, the initiation of a secondary tumor at a distant site depends on self-renewal property of cancer stem cell (CSC) property. That subset of metastatic cells possessing CSC property are referred to as metastasis initiating cells (MICs). Among the different cellular intermediates regulating metastasis in response to hypoxia by inducing EMT and self-renewal property, ALDH1A1 is a critical molecule, which can be used as a marker for MICs in a wide variety of malignancies. The cytosolic ALDHs can irreversibly convert retinal to retinoic acid (RA), which initiates RA signaling, important for self-renewal and EMT. The metastasis permissive tumor microenvironment increases the expression of ALDH1A1, primarily through HIF1α, and leads to metabolic reprograming through OXPHOS regulation. The ALDH1A1 expression and its high activity can reprogram the cancer cells with the transcriptional upregulation of several genes, involved in EMT through RA signaling to manifest hybrid EMT or Hybrid E/M phenotype, which is important for acquiring the characteristics of MICs. Thus, the review on this topic highlights the use of ALDH1A1 as a marker for MICs, and reporters for the marker can be effectively used to trace the population in mouse models, and to screen drugs that target MICs.
Collapse
Affiliation(s)
- Nandini Datta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Snijesh Vp
- Division of Molecular Medicine, St. John's Research Institute, St John's National Academy of Health Sciences, Bangalore, 560034, India
| | - K Parvathy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Sneha A S
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
12
|
Xu Y, Gao Z, Sun X, Li J, Ozaki T, Shi D, Yu M, Zhu Y. The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets. Cancer Metastasis Rev 2024; 43:1055-1074. [PMID: 38558156 DOI: 10.1007/s10555-024-10182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Collapse
Affiliation(s)
- Yan Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Zhipeng Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110001, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Du Shi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, No. 77 Puhe Road, Shenyang, 110122, Liaoning, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
13
|
Wang S, Xu L, Wang D, Zhao S, Li K, Ma F, Yao Q, Zhang Y, Wu Z, Shao Y, Song S, Yan W. YTHDF1 promotes the osteolytic bone metastasis of breast cancer via inducing EZH2 and CDH11 translation. Cancer Lett 2024; 597:217047. [PMID: 38871245 DOI: 10.1016/j.canlet.2024.217047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Bone metastasis is common in breast cancer and more effective therapies are required, however, its molecular mechanism is poorly understood. Additionally, the role of the m6A reader YTHDF1 in bone metastasis of breast cancer has not been reported. Here, we reveal that the increased expression of YTHDF1 is clinically correlated with breast cancer bone metastases. YTHDF1 promotes migration, invasion, and osteoblast adhesion and induces osteoclast differentiation of cancer cells in vitro and vivo. Mechanically, RNA-seq, MeRIP-seq and RIP-seq analysis, and molecular biology experiments demonstrate that YTHDF1 translationally enhances EZH2 and CDH11 expression by reading m6A-enriched sites of their transcripts. Moreover, adeno-associated virus (AAV) was used to deliver shYTHDF1 (shYTHDF1-AAV) in intratibial injection models, eliciting a significant suppressive effect on breast cancer bone metastatic formation and osteolytic destruction. Overall, we uncovered that YTHDF1 promotes osteolytic bone metastases of breast cancer by inducing EZH2 and CDH11 translation.
Collapse
Affiliation(s)
- Shuoer Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lun Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongliang Wang
- Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Songjiao Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fen Ma
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunkui Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Zhong M, Xu W, Tian P, Zhang Q, Wang Z, Liang L, Zhang Q, Yang Y, Lu Y, Wei G. An Inherited Allele Confers Prostate Cancer Progression and Drug Resistance via RFX6/HOXA10-Orchestrated TGFβ Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401492. [PMID: 38932472 PMCID: PMC11348203 DOI: 10.1002/advs.202401492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Genetic and epigenetic alterations are cancer hallmark characteristics. However, the role of inherited cancer predisposition alleles in co-opting lineage factor epigenetic reprogramming and tumor progression remains elusive. Here the FinnGen cohort phenome-wide analysis, along with multiple genome-wide association studies, has consistently identified the rs339331-RFX6/6q22 locus associated with prostate cancer (PCa) risk across diverse populations. It is uncovered that rs339331 resides in a reprogrammed androgen receptor (AR) binding site in PCa tumors, with the T risk allele enhancing AR chromatin occupancy. RFX6, an AR-regulated gene linked to rs339331, exhibits synergistic prognostic value for PCa recurrence and metastasis. This comprehensive in vitro and in vivo studies demonstrate the oncogenic functions of RFX6 in promoting PCa cell proliferation and metastasis. Mechanistically, RFX6 upregulates HOXA10 that profoundly correlates with adverse PCa outcomes and is pivotal in RFX6-mediated PCa progression, facilitating the epithelial-mesenchymal transition (EMT) and modulating the TGFβ/SMAD signaling axis. Clinically, HOXA10 elevation is associated with increased EMT scores, tumor advancement and PCa recurrence. Remarkably, reducing RFX6 expression restores enzalutamide sensitivity in resistant PCa cells and tumors. This findings reveal a complex interplay of genetic and epigenetic mechanisms in PCa pathogenesis and drug resistance, centered around disrupted prostate lineage AR signaling and abnormal RFX6 expression.
Collapse
Affiliation(s)
- Mengjie Zhong
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Pan Tian
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Qin Zhang
- Disease Networks Research UnitFaculty of Biochemistry and Molecular MedicineBiocenter OuluUniversity of OuluOulu90220Finland
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Limiao Liang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Qixiang Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Yuehong Yang
- Disease Networks Research UnitFaculty of Biochemistry and Molecular MedicineBiocenter OuluUniversity of OuluOulu90220Finland
| | - Ying Lu
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
| | - Gong‐Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer CenterCancer Institutes, Department of OncologyShanghai Medical College of Fudan UniversityShanghai200032China
- Disease Networks Research UnitFaculty of Biochemistry and Molecular MedicineBiocenter OuluUniversity of OuluOulu90220Finland
| |
Collapse
|
15
|
Lu Y, Hsin C, Kao S, Ho Y, Yeh F, Yang S, Lin C. Isoliquiritigenin diminishes invasiveness of human nasopharyngeal carcinoma cells associating with inhibition of MMP-2 expression and STAT3 signalling. J Cell Mol Med 2024; 28:e18586. [PMID: 39121240 PMCID: PMC11315095 DOI: 10.1111/jcmm.18586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is prevalent in Asia and exhibits highly metastatic characteristics, leading to uncontrolled disease progression. Isoliquiritigenin (ISL) have attracted attention due to their diverse biological and pharmacological properties, including anticancer activities. However, the impact of ISL on the invasive and migratory ability of NPC remains poorly understood. Hence, this study aimed to investigate the in vitro anti-metastatic effects of ISL on NPC cells and elucidate the underlying signalling pathways. Human NPC cell NPC-39 and NPC-BM were utilized as cell models. Migratory and invasive capabilities were evaluated through wound healing and invasion assays, respectively. Gelatin zymography was employed to demonstrate matrix metalloproteinase-2 (MMP-2) activity, while western blotting was conducted to analyse protein expression levels and explore signalling cascades. Overexpression of signal transducer and activator of transcription 3 (STAT3) was carried out by transduction of STAT3-expressing vector. Our findings revealed that ISL effectively suppressed the migration and invasion of NPC cells. Gelatin zymography and Western blotting assays demonstrated that ISL treatment led to a reduction in MMP-2 enzyme activity and protein expression. Investigation of signalling cascades revealed that ISL treatment resulted in the inhibition of STAT3 phosphorylation. Moreover, overexpression of STAT3 restored the migratory ability of NPC cells in the presence of ISL. Collectively, these findings indicate that ISL inhibits the migration and invasion of NPC cells associating with MMP-2 downregulation through suppressing STAT3 activation. This suggests that ISL has an anti-metastatic effect on NPC cells and has potential therapeutic benefit for NPC treatment.
Collapse
Affiliation(s)
- Yen‐Ting Lu
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of OtolaryngologyChung Shan Medical University HospitalTaichungTaiwan
- Department of OtolaryngologySt. Martin De Porres HospitalChiayiTaiwan
| | - Chung‐Han Hsin
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of OtolaryngologyChung Shan Medical University HospitalTaichungTaiwan
| | - Shao‐Hsuan Kao
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Yu‐Ting Ho
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Fang‐Ling Yeh
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Shun‐Fa Yang
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Chiao‐Wen Lin
- Institute of Oral SciencesChung Shan Medical UniversityTaichungTaiwan
- Department of DentistryChung Shan Medical University HospitalTaichungTaiwan
| |
Collapse
|
16
|
Bhattacharya R, Brown JS, Gatenby RA, Ibrahim-Hashim A. A gene for all seasons: The evolutionary consequences of HIF-1 in carcinogenesis, tumor growth and metastasis. Semin Cancer Biol 2024; 102-103:17-24. [PMID: 38969311 DOI: 10.1016/j.semcancer.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also "pre-adapt" them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells-the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Department of Cancer Biology, University of South Florida, United States; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Evolutionary Biology, University of Illinois, at Chicago, United States
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Radiology, H. Lee Moffitt Cancer Center, United States.
| | - Arig Ibrahim-Hashim
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, United States.
| |
Collapse
|
17
|
Singh VK, Rajak N, Singh Y, Singh AK, Giri R, Garg N. Role of MicroRNA-21 in Prostate Cancer Progression and Metastasis: Molecular Mechanisms to Therapeutic Targets. Ann Surg Oncol 2024; 31:4795-4808. [PMID: 38758485 DOI: 10.1245/s10434-024-15453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
The role of noncoding RNA has made remarkable progress in understanding progression, metastasis, and metastatic castration-resistant prostate cancer (mCRPC). A better understanding of the miRNAs has enhanced our knowledge of their targeting mainly at the therapy level in solid tumors, such as prostate cancer (PCa). microRNAs (miRNAs) belong to a class of endogenous RNA that deficit encoded proteins. Therefore, the role of miRNAs has been well-coined in the progression and development of PCa. miR-21 has a dual nature in its work both as a tumor suppressor and oncogenic role, but most of the recent studies showed that miR-21 is a tumor promoter and also is involved in castration-resistant prostate cancer (CRPC). Upregulation of miR-21 suppresses programmed cell death and inducing metastasis and castration resistant in PCa. miR-21 is involved in the different stages, such as proliferation, angiogenesis, migration, and invasion, and plays an important role in the progression, metastasis, and advanced stages of PCa. Recently, various studies directly linked the role of high levels of miR-21 with a poor therapeutic response in the patient of PCa. In the present review, we have explained the molecular mechanisms/pathways of miR-21 in PCa progression, metastasis, and castration resistant and summarized the role of miR-21 in diagnosis and therapeutic levels in PCa. In addition, we have spotlighted the recent therapeutic strategies for targeting different stages of PCa.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, D.C., DC, USA
| | - Naina Rajak
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Yashasvi Singh
- Department of Urology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Ankit Kumar Singh
- University Department of Botany Lalit Narayan Mithila University, Darbhanga, Bihar, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
18
|
Ocaña-Tienda B, Pérez-García VM. Mathematical modeling of brain metastases growth and response to therapies: A review. Math Biosci 2024; 373:109207. [PMID: 38759950 DOI: 10.1016/j.mbs.2024.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/04/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Brain metastases (BMs) are the most common intracranial tumor type and a significant health concern, affecting approximately 10% to 30% of all oncological patients. Although significant progress is being made, many aspects of the metastatic process to the brain and the growth of the resulting lesions are still not well understood. There is a need for an improved understanding of the growth dynamics and the response to treatment of these tumors. Mathematical models have been proven valuable for drawing inferences and making predictions in different fields of cancer research, but few mathematical works have considered BMs. This comprehensive review aims to establish a unified platform and contribute to fostering emerging efforts dedicated to enhancing our mathematical understanding of this intricate and challenging disease. We focus on the progress made in the initial stages of mathematical modeling research regarding BMs and the significant insights gained from such studies. We also explore the vital role of mathematical modeling in predicting treatment outcomes and enhancing the quality of clinical decision-making for patients facing BMs.
Collapse
Affiliation(s)
- Beatriz Ocaña-Tienda
- Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| | - Víctor M Pérez-García
- Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
19
|
Solyanik G, Kolesnik D, Prokhorova I, Yurchenko O, Pyaskovskaya O. Mitochondrial dysfunction significantly contributes to the sensitivity of tumor cells to anoikis and their metastatic potential. Heliyon 2024; 10:e32626. [PMID: 38994085 PMCID: PMC11237942 DOI: 10.1016/j.heliyon.2024.e32626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
It is well-known that the survival of metastatic cells during their dissemination plays an important role in metastasis. However, does this mean that the final result of the metastatic cascade (the volume of metastatic damage to distant organs and tissues) depends on, or at least correlates with, the degree of resistance to anoikis (distinctive hallmarks of metastatic cells)? This question remains open.The aim of the work was to study in vitro the changes in the survival rates, proliferative activity, oxidative stress, and glycolysis intensity during three days of anchorage-dependent and anchorage-independent growth of two Lewis lung carcinoma cell lines (LLC and LLC/R9) and compare these changes with the status of mitochondria and metastatic potential of the cells in vivo. Methods The number and volume of lung metastases were estimated for each cell line after intramuscular inoculation of the cells in C57Bl/6 mice. For the in vitro study, the cells were seeded on Petri dishes pretreated with poly-HEMA or untreated dishes and then allowed to grow for 3 days. Cell viability, cell cycle progression, the level of reactive oxygen species (ROS), glucose consumption and lactate production rates were investigated daily in both growth conditions. An electron microscopy study of intracellular structures was carried out. Results The study showed (as far as we know for the first time) a correlation between the metastatic potential of cells (determined in vivo) and their sensitivity to anoikis (assessed in vitro). The transition of LLC/R9 cells with an inherently defective mitochondrial system to the conditions of anchorage-independent growth was characterized by a decrease in survival, a slowdown in growth rates, an increase in both glucose consumption rate and intracellular ROS levels and manyfold lower metastatic potential, compared to highly metastatic LLC cells with the normal mitochondrial system.
Collapse
Affiliation(s)
- G.I. Solyanik
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - D.L. Kolesnik
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - I.V. Prokhorova
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - O.V. Yurchenko
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - O.N. Pyaskovskaya
- Laboratory of Molecular and Cellular Mechanisms of Metastasis, RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| |
Collapse
|
20
|
Yao GS, Fu LM, Dai JS, Chen JW, Liu KZ, Liang H, Wang Z, Deng Q, Wang JY, Jin MY, Chen W, Fang Y, Luo JH, Cao JZ, Wei JH. Exploring the oncogenic potential of circSOD2 in clear cell renal cell carcinoma: a novel positive feedback loop. J Transl Med 2024; 22:596. [PMID: 38926764 PMCID: PMC11209967 DOI: 10.1186/s12967-024-05290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.
Collapse
Affiliation(s)
- Gao-Sheng Yao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Liang-Min Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Jun-Shang Dai
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin-Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Ke-Zhi Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Hui Liang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhu Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qiong Deng
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jie-Yan Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei-Yu Jin
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Yong Fang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Jun-Hang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jia-Zheng Cao
- Department of Urology, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No.23 Haibang Street, Jiangmen, 529030, Guangdong, China.
| | - Jin-Huan Wei
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
21
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
22
|
Masoudi M, Moti D, Masoudi R, Auwal A, Hossain MM, Pronoy TUH, Rashel KM, Gopalan V, Islam F. Metabolic adaptations in cancer stem cells: A key to therapy resistance. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167164. [PMID: 38599259 DOI: 10.1016/j.bbadis.2024.167164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that can initiate and sustain tumor growth and cause recurrence and metastasis. CSCs are particularly resistant to conventional therapies compared to their counterparts, owing greatly to their intrinsic metabolic plasticity. Metabolic plasticity allows CSCs to switch between different energy production and usage pathways based on environmental and extrinsic factors, including conditions imposed by conventional cancer therapies. To cope with nutrient deprivation and therapeutic stress, CSCs can transpose between glycolysis and oxidative phosphorylation (OXPHOS) metabolism. The mechanism behind the metabolic pathway switch in CSCs is not fully understood, however, some evidence suggests that the tumor microenvironment (TME) may play an influential role mediated by its release of signals, such as Wnt/β-catenin and Notch pathways, as well as a background of hypoxia. Exploring the factors that promote metabolic plasticity in CSCs offers the possibility of eventually developing therapies that may more effectively eliminate the crucial tumor cell subtype and alter the disease course substantially.
Collapse
Affiliation(s)
- Matthew Masoudi
- School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Australia
| | - Dilpreet Moti
- School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Australia
| | - Raha Masoudi
- Faculty of Science, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M Matakabbir Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Khan Mohammad Rashel
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Vinod Gopalan
- School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
23
|
Le MCN, Smith KA, Dopico PJ, Greer B, Alipanah M, Zhang Y, Siemann DW, Lagmay JP, Fan ZH. Investigating surface proteins and antibody combinations for detecting circulating tumor cells of various sarcomas. Sci Rep 2024; 14:12374. [PMID: 38811642 PMCID: PMC11137101 DOI: 10.1038/s41598-024-61651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Circulating tumor cells (CTCs) have gathered attention as a biomarker for carcinomas. However, CTCs in sarcomas have received little attention. In this work, we investigated cell surface proteins and antibody combinations for immunofluorescence detection of sarcoma CTCs. A microfluidic device that combines filtration and immunoaffinity using gangliosides 2 and cell surface vimentin (CSV) antibodies was employed to capture CTCs. For CTC detection, antibodies against cytokeratins 7 and 8 (CK), pan-cytokeratin (panCK), or a combination of panCK and CSV were used. Thirty-nine blood samples were collected from 21 patients of various sarcoma subtypes. In the independent samples study, samples were subjected to one of three antibody combination choices. Significant difference in CTC enumeration was found between CK and panCK + CSV, and between panCK and panCK + CSV. Upon stratification of CK+ samples, those of metastatic disease had a higher CTC number than those of localized disease. In the paired samples study involving cytokeratin-positive sarcoma subtypes, using panCK antibody detected more CTCs than CK. Similarly, for osteosarcoma, using panCK + CSV combination resulted in a higher CTC count than panCK. This study emphasized deliberate selection of cell surface proteins for sarcoma CTC detection and subtype stratification for studying cancers as heterogeneous as sarcomas.
Collapse
Affiliation(s)
- Minh-Chau N Le
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA
| | - Kierstin A Smith
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA
| | - Pablo J Dopico
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA
| | - Beate Greer
- Department of Pediatrics, Division of Hematology-Oncology, University of Florida, Gainesville, FL, 32610, USA
| | - Morteza Alipanah
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA
| | - Yang Zhang
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL, 32610, USA
| | - Joanne P Lagmay
- Department of Pediatrics, Division of Hematology-Oncology, University of Florida, Gainesville, FL, 32610, USA.
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
24
|
Xu Z, Liu F, Ding Y, Pan T, Wu YH, Liu J, Bado IL, Zhang W, Wu L, Gao Y, Hao X, Yu L, Edwards DG, Chan HL, Aguirre S, Dieffenbach MW, Chen E, Shen Y, Hoffman D, Dominguez LB, Rivas CH, Chen X, Wang H, Gugala Z, Satcher RL, Zhang XHF. Unbiased metastatic niche-labeling identifies estrogen receptor-positive macrophages as a barrier of T cell infiltration during bone colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593016. [PMID: 38765966 PMCID: PMC11100675 DOI: 10.1101/2024.05.07.593016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Microenvironment niches determine cellular fates of metastatic cancer cells. However, robust and unbiased approaches to identify niche components and their molecular profiles are lacking. We established Sortase A-Based Microenvironment Niche Tagging (SAMENT), which selectively labels cells encountered by cancer cells during metastatic colonization. SAMENT was applied to multiple cancer models colonizing the same organ and the same cancer to different organs. Common metastatic niche features include macrophage enrichment and T cell depletion. Macrophage niches are phenotypically diverse between different organs. In bone, macrophages express the estrogen receptor alpha (ERα) and exhibit active ERα signaling in male and female hosts. Conditional knockout of Esr1 in macrophages significantly retarded bone colonization by allowing T cell infiltration. ERα expression was also discovered in human bone metastases of both genders. Collectively, we identified a unique population of ERα+ macrophages in the metastatic niche and functionally tied ERα signaling in macrophages to T cell exclusion during metastatic colonization. HIGHLIGHTS SAMENT is a robust metastatic niche-labeling approach amenable to single-cell omics.Metastatic niches are typically enriched with macrophages and depleted of T cells.Direct interaction with cancer cells induces ERα expression in niche macrophages. Knockout of Esr1 in macrophages allows T cell infiltration and retards bone colonization.
Collapse
|
25
|
Guo H, Fu Y, Chen S, Wei Y, Xie L, Chen M. Electrochemical cytosensor utilizing tetrahedral DNA/bimetallic AuPd holothurian-shaped nanoparticles for ultrasensitive non-destructive detection of circulating tumor cells. Mikrochim Acta 2024; 191:298. [PMID: 38709403 DOI: 10.1007/s00604-024-06378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.
Collapse
Affiliation(s)
- Hong Guo
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yang Fu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Siyu Chen
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yuxin Wei
- School of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Linzhi Xie
- School of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Mei Chen
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
26
|
Huang YP, Yeh CA, Ma YS, Chen PY, Lai KC, Lien JC, Hsieh WT. PW06 suppresses cancer cell metastasis in human pancreatic carcinoma MIA PaCa-2 cells via the inhibitions of p-Akt/mTOR/NF-κB and MMP2/MMP9 signaling pathways in vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:2768-2781. [PMID: 38264921 DOI: 10.1002/tox.24143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
PW06 [(E)-3-(9-ethyl-9H-carbazol-3-yl)-1-(2,5-dimethoxyphenyl) prop-2-en-1-one], a kind of the carbazole derivative containing chalcone moiety, induced cell apoptosis in human pancreatic carcinoma in vitro. There is no investigation to show that PW06 inhibits cancer cell metastasis in human pancreatic carcinoma in vitro. Herein, PW06 (0.1-0.8 μM) significantly exists in the antimetastatic activities of human pancreatic carcinoma MIA PaCa-2 cells in vitro. Wound healing assay shows PW06 at 0.2 μM suppressed cell mobility by 7.45 and 16.55% at 6 and 24 hours of treatments. PW06 at 0.1 and 0.2 μM reduced cell mobility by 14.72 and 21.8% for 48 hours of treatment. Transwell chamber assay indicated PW06 (0.1-0.2 μM) suppressed the cell migration (decreased 26.67-35.42%) and invasion (decreased 48.51-68.66%). Atomic force microscopy assay shows PW06 (0.2 μM) significantly changed the shape of cell morphology. The gelatin zymography assay indicates PW06 decreased MMP2's and MMP9's activities at 48 hours of treatment. Western blotting assay further confirms PW06 reduced levels of MMP2 and MMP9 and increased protein expressions of EGFR, SOS1, and Ras. PW06 also increased the p-JNK, p-ERK, and p-p38. PW06 increased the expression of PI3K, PTEN, Akt, GSK3α/β, and E-cadherin. Nevertheless, results also show PW06 decreased p-Akt, mTOR, NF-κB, p-GSK3β, β-catenin, Snail, N-cadherin, and vimentin in MIA PaCa-2 cells. The confocal laser microscopy examination shows PW06 increased E-cadherin but decreased vimentin in MIA PaCa-2 cells. Together, our findings strongly suggest that PW06 inhibited the p-Akt/mTOR/NF-κB/MMPs pathways, increased E-cadherin, and decreased N-cadherin/vimentin, suppressing the migration and invasion in MIA PaCa-2 cells in vitro.
Collapse
Affiliation(s)
- Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-An Yeh
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, College of Life Science, China Medical University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Wen-Tsong Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Mohamad Zamberi NN, Abuhamad AY, Low TY, Mohtar MA, Syafruddin SE. dCas9 Tells Tales: Probing Gene Function and Transcription Regulation in Cancer. CRISPR J 2024; 7:73-87. [PMID: 38635328 DOI: 10.1089/crispr.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing is evolving into an essential tool in the field of biological and medical research. Notably, the development of catalytically deactivated Cas9 (dCas9) enzyme has substantially broadened its traditional boundaries in gene editing or perturbation. The conjugation of dCas9 with various molecular effectors allows precise control over transcriptional processes, epigenetic modifications, visualization of chromosomal dynamics, and several other applications. This expanded repertoire of CRISPR-Cas9 applications has emerged as an invaluable molecular tool kit that empowers researchers to comprehensively interrogate and gain insights into health and diseases. This review delves into the advancements in Cas9 protein engineering, specifically on the generation of various dCas9 tools that have significantly enhanced the CRISPR-based technology capability and versatility. We subsequently discuss the multifaceted applications of dCas9, especially in interrogating the regulation and function of genes that involve in supporting cancer pathogenesis. In addition, we also delineate the designing and utilization of dCas9-based tools as well as highlighting its current constraints and transformative potentials in cancer research.
Collapse
Affiliation(s)
- Nurul Nadia Mohamad Zamberi
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Asmaa Y Abuhamad
- Bionanotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
28
|
Ray SK, Mukherjee S. Molecular perspectives on systemic priming and concomitant immunity in colorectal carcinoma. J Egypt Natl Canc Inst 2024; 36:7. [PMID: 38462581 DOI: 10.1186/s43046-024-00211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
The progression of metastasis, a complex systemic disease, is facilitated by interactions between tumor cells and their isolated microenvironments. Over the past few decades, researchers have investigated the metastatic spread of cancer extensively, identifying multiple stages in the process, such as intravasation, extravasation, tumor latency, and the development of micrometastasis and macrometastasis. The premetastatic niche is established in target organs by the accumulation of aberrant immune cells and extracellular matrix proteins. The "seed and soil" idea, which has become widely known and accepted, is being used to this day to guide cancer studies. Changes in the local and systemic immune systems have a major impact on whether an infection spreads or not. The belief that the immune response may play a role in slowing tumor growth and may be beneficial against the metastatic disease underpins the responsiveness shown in the immunological landscape of metastasis. Various hypotheses on the phylogenesis of metastases have been proposed in the past. The primary tumor's secreting factors shape the intratumoral microenvironment and the immune landscape, allowing this progress to be made. Therefore, it is evident that among disseminated tumor cells, there are distinct phenotypes that either carry budding for metastasis or have the ability to obtain this potential or in systemic priming through contact with substantial metastatic niches that have implications for medicinal chemistry. Concurrent immunity signals that the main tumor induces an immune response that may not be strong enough to eradicate the tumor. Immunotherapy's success with some cancer patients shows that it is possible to effectively destroy even advanced-stage tumors by modifying the microenvironment and tumor-immune cell interactions. This review focuses on the metastasome in colorectal carcinoma and the therapeutic implications of site-specific metastasis, systemic priming, tumor spread, and the relationship between the immune system and metastasis.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India.
| |
Collapse
|
29
|
Hu W, Yang Y, Cheng C, Tu Y, Chang H, Tsai K. Overexpression of malic enzyme is involved in breast cancer growth and is correlated with poor prognosis. J Cell Mol Med 2024; 28:e18163. [PMID: 38445776 PMCID: PMC10915829 DOI: 10.1111/jcmm.18163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Malic enzyme (ME) genes are key functional metabolic enzymes playing a crucial role in carcinogenesis. However, the detailed effects of ME gene expression on breast cancer progression remain unclear. Here, our results revealed ME1 expression was significantly upregulated in breast cancer, especially in patients with oestrogen receptor/progesterone receptor-negative and human epidermal growth factor receptor 2-positive breast cancer. Furthermore, upregulation of ME1 was significantly associated with more advanced pathological stages (p < 0.001), pT stage (p < 0.001) and tumour grade (p < 0.001). Kaplan-Meier analysis revealed ME1 upregulation was associated with poor disease-specific survival (DSS: p = 0.002) and disease-free survival (DFS: p = 0.003). Multivariate Cox regression analysis revealed ME1 upregulation was significantly correlated with poor DSS (adjusted hazard ratio [AHR] = 1.65; 95% CI: 1.08-2.52; p = 0.021) and DFS (AHR, 1.57; 95% CI: 1.03-2.41; p = 0.038). Stratification analysis indicated ME1 upregulation was significantly associated with poor DSS (p = 0.039) and DFS (p = 0.038) in patients with non-triple-negative breast cancer (TNBC). However, ME1 expression did not affect the DSS of patients with TNBC. Biological function analysis revealed ME1 knockdown could significantly suppress the growth of breast cancer cells and influence its migration ability. Furthermore, the infiltration of immune cells was significantly reduced when they were co-cultured with breast cancer cells with ME1 knockdown. In summary, ME1 plays an oncogenic role in the growth of breast cancer; it may serve as a potential biomarker of progression and constitute a therapeutic target in patients with breast cancer.
Collapse
Affiliation(s)
- Wan‐Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Ching‐Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
- Department of PediatricsTzu Chi UniversityHualienTaiwan
| | - Ya‐Ting Tu
- Department of ResearchTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Hong‐Tai Chang
- Department of SurgeryKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Kuo‐Wang Tsai
- Department of ResearchTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- Department of NursingCardinal Tien Junior College of Healthcare and ManagementNew Taipei CityTaiwan
| |
Collapse
|
30
|
Deng T, Zhao J, Tong Y, Chen Z, He B, Li J, Chen B, Li R, Deng L, Yu H, Zhang B, Zhang T, Shi Z, Gao B, Jiang J, Shan Y, Yu Z, Jin Y, Wang Y, Xia J, Chen G. Crosstalk between endothelial progenitor cells and HCC through periostin/CCL2/CD36 supports formation of the pro-metastatic microenvironment in HCC. Oncogene 2024; 43:944-961. [PMID: 38351345 DOI: 10.1038/s41388-024-02960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/19/2024]
Abstract
Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration. POSTN also mediated the crosstalk between HCC and EPCs, which promoted metastasis ability and upregulated CD36 expression in HCC through indirect crosstalk. Chemokine arrays further revealed that hepatic-derived POSTN induced elevated CCL2 expression and secretion in EPCs, and CCL2 promoted prometastatic traits in HCC. Mechanistic studies showed that POSTN upregulated CCL2 expression in EPCs via the αvβ3/ILK/NF-κB pathway. CCL2 further induced CD36 expression via the CCR2/STAT3 pathway by directly binding to the promoter region of CD36. Finally, CD36 was verified to have a prometastatic role in vitro and to be correlated with POSTN expression, metastasis and recurrence in HCC in clinical samples. Our findings revealed that crosstalk between HCC and EPCs is mediated by periostin/CCL2/CD36 signalling which promotes HCC metastasis and emphasizes a potential therapeutic strategy for preventing HCC metastasis.
Collapse
Affiliation(s)
- Tuo Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jungang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yifan Tong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bangjie He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Rizhao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liming Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- The Second Affiliated Hospital, Department of General Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Baofu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhehao Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Boyang Gao
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junyan Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuepeng Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jinglin Xia
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Liver Cancer Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China.
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Liver Cancer Institute, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325005, China.
| |
Collapse
|
31
|
Xu W, Yao H, Wu Z, Yan X, Jiao Z, Liu Y, Zhang M, Wang D. Oncoprotein SET-associated transcription factor ZBTB11 triggers lung cancer metastasis. Nat Commun 2024; 15:1362. [PMID: 38355937 PMCID: PMC10867109 DOI: 10.1038/s41467-024-45585-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Metastasis is the major cause of lung cancer-related death, but the mechanisms governing lung tumor metastasis remain incompletely elucidated. SE translocation (SET) is overexpressed in lung tumors and correlates with unfavorable prognosis. Here we uncover SET-associated transcription factor, zinc finger and BTB domain-containing protein 11 (ZBTB11), as a prometastatic regulator in lung tumors. SET interacts and collaborates with ZBTB11 to promote lung cancer cell migration and invasion, primarily through SET-ZBTB11 complex-mediated transcriptional activation of matrix metalloproteinase-9 (MMP9). Additionally, by transcriptional repression of proline-rich Gla protein 2 (PRRG2), ZBTB11 links Yes-associated protein 1 (YAP1) activation to drive lung tumor metastasis independently of SET-ZBTB11 complex. Loss of ZBTB11 suppresses distal metastasis in a lung tumor mouse model. Overexpression of ZBTB11 is recapitulated in human metastatic lung tumors and correlates with diminished survival. Our study demonstrates ZBTB11 as a key metastatic regulator and reveals diverse mechanisms by which ZBTB11 modulates lung tumor metastasis.
Collapse
Affiliation(s)
- Wenbin Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zhen Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zishan Jiao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yajing Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
32
|
Lawrence-Paul MR, Pan TC, Pant DK, Shih NNC, Chen Y, Belka GK, Feldman M, DeMichele A, Chodosh LA. Rare subclonal sequencing of breast cancers indicates putative metastatic driver mutations are predominately acquired after dissemination. Genome Med 2024; 16:26. [PMID: 38321573 PMCID: PMC10848417 DOI: 10.1186/s13073-024-01293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Evolutionary models of breast cancer progression differ on the extent to which metastatic potential is pre-encoded within primary tumors. Although metastatic recurrences often harbor putative driver mutations that are not detected in their antecedent primary tumor using standard sequencing technologies, whether these mutations were acquired before or after dissemination remains unclear. METHODS To ascertain whether putative metastatic driver mutations initially deemed specific to the metastasis by whole exome sequencing were, in actuality, present within rare ancestral subclones of the primary tumors from which they arose, we employed error-controlled ultra-deep sequencing (UDS-UMI) coupled with FFPE artifact mitigation by uracil-DNA glycosylase (UDG) to assess the presence of 132 "metastasis-specific" mutations within antecedent primary tumors from 21 patients. Maximum mutation detection sensitivity was ~1% of primary tumor cells. A conceptual framework was developed to estimate relative likelihoods of alternative models of mutation acquisition. RESULTS The ancestral primary tumor subclone responsible for seeding the metastasis was identified in 29% of patients, implicating several putative drivers in metastatic seeding including LRP5 A65V and PEAK1 K140Q. Despite this, 93% of metastasis-specific mutations in putative metastatic driver genes remained undetected within primary tumors, as did 96% of metastasis-specific mutations in known breast cancer drivers, including ERRB2 V777L, ESR1 D538G, and AKT1 D323H. Strikingly, even in those cases in which the rare ancestral subclone was identified, 87% of metastasis-specific putative driver mutations remained undetected. Modeling indicated that the sequential acquisition of multiple metastasis-specific driver or passenger mutations within the same rare subclonal lineage of the primary tumor was highly improbable. CONCLUSIONS Our results strongly suggest that metastatic driver mutations are sequentially acquired and selected within the same clonal lineage both before, but more commonly after, dissemination from the primary tumor, and that these mutations are biologically consequential. Despite inherent limitations in sampling archival primary tumors, our findings indicate that tumor cells in most patients continue to undergo clinically relevant genomic evolution after their dissemination from the primary tumor. This provides further evidence that metastatic recurrence is a multi-step, mutation-driven process that extends beyond primary tumor dissemination and underscores the importance of longitudinal tumor assessment to help guide clinical decisions.
Collapse
Affiliation(s)
- Matthew R Lawrence-Paul
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tien-Chi Pan
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dhruv K Pant
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalie N C Shih
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yan Chen
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - George K Belka
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Abramson Family Cancer Research Institute, Philadelphia, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Feldman
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Angela DeMichele
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA.
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Lewis A Chodosh
- 2-PREVENT Translational Center of Excellence, Philadelphia, USA.
- Abramson Family Cancer Research Institute, Philadelphia, USA.
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
McAloney CA, Makkawi R, Budhathoki Y, Cannon MV, Franz EM, Gross AC, Cam M, Vetter TA, Duhen R, Davies AE, Roberts RD. Host-derived growth factors drive ERK phosphorylation and MCL1 expression to promote osteosarcoma cell survival during metastatic lung colonization. Cell Oncol (Dordr) 2024; 47:259-282. [PMID: 37676378 PMCID: PMC10899530 DOI: 10.1007/s13402-023-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
PURPOSE For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.
Collapse
Affiliation(s)
- Camille A McAloney
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Rawan Makkawi
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Yogesh Budhathoki
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Matthew V Cannon
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily M Franz
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Amy C Gross
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maren Cam
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Rebekka Duhen
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Alexander E Davies
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Ryan D Roberts
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Pediatric Hematology, Oncology, and BMT, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
34
|
Mongkolpathumrat P, Pikwong F, Phutiyothin C, Srisopar O, Chouyratchakarn W, Unnajak S, Nernpermpisooth N, Kumphune S. The secretory leukocyte protease inhibitor (SLPI) in pathophysiology of non-communicable diseases: Evidence from experimental studies to clinical applications. Heliyon 2024; 10:e24550. [PMID: 38312697 PMCID: PMC10835312 DOI: 10.1016/j.heliyon.2024.e24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Non-communicable diseases (NCDs) are a worldwide health issue because of their prevalence, negative impacts on human welfare, and economic costs. Protease enzymes play important roles in viral and NCD diseases. Slowing disease progression by inhibiting proteases using small-molecule inhibitors or endogenous inhibitory peptides appears to be crucial. Secretory leukocyte protease inhibitor (SLPI), an inflammatory serine protease inhibitor, maintains protease/antiprotease balance. SLPI is produced by host defense effector cells during inflammation to prevent proteolytic enzyme-induced tissue damage. The etiology of noncommunicable illnesses is linked to SLPI's immunomodulatory and tissue regeneration roles. Disease phases are associated with SLPI levels and activity changes in regional tissue and circulation. SLPI has been extensively evaluated in inflammation, but rarely in NCDs. Unfortunately, the thorough evaluation of SLPI's pathophysiological functions in NCDs in multiple research models has not been published elsewhere. In this review, data from PubMed from 2014 to 2023 was collected, analysed, and categorized into in vitro, in vivo, and clinical studies. According to the review, serine protease inhibitor (SLPI) activity control is linked to non-communicable diseases (NCDs) and other illnesses. Overexpression of the SLPI gene and protein may be a viable diagnostic and therapeutic target for non-communicable diseases (NCDs). SLPI is also cytoprotective, making it a unique treatment. These findings suggest that future research should focus on these pathways using advanced methods, reliable biomarkers, and therapy approaches to assess susceptibility and illness progression. Implications from this review will help pave the way for a new therapeutic target and diagnosis marker for non-communicable diseases.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Cardiovascular and Thoracic Technology Program, Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Center), Pathumthani 12120, Thailand
| | - Faprathan Pikwong
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Onnicha Srisopar
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Sasimanas Unnajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Nitirut Nernpermpisooth
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
35
|
Caggia S, Johnston A, Walunj DT, Moore AR, Peer BH, Everett RW, Oyelere AK, Khan SA. Gα i2 Protein Inhibition Blocks Chemotherapy- and Anti-Androgen-Induced Prostate Cancer Cell Migration. Cancers (Basel) 2024; 16:296. [PMID: 38254786 PMCID: PMC10813862 DOI: 10.3390/cancers16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
We have previously shown that heterotrimeric G-protein subunit alphai2 (Gαi2) is essential for cell migration and invasion in prostate, ovarian and breast cancer cells, and novel small molecule inhibitors targeting Gαi2 block its effects on migratory and invasive behavior. In this study, we have identified potent, metabolically stable, second generation Gαi2 inhibitors which inhibit cell migration in prostate cancer cells. Recent studies have shown that chemotherapy can induce the cancer cells to migrate to distant sites to form metastases. In the present study, we determined the effects of taxanes (docetaxel), anti-androgens (enzalutamide and bicalutamide) and histone deacetylase (HDAC) inhibitors (SAHA and SBI-I-19) on cell migration in prostate cancer cells. All treatments induced cell migration, and simultaneous treatments with new Gαi2 inhibitors blocked their effects on cell migration. We concluded that a combination treatment of Gαi2 inhibitors and chemotherapy could blunt the capability of cancer cells to migrate and form metastases.
Collapse
Affiliation(s)
- Silvia Caggia
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Alexis Johnston
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Dipak T. Walunj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Aanya R. Moore
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Benjamin H. Peer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Ravyn W. Everett
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Shafiq A. Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| |
Collapse
|
36
|
Chowdhury PR, Salvamani S, Gunasekaran B, Peng HB, Ulaganathan V. H19: An Oncogenic Long Non-coding RNA in Colorectal Cancer. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:495-509. [PMID: 38161577 PMCID: PMC10751868 DOI: 10.59249/tdbj7410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) has been recorded amongst the most common cancers in the world, with high morbidity and mortality rates, and relatively low survival rates. With risk factors such as chronic illness, age, and lifestyle associated with the development of CRC, the incidence of CRC is increasing each year. Thus, the discovery of novel biomarkers to improve the diagnosis and prognosis of CRC has become beneficial. Long non-coding RNAs (lncRNAs) have been emerging as potential players in several tumor types, one among them is the lncRNA H19. The paternally imprinted oncofetal gene is expressed in the embryo, downregulated at birth, and reappears in tumors. H19 aids in CRC cell growth, proliferation, invasion, and metastasis via various mechanisms of action, significantly through the lncRNA-microRNA (miRNA)-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network, where H19 behaves as a miRNA sponge. The RNA transcript of H19 obtained from the first exon of the H19 gene, miRNA-675 also promotes CRC carcinogenesis. Overexpression of H19 in malignant tissues compared to adjacent non-malignant tissues marks H19 as an independent prognostic marker in CRC. Besides its prognostic value, H19 serves as a promising target for therapy in CRC treatment.
Collapse
Affiliation(s)
- Prerana R. Chowdhury
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Shamala Salvamani
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied
Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Hoh B. Peng
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Vaidehi Ulaganathan
- Department of Biotechnology, Faculty of Applied
Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Manica D, Silva GBD, Silva APD, Marafon F, Maciel SFVDO, Bagatini MD, Moreno M. Curcumin promotes apoptosis of human melanoma cells by caspase 3. Cell Biochem Funct 2023; 41:1295-1304. [PMID: 37792322 DOI: 10.1002/cbf.3863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
Cutaneous melanoma (CM) is a malignant neoplasm with a high metastatic rate that shows poor response to systemic treatments in patients with advanced stages. Recently, studies have highlighted the antineoplastic potential of natural compounds, such as polyphenols, in the adjuvant therapy context to treat CM. The objective of the present study was to evaluate the effect of different concentrations of curcumin (0.1-100 µM) on the metastatic CM cell line SK-MEL-28. The cells were treated for 6 and 24 h with different concentrations of curcumin. Cell viability was assessed by 3-(4,5-dimethyl-2thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and fluorescence microscopy. The apoptotic-inducing potential was detected by annexin V flow cytometry. The wound healing assay was used to verify cell migration after the curcumin exposition. The redox profile was evaluated by levels of the pro-oxidant markers reactive oxygen species (ROS) and Nitric oxide (NOx) and antioxidants of total thiols (PSH) and nonprotein thiols. The gene expression and enzymatic activity of caspase 3 were evaluated by reverse transcription-quantitative polymerase chain reaction and a sensitive fluorescence assay, respectively. Curcumin significantly decreased the cell viability of SK-MEL-28 cells at both exposure times. It also induced apoptosis at the highest concentration tested (p < .0001). SK-MEL-28 cell migration was inhibited by curcumin after treatment with 10 µM (p < .0001) and 100 µM (p < .0001) for 6 and 24 h (p = .0006 and p < .0001, respectively). Furthermore, curcumin significantly increased levels of ROS and NOx. Finally, curcumin was capable of increasing the gene expression at 10 µM (p = .0344) and 100 µM (p = .0067) and enzymatic activity at 10 µM (p = .0086) and 100 µM (p < .0001) of caspase 3 after 24 h. For the first time, we elucidated in our study that curcumin increases ROS levels, promoting oxidative stress that activates the caspase pathway and culminates in SK-MEL-28 metastatic CM cell death.
Collapse
Affiliation(s)
- Daiane Manica
- Postgraduate Programme in Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Programme in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, Santa Catarina, Brazil
| | - Alana Patrícia da Silva
- Postgraduate Programme in Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Filomena Marafon
- Postgraduate Programme in Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Margarete Dulce Bagatini
- Postgraduate Programme in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Marcelo Moreno
- Postgraduate Programme in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| |
Collapse
|
38
|
Zubareva EY, Senchukova MA, Karmakova TA, Zaitsev NV. The features of PD-L1 expression in tumor stromal cells, peritumoral microvessels and isolated clusters of tumor cells in breast cancer tissue and their correlation with clinical and morphological characteristics of breast cancer. SIBERIAN JOURNAL OF ONCOLOGY 2023; 22:71-83. [DOI: 10.21294/1814-4861-2023-22-5-71-83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Objective: to study the features of PD-L1 expression in tumor stromal cells, peritumoral microvessels, and isolated clusters of tumor cells in breast cancer (Bc) tissue and their correlation with the clinical and morphological characteristics of Bc.Material and Methods. The study included 158 patients with newly diagnosed invasive BC. PD-L1 expression was studied by immunohistochemistry. statistical analysis was performed using statistica 12.0 software.Results. PD-L1 expression in peritumoral microvessels occurred in 41.4 and 61.7 % of cases with t1–2 and T3–4 (p=0.020), and in 39.8 and 51.7 % of cases with N0–1 and N2–3 (p=0.008), respectively. In isolated clusters of tumor cells, the marker expression was observed in 28.0 and 52.5 % of cases in nodular and diffuse forms of BC (p=0.005); in 25.9, 39.3 and 66.7 % of cases at stages I–IIb, IIIa–IIIc and IV (p=0.011); in 30.3, 26.2, 40.0 and 52.5 % of cases in T1, T2, T3 and T4 (p=0.040); and in 28.2 and 45.5 % of cases in N0–1 and N2–3 (p=0.030), respectively. Nuclear expression of PD-L1 was also detected in stromal cells, and was observed in 28.8 and 55.0 % of cases with nodular and diffuse forms of BC (p=0.003), in 17.6, 52.5 and 75.0 % of cases in early, locally advanced and metastatic BC (p<0.001), in 21.2, 28.7, 80.0 and 55.0 % of cases in T1, T2, T3 and T4 (p=0.002), in 21.7, 35.3, 51.4 and 55.0 % of cases with N0, N1, N2 and N3 (p=0.005), in 49.0 and 29.0 % of cases with negative and positive status of PR (p=0.014), in 30.3 and 52.8 % of cases with HER2-negative and HER2-positive BC status (p=0.014), respectively.Conclusion. The data indicate the relationship between PD-L1 expression and BC progression. The determination of PD-L1 expression in peritumoral microvessels and isolated tumor cell clusters, as well as nuclear expression of the marker, can be used to clarify the prognosis of the disease.
Collapse
Affiliation(s)
| | - M. A. Senchukova
- Orenburg Regional Clinical Oncology Center; Orenburg state medical university of the Ministry of Health of the Russia
| | - T. A. Karmakova
- P.A. Hertsen Moscow Oncology Research Institute – Branch of the National Medical Research Radiological Centre of the Ministryof Health of the Russia
| | | |
Collapse
|
39
|
Chang YC, Liu HP, Chuang HL, Liao JW, Kao PL, Chan HL, Chen TH, Wang YC. Feline mammary carcinoma-derived extracellular vesicle promotes liver metastasis via sphingosine kinase-1-mediated premetastatic niche formation. Lab Anim Res 2023; 39:27. [PMID: 37941082 PMCID: PMC10634095 DOI: 10.1186/s42826-023-00180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Feline mammary carcinoma (FMC) is one of the most prevalent malignancies of female cats. FMC is highly metastatic and thus leads to poor disease outcomes. Among all metastases, liver metastasis occurs in about 25% of FMC patients. However, the mechanism underlying hepatic metastasis of FMC remains largely uncharacterized. RESULTS Herein, we demonstrate that FMC-derived extracellular vesicles (FMC-EVs) promotes the liver metastasis of FMC by activating hepatic stellate cells (HSCs) to prime a hepatic premetastatic niche (PMN). Moreover, we provide evidence that sphingosine kinase 1 (SK1) delivered by FMC-EV was pivotal for the activation of HSC and the formation of hepatic PMN. Depletion of SK1 impaired cargo sorting in FMC-EV and the EV-potentiated HSC activation, and abolished hepatic colonization of FMC cells. CONCLUSIONS Taken together, our findings uncover a previously uncharacterized mechanism underlying liver-metastasis of FMC and provide new insights into prognosis and treatment of this feline malignancy.
Collapse
Affiliation(s)
- Yi-Chih Chang
- Department of Medical Laboratory Science & Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Pei-Ling Kao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hsun-Lung Chan
- Veterinary Research Institute, Ministry of Agriculture, Zhunan, Taiwan
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Yu-Chih Wang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan.
| |
Collapse
|
40
|
Weisman CM. The permissive binding theory of cancer. Front Oncol 2023; 13:1272981. [PMID: 38023252 PMCID: PMC10666763 DOI: 10.3389/fonc.2023.1272981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The later stages of cancer, including the invasion and colonization of new tissues, are actively mysterious compared to earlier stages like primary tumor formation. While we lack many details about both, we do have an apparently successful explanatory framework for the earlier stages: one in which genetic mutations hold ultimate causal and explanatory power. By contrast, on both empirical and conceptual grounds, it is not currently clear that mutations alone can explain the later stages of cancer. Can a different type of molecular change do better? Here, I introduce the "permissive binding theory" of cancer, which proposes that novel protein binding interactions are the key causal and explanatory entity in invasion and metastasis. It posits that binding is more abundant at baseline than we observe because it is restricted in normal physiology; that any large perturbation to physiological state revives this baseline abundance, unleashing many new binding interactions; and that a subset of these cause the cellular functions at the heart of oncogenesis, especially invasion and metastasis. Significant physiological perturbations occur in cancer cells in very early stages, and generally become more extreme with progression, providing interactions that continually fuel invasion and metastasis. The theory is compatible with, but not limited to, causal roles for the diverse molecular changes observed in cancer (e.g. gene expression or epigenetic changes), as these generally act causally upstream of proteins, and so may exert their effects by changing the protein binding interactions that occur in the cell. This admits the possibility that molecular changes that appear quite different may actually converge in creating the same few protein complexes, simplifying our picture of invasion and metastasis. If correct, the theory offers a concrete therapeutic strategy: targeting the key novel complexes. The theory is straightforwardly testable by large-scale identification of protein interactions in different cancers.
Collapse
Affiliation(s)
- Caroline M. Weisman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| |
Collapse
|
41
|
Chen B, Huang R, Xia T, Wang C, Xiao X, Lu S, Chen X, Ouyang Y, Deng X, Miao J, Zhao C, Wang L. The m6A reader IGF2BP3 preserves NOTCH3 mRNA stability to sustain Notch3 signaling and promote tumor metastasis in nasopharyngeal carcinoma. Oncogene 2023; 42:3564-3574. [PMID: 37853162 PMCID: PMC10673713 DOI: 10.1038/s41388-023-02865-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Metastasis remains the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC), in which sustained activation of the Notch signaling plays a critical role. N6-Methyladenosine (m6A)-mediated post-transcriptional regulation is involved in fine-tuning the Notch signaling output; however, the post-transcriptional mechanisms underlying NPC metastasis remain poorly understood. In the present study, we report that insulin-like growth factor 2 mRNA-binding proteins 3 (IGF2BP3) serves as a key m6A reader in NPC. IGF2BP3 expression was significantly upregulated in metastatic NPC and correlated with poor prognosis in patients with NPC. IGF2BP3 overexpression promoted, while IGF2BP3 downregulation inhibited tumor metastasis and the stemness phenotype of NPC cells in vitro and in vivo. Mechanistically, IGF2BP3 maintains NOTCH3 mRNA stability via suppression of CCR4-NOT complex-mediated deadenylation in an m6A-dependent manner, which sustains Notch3 signaling activation and increases the transcription of stemness-associated downstream genes, eventually promoting tumor metastasis. Our findings highlight the pro-metastatic function of the IGF2BP3/Notch3 axis and revealed the precise role of IGF2BP3 in post-transcriptional regulation of NOTCH3, suggesting IGF2BP3 as a novel prognostic biomarker and potential therapeutic target in NPC metastasis.
Collapse
Affiliation(s)
- Boyu Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Runda Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tianliang Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chunyang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shunzhen Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiangfu Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ying Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiaowu Deng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jingjing Miao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Chong Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Lin Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
42
|
Nolan E, Kang Y, Malanchi I. Mechanisms of Organ-Specific Metastasis of Breast Cancer. Cold Spring Harb Perspect Med 2023; 13:a041326. [PMID: 36987584 PMCID: PMC10626265 DOI: 10.1101/cshperspect.a041326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Cancer metastasis, or the development of secondary tumors in distant tissues, accounts for the vast majority of fatalities in patients with breast cancer. Breast cancer cells show a striking proclivity to metastasize to distinct organs, specifically the lung, liver, bone, and brain, where they face unique environmental pressures and a wide variety of tissue-resident cells that together create a strong barrier for tumor survival and growth. As a consequence, successful metastatic colonization is critically dependent on reciprocal cross talk between cancer cells and host cells within the target organ, a relationship that shapes the formation of a tumor-supportive microenvironment. Here, we discuss the mechanisms governing organ-specific metastasis in breast cancer, focusing on the intricate interactions between metastatic cells and specific niche cells within a secondary organ, and the remarkable adaptations of both compartments that cooperatively support cancer growth. More broadly, we aim to provide a framework for the microenvironmental prerequisites within each distinct metastatic site for successful breast cancer metastatic seeding and outgrowth.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1023, New Zealand
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
| | - Ilaria Malanchi
- Tumour Host Interaction laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
43
|
Ni Y, Liang Y, Li M, Lin Y, Zou X, Han F, Cao J, Li L. The updates on metastatic mechanism and treatment of colorectal cancer. Pathol Res Pract 2023; 251:154837. [PMID: 37806170 DOI: 10.1016/j.prp.2023.154837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Colorectal cancer (CRC) is a main cause of cancer death worldwide. Metastasis is a major cause of cancer-related death in CRC. The treatment of metastatic CRC has progressed minimally. However, the potential molecular mechanisms involved in CRC metastasis have remained to be comprehensively clarified. An improved understanding of the CRC mechanistic determinants is needed to better prevent and treat metastatic cancer. In this review, based on evidence from a growing body of research in metastatic cancers, we discuss the cellular and molecular mechanisms involved in CRC metastasis. This review reveals both the molecular mechanisms of metastases and identifies new opportunities for developing more effective strategies to target metastatic relapse and improve CRC patient outcomes.
Collapse
Affiliation(s)
- Yunfei Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - You Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin Zou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Fangyi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jianing Cao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Liang Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
44
|
Reggiani F, Ambrosio M, Croce M, Tanda ET, Spagnolo F, Raposio E, Petito M, El Rashed Z, Forlani A, Pfeffer U, Amaro AA. Interdependence of Molecular Lesions That Drive Uveal Melanoma Metastasis. Int J Mol Sci 2023; 24:15602. [PMID: 37958591 PMCID: PMC10648765 DOI: 10.3390/ijms242115602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The metastatic risk of uveal melanoma (UM) is defined by a limited number of molecular lesions, somatic mutations (SF3B1 and BAP1), and copy number alterations (CNA): monosomy of chromosome 3 (M3), chr8q gain (8q), chr6p gain (6p), yet the sequence of events is not clear. We analyzed data from three datasets (TCGA-UVM, GSE27831, GSE51880) with information regarding M3, 8q, 6p, SF3B1, and BAP1 status. We confirm that BAP1 mutations are always associated with M3 in high-risk patients. All other features (6p, 8q, M3, SF3B1 mutation) were present independently from each other. Chr8q gain was frequently associated with chr3 disomy. Hierarchical clustering of gene expression data of samples with different binary combinations of aggressivity factors shows that patients with 8q|M3, BAP1|M3 form one cluster enriched in samples that developed metastases. Patients with 6p combined with either 8q or SF3B1 are mainly represented in the other, low-risk cluster. Several gene expression events that show a non-significant association with outcome when considering single features become significant when analyzing combinations of risk features indicating additive action. The independence of risk factors is consistent with a random risk model of UM metastasis without an obligatory sequence.
Collapse
Affiliation(s)
- Francesco Reggiani
- Laboratory of Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Marianna Ambrosio
- Laboratory of Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine (DIMES), University of Genova, Via Leon Battista Alberti, 16132 Genova, Italy
| | - Michela Croce
- Biotherapies, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Enrica Teresa Tanda
- Skin Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Internal Medicine and Medical Specialties, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
| | - Francesco Spagnolo
- Skin Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
| | - Edoardo Raposio
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
- Plastic Surgery Division, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy
| | - Mariangela Petito
- Laboratory of Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Zeinab El Rashed
- Laboratory of Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Alessandra Forlani
- Laboratory of Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Ulrich Pfeffer
- Laboratory of Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Adriana Agnese Amaro
- Laboratory of Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
45
|
Ildiz ES, Gvozdenovic A, Kovacs WJ, Aceto N. Travelling under pressure - hypoxia and shear stress in the metastatic journey. Clin Exp Metastasis 2023; 40:375-394. [PMID: 37490147 PMCID: PMC10495280 DOI: 10.1007/s10585-023-10224-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Cancer cell invasion, intravasation and survival in the bloodstream are early steps of the metastatic process, pivotal to enabling the spread of cancer to distant tissues. Circulating tumor cells (CTCs) represent a highly selected subpopulation of cancer cells that tamed these critical steps, and a better understanding of their biology and driving molecular principles may facilitate the development of novel tools to prevent metastasis. Here, we describe key research advances in this field, aiming at describing early metastasis-related processes such as collective invasion, shedding, and survival of CTCs in the bloodstream, paying particular attention to microenvironmental factors like hypoxia and mechanical stress, considered as important influencers of the metastatic journey.
Collapse
Affiliation(s)
- Ece Su Ildiz
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Werner J Kovacs
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
46
|
He K, Wang Z, Luo M, Li B, Ding N, Li L, He B, Wang H, Cao J, Huang C, Yang J, Chen HN. Metastasis organotropism in colorectal cancer: advancing toward innovative therapies. J Transl Med 2023; 21:612. [PMID: 37689664 PMCID: PMC10493031 DOI: 10.1186/s12967-023-04460-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/19/2023] [Indexed: 09/11/2023] Open
Abstract
Distant metastasis remains a leading cause of mortality among patients with colorectal cancer (CRC). Organotropism, referring to the propensity of metastasis to target specific organs, is a well-documented phenomenon in CRC, with the liver, lungs, and peritoneum being preferred sites. Prior to establishing premetastatic niches within host organs, CRC cells secrete substances that promote metastatic organotropism. Given the pivotal role of organotropism in CRC metastasis, a comprehensive understanding of its molecular underpinnings is crucial for biomarker-based diagnosis, innovative treatment development, and ultimately, improved patient outcomes. In this review, we focus on metabolic reprogramming, tumor-derived exosomes, the immune system, and cancer cell-organ interactions to outline the molecular mechanisms of CRC organotropic metastasis. Furthermore, we consider the prospect of targeting metastatic organotropism for CRC therapy.
Collapse
Affiliation(s)
- Kai He
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ning Ding
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Li
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Han Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiangjun Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Hai-Ning Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- Department of General Surgery, State Key Laboratory of Biotherapy and Cancer Center, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
47
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
48
|
Huldani H, Alshahrani SH, Almajidi YQ, Romero-Parra RM, Hjazi A, Alsaab HO, Oudaha KH, Hussien BM, Ahmed M, Fard SRH. miR-495-3p as a promising tumor suppressor in human cancers. Pathol Res Pract 2023; 248:154610. [PMID: 37307621 DOI: 10.1016/j.prp.2023.154610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Noncoding RNAs are a type of cellular RNA not having the ability to translate into proteins. As an important type of ncRNA with a length of about 22 nucleotides (nt), microRNAs were revealed to contribute to regulating the various cellular functions via regulating the protein translation of target genes. Among them, available studies proposed that miR-495-3p is a pivotal player in cancer pathogenesis. These studies showed that the expression level of miR-495-3p decreased in various cancer cells, suggesting its tumor suppressor role in cancer pathogenesis. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are the important regulators of miR-495-3p via sponging it, leading to increased expression levels of its target genes. Moreover, miR-495-3p was shown to have a promising potential to be a prognostic and diagnostic biomarker in cancer. MiR-495-3p also could affect the resistance of cancer cells to chemotherapy agents. Here, we discussed the molecular mechanisms of miR-495-3p in various cancer including breast cancer. In addition, we discussed the miR-495-3p potential as a prognostic and diagnostic biomarker as well as its activity in cancer chemotherapy. Finally, we discussed the current limitations regarding the use of microRNAs in clinics and the future prospects of microRNAs.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | - Yasir Qasim Almajidi
- Department of pharmacy (pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
49
|
Ruggiero C, Tamburello M, Rossini E, Zini S, Durand N, Cantini G, Cioppi F, Hantel C, Kiseljak-Vassiliades K, Wierman ME, Landwehr LS, Weigand I, Kurlbaum M, Zizioli D, Turtoi A, Yang S, Berruti A, Luconi M, Sigala S, Lalli E. FSCN1 as a new druggable target in adrenocortical carcinoma. Int J Cancer 2023; 153:210-223. [PMID: 36971100 DOI: 10.1002/ijc.34526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a high risk of relapse and metastatic spread. The actin-bundling protein fascin (FSCN1) is overexpressed in aggressive ACC and represents a reliable prognostic indicator. FSCN1 has been shown to synergize with VAV2, a guanine nucleotide exchange factor for the Rho/Rac GTPase family, to enhance the invasion properties of ACC cancer cells. Based on those results, we investigated the effects of FSCN1 inactivation by CRISPR/Cas9 or pharmacological blockade on the invasive properties of ACC cells, both in vitro and in an in vivo metastatic ACC zebrafish model. Here, we showed that FSCN1 is a transcriptional target for β-catenin in H295R ACC cells and that its inactivation resulted in defects in cell attachment and proliferation. FSCN1 knock-out modulated the expression of genes involved in cytoskeleton dynamics and cell adhesion. When Steroidogenic Factor-1 (SF-1) dosage was upregulated in H295R cells, activating their invasive capacities, FSCN1 knock-out reduced the number of filopodia, lamellipodia/ruffles and focal adhesions, while decreasing cell invasion in Matrigel. Similar effects were produced by the FSCN1 inhibitor G2-044, which also diminished the invasion of other ACC cell lines expressing lower levels of FSCN1 than H295R. In the zebrafish model, metastases formation was significantly reduced in FSCN1 knock-out cells and G2-044 significantly reduced the number of metastases formed by ACC cells. Our results indicate that FSCN1 is a new druggable target for ACC and provide the rationale for future clinical trials with FSCN1 inhibitors in patients with ACC.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560, Valbonne, France
- Université Côte d'Azur, 06560, Valbonne, France
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Silvia Zini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Nelly Durand
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560, Valbonne, France
- Université Côte d'Azur, 06560, Valbonne, France
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
| | - Francesca Cioppi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091, Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Dresden, Germany
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 80045, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, 80045, Aurora, Colorado, USA
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, 80045, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, 80045, Aurora, Colorado, USA
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetology-Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Isabel Weigand
- Division of Endocrinology and Diabetology-Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
- Department of Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Max Kurlbaum
- Division of Endocrinology and Diabetology-Department of Internal Medicine I, University Hospital, University of Würzburg, 97080, Würzburg, Germany
| | - Daniela Zizioli
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Andrei Turtoi
- Tumor Microenvironment and Resistance to Therapy Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier-INSERM U1194, 34090, Montpellier, France
- Platform for Translational Oncometabolomics, Biocampus, CNRS-INSERM-Université de Montpellier, 34090, Montpellier, France
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 17033, Hershey, Pennsylvania, USA
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123, Brescia, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134, Florence, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, 06560, Valbonne, France
- Université Côte d'Azur, 06560, Valbonne, France
- Inserm, 06560, Valbonne, France
| |
Collapse
|
50
|
Li M, Sun J, Shi G. Application of CRISPR screen in mechanistic studies of tumor development, tumor drug resistance, and tumor immunotherapy. Front Cell Dev Biol 2023; 11:1220376. [PMID: 37427373 PMCID: PMC10326906 DOI: 10.3389/fcell.2023.1220376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Tumor is one of the biggest threats to human health. Though tumor therapy has been dramatically advanced by the progress of technology and research in recent decades, it is still far from expectations. Thus, it is of great significance to explore the mechanisms of tumor growth, metastasis, and resistance. Screen based on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) 9 gene editing technology are powerful tools for exploring the abovementioned facets. This review summarizes the recent screen performed in cancer cells and immune cells in the tumor microenvironment. The screens in cancer cells mainly focus on exploring the mechanisms underlying cancer cells' growth, metastasis, and how cancer cells escape from the FDA approved drugs or immunotherapy. And the studies in tumor-associated immune cells are primarily aimed at identifying signaling pathways that can enhance the anti-tumor function of cytotoxic T lymphocytes (CTLs), CAR-T cells, and macrophages. Moreover, we discuss the limitations, merits of the CRISPR screen, and further its future application in tumor studies. Importantly, recent advances in high throughput tumor related CRISPR screen have deeply contributed to new concepts and mechanisms underlying tumor development, tumor drug resistance, and tumor immune therapy, all of which will eventually potentiate the clinical therapy for tumor patients.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Jin Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| |
Collapse
|