1
|
Teixeira M, Louis B, Baudron SA. A blessing and a curse: impact of urea derivatives on the secondary building unit of Ca-MOFs prepared in deep eutectic solvents. Dalton Trans 2025; 54:5006-5016. [PMID: 39992226 DOI: 10.1039/d4dt03254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Deep eutectic solvents (DESs) based on a 1 : 2 combination of choline chloride with either urea or e-urea (2-imidazolidinone) have been studied as media for the preparation of Ca(II) metal-organic frameworks (Ca-MOFs). In particular, the impact of the urea derivative on the secondary building unit (SBU) has been investigated by exploring the formation of Ca-MOFs with a series of ten di- and tetra-carboxylic acids, varying in length, steric hindrance and the number and relative orientation of coordinating units. While several of these ligands have, to the best of our knowledge, not been previously reported to form Ca-MOFs, eleven new materials could be prepared and characterized by single-crystal and powder diffraction, elemental and thermogravimetric analyses as well as absorption and emission spectroscopy. The DES incorporating e-urea was found to be especially prone to the formation of crystalline materials. However, a recurrent one-dimensional SBU based on bridging carboxylate moieties and the carbonyl unit of e-urea was observed. Coordination of the solvent molecule is assisted by hydrogen bonding of the NH groups, leading to a strongly stabilizing motif preventing these materials from thermal activation without loss of crystallinity.
Collapse
Affiliation(s)
- Michaël Teixeira
- Université de Strasbourg, CNRS, CMC UMR 7140, 4 rue Blaise Pascal, F-67000 Strasbourg, France.
| | - Benoît Louis
- Université de Strasbourg, CNRS, ICPEES UMR 7515, 25 rue Becquerel, F-67087 Strasbourg, France
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, 4 rue Blaise Pascal, F-67000 Strasbourg, France.
| |
Collapse
|
2
|
Goeminne R, Van Speybroeck V. Ab Initio Predictions of Adsorption in Flexible Metal-Organic Frameworks for Water Harvesting Applications. J Am Chem Soc 2025; 147:3615-3630. [PMID: 39818949 PMCID: PMC11783526 DOI: 10.1021/jacs.4c15287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Metal-organic frameworks such as MOF-303 and MOF-LA2-1 have demonstrated exceptional performance for water harvesting applications. To enable a reticular design of such materials, an accurate prediction of the adsorption properties with chemical accuracy and fully accounting for the flexibility is crucial. The computational prediction of water adsorption properties in MOFs has become standard practice, but current methods lack the predictive power needed to design new materials. Limitations stem from the way the interatomic potential is described and the inadequate consideration of the framework flexibility. Herein, we showcase a methodology to obtain chemically accurate adsorption isotherms that fully account for framework flexibility. The method relies on very accurate and efficiently trained machine learning potentials and transition matrix Monte Carlo simulations to account for framework flexibility. For MOF-303, quantitatively accurate adsorption isotherms are obtained, provided an accurately benchmarked electronic structure method is used to train the machine learning potential, and local and global framework flexibility is accounted for. The broader applicability is shown through the study of MOF-333 and MOF-LA2-1. Analysis of the water density profiles in the MOFs gives insight into the factors governing the shape and origin of the isotherm. An optimal water harvester should have initial seeding sites with intermediate adsorption strength to prevent detrimental low-pressure water uptake. To increase the working capacity, linker extension strategies can be used while maintaining the initial seeding sites, as was done in MOF-LA2-1. The methodology can be applied to other guest molecules and MOFs, enabling the future design of MOFs with specific adsorption properties.
Collapse
Affiliation(s)
- Ruben Goeminne
- Center for Molecular Modeling
Ghent University Tech Lane Ghent Science Park Campus A, 9052 Zwijnaarde, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling
Ghent University Tech Lane Ghent Science Park Campus A, 9052 Zwijnaarde, Belgium
| |
Collapse
|
3
|
Ceballos M, Zampini G, Semyonov O, Funes-Hernando S, Vila-Fungueiriño JM, Martínez-Giménez S, Tatay S, Martí-Gastaldo C, Devic T, Pelaz B, del Pino P. Ultrafast synthesis of zirconium-porphyrin framework nanocrystals from alkoxide precursors. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102318. [PMID: 39712645 PMCID: PMC11659387 DOI: 10.1016/j.xcrp.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024]
Abstract
Porphyrinic metal-organic frameworks (MOFs) offer high surface areas and tunable catalytic and optoelectronic properties, making them versatile candidates for applications in phototherapy, drug delivery, photocatalysis, electronics, and energy storage. However, a key challenge for industrial integration is the rapid, cost-effective production of suitable sizes. This study introduces Zr(IV) alkoxides as metal precursors, achieving ultrafast (∼minutes) and high-yield (>90%) synthesis of three well-known Zr-based porphyrinic MOF nanocrystals: MOF-525, PCN-224, and PCN-222, each with distinct topologies. By adjusting linker-to-metal and modulator-to-metal ratios, we attain precise control over single-phase formation. Demonstrating alkoxides' potential, we synthesized nanosized PCN-224 at room temperature within seconds using a continuous multifluidic method. This advancement greatly simplifies porphyrinic MOF production, enabling broader industrial and scientific applications.
Collapse
Affiliation(s)
- Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giulia Zampini
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Oleg Semyonov
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Funes-Hernando
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Manuel Vila-Fungueiriño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sonia Martínez-Giménez
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, 46980 Paterna, Spain
| | - Sergio Tatay
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, 46980 Paterna, Spain
| | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán-2, 46980 Paterna, Spain
| | - Thomas Devic
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, 44000 Nantes, France
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Zhou C, Oh J, Stone ML, Richardson S, Chung PH, Osio-Norgaard J, Nhan BT, Kumar A, Chi M, Cargnello M. A General Approach for Metal Nanoparticle Encapsulation Within Porous Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409710. [PMID: 39523738 DOI: 10.1002/adma.202409710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Encapsulation of metal nanoparticles within oxide materials has been shown as an effective strategy to improve activity, selectivity, and stability in several catalytic applications. Several approaches have been proposed to encapsulate nanoparticles, such as forming core-shell structures, growing ordered structures (zeolites or metal-organic frameworks) on nanoparticles, or directly depositing support materials on nanoparticles. Here, a general nanocasting method is demonstrated that can produce diverse encapsulated metal@oxide structures with different compositions (Pt, Pd, Rh) and multiple types of oxides (Al2O3, Al2O3-CeO2, ZrO2, ZnZrOx, In2O3, Mn2O3, TiO2) while controlling the size and dispersion of nanoparticles and the porous structure of the oxide. Metal@polymer structures are first prepared, and then the oxide precursor is infiltrated into such structures and the resulting material is calcined to form the metal@oxide structures. Most Pt@oxides catalysts show similar catalytic activity, demonstrating the availability of surface Pt sites in the encapsulated structures. However, the Pt@Mn2O3 sample showed much higher CO oxidation activity, while also being stable under aging conditions. This work demonstrated a robust nanocasting method to synthesize metal@oxide structures, which can be utilized in catalysis to finely tune metal-oxide interfaces.
Collapse
Affiliation(s)
- Chengshuang Zhou
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Jinwon Oh
- Department of Materials Science and Engineering, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Michael L Stone
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Sydney Richardson
- Department of Mechanical Engineering, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Pin-Hung Chung
- Department of Materials Science and Engineering, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Jorge Osio-Norgaard
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Bang T Nhan
- Department of Chemistry, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Abinash Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
Wang Z, Fei H, Wu YN. Unveiling Advancements: Trends and Hotspots of Metal-Organic Frameworks in Photocatalytic CO 2 Reduction. CHEMSUSCHEM 2024; 17:e202400504. [PMID: 38666390 DOI: 10.1002/cssc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Metal-organic frameworks (MOFs) are robust, crystalline, and porous materials featured by their superior CO2 adsorption capacity, tunable energy band structure, and enhanced photovoltaic conversion efficiency, making them highly promising for photocatalytic CO2 reduction reaction (PCO2RR). This study presents a comprehensive examination of the advancements in MOFs-based PCO2RR field spanning the period from 2011 to 2023. Employing bibliometric analysis, the paper scrutinizes the widely adopted terminology and citation patterns, elucidating trends in publication, leading research entities, and the thematic evolution within the field. The findings highlight a period of rapid expansion and increasing interdisciplinary integration, with extensive international and institutional collaboration. A notable emphasis on significant research clusters and key terminologies identified through co-occurrence network analysis, highlighting predominant research on MOFs such as UiO, MIL, ZIF, porphyrin-based MOFs, their composites, and the hybridization with photosensitizers and molecular catalysts. Furthermore, prospective design approaches for catalysts are explored, encompassing single-atom catalysts (SACs), interfacial interaction enhancement, novel MOF constructions, biocatalysis, etc. It also delves into potential avenues for scaling these materials from the laboratory to industrial applications, underlining the primary technical challenges that need to be overcome to facilitate the broader application and development of MOFs-based PCO2RR technologies.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
6
|
Zhang M, Luo X, Hu Y, Shen Y, Chen Y, Yuan S, Wang H, Xing X, Zhao J. Deciphering Metal-Organic Framework Synthesis from Hydroxy Double Salts: In-Situ Insights via Synchrotron X-ray Diffraction and Absorption Spectroscopy. CHEM & BIO ENGINEERING 2024; 1:606-614. [PMID: 39974700 PMCID: PMC11835274 DOI: 10.1021/cbe.3c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2025]
Abstract
Developing rapid room-temperature synthesis is key to sustainable manufacturing of metal-organic frameworks (MOFs). Using layered compounds such as hydroxy double salts (HDSs) as precursors significantly promotes the reaction kinetics and lowers the required synthesis temperature. However, limited understanding of the reaction mechanism impedes the further exploration of new routes for MOF synthesis. Here, we report for the first time the use of combined in-situ synchrotron X-ray diffraction and X-ray absorption spectroscopy to monitor the dynamic processes to form MOFs in solution. The conversion from a (Zn,Co) HDS to a mixed-metal zeolitic imidazolate framework-8 (mmZIF-8) was chosen as our model reaction. Time-resolved diffraction patterns exclude the presence of intercalated HDS structures with altered d-spacing and any other crystalline intermediate phase during the synthesis. The activation energies of nucleation and growth were found as 25.5 ± 2.5 and 64.0 ± 7.9 kJ·mol-1, respectively. In addition, we captured the evolution of local structures from mixed coordination states in the HDS to tetrahedral coordination in the mmZIF-8. Furthermore, two possible reaction pathways were proposed to account for the fast conversion from HDS to mmZIF-8. The fundamental understanding towards the HDS-based synthesis obtained in this work is expected to guide future development of new fabrication methods for MOF materials.
Collapse
Affiliation(s)
- Ming Zhang
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, P. R. China
- Institute
of Zhejiang University - Quzhou, 99 Zheda Road, Quzhou, Zhejiang 324000, P. R. China
| | - Xinyu Luo
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, P. R. China
- Institute
of Zhejiang University - Quzhou, 99 Zheda Road, Quzhou, Zhejiang 324000, P. R. China
| | - Yubin Hu
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, P. R. China
- Institute
of Zhejiang University - Quzhou, 99 Zheda Road, Quzhou, Zhejiang 324000, P. R. China
| | - Yuanhao Shen
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, P. R. China
- Institute
of Zhejiang University - Quzhou, 99 Zheda Road, Quzhou, Zhejiang 324000, P. R. China
| | - Yixin Chen
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, P. R. China
- Institute
of Zhejiang University - Quzhou, 99 Zheda Road, Quzhou, Zhejiang 324000, P. R. China
| | - Shuchang Yuan
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, P. R. China
- Institute
of Zhejiang University - Quzhou, 99 Zheda Road, Quzhou, Zhejiang 324000, P. R. China
| | - Hao Wang
- Beijing
Synchrotron Radiation Facility, Institute
of High Energy Physics, Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Xueqing Xing
- Beijing
Synchrotron Radiation Facility, Institute
of High Energy Physics, Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Junjie Zhao
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, Zhejiang 310058, P. R. China
- Institute
of Zhejiang University - Quzhou, 99 Zheda Road, Quzhou, Zhejiang 324000, P. R. China
| |
Collapse
|
7
|
Singh A, Gogoi R, Sharma K, Jena SK, Kumar R, Fourati N, Zerrouki C, Remita S, Siril PF. Engineering the physical properties and photocatalytic activities of a β-ketoenamine COF using continuous flow synthesis. CHEMOSPHERE 2024; 361:142524. [PMID: 38844103 DOI: 10.1016/j.chemosphere.2024.142524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Covalent Organic Frameworks (COF) having conjugated backbone are an interesting class of metal-free, visible light active, heterogeneous photocatalysts. Interestingly, synthesis of COF using continuous flow process has emerged as an efficient, alternative method when compared to the traditional batch process. Here, we demonstrate the possibility to engineer the physical properties and hence the adsorption and catalytic activities of a β-ketoenamine COF by varying monomer flow rate and microreactor design during the continuous flow synthesis. Crystallinity of the COF increases on varying the monomer flow rate from 100 (S-100) to 500 (S-500) and up to 1000 μLmin-1 (S-1000), in an S-shaped microreactor, resulting in an enhanced surface area: 525, 722 and 1119 m2g-1 respectively. The photophysical properties of the COF are also found to vary significantly with the change in flow synthesis conditions. S-1000 is characterized by the highest adsorption of MB, due to its high surface area and accessible pores. On the other hand, S-500 shows the highest photocurrent, a low recombination of photogenerated charges and the lowest charge transfer resistance. Thus, S-500 is found to be the best photocatalyst for the removal of a model pollutant (methylene blue, MB). Further, enhanced photocatalytic removal of MB using S-500 could be achieved by performing the photocatalysis in continuous flow.
Collapse
Affiliation(s)
- Astha Singh
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Rituporn Gogoi
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Kajal Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Swadhin Kumar Jena
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Rajesh Kumar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Najla Fourati
- Laboratory of Information and Energy Technology Systems and Applications (SATIE), UMR 8029, CNRS, ENS Paris-Saclay, CNAM, 292 Rue Saint-Martin, 7503, Paris, France
| | - Chouki Zerrouki
- Laboratory of Information and Energy Technology Systems and Applications (SATIE), UMR 8029, CNRS, ENS Paris-Saclay, CNAM, 292 Rue Saint-Martin, 7503, Paris, France
| | - Samy Remita
- Institut de Chimie Physique, ICP, UMR 8000, CNRS, Université Paris-Saclay, Bâtiment 349, Campus D'Orsay, 15 Avenue Jean Perrin, 91405, Orsay Cedex, France; Département Chimie Vivant Santé, EPN 7, Conservatoire National des Arts et Métiers, CNAM, 292 Rue Saint-Martin, 75141, Paris Cedex 03, France
| | - Prem Felix Siril
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
8
|
Lu X, Chen Z, Chen G, Liu Z. Metal-organic framework based self-powered devices for human body energy harvesting. Chem Commun (Camb) 2024; 60:7843-7865. [PMID: 38967500 DOI: 10.1039/d4cc02110j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The shift from traditional bulky electronics to smart wearable devices represents a crucial trend in technological advancement. In recent years, the focus has intensified on harnessing thermal and mechanical energy from human activities to power small wearable electronics. This vision has attracted considerable attention from researchers, with an emphasis on the development of suitable materials that can efficiently convert human body energy into usable electrical form. Metal-organic frameworks (MOFs), with their unique tunable structures, large surface areas, and high porosity, emerge as a promising material category for human body energy harvesting due to their ability to be precisely engineered at the molecular level, which allows for the optimization of their properties to suit specific energy harvesting needs. This article explores the progressive development of MOF materials, highlighting their potential in the realm of self-power devices for wearable applications. It first introduces the typical energy harvesting routes that are particularly suitable for harvesting human body energy, including thermoelectric, triboelectric, and piezoelectric techniques. Then, it delves into various research advances that have demonstrated the efficacy of MOFs in capturing and converting body-generated energy into electrical energy, emphasizing on the conceptual design, device fabrication, and applications in medical health monitoring, human-computer interaction, and motion monitoring. Furthermore, it discusses potential future directions for research in MOF-based self-powered devices and outlines perspectives that could drive breakthroughs in the efficiency and practicality of these devices.
Collapse
Affiliation(s)
- Xin Lu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhi Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Guangming Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhuoxin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
9
|
Shubhangi, Divya, Rai SK, Chandra P. Shifting paradigm in electrochemical biosensing matrices comprising metal organic frameworks and their composites in disease diagnosis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1980. [PMID: 38973017 DOI: 10.1002/wnan.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024]
Abstract
Metal Organic Frameworks (MOFs) are an evolving category of crystalline microporous materials that have grabbed the research interest for quite some time due to their admirable physio-chemical properties and easy fabrication methods. Their enormous surface area can be a working ground for innumerable molecular adhesions and site for potential sensor matrices. They have been explored in the last decade for incorporation in electrochemical sensor matrices as diagnostic solutions for a plethora of diseases. This review emphasizes on some of the recent advancements in the area of MOF-based electrochemical biosensors with focus on various important diseases and their significance in upgrading the sensor performance. It summarizes MOF-based biosensors for monitoring biomarkers relevant to diabetes, viral and bacterial sepsis infections, neurological disorders, cardiovascular diseases, and cancer in a wide range of real matrices. The discussion has been supplemented with extensive tables elaborating recent trends in the field of MOF-composite probe fabrication strategies with their respective sensing parameters. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Varanasi, Uttar Pradesh, India
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Sanjay K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
10
|
Rozaini MT, Grekov DI, Bustam MA, Pré P. Low-Hydrophilic HKUST-1/Polymer Extrudates for the PSA Separation of CO 2/CH 4. Molecules 2024; 29:2069. [PMID: 38731559 PMCID: PMC11085341 DOI: 10.3390/molecules29092069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
HKUST-1 is an MOF adsorbent industrially produced in powder form and thus requires a post-shaping process for use as an adsorbent in fixed-bed separation processes. HKUST-1 is also sensitive to moisture, which degrades its crystalline structure. In this work, HKUST-1, in the form of crystalline powder, was extruded into pellets using a hydrophobic polymeric binder to improve its moisture stability. Thermoplastic polyurethane (TPU) was used for that purpose. The subsequent HKUST-1/TPU extrudate was then compared to HKUST-1/PLA extrudates synthesized with more hydrophilic polymer: polylactic acid (PLA), as the binder. The characterization of the composites was determined via XRD, TGA, SEM-EDS, and an N2 adsorption isotherm analysis. Meanwhile, the gas-separation performances of HKUST-1/TPU were investigated and compared with HKUST-1/PLA from measurements of CO2 and CH4 isotherms at three different temperatures, up to 10 bars. Lastly, the moisture stability of the composite materials was investigated via an aging analysis during storage under humid conditions. It is shown that HKUST-1's crystalline structure was preserved in the HKUST-1/TPU extrudates. The composites also exhibited good thermal stability under 523 K, whilst their textural properties were not significantly modified compared with the pristine HKUST-1. Furthermore, both extrudates exhibited larger CO2 and CH4 adsorption capacities in comparison to the pristine HKUST-1. After three months of storage under atmospheric humid conditions, CO2 adsorption capacities were reduced to only 10% for HKUST-1/TPU, whereas reductions of about 25% and 54% were observed for HKUST-1/PLA and the pristine HKUST-1, respectively. This study demonstrates the interest in shaping MOF powders by extrusion using a hydrophobic thermoplastic binder to operate adsorbents with enhanced moisture stability in gas-separation columns.
Collapse
Affiliation(s)
- Muhamad Tahriri Rozaini
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Denys I. Grekov
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Mohamad Azmi Bustam
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
| | - Pascaline Pré
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| |
Collapse
|
11
|
Han J, Zhang H, Fan Y, Zhou L, Zhang Z, Li P, Li Z, Du Y, Meng Q. Progressive Insights into Metal-Organic Frameworks and Metal-Organic Framework-Membrane Composite Systems for Wastewater Management. Molecules 2024; 29:1615. [PMID: 38611894 PMCID: PMC11013246 DOI: 10.3390/molecules29071615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The sustainable management of wastewater through recycling and utilization stands as a pressing concern in the trajectory of societal advancement. Prioritizing the elimination of diverse organic contaminants is paramount in wastewater treatment, garnering significant attention from researchers worldwide. Emerging metal-organic framework materials (MOFs), bridging organic and inorganic attributes, have surfaced as novel adsorbents, showcasing pivotal potential in wastewater remediation. Nevertheless, challenges like limited water stability, elevated dissolution rates, and inadequate hydrophobicity persist in the context of wastewater treatment. To enhance the performance of MOFs, they can be modified through chemical or physical methods, and combined with membrane materials as additives to create membrane composite materials. These membrane composites, derived from MOFs, exhibit remarkable characteristics including enhanced porosity, adjustable pore dimensions, superior permeability, optimal conductivity, and robust water stability. Their ability to effectively sequester organic compounds has spurred significant research in this field. This paper introduces methods for enhancing the performance of MOFs and explores their potential applications in water treatment. It delves into the detailed design, synthesis strategies, and fabrication of composite membranes using MOFs. Furthermore, it focuses on the application prospects, challenges, and opportunities associated with MOF composite membranes in water treatment.
Collapse
Affiliation(s)
- Jilong Han
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Hanya Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Yuheng Fan
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Lilong Zhou
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Zhikun Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Pengfei Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Zhengjie Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; (J.H.); (H.Z.); (Y.F.); (L.Z.); (Z.Z.); (P.L.)
| | - Yongsheng Du
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| | - Qingfen Meng
- Qinghai Qaeidam Xinghua Lithium Salt Co., Ltd., Golmud 817000, China;
| |
Collapse
|
12
|
Hao W, Lee SH, Peera SG. Xerogel-Derived Manganese Oxide/N-Doped Carbon as a Non-Precious Metal-Based Oxygen Reduction Reaction Catalyst in Microbial Fuel Cells for Energy Conversion Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2949. [PMID: 37999303 PMCID: PMC10674280 DOI: 10.3390/nano13222949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 11/25/2023]
Abstract
Current study provides a novel strategy to synthesize the nano-sized MnO nanoparticles from the quick, ascendable, sol-gel synthesis strategy. The MnO nanoparticles are supported on nitrogen-doped carbon derived from the cheap sustainable source. The resulting MnO/N-doped carbon catalysts developed in this study are systematically evaluated via several physicochemical and electrochemical characterizations. The physicochemical characterizations confirms that the crystalline MnO nanoparticles are successfully synthesized and are supported on N-doped carbons, ascertained from the X-ray diffraction and transmission electron microscopic studies. In addition, the developed MnO/N-doped carbon catalyst was also found to have adequate surface area and porosity, similar to the traditional Pt/C catalyst. Detailed investigations on the effect of the nitrogen precursor, heat treatment temperature, and N-doped carbon support on the ORR activity is established in 0.1 M of HClO4. It was found that the MnO/N-doped carbon catalysts showed enhanced ORR activity with a half-wave potential of 0.69 V vs. RHE, with nearly four electron transfers and excellent stability with just a loss of 10 mV after 20,000 potential cycles. When analyzed as an ORR catalyst in dual-chamber microbial fuel cells (DCMFC) with Nafion 117 membrane as the electrolyte, the MnO/N-doped carbon catalyst exhibited a volumetric power density of ~45 mW m2 and a 60% degradation of organic matter in 30 days of continuous operation.
Collapse
Affiliation(s)
| | - Sang-Hun Lee
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
13
|
Azbell TJ, Pitt TA, Jerozal RT, Mandel RM, Milner PJ. Simplifying the Synthesis of Metal-Organic Frameworks. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:867-878. [PMID: 38226178 PMCID: PMC10788152 DOI: 10.1021/accountsmr.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes that have attracted widespread interest due to their permanent porosity and highly modular structures. However, the large volumes of organic solvents and additives, long reaction times, and specialized equipment typically required to synthesize MOFs hinder their widespread adoption in both academia and industry. Recently, our lab has developed several user-friendly methods for the gram-scale (1-100 g) preparation of MOFs. Herein, we summarize our progress in the development of high-concentration solvothermal, mechanochemical, and ionothermal syntheses of MOFs, as well as in minimizing the amount of modulators required to prepare highly crystalline Zr-MOFs. To begin, we detail our work elucidating key features of acid modulation in Zr-MOFs to improve upon current dilute solvothermal syntheses. Choosing an optimal modulator maximizes the crystallinity and porosity of Zr-MOFs while minimizing the quantity of modulator needed, reducing the waste associated with MOF synthesis. By evaluating a range of modulators, we identify the pKa, size, and structural similarity of the modulator to the linker as controlling factors in modulating ability. In the following section, we describe two high-concentration solvothermal methods for the synthesis of Zr-MOFs and demonstrate their generality among a range of frameworks. We also target the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) family of MOFs for high-concentration synthesis and introduce a two-step preparation of several variants that proceeds through a novel kinetic phase. The high-concentration methods we discuss produce MOFs on multi-gram scale with comparable properties to those prepared under traditional dilute solvothermal conditions. Next, to further curtail solvent waste and accelerate reaction times, we discuss the mechanochemical preparation of M2(dobdc) MOFs utilizing liquid amine additives in a planetary ball mill, which we also apply to the synthesis of two related salicylate frameworks. These samples exhibit comparable porosities to traditional dilute solvothermal samples but can be synthesized in just minutes, as opposed to days, and require under 1 mL of liquid additive to prepare ~0.5 g of material. In the following section, we discuss our efforts to avoid specialized equipment and eliminate solvent use entirely by employing ionothermal conditions to prepare a variety of azolate- and salicylate-based MOFs. Simply combining metal chloride (hydrate) salts with organic linkers at temperatures above the melting points of the salts affords high-quality framework materials. Further, ionothermal conditions enable the syntheses of two new Fe(III) M2(dobdc) derivatives that cannot be synthesized under normal solvothermal conditions. Last, as a demonstrative example, we discuss our efforts to synthesize 100 g of high-quality Mg2(dobdc) in a single batch using a high-concentration (1.0 M) hydrothermal synthesis. Our Account will be of significant interest to researchers aiming to prepare gram-scale quantities of MOFs for further study.
Collapse
Affiliation(s)
- Tyler J Azbell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Tristan A Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Ronald T Jerozal
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Ruth M Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
14
|
Vali SA, Markeb AA, Moral-Vico J, Font X, Sánchez A. Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2754. [PMID: 37887905 PMCID: PMC10609106 DOI: 10.3390/nano13202754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Methane and carbon dioxide are the main contributors to global warming, with the methane effect being 25 times more powerful than carbon dioxide. Although the sources of methane are diverse, it is a very volatile and explosive gas. One way to store the energy content of methane is through its conversion to methanol. Methanol is a liquid under ambient conditions, easy to transport, and, apart from its use as an energy source, it is a chemical platform that can serve as a starting material for the production of various higher-value products. Accordingly, the transformation of methane to methanol has been extensively studied in the literature, using traditional catalysts as different types of zeolites. However, in the last few years, a new generation of catalysts has emerged to carry out this transformation with higher conversion and selectivity, and more importantly, under mild temperature and pressure conditions. These new catalysts typically involve the use of a highly porous supporting material such as zeolite, or more recently, metal-organic frameworks (MOFs) and graphene, and metallic nanoparticles or a combination of different types of nanoparticles that are the core of the catalytic process. In this review, recent advances in the porous supports for nanoparticles used for methane oxidation to methanol under mild conditions are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological, and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
15
|
Zhang Z, Xiao S, Meng X, Yu S. Research progress of MOF-based membrane reactor coupled with AOP technology for organic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104958-104975. [PMID: 37723390 DOI: 10.1007/s11356-023-29852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
MOF-based catalytic membrane reactor (MCMR), which can simultaneously achieve membrane separation and chemical catalytic degradation in an integrated system, is a cutting-edge technology for effective treatment of organic pollutants in water. The coupling of MCMR and advanced oxidation process (AOP) not only significantly improves the pollutant removal efficiency but also inhibits the membrane pollution through self-cleaning effect, thus improving the stability of MCMR. This paper reviews different MCMR systems combined with photocatalysis, Fenton oxidation, and persulfate activation, elucidates the reaction mechanism, discusses key issues to improve system effectiveness, and suggests future challenges and research directions.
Collapse
Affiliation(s)
- Ziyang Zhang
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shujuan Xiao
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xianguang Meng
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shouwu Yu
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
16
|
Hasan Alzaimoor EF, Khan E. Metal-Organic Frameworks (MOFs)-Based Sensors for the Detection of Heavy Metals: A Review. Crit Rev Anal Chem 2023; 54:3016-3037. [PMID: 37347646 DOI: 10.1080/10408347.2023.2220800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Metal-organic-frameworks (MOFs) have emerged as promising candidates in different scientific disciplines owing to their intriguing characteristics. Their unique structural properties, including large surface area to volume ratio with multi-functionalities and ultra-high porosity, tunability, uniformity, and easy derivation and fabrication, render them effective materials for sensing applications. The detection of heavy metals in different environmental matrices using various MOF-based sensors is in practice. They include luminescent, electrochemical, electrochemiluminescent, colorimetric, and surface-enhanced Raman scattering, are of great interest. This review elaborates on selected synthetic methods for the fabrication of MOF-based sensors, modification routes for tailoring and enhancing the desired properties, basic characterization techniques, and their limitations in the detection of heavy metals. Also, it emphasizes the use of various types of MOF-based sensors alternatively for the detection of different heavy metals such as Fe(III), Cr(III), Hg(II), Cd(II), and Pb(II) in addition to a normal metal Al(III). A collection of recent references is provided for researchers interested in such applications. Results from the literature have been summarized in tables which give an easy comparison and will help to develop efficient materials.
Collapse
Affiliation(s)
| | - Ezzat Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
17
|
Jerozal RT, Pitt TA, MacMillan SN, Milner PJ. High-Concentration Self-Assembly of Zirconium- and Hafnium-Based Metal-Organic Materials. J Am Chem Soc 2023; 145:13273-13283. [PMID: 37294975 PMCID: PMC10330885 DOI: 10.1021/jacs.3c02787] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) are crystalline, porous solids constructed from organic linkers and inorganic nodes that are promising for applications in chemical separations, gas storage, and catalysis, among many others. However, a major roadblock to the widespread implementation of MOFs, including highly tunable and hydrolytically stable Zr- and Hf-based frameworks, is their benchtop-scalable synthesis, as MOFs are typically prepared under highly dilute (≤0.01 M) solvothermal conditions. This necessitates the use of liters of organic solvent to prepare only a few grams of MOF. Herein, we demonstrate that Zr- and Hf-based frameworks (eight examples) can self-assemble at much higher reaction concentrations than are typically utilized, up to 1.00 M in many cases. Combining stoichiometric amounts of Zr or Hf precursors with organic linkers at high concentrations yields highly crystalline and porous MOFs, as confirmed by powder X-ray diffraction (PXRD) and 77 K N2 surface area measurements. Furthermore, the use of well-defined pivalate-capped cluster precursors avoids the formation of ordered defects and impurities that arise from standard metal chloride salts. These clusters also introduce pivalate defects that increase the exterior hydrophobicity of several MOFs, as confirmed by water contact angle measurements. Overall, our findings challenge the standard assumption that MOFs must be prepared under highly dilute solvothermal conditions for optimal results, paving the way for their scalable and user-friendly synthesis in the laboratory.
Collapse
Affiliation(s)
- Ronald T. Jerozal
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|
18
|
Mastropietro TF. Metal-organic frameworks and plastic: an emerging synergic partnership. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2189890. [PMID: 37007671 PMCID: PMC10054298 DOI: 10.1080/14686996.2023.2189890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Mismanagement of plastic waste results in its ubiquitous presence in the environment. Despite being durable and persistent materials, plastics are reduced by weathering phenomena into debris with a particle size down to nanometers. The fate and ecotoxicological effects of these solid micropollutants are not fully understood yet, but they are raising increasing concerns for the environment and people's health. Even if different current technologies have the potential to remove plastic particles, the efficiency of these processes is modest, especially for nanoparticles. Metal-organic frameworks (MOFs) are crystalline nano-porous materials with unique properties, have unique properties, such as strong coordination bonds, large and robustus porous structures, high accessible surface areas and adsorption capacity, which make them suitable adsorbent materials for micropollutants. This review examines the preliminary results reported in literature indicating that MOFs are promising adsorbents for the removal of plastic particles from water, especially when MOFs are integrated in porous composite materials or membranes, where they are able to assure high removal efficiency, superior water flux and antifouling properties, even in the presence of other dissolved co-pollutants. Moreover, a recent trend for the alternative preparation of MOFs starting from plastic waste, especially polyethylene terephthalate, as a sustainable source of organic linkers is also reviewed, as it represents a promising route for mitigating the impact of the costs deriving from the widescale MOFs production and application. This connubial between MOFs and plastic has the potential to contribute at implementing a more effective waste management and the circular economy principles in the polymer life cycle.
Collapse
|
19
|
Saeed M, Firdous A, Zaman MS, Izhar F, Riaz M, Haider S, Majeed M, Tariq S. MOFs
for desulfurization of fuel oil: Recent advances and future insights. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Muhammad Saeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Aswa Firdous
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Muhammad Saleh Zaman
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| | - Fatima Izhar
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Mubeshar Riaz
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Sabah Haider
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Muzamil Majeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Shahzaib Tariq
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| |
Collapse
|
20
|
Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
21
|
Sustainable synthesis of metal-organic frameworks and their derived materials from organic and inorganic wastes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Miśkiewicz A, Starosta W, Walczak R, Zakrzewska-Kołtuniewicz G. MOF-Based Sorbents Used for the Removal of Hg 2+ from Aqueous Solutions via a Sorption-Assisted Microfiltration. MEMBRANES 2022; 12:1280. [PMID: 36557186 PMCID: PMC9784083 DOI: 10.3390/membranes12121280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Mercury is considered to be one of the most important chemicals of public health concern. Therefore, it is necessary to develop an effective method of removing mercury ions from aqueous solutions to protect people from exposure to this element. This paper presents research on the application of a sorption-assisted microfiltration (SAMF) hybrid process for the removal of Hg2+ from aqueous solutions. As adsorbents used in the process, the metal-organic-framework-UiO-66-type materials have been considered. The methods of synthesis of two types of metal-organic-framework (MOF) sorbents were developed: UiO-66_MAA modified with mercaptoacetic acid (MAA) and a composite of UiO-66 with cellulose. The results of the experiments performed proved that the separation of Hg2+ from water solutions conducted in such a system was effective; however, a relatively long initial contact time of reagents before filtration was required. The experimental results can be used to optimize the parameters of the SAMF process in order to obtain an effective method of Hg2+ removal from aqueous solutions.
Collapse
|
23
|
Zuliani A, Chelazzi D, Mastrangelo R, Giorgi R, Baglioni P. Adsorption kinetics of acetic acid into ZnO/castor oil-derived polyurethanes. J Colloid Interface Sci 2022; 632:74-86. [DOI: 10.1016/j.jcis.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
24
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Wu K, Xu X, Ma F, Du C. Fe-Based Metal-Organic Frameworks for the Controlled Release of Fertilizer Nutrients. ACS OMEGA 2022; 7:35970-35980. [PMID: 36249404 PMCID: PMC9558253 DOI: 10.1021/acsomega.2c05093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Due to the controlled-delivery function of metal-organic frameworks (MOFs) for gases, drugs, and pesticides, iron-based MOFs (Fe-MOFs) were explored in the laboratory as a novel fertilizer, which showed potential for use in the fertilizer industry; the challenge in the industrial scale application of Fe-MOFs in practical crop production was mainly the impact of scaling-up to energy and heat transfer, as well as the reaction yield. In this study, Fe-MOFs were hydrothermally synthesized both in the laboratory scale and in the pilot scale, their structure and components were characterized using various spectroscopic techniques, and then their nutrient release and degradation behaviors were investigated. The results showed that Fe-MOFs were successfully synthesized in both scales with similar yields around 27%, and the Fe-MOFs showed a similar structure with the molecular formula of C2H15Fe2N2O18P3. The nutrients N, P, and Fe were present in the Fe-MOFs with the average contents of 6.03, 14.48, and 14.69%, respectively. Importantly, the nutrient release rate and pattern of Fe-MOFs well matched with the crop growth, which greatly promoted the rice yield. Therefore, the environmentally friendly compounds of Fe-MOFs could be industrially produced and used as an innovative fertilizer with unique features of varied nutrients and controlled release.
Collapse
Affiliation(s)
- Ke Wu
- The
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing210008, China
- College
of Environment and Ecology, Jiangsu Open
University, Nanjing210017China
| | - Xuebin Xu
- The
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing210008, China
| | - Fei Ma
- The
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing210008, China
| | - Changwen Du
- The
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science Chinese Academy of Sciences, Nanjing210008, China
- College
of Advanced Agricultural Sciences, University
of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
26
|
Zhai LF, Chen YY, Hu Y, Pan YX, Sun M, Yu J, Wang Y, Kong W. MOF-derived MnO@C with high activity for electric field-assisted catalytic oxidation of aqueous pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129670. [PMID: 35908403 DOI: 10.1016/j.jhazmat.2022.129670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The activation of oxygen (O2) under room condition is important for the utilization of air to perform oxidation. Here, we report a porous carbon-encapsulated MnO (MnO@C) derived from Mn metal-organic framework (MOF)grown in-situ on a graphite felt (GF) support. The MnO@C exhibits superior catalytic activity in an electric field-assisted catalytic oxidation system for the degradation of organic pollutants under room condition. The catalytic oxidation reaction applies a surface reaction pathway in which the surface-bound chemisorbed oxygen species are electro-oxidized and then involved in the oxidation of co-adsorbed organic pollutants. The abundant oxygen vacancies and oxygenated functional groups in MnO@C provide active sites for the chemisorption of O2, and its conductive mesoporous structure allows facile electrons and mass transfer. As a result, the MnO@C/GF catalyst displays quite high turnover frequency (TOF) value as 0.038 mg-TOC mg-MnO-1 min-1, which is 6.66 times higher than that of the MnO/GF catalyst prepared by impregnation method as a comparison. With the aid of + 1.0 V of positive electric field, the catalytic oxidation system exhibits extensive effectiveness in mineralizing a variety of dyes, pharmaceuticals, personal care products, and phenolic compounds under room condition with significantly enhanced biodegradability.
Collapse
Affiliation(s)
- Lin-Feng Zhai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China.
| | - Yue-Yue Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yi-Xiao Pan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jun Yu
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China
| | - Yan Wang
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China
| | - Wei Kong
- Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, East China Engineering Science & Technology Co., Ltd., Hefei 230088, China
| |
Collapse
|
27
|
Li Y, Wen G, Li J, Li Q, Zhang H, Tao B, Zhang J. Synthesis and shaping of metal-organic frameworks: a review. Chem Commun (Camb) 2022; 58:11488-11506. [PMID: 36165339 DOI: 10.1039/d2cc04190a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) possess excellent advantages, such as high porosity, large specific surface area, and an adjustable structure, showing good potential for applications in gas adsorption and separation, catalysis, conductivity, sensing, magnetism, etc. However, they still suffer from significant limitations in terms of the scale-up synthesis and shaping, hindering the realization of large-scale commercial applications. Despite some attempts having been devoted to addressing this, challenges remain. In this paper, we outline the advantages and drawbacks of existing synthetic routes such as electrochemistry, microwave, ultrasonic radiation, green solvent reflux, room temperature stirring, steam-assisted transformation, mechanochemistry, and fluid chemistry in terms of scale-up production. Then, the shaping methods of MOFs such as extrusion, mechanical compaction, rolling granulation, spray drying, gel technology, embedded granulation, phase inversion, 3D printing and other shaping methods for the preparation of membranes, coatings and nanoparticles are discussed. Finally, perspectives on the large-scale synthesis and shaping of MOFs are also proposed. This work helps provide in-depth insight into the scale-up production and shaping process of MOFs and boost commercial applications of MOFs.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Guilin Wen
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhe Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Qingrun Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Hongxing Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Bin Tao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| | - Jianzhong Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao City, Shandong Province, China.
| |
Collapse
|
28
|
Towards the Sustainable Production of Ultra-Low-Sulfur Fuels through Photocatalytic Oxidation. Catalysts 2022. [DOI: 10.3390/catal12091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nowadays, the sulfur-containing compounds are removed from motor fuels through the traditional hydrodesulfurization technology, which takes place under harsh reaction conditions (temperature of 350–450 °C and pressure of 30–60 atm) in the presence of catalysts based on alumina with impregnated cobalt and molybdenum. According to the principles of green chemistry, energy requirements should be recognized for their environmental and economic impacts and should be minimized, i.e., the chemical processes should be carried out at ambient temperature and atmospheric pressure. This approach could be implemented using photocatalysts that are sensitive to visible light. The creation of highly active photocatalytic systems for the deep purification of fuels from sulfur compounds becomes an important task of modern catalysis science. The present critical review reports recent progress over the last 5 years in heterogeneous photocatalytic desulfurization under visible light irradiation. Specific attention is paid to the methods for boosting the photocatalytic activity of materials, with a focus on the creation of heterojunctions as the most promising approach. This review also discusses the influence of operating parameters (nature of oxidant, molar ratio of oxidant/sulfur-containing compounds, photocatalyst loading, etc.) on the reaction efficiency. Some perspectives and future research directions on photocatalytic desulfurization are also provided.
Collapse
|
29
|
Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Fluorinated metal-organic frameworks for gas separation. Chem Soc Rev 2022; 51:7427-7508. [PMID: 35920324 DOI: 10.1039/d2cs00442a] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorinated metal-organic frameworks (F-MOFs) as fast-growing porous materials have revolutionized the field of gas separation due to their tunable pore apertures, appealing chemical features, and excellent stability. A deep understanding of their structure-performance relationships is critical for the synthesis and development of new F-MOFs. This critical review has focused on several strategies for the precise design and synthesis of new F-MOFs with structures tuned for specific gas separation purposes. First, the basic principles and concepts of F-MOFs as well as their structure, synthesis and modification and their structure to property relationships are studied. Then, applications of F-MOFs in adsorption and membrane gas separation are discussed. A detailed account of the design and capabilities of F-MOFs for the adsorption of various gases and the governing principles is provided. In addition, the exceptional characteristics of highly stable F-MOFs with engineered pore size and tuned structures are put into perspective to fabricate selective membranes for gas separation. Systematic analysis of the position of F-MOFs in gas separation revealed that F-MOFs are benchmark materials in most of the challenging gas separations. The outlook and future directions of the science and engineering of F-MOFs and their challenges are highlighted to tackle the issues of overcoming the trade-off between capacity/permeability and selectivity for a serious move towards industrialization.
Collapse
Affiliation(s)
- Abtin Ebadi Amooghin
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russian Federation
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA.
| |
Collapse
|
30
|
The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Microporous metal-organic frameworks: Synthesis and applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Wales J, Hughes D, Marshall E, Chambers P. A Review on the Application of Metal–Organic Frameworks (MOFs) in Pressure Swing Adsorption (PSA) Nitrogen Gas Generation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joe Wales
- Haskel Europe Limited, North Hylton Road, Sunderland, SR5 3JD, United Kingdom
| | - David Hughes
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, U.K
| | - Ellis Marshall
- Aura Innovation Centre, University of Hull, Bridgehead Business Park, Hessle, HU13 0GD, United Kingdom
| | - Paul Chambers
- Parker Hannifin Manufacturing, Gas Separation & Filtration Division, Dukesway, Gateshead NE11 0PZ, United Kingdom
| |
Collapse
|
33
|
Peera SG, Liu C. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Huang H, Cheng M, Yin J, Zhang J, Kong L, Bu XH. MIL-101(Fe)-derived iron oxide/carbon anode for lithium-ion batteries: derivation process study and performance optimization. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Piscopo CG, Polyzoidis A, Werner D, Ahlhelm M, Richter H. Breakthrough Screening of Porous Materials: A Simple and Effective Tool for Database Generation. ChemistrySelect 2022. [DOI: 10.1002/slct.202002555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Calogero G. Piscopo
- Fraunhofer Institute for Chemical Technology ICT Joseph-von-Fraunhofer-Str. 7 76327 Pfinztal Germany
| | - Angelos Polyzoidis
- Fraunhofer Institute for Chemical Technology ICT Joseph-von-Fraunhofer-Str. 7 76327 Pfinztal Germany
| | - David Werner
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Winterbergstraße 28 01277 Dresden Germany
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Winterbergstraße 28 01277 Dresden Germany
| | - Hans‐Jürgen Richter
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Winterbergstraße 28 01277 Dresden Germany
| |
Collapse
|
36
|
Zuliani A, Bandelli D, Chelazzi D, Giorgi R, Baglioni P. Environmentally friendly ZnO/Castor oil polyurethane composites for the gas-phase adsorption of acetic acid. J Colloid Interface Sci 2022; 614:451-459. [DOI: 10.1016/j.jcis.2022.01.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
|
37
|
Shahsavari M, Mohammadzadeh Jahani P, Sheikhshoaie I, Tajik S, Aghaei Afshar A, Askari MB, Salarizadeh P, Di Bartolomeo A, Beitollahi H. Green Synthesis of Zeolitic Imidazolate Frameworks: A Review of Their Characterization and Industrial and Medical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:447. [PMID: 35057165 PMCID: PMC8779251 DOI: 10.3390/ma15020447] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023]
Abstract
Metal organic frameworks (MOF) are a class of hybrid networks of supramolecular solid materials comprising a large number of inorganic and organic linkers, all bound to metal ions in a well-organized fashion. Zeolitic imidazolate frameworks (ZIFs) are a sub-group of MOFs with imidazole as an organic linker to metals; it is rich in carbon, nitrogen, and transition metals. ZIFs combine the classical zeolite characteristics of thermal and chemical stability with pore-size tunability and the rich topological diversity of MOFs. Due to the energy crisis and the existence of organic solvents that lead to environmental hazards, considerable research efforts have been devoted to devising clean and sustainable synthesis routes for ZIFs to reduce the environmental impact of their preparation. Green chemistry is the key to sustainable development, as it will lead to new solutions to existing problems. Moreover, it will present opportunities for new processes and products and, at its heart, is scientific and technological innovation. The green chemistry approach seeks to redesign the materials that make up the basis of our society and our economy, including the materials that generate, store, and transport our energy, in ways that are benign for humans and the environment and that possess intrinsic sustainability. This study covers the principles of green chemistry as used in designing strategies for synthesizing greener, less toxic ZIFs the consume less energy to produce. First, the necessity of green methods in today's society, their replacement of the usual non-green methods and their benefits are discussed; then, various methods for the green synthesis of ZIF compounds, such as hydrothermally, ionothermally, and by the electrospray technique, are considered. These methods use the least harmful and toxic substances, especially concerning organic solvents, and are also more economical. When a compound is synthesized by a green method, a question arises as to whether these compounds can replace the same compounds as synthesized by non-green methods. For example, is the thermal stability of these compounds (which is one of the most important features of ZIFs) preserved? Therefore, after studying the methods of identifying these compounds, in the last part, there is an in-depth discussion on the various applications of these green-synthesized compounds.
Collapse
Affiliation(s)
- Mahboobeh Shahsavari
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (M.S.); (I.S.)
| | | | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran; (M.S.); (I.S.)
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (S.T.); (A.A.A.)
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran; (S.T.); (A.A.A.)
| | - Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, Rasht 4199613776, Iran;
| | - Parisa Salarizadeh
- High-Temperature Fuel Cell Research Department, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran;
| | - Antonio Di Bartolomeo
- Department of Physics “E. R. Caianiello” and “Interdepartmental Center NANOMATES”, University of Salerno, 84084 Fisciano, SA, Italy
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| |
Collapse
|
38
|
Altintas C, Keskin S. MOF Adsorbents for Flue Gas Separation: Comparison of Material Ranking Approaches. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Shanmugam M, Chuaicham C, Augustin A, Sagayaraj PJJ, Sasaki K, Sekar K. Upcycling of Hazardous Metals and PET Waste derived Metal-Organic Frameworks: A Review in Recent Progress and Prospects. NEW J CHEM 2022. [DOI: 10.1039/d2nj02481k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An intense increase in non-biodegradable plastics and waste metals is an immediate threat to the world and needs to be addressed urgently. There are several strategies deployed to control, eliminate,...
Collapse
|
40
|
Joseph J, Iftekhar S, Srivastava V, Fallah Z, Zare EN, Sillanpää M. Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. CHEMOSPHERE 2021; 284:131171. [PMID: 34198064 DOI: 10.1016/j.chemosphere.2021.131171] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF structures, especially visible light photocatalysis, Fenton, and Fenton-like heterogeneous catalysis. Fe-MOFs become essential tool for water treatment due to their high catalytic activity, abundant active site and pollutant-specific adsorption. However, the structural degradation under external chemical, photolytic, mechanical, and thermal stimuli is impeding Fe-MOFs from further improvement in activity and their commercialization. Understanding the shortcomings of structural integrity is crucial for large-scale synthesis and commercial implementation of Fe-MOFs-based water treatment techniques. Herein we summarize the synthesis, structure and recent advancements in water remediation methods using Fe-MOFs in particular more attention is paid for adsorption, heterogeneous catalysis and photocatalysis with clear insight into the mechanisms involved. For ease of analysis, the pollutants have been classified into two major classes; inorganic pollutants and organic pollutants. In this review, we present for the first time a detailed insight into the challenges in employing Fe-MOFs for water remediation due to structural instability.
Collapse
Affiliation(s)
- Jessy Joseph
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70120, Finland
| | - Varsha Srivastava
- Department of Chemistry, Jyväskylä University, Jyväskylä, Finland; Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, 90014, Finland.
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | | | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, PR China; Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh, 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark
| |
Collapse
|
41
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. Der derzeitige Stand von MOF‐ und COF‐Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ralph Freund
- Institut für Physik Universität Augsburg Deutschland
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | | | | | | | - Ulrich Lächelt
- Department für Pharmazie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Evelyn Ploetz
- Department Chemie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| |
Collapse
|
42
|
Gao T, Tang HJ, Zhang SY, Cao JW, Wu YN, Chen J, Wang Y, Chen KJ. Mechanochemical synthesis of three-component metal-organic frameworks for large scale production. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Salehipour M, Rezaei S, Rezaei M, Yazdani M, Mogharabi-Manzari M. Opportunities and Challenges in Biomedical Applications of Metal–Organic Frameworks. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02118-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Xia T, Lin Y, Li W, Ju M. Photocatalytic degradation of organic pollutants by MOFs based materials: A review. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Ultrasound-assisted continuous-flow synthesis of PEGylated MIL-101(Cr) nanoparticles for hematopoietic radioprotection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112369. [PMID: 34579888 DOI: 10.1016/j.msec.2021.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Metal-organic frameworks (MOFs) are useful as drug delivery carriers with high loading capacity and excellent biocompatibility. We fabricated a new drug carrier based on MIL-101(Cr) environmentally and loaded it with 47.2 wt% WR-1065 (active metabolite of amifostine). Moreover, the permeability and stability of these nanoparticles increased after PEGylation by the N-hydroxysuccinimide active ester protocol. Then, a "green" continuous-flow system equipped with an ultrasound applicator was newly designed to prepare the nanoparticles under the effect of acoustic cavitation. Response surface methodology (RSM) was used to optimize the large-scale process conditions with Box-Behnken design to obtain high space-time yield (5785 kg m-3 day-1). These less toxic MOFs nanoparticles increased cell viability by scavenging the accumulated reactive oxygen species and resisting DNA damage after irradiation. They are capable of mitigating radiation injury, achieving a 30-d survival rate of 90% in mice after lethal total body irradiation (8.0 Gy). This countermeasure significantly improved the peripheral blood cell count, hematopoietic stem and progenitor cells frequency, and clonogenic function of hematopoietic progenitor cells. It probably prevents irradiation-induced hematopoietic damage through the p53-dependent apoptotic pathway. Therefore, ultrasound-assisted continuous-flow synthesis is a sustainable method to produce MOFs on a large scale for radioprotection.
Collapse
|
46
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. The Current Status of MOF and COF Applications. Angew Chem Int Ed Engl 2021; 60:23975-24001. [DOI: 10.1002/anie.202106259] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg Germany
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | | | | | | | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS) LMU Munich Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS) LMU Munich Germany
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
47
|
Severino MI, Gkaniatsou E, Nouar F, Pinto ML, Serre C. MOFs industrialization: a complete assessment of production costs. Faraday Discuss 2021; 231:326-341. [PMID: 34254064 DOI: 10.1039/d1fd00018g] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential of safe and low-cost batch production processes for Metal-Organic Frameworks (MOFs) at an industrial scale has been evaluated based on the prototypical MOF MIL-160(Al), a bio-derived material of high practical interest that can be made with a high space-time yield using green ambient pressure conditions. A simple method to calculate the production cost of this material has been determined based on a simulated process constructed with the data collected from laboratory pilot large-scale tests taking into account for the first time in MOF cost evaluation all the process parameters such as the scale, the cost of the raw materials, recirculation, and washing. The investment for a production plant established the ground for the estimation of the complete cost. The expected cost ranged from ca. 55 $ per kg at 100 tons per year down to 29.5 $ per kg for 1 kton per year production with longer term perspectives of reaching costs below 10 $ per kg once the bio-derived ligand is considered for the large-scale production of bioplastics.
Collapse
Affiliation(s)
- Maria Inês Severino
- Institut des Matériaux Poreux de Paris (IMAP), UMR 8004 CNRS, Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005 Paris, France and CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Effrosyni Gkaniatsou
- Institut des Matériaux Poreux de Paris (IMAP), UMR 8004 CNRS, Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005 Paris, France
| | - Farid Nouar
- Institut des Matériaux Poreux de Paris (IMAP), UMR 8004 CNRS, Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005 Paris, France
| | - Moisés L Pinto
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Christian Serre
- Institut des Matériaux Poreux de Paris (IMAP), UMR 8004 CNRS, Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
48
|
Fu J, Wu YN. A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconium-Based MOF Materials. Chemistry 2021; 27:9967-9987. [PMID: 33955075 DOI: 10.1002/chem.202005151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/08/2022]
Abstract
Zirconium-based metal-organic framework materials (Zr-MOFs) have more practical usage over most conventional benchmark porous materials and even many other MOFs due to the excellent structural stability, rich coordination forms, and various active sites. However, their mass-production and application are restricted by the high-cost raw materials, complex synthesis procedures, harsh reaction conditions, and unexpected environmental impact. Based on the principles of "Green Chemistry", considerable efforts have been done for breaking through the limitations, and significant progress has been made in the sustainable synthesis of Zr-MOFs over the past decade. In this review, the advancements of green raw materials and green synthesis methods in the synthesis of Zr-MOFs are reviewed, along with the corresponding drawbacks. The challenges and prospects are discussed and outlooked, expecting to provide guidance for the acceleration of the industrialization and commercialization of Zr-MOFs.
Collapse
Affiliation(s)
- Jiarui Fu
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, 200092, Shanghai, P.R. China.,Shanghai Institute of Pollution Control and Ecological Security, Siping Rd 1239, 200092, Shanghai, P.R. China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, 200092, Shanghai, P.R. China.,Shanghai Institute of Pollution Control and Ecological Security, Siping Rd 1239, 200092, Shanghai, P.R. China
| |
Collapse
|
49
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
50
|
Abstract
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mohammadreza Fayaz
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|