1
|
Zhao H, Liu C, Shen P, Liu Z, Hu J, Zhang Y. Facile synthesis of recyclable Mn-crosslinked chitosan schiff base composites as heterogeneous catalysts for selective oxidation of methyl phenyl sulfide with H 2O 2. Int J Biol Macromol 2025; 311:144119. [PMID: 40360116 DOI: 10.1016/j.ijbiomac.2025.144119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/25/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
A novel manganese crosslinked chitosan composite (CS-Salen-Mn) was synthesized via Schiff base modification and coordination assembly. This composite showed excellent recyclability for heterogeneous catalytic oxidation. A Schiff base-modified chitosan (CS-Schiff) carrier was prepared via condensation of surface amines and salicylaldehyde, followed by coordination crosslinking with manganese acetate. Characterization via FT-IR, UV-Vis/DRS, TG, XPS, XRD, and SEM confirmed the successful integration of Mn coordination centers into the CS matrix while preserving the CS polysaccharide backbone. In the study of the H2O2 oxidation reaction system of methyl phenyl sulfide, the catalytic system achieved 57.3 % substrate conversion rate and 100 % selectivity for the target product methyl phenyl sulfoxide under the following conditions: CS-Salen-Mn(1.1) (50 mg) as the catalyst, acetonitrile as the solvent, H2O2-to-substrate molar ratio of 2:1, reaction temperature of 0 °C, and reaction time of 24 h. Remarkably, the CS-based catalyst maintained >85 % of the initial activity after eight consecutive reuse cycles, which was attributed to the stable metal-ligand environment within the biopolymer framework. This work uses chitosan as a sustainable platform for designing robust heterophase catalysts, combining the process advantages of biopolymer carriers with the high catalytic activity of Salen-metal chemistry.
Collapse
Affiliation(s)
- Heming Zhao
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Chunlai Liu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Peihang Shen
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Zelong Liu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Jianglei Hu
- School of Chemical Engineering & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China.
| | - Yibo Zhang
- School of Chemical Engineering, Jilin Vocational College of Industry and Technology, Jilin 132000, PR China
| |
Collapse
|
2
|
Zeng M, Wu Y, Liu Y, Zheng X, Ying J, Chen J, Ren X, Yang Z, Feng R, Zhang T, Xu W, Zhang P, Wang B, Cao X. Nacre-inspired graphene oxide/chitosan supported Pd species composite paper-like membrane with superior catalytic performance. Int J Biol Macromol 2025; 306:141512. [PMID: 40020813 DOI: 10.1016/j.ijbiomac.2025.141512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Recent studies have shown that graphene oxide (GO) nanosheets can form a nacre-like bioinspired layered structure with polysaccharide of chitosan (CS), leading to composites with excellent mechanical properties. In this study, we go further steps by immobilization of Pd species (both Pd2+ and Pd0) within nacre-like bioinspired layered GO-CS composite paper-like membranes by vacuum-assisted self-assembly process to fabricate novel GO-CS-Pd composite membrane catalysts for the first time. Synergistic interactions from hydrogen bonding (between the GO nanosheets and CS chains) and ionic bonding (between the GO nanosheets and Pd2+ ions) have been efficiently achieved, resulting in significantly improvement of the mechanical properties. Meanwhile, the in-situ grown Pd0 nanoparticles were homogeneously incorporated in the interstices of the nacre-like GO-CS composite membranes. The mechanical properties, specific area performances, and Pd0 nanoparticles size of the resultant GO-CS-Pd composite membrane are mainly tuned by the loading amount of CS. The membranes are high active for Suzuki reactions of aromatic halides and phenylboronic acid with catalyst loading as low as 0.05 mol%, and can be recycled for 8 runs without significant loss of activities. Positron annihilation lifetime spectroscopy and other structural characterization methods are implemented to characterize the unique compartmentalization structure in the nacre-like composite membranes.
Collapse
Affiliation(s)
- Minfeng Zeng
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China; Shaoxing Doctoral Innovation Station, Minsheng Group Shaoxing Pharmaceutical Co., Ltd., Shaoxing 312000, China.
| | - Yuanyuan Wu
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yonghong Liu
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Xiu Zheng
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Jiadi Ying
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Jinyang Chen
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China; Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China.
| | - Xiaorong Ren
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Zhen Yang
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China; Shaoxing Doctoral Innovation Station, Minsheng Group Shaoxing Pharmaceutical Co., Ltd., Shaoxing 312000, China
| | - Ruokun Feng
- Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, China; Shaoxing Doctoral Innovation Station, Minsheng Group Shaoxing Pharmaceutical Co., Ltd., Shaoxing 312000, China
| | - Tao Zhang
- Shaoxing Doctoral Innovation Station, Minsheng Group Shaoxing Pharmaceutical Co., Ltd., Shaoxing 312000, China
| | - Wei Xu
- Shaoxing Doctoral Innovation Station, Minsheng Group Shaoxing Pharmaceutical Co., Ltd., Shaoxing 312000, China
| | - Peng Zhang
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Baoyi Wang
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
| | - Xingzhong Cao
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
3
|
Rahman MM, Maniruzzaman M, Saha RK. A green route of antibacterial films production from shrimp (Penaeus monodon) shell waste biomass derived chitosan: Physicochemical, thermomechanical, morphological and antimicrobial activity analysis. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2025; 51:153-169. [DOI: 10.1016/j.sajce.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
|
4
|
Sajjadi M, Nasrollahzadeh M, Ghafuri H. Functionalized chitosan-inspired (nano)materials containing sulfonic acid groups: Synthesis and application. Carbohydr Polym 2024; 343:122443. [PMID: 39174086 DOI: 10.1016/j.carbpol.2024.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nature-inspired chitosan (CS) materials show a high potential for the design/fabrication of sustainable heterogeneous (nano)materials with extraordinary structural/physical features, such as superior biodegradability/biocompatibility, simplicity of chemical modification, environmental safety, high availability, cost-effectiveness, high electrochemical activity, good film-forming ability, and antioxidant, antimicrobial/antibacterial, and anticoagulant activities. Industrialization and growth of industrial wastes or by-products induce an increasing demand for the development of clean, low-cost, and renewable natural systems to minimize or eliminate the utilization of environmentally toxic compounds. The preparation of novel heterogeneous functionalized polysaccharide-inspired bio(nano)materials via chemical modifications of natural CS to improve its physicochemical/biochemical properties has recently become tremendously attractive for many researchers. The most abundantly available and cost-effective functionalized CS-inspired (nano)materials are considerably valuable in terms of the economic aspects of production of (nano)catalysts, (nano)hydrogels, (nano)composite/blend membranes, and thus their commercialization. In this respect, the preparation of functionalized CS-inspired (nano)materials containing -SO3H groups has been represented as a valid alternative to the homogenous unmodified biomaterials for various applications. Sulfonated derivatives of CS-inspired (nano)materials may possess huge surface areas, catalytic activity, adsorption, and biological/biomedical properties. This review article is aimed at the investigation of different methods and potential applications of sulfonated CS-inspired (nano)materials in catalysis, fuel cells, adsorption of ions, membranes, and biological applications.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
5
|
Tong ZX, Oh WD. The role of chitosan in promoting the catalytic activity of bismuth ferrite as peroxymonosulfate activator for antibiotics removal. Int J Biol Macromol 2024; 277:134453. [PMID: 39098691 DOI: 10.1016/j.ijbiomac.2024.134453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Chitosan possesses electron-rich amino (-NH2) and hydroxyl (-OH) moieties which can anchor with transition metal ions during synthesis. Herein, chitosan was employed as an additive to prepare bismuth ferrite (BFO) via hydrothermal approach. The characterization studies revealed that adding chitosan during BFO synthesis leads to the creation of more oxygen vacancies. The performance of chitosan modified BFO (CMB) was evaluated as peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) removal. Apparently, the addition of 10 wt% chitosan during BFO synthesis (CMB-10) resulted in 1.7 times increase of performance compared to the pristine BFO. Increasing the catalyst loading and PMS dosage resulted in positive effect with 5.7 and 1.9 times rate enhancement, respectively. The CMB-10 exhibited tolerance against pH variation, water matrix, and interfering species. The scavenging experiments indicated that singlet oxygen (1O2), superoxide radicals (O2•-) and sulfate radicals (SO4•-) played a major role in CIP degradation. These reactive oxygen species were generated from PMS activation via Fe3+/Fe2+ and Bi5+/Bi3+ coupling, and oxygen vacancies on the catalyst surface. The CIP degradation pathways were also elucidated based on the detected CIP intermediates. Overall, this study provides insights into the use of chitosan to prepare sustainable materials for pollutants removal via PMS activation.
Collapse
Affiliation(s)
- Zhi-Xiang Tong
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
6
|
Bukharbayeva F, Zharmagambetova A, Talgatov E, Auyezkhanova A, Akhmetova S, Jumekeyeva A, Naizabayev A, Kenzheyeva A, Danilov D. The Synthesis of Green Palladium Catalysts Stabilized by Chitosan for Hydrogenation. Molecules 2024; 29:4584. [PMID: 39407514 PMCID: PMC11477545 DOI: 10.3390/molecules29194584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The proposed paper describes a simple and environmentally friendly method for the synthesis of three-component polymer-inorganic composites, which includes the modification of zinc oxide or montmorillonite (MMT) with chitosan (CS), followed by the immobilization of palladium on the resulting two-component composites. The structures and properties of the obtained composites were characterized by physicochemical methods (IRS, TEM, XPS, SEM, EDX, XRD, BET). Pd-CS species covered the surface of inorganic materials through two different mechanisms. The interaction of chitosan polyelectrolyte with zinc oxide led to the deprotonation of its amino groups and deposition on the surface of ZnO. The immobilization of Pd on CS/ZnO occurred by the hydrolysis of [PdCl4]2-, followed by forming PdO particles by interacting with amino groups of chitosan. In the case of CS/MMT, protonated amino groups of CS interacted with negative sites of MMT, forming a positively charged CS/MMT composite. Furthermore, [PdCl4]2- interacted with the -NH3+ sites of CS/MMT through electrostatic force. According to TEM studies of 1%Pd-CS/ZnO, the presence of Pd nanoclusters composed of smaller Pd nanoparticles of 3-4 nm in size were observed on different sites of CS/ZnO. For 1%Pd-CS/MMT, Pd nanoparticles with sizes of 2 nm were evenly distributed on the support surface. The prepared three-component CS-inorganic composites were tested through the hydrogenation of 2-propen-1-ol and acetylene compounds (phenylacetylene, 2-hexyn-1-ol) under mild conditions (T-40 °C, PH2-1 atm). It was shown that the efficiency of 1%Pd-CS/MMT is higher than that of 1%Pd-CS/ZnO, which can be explained by the formation of smaller Pd particles that are evenly distributed on the support surface. The mechanism of 2-hexyn-1-ol hydrogenation over an optimal 1%Pd-CS/MMT catalyst was proposed.
Collapse
Affiliation(s)
- Farida Bukharbayeva
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Alima Zharmagambetova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Eldar Talgatov
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Assemgul Auyezkhanova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Sandugash Akhmetova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Aigul Jumekeyeva
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Akzhol Naizabayev
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Alima Kenzheyeva
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan
| | - Denis Danilov
- Interdisciplinary Resource Center for Nanotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Jabbour CR, Schnabl KB, Yan H, O'Beirn NN, Dorresteijn JM, Meirer F, Mandemaker LDB, Weckhuysen BM. Chitosan as Support Material for Metal-Organic Framework based Catalysts. Chemphyschem 2024; 25:e202400154. [PMID: 38798029 DOI: 10.1002/cphc.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Turning waste into valuable products is one of the main challenges of the chemical industry. In this work, chitosan (CS), an abundant, low-cost, and non-toxic biopolymer derived from chitin, was reshaped into beads of ~3 mm. Their suitability as a support material for active phase catalyst materials was tested for a zirconium-based Metal-Organic Framework (MOF) with incorporated Pt, namely UiO-67-Pt. Its incorporation was investigated via two procedures: a one-pot synthesis (OPS) and a post-synthetic functionalization (PSF) synthesis method. Scanning electron microscopy (SEM) images show good UiO-67-Pt dispersion throughout the CS beads for the one-pot synthesized material (UiO-67-Pt-OPS@CS). However, this uniform dispersion was not observed for the post-synthetically functionalized material (UiO-67-Pt-PSF@CS). The success of the implementation of UiO-67-Pt was evaluated with ultraviolet-visible and infrared spectroscopy for both composite materials. Thermogravimetric analysis (TGA) reveals higher thermal stabilities for UiO-67-Pt-OPS@CS composite beads in comparison to pure CS beads, but not for UiO-67-Pt-PSF@CS. The study provides valuable insights into the potential of chitosan as a green, bead-shaped support material for MOFs, offering flexibility in their incorporation through different synthesis routes. It further contributes to the broader goal of the sustainable and eco-friendly design of a new generation of catalysts made from waste materials, which will be the topic of future studies.
Collapse
Affiliation(s)
- Christia R Jabbour
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Kordula B Schnabl
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Haoxiang Yan
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Naoise N O'Beirn
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Joren M Dorresteijn
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
8
|
Mousavi H, Zeynizadeh B, Hasanpour Galehban M. Ni II-containing l-glutamic acid cross-linked chitosan anchored on Fe 3O 4/ f-MWCNT: a sustainable catalyst for the green reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes. NANOSCALE ADVANCES 2024; 6:3961-3977. [PMID: 39050942 PMCID: PMC11265578 DOI: 10.1039/d4na00160e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024]
Abstract
In this research, new and eye-catching catalytic applications of the nickelII (NiII) nanoparticles (NPs)-containing l-glutamic acid cross-linked chitosan anchored on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu/NiII) system, which was characterized by Fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), SEM-based energy-dispersive X-ray (EDX) and elemental mapping, inductively coupled plasma-optical emission spectrometry (ICP-OES), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and vibrating sample magnetometry (VSM), have been introduced for the environmentally benign and efficient reduction and one-pot two-step reductive Schotten-Baumann-type acetylation of nitroarenes in water at 60 °C under an air atmosphere. It is worth noting that the NiII-containing hybrid nanocatalyst, in the mentioned organic reactions, showed short reaction times, high yields of the desired products, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), and also satisfactory magnetic recycling and reusability performance even after ten times of reuse. As another significant point, all the titled organic transformations have been carried out in water as an entirely favorable and green solvent for chemical reactions.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | | |
Collapse
|
9
|
Schnabl KB, Mandemaker LDB, Ganjkhanlou Y, Vollmer I, Weckhuysen BM. Green Additives in Chitosan-based Bioplastic Films: Long-term Stability Assessment and Aging Effects. CHEMSUSCHEM 2024; 17:e202301426. [PMID: 38373235 DOI: 10.1002/cssc.202301426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Although biomass-based alternatives for the manufacturing of bioplastic films are an important aspect of a more sustainable future, their physicochemical properties need to be able to compete with the existing market to establish them as a viable alternative. One important factor that is often neglected is the long-term stability of renewables-based functional materials, as they should neither degrade after a day or week, nor last forever. One material showing high potential in this regard, also due to its intrinsic biodegradability and antibacterial properties, is chitosan, which can form stable, self-standing films. We previously showed that green additives introduce a broad tunability of the chitosan-based material properties. In this work, we investigate the long-term stability and related degradation processes of chitosan-based bioplastics by assessing their physicochemical properties over 400 days. It was found that the film properties change similarly for samples stored in the fridge (4 °C, dark) as at ambient conditions (20 °C, light/dark cycles of the day). Additives with high vapor pressure, such as glycerol, evaporate and degrade, causing both brittleness and discoloration. In contrast, films with the addition of crosslinking additives, such as citric acid, show high stability also over a long time, bearing great preconditions for practical applications. This knowledge serves as a stepping-stone to utilizing chitosan as an alternative material for renewable-resourced bioplastic products.
Collapse
Affiliation(s)
- Kordula B Schnabl
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Yadolah Ganjkhanlou
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Ina Vollmer
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
10
|
Akhmetova S, Zharmagambetova A, Talgatov E, Auyezkhanova A, Malgazhdarova M, Zhurinov M, Abilmagzhanov A, Jumekeyeva A, Kenzheyeva A. How the Chemical Properties of Polysaccharides Make It Possible to Design Various Types of Organic-Inorganic Composites for Catalytic Applications. Molecules 2024; 29:3214. [PMID: 38999166 PMCID: PMC11243343 DOI: 10.3390/molecules29133214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Recently, the use of plant-origin materials has become especially important due to the aggravation of environmental problems and the shortage and high cost of synthetic materials. One of the potential candidates among natural organic compounds is polysaccharides, characterized by a number of advantages over synthetic polymers. In recent years, natural polysaccharides have been used to design composite catalysts for various organic syntheses. This review is devoted to the current state of application of polysaccharides (chitosan, starch, pectin, cellulose, and hydroxyethylcellulose) and composites based on their catalysis. The article is divided into four main sections based on the type of polysaccharide: (1) chitosan-based nanocomposites; (2) pectin-based nanocomposites; (3) cellulose (hydroxyethylcellulose)-based nanocomposites; and (4) starch-based nanocomposites. Each section describes and summarizes recent studies on the preparation and application of polysaccharide-containing composites in various chemical transformations. It is shown that by modifying polysaccharides, polymers with special properties can be obtained, thus expanding the range of biocomposites for catalytic applications.
Collapse
Affiliation(s)
| | | | | | - Assemgul Auyezkhanova
- Laboratory of Organic Catalysis, D.V. Sokolsky Institute of Fuel, Catalysis, and Electrochemistry, Kunaev Str. 142, Almaty 050010, Kazakhstan; (S.A.); (A.Z.); (E.T.); (M.M.); (M.Z.); (A.A.); (A.J.); (A.K.)
| | | | | | | | | | | |
Collapse
|
11
|
Paganelli S, Brugnera E, Di Michele A, Facchin M, Beghetto V. Chitosan as a Bio-Based Ligand for the Production of Hydrogenation Catalysts. Molecules 2024; 29:2083. [PMID: 38731574 PMCID: PMC11085195 DOI: 10.3390/molecules29092083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Bio-based polymers are attracting increasing interest as alternatives to harmful and environmentally concerning non-biodegradable fossil-based products. In particular, bio-based polymers may be employed as ligands for the preparation of metal nanoparticles (M(0)NPs). In this study, chitosan (CS) was used for the stabilization of Ru(0) and Rh(0) metal nanoparticles (MNPs), prepared by simply mixing RhCl3 × 3H2O or RuCl3 with an aqueous solution of CS, followed by NaBH4 reduction. The formation of M(0)NPs-CS was confirmed by Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). Their size was estimated to be below 40 nm for Rh(0)-CS and 10nm for Ru(0)-CS by SEM analysis. M(0)NPs-CS were employed for the hydrogenation of (E)-cinnamic aldehyde and levulinic acid. Easy recovery by liquid-liquid extraction made it possible to separate the catalyst from the reaction products. Recycling experiments demonstrated that M(0)NPs-CS were highly efficient up to four times in the best hydrogenation conditions. The data found in this study show that CS is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles, allowing the production of some of the most efficient, selective and recyclable hydrogenation catalysts known in the literature.
Collapse
Affiliation(s)
- Stefano Paganelli
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
| | - Eleonora Brugnera
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
| | - Alessandro Di Michele
- Dipartimento Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli, 06123 Perugia, Italy;
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
- Crossing S.R.L., Viale della Repubblica 193/b, 31100 Treviso, Italy
| |
Collapse
|
12
|
Prabakaran S, Rupesh KJ, Keeriti IS, Sudalai S, Pragadeeswara Venkatamani G, Arumugam A. A scientometric analysis and recent advances of emerging chitosan-based biomaterials as potential catalyst for biodiesel production: A review. Carbohydr Polym 2024; 325:121567. [PMID: 38008474 DOI: 10.1016/j.carbpol.2023.121567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
Chitosan is a widely available polymer with a reasonably high abundance, as well as a sustainable, biodegradable, and biocompatible material with different functional groups that are used in a wide range of operations. Chitosan is frequently employed in widespread applications such as environmental remediation, adsorption, catalysts, and drug formulation. The goal of this review is to discuss the potential applications of chitosan and its chemically modified solids as a catalyst in biodiesel production. The existing manuscripts are integrated based on the nature of materials used as chitosan and its modifications. A short overview of chitosan's structural characteristics, properties, and some ideal methods to be considered in catalysis activities are addressed. This article includes an analysis of a chitosan-based scientometric conducted between 1975 and 2023 using VOS viewer 1.6.19. To identify developments and technological advances in chitosan research, the significant scientometric features of yearly publication results, documents country network, co-authorship network, documents funding sponsor, documents institution network, and documents category in domain analysis were examined. This review covers a variety of organic transformations and their effects, including chitosan reactions against acids, bases, metals, metal oxides, organic compounds, lipases, and Knoevenagel condensation. The catalytic capabilities of chitosan and its modified structures for producing biodiesel through transesterification reactions are explored in depth.
Collapse
Affiliation(s)
- S Prabakaran
- School of Mechanical Engineering, SASTRA Deemed to be University, Thanjavur 613401, India
| | - K J Rupesh
- School of Mechanical Engineering, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Itha Sai Keeriti
- School of Mechanical Engineering, SASTRA Deemed to be University, Thanjavur 613401, India
| | - S Sudalai
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry 605014, India
| | | | - A Arumugam
- Bioprocess Intensification Laboratory, Centre for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, Thanjavur 613401, India.
| |
Collapse
|
13
|
Zhu Q, Yin X, Tan Y, Wei D, Li Y, Pei X. Highly dispersed palladium nano-catalyst anchored on N-doped nanoporous carbon microspheres derived from chitosan for efficient and stable hydrogenation of quinoline. Int J Biol Macromol 2024; 254:127949. [PMID: 37951427 DOI: 10.1016/j.ijbiomac.2023.127949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Under the background of green chemistry, the synthesis of N-heterocycles using efficient, stable and long-life catalysts has still faced great challenges. Herein, we used biomass resource chitosan to fabricate a nanoporous chitosan carbon microsphere (CCM), and successfully designed a stable and efficient Pd nano-catalyst (CCM/Pd). Various physicochemical characterizations provided convincible evidences that the palladium nanoparticles (NPs) were tightly and evenly dispersed on the CCM with a mean diameter of 2.28 nm based on the nanoporous structure and abundant functional N/O groups in CCM. Importantly, the graphitized constructure, the formed defects and larger surface area in CCM were able to promote the immobilization of Pd NPs and the electron transfer between Pd and CCM, thereby significantly improving the catalytic activity. The CCM/Pd catalyst was applied for hydrogenation of quinoline compounds, which showed excellent catalytic activity and durability, as well as good substrate applicability. The application of renewable biomass-based catalysts contributes to the progression of a green/sustainable society.
Collapse
Affiliation(s)
- Qiudi Zhu
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Xiaogang Yin
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China.
| | - Youjuan Tan
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Duoduo Wei
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianglin Pei
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China; Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Lightweight Materials Engineering Research Center of the Education Department of Guizhou, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
14
|
Kujur JP, Moon PR, Pathak DD. Surface modification of chitosan with Ni(II) Schiff base complex: A new heterogeneous catalyst for the synthesis of xanthones. Int J Biol Macromol 2023; 252:126497. [PMID: 37640183 DOI: 10.1016/j.ijbiomac.2023.126497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
A new biocomposite of chitosan, chitosan-supported di(pyridine-2-yl)methanone-Ni(II) complex, CS-DPM-Ni, is synthesized for the first time. The biocomposite is thoroughly characterized by FTIR, PXRD, XPS, FESEM, EDX, TGA, ICP-OES, and elemental analysis. The synthesized composite is successfully used as a heterogeneous catalyst in the synthesis of a library of xanthone derivatives by the intermolecular catalytical coupling of 2-substituted benzaldehydes and phenols. The catalyst could be retrieved from the reaction mixture by simple filtration and reused for up to four catalytic cycles. All products were isolated in good to high yields (65-90 %) with good turnover numbers (TONs), and fully characterized by 1H and 13C{1H} NMR spectroscopy. The green chemistry metrics values for the reaction were discerned and found to be close to the ideal values.
Collapse
Affiliation(s)
- Jyoti Prabha Kujur
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, 826004, India
| | - Pritish Rajkumar Moon
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, 826004, India
| | - Devendra Deo Pathak
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, 826004, India.
| |
Collapse
|
15
|
Schnabl KB, Mandemaker LDB, Nierop KGJ, Deen OVB, Eefting DD, Vollmer I, Weckhuysen BM. Green Additives in Chitosan-Based Bioplastic Films: Physical, Mechanical, and Chemical Properties. CHEMSUSCHEM 2023; 16:e202300585. [PMID: 37549200 DOI: 10.1002/cssc.202300585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
To switch to alternatives for fossil-fuel-based polymer materials, renewable raw materials from green resources should be utilized. Chitosan is such a material that is a strong, but workable derivative from chitin, obtained from crustaceans. However, various applications ask for specific plastic properties, such as certain flexibility, hardness and transparency. With different additives, also obtainable from green resources, chitosan-based composites in the form of self-supporting films, ranging from very hard and brittle to soft and flexible were successfully produced. The additives turned out to belong to one of three categories, namely linear, non-linear, or crosslinking additives. The non-linear additives could only be taken up to a certain relative amount, whereas the uptake of linear additives was not limited within the range of our experiments. Additives with multiple functional groups tend to crosslink chitosan even at room temperature in an acidic medium. Finally, it was shown that dissolving the chitosan in acetic acid and subsequently drying the matrix as a film results in reacetylation compared to the starting chitosan source, resulting in a harder material. With these findings, it is possible to tune the properties of chitosan-based polymer materials, making a big step towards application of this renewable polymer within consumer goods.
Collapse
Affiliation(s)
- Kordula B Schnabl
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Laurens D B Mandemaker
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Klaas G J Nierop
- GeoLab, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584 CB, Utrecht, The Netherlands
| | - Olivier V B Deen
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Desmond D Eefting
- GeoLab, Faculty of Geosciences, Utrecht University, Princetonlaan 8, 3584 CB, Utrecht, The Netherlands
| | - Ina Vollmer
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
16
|
Zheng X, Li Y, Li W, Pei X, Ye D. Chitosan derived efficient and stable Pd nano-catalyst for high efficiency hydrogenation. Int J Biol Macromol 2023; 241:124615. [PMID: 37119901 DOI: 10.1016/j.ijbiomac.2023.124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
The design and development of green and efficient supported catalysts is the frontier direction in the field of green synthesis, which conforms to the strategic concept of green sustainable chemistry and "carbon neutrality". Herein, we used a renewable resource chitosan (CS) derived from seafood wastes of chitin as carriers to design two different chitosan-supported palladium (Pd) nano-catalysts through different activation methods. The Pd particles were firmly and uniformly dispersed on the chitosan microspheres due to the interconnected nanoporous structure and functional groups of chitosan, proved by diverse characterizations. The chitosan supported catalysts (Pd@CS) was applied to hydrogenation of 4-nitrophenol, which showed competitive catalytic activity compared to commercial Pd/C, un-supported nano-Pd and Pd(OAc)2 catalysts, as well as excellent catalytic activity, good reusability, long-life and broad applicability in selective hydrogenation of aromatic aldehydes, suggesting potential of applications in green industrial catalysis.
Collapse
Affiliation(s)
- Xingli Zheng
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wendian Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal University, Guiyang 550025, China.
| | - Dongdong Ye
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
17
|
Talukdar H, Saikia G, Das A, Sultana SY, Islam NS. Organic-Solvent-Free Oxidation of Styrene, Phenol and Sulfides with H2O2 over Eco-Friendly Niobium and Tantalum Based Heterogeneous Catalysts. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Blilid S, Boundor M, Katir N, El Achaby M, Lahcini M, Majoral JP, Bousmina M, El Kadib A. Expanding Chitosan Reticular Chemistry Using Multifunctional and Thermally Stable Phosphorus-Containing Dendrimers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sara Blilid
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
| | - Mohamed Boundor
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Mounir El Achaby
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mohammed Lahcini
- IMED-Lab, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P. 549, 40000 Marrakech, Morocco
- Mohammed VI Polytechnic University (UM6P), Lot 660−Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC), CNRS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Mosto Bousmina
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070 Fès, Morocco
| |
Collapse
|
19
|
Palladium Supported on Bioinspired Materials as Catalysts for C–C Coupling Reactions. Catalysts 2023. [DOI: 10.3390/catal13010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In recent years, the immobilization of palladium nanoparticles on solid supports to prepare active and stable catalytic systems has been deeply investigated. Compared to inorganic materials, naturally occurring organic solids are inexpensive, available and abundant. Moreover, the surface of these solids is fully covered by chelating groups which can stabilize the metal nanoparticles. In the present review, we have focused our attention on natural biomaterials-supported metal catalysts applied to the formation of C–C bonds by Mizoroki–Heck, Suzuki–Miyaura and Sonogashira reactions. A systematic approach based on the nature of the organic matrix will be followed: (i) metal catalysts supported on cellulose; (ii) metal catalysts supported on starch; (iii) metal catalysts supported on pectin; (iv) metal catalysts supported on agarose; (v) metal catalysts supported on chitosan; (vi) metal catalysts supported on proteins and enzymes. We will emphasize the effective heterogeneity and recyclability of each catalyst, specifying which studies were carried out to evaluate these aspects.
Collapse
|
20
|
Preparation of a Montmorillonite-Modified Chitosan Film-Loaded Palladium Heterogeneous Catalyst and its Application in the Preparation of Biphenyl Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248984. [PMID: 36558118 PMCID: PMC9782881 DOI: 10.3390/molecules27248984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The natural polymer chitosan was modified with polyvinyl alcohol to enhance the mechanical properties of the membrane, and then, the montmorillonite-modified chitosan-loaded palladium catalyst was prepared using the excellent coordination properties of montmorillonite. The results showed that the catalyst has good tensile strength, thermal stability, catalytic activity, and recycling performance and is a green catalytic material with industrial application potential.
Collapse
|
21
|
Hasan K, Joseph RG, Patole SP, Al-Qawasmeh RA. Development of magnetic Fe3O4-chitosan immobilized Cu(II) Schiff base catalyst: An efficient and reusable catalyst for microwave assisted one-pot synthesis of propargylamines via A3 coupling. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
22
|
Rostami N, Dekamin MG, Valiey E. Chitosan-EDTA-Cellulose bio-based network: a recyclable multifunctional organocatalyst for green and expeditious synthesis of Hantzsch esters. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
23
|
Functionalization of the magnetic chitosan support with dipyridylamine as a nitrogen-rich pincer ligand for Pd immobilization and investigation of catalytic efficiency in Sonogashira coupling. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Hasan K, Joseph RG, Patole SP. Copper Pyrrole‐imine Incorporated Fe
3
O
4
‐Nanocomposite: A Magnetically Separable and Reusable Catalyst for the Oxidative Amination of Aryl Aldehydes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kamrul Hasan
- Pure and Applied Chemistry Group Department of Chemistry College of Sciences University of Sharjah, P.O. Box 27272 Sharjah United Arab Emirates
| | - Reshma G. Joseph
- Pure and Applied Chemistry Group Department of Chemistry College of Sciences University of Sharjah, P.O. Box 27272 Sharjah United Arab Emirates
| | - Shashikant P. Patole
- Department of Physics Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
25
|
Yadav P, Gupta R, Arora G, Srivastava A, Sharma RK. One‐pot Synthesis of Propargylamines using Aldehydes‐Amines‐Acetylene
via
an Efficient Nickel‐Based Silica‐Coated Magnetic Nanocatalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202200875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Priya Yadav
- Green Chemistry Network Centre Department of Chemistry University of Delhi Delhi 110007 India
- Department of Chemistry, Hindu College University of Delhi Delhi 110007 India
| | - Radhika Gupta
- Green Chemistry Network Centre Department of Chemistry University of Delhi Delhi 110007 India
- Department of Chemistry, Shyam Lal College University of Delhi Delhi 110032 India
| | - Gunjan Arora
- Green Chemistry Network Centre Department of Chemistry University of Delhi Delhi 110007 India
- Department of Chemistry, Hansraj College University of Delhi Delhi 110007 India
| | - Anju Srivastava
- Department of Chemistry, Hindu College University of Delhi Delhi 110007 India
| | - Rakesh K. Sharma
- Green Chemistry Network Centre Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
26
|
Bonardd S, Ramirez O, Abarca G, Leiva Á, Saldías C, Díaz DD. Porous chitosan-based nanocomposites containing gold nanoparticles. Increasing the catalytic performance through film porosity. Int J Biol Macromol 2022; 217:864-877. [PMID: 35907452 DOI: 10.1016/j.ijbiomac.2022.07.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 11/05/2022]
Abstract
The preparation of porous and non-porous chitosan thin-films containing gold nanoparticles was carried out, aiming to evaluate the effect of porosity on their catalytic response using the p-nitrophenol reduction as model reaction. To achieve this, both types of samples were decorated with gold nanoparticles having similar characteristics in terms of amount, size and shape, which were synthesized following a two-step adsorption-reduction process. The results demonstrated that the presence of porosity generates a considerable enhancement of the catalytic property. This behavior is reflected in higher kinetic constant and conversion values, along with a better recyclability after consecutive cycles. The inclusion of porosity in nanocomposites afforded kobs values 7.5 times higher than the non-porous material, as well as conversion values as high as 80 % in <20 min. On the other hand, as an additional experiment, a porous sample prepared with half the amount of gold also exhibited a better performance than the non-porous catalyst, revealing that the porosity allowed to decrease the amount of catalytic metal used and still exhibiting kobs values 5.9 times higher than the non-porous specimen. These studies demonstrate that there is an important synergistic support-nanostructure relationship, which strongly influences the performance of the nanomaterial.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain; Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna 38206, Tenerife, Spain.
| | - Oscar Ramirez
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain; Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna 38206, Tenerife, Spain; Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 302, Correo 22, Santiago, Chile
| | - Gabriel Abarca
- Universidad Bernardo O'Higgins, Centro Integrativo de Biología y Química Aplicada (CIBQA), General Gana 1702, Santiago, Chile
| | - Ángel Leiva
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 302, Correo 22, Santiago, Chile
| | - César Saldías
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 302, Correo 22, Santiago, Chile
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, La Laguna 38206, Tenerife, Spain; Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna 38206, Tenerife, Spain; Institute of Organic Chemistry, University of Regensburg, Universitätstr. 31, Regensburg 93053, Germany
| |
Collapse
|
27
|
Hasanpour Galehban M, Zeynizadeh B, Mousavi H. Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC Adv 2022; 12:16454-16478. [PMID: 35754864 PMCID: PMC9171750 DOI: 10.1039/d1ra08454b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 12/19/2022] Open
Abstract
In the present study, a new l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube (Fe3O4/f-MWCNT-CS-Glu) nanocomposite was prepared through a convenient one-pot multi-component sequential strategy. Then, nickelII nanoparticles (NiII NPs) were entrapped within a matrix of the mentioned nanocomposite. Afterward, the structure of the as-prepared Fe3O4/f-MWCNT-CS-Glu/NiII nanosystem was elucidated by various techniques, including FT-IR, PXRD, SEM, TEM, SEM-based EDX and elemental mapping, ICP-OES, TGA/DTA, and VSM. In the next part of this research, the catalytic applications of the mentioned nickelII-containing magnetic nanocomposite were assessed upon green one-pot synthesis of diverse heterocyclic frameworks, including bis-coumarins (3a-n), 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones (5a-r), 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones (7a-n), and 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles (9a-n). The good-to-excellent yields of the desired products, satisfactory reaction rates, use of water solvent or solvent-free reaction medium, acceptable turnover numbers (TONs) and turnover frequencies (TOFs), along with comfortable recoverability and satisfying reusability of the as-prepared nanocatalyst for at least eight successive runs, and also easy work-up and purification procedures are some of the advantages of the current synthetic protocols.
Collapse
Affiliation(s)
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
28
|
Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci Rep 2022; 12:8642. [PMID: 35606381 PMCID: PMC9126885 DOI: 10.1038/s41598-022-10774-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
AbstractIn this research, cellulose grafted to chitosan by EDTA (Cs-EDTA-Cell) bio-based material is reported and characterized by a series of various methods and techniques such as FTIR, DRS-UV–Vis, TGA, FESEM, XRD and EDX analysis. In fact, the Cs-EDTA-Cell network is more thermally stable than pristine cellulose or chitosan. There is a plenty of both acidic and basic sites on the surface of this bio-based and biodegradable network, as a multifunctional organocatalyst, to proceed three-component synthesis of 2-amino-4H-pyran derivatives at room temperature in EtOH. The Cs-EDTA-Cell nanocatalyst can be easily recovered from the reaction mixture by using filtration and reused for at least five times without significant decrease in its catalytic activity. In general, the Cs-EDTA-Cell network, as a heterogeneous catalyst, demonstrated excellent catalytic activity in an environmentally-benign solvent to afford desired products in short reaction times and required simple experimental and work-up procedure compared to many protocols using similar catalytic systems.
Collapse
|
29
|
|
30
|
Li Y, Luan Y, Liu W, Wang C, Cao H, Liu P. Cellulose nanofibrils/polyvinyl alcohol/silver nanoparticles composite hydrogel: Preparation and its catalyst degradation performance of cationic dye. J Appl Polym Sci 2022. [DOI: 10.1002/app.52246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuhang Li
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Yunhao Luan
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Wanyi Liu
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Cong Wang
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Hui Cao
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp and Paper Tianjin University of Science and Technology Tianjin China
| |
Collapse
|
31
|
Polymer-supported first-row transition metal schiff base complexes: Efficient catalysts for epoxidation of alkenes. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Huang S, Yang S, Chen Y, Yang Z, Deng L, Wu Y, Zhang T, Feng R, Zeng M. Porous carbon supported Pd catalysts derived from gelatin‐based/chitosan or polyvinyl pyrrolidone/
PdCl
2
blends. J Appl Polym Sci 2022. [DOI: 10.1002/app.52163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuaijian Huang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Shuai Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Yuli Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Zhen Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Lu Deng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Yuanyuan Wu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Taojun Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Ruokun Feng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Minfeng Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| |
Collapse
|
33
|
Lin Y, Yu J, Zhang X, Fang J, Lu GP, Huang H. Carbohydrate-derived porous carbon materials: An ideal platform for green organic synthesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Zhang Y, Zhou L, Han B, Li W, Li B, Zhu L. Research Progress of Chitosan Supported Copper Catalyst in Organic Reactions. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int J Biol Macromol 2021; 192:771-819. [PMID: 34634337 DOI: 10.1016/j.ijbiomac.2021.09.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Mohammad G Dekamin
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
36
|
Chitosan-starch biopolymer modified kaolin supported Pd nanoparticles for the oxidative esterification of aryl aldehydes. Int J Biol Macromol 2021; 191:465-473. [PMID: 34563573 DOI: 10.1016/j.ijbiomac.2021.09.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
A mild and efficient green protocol has been disclosed for selective oxidative esterification of various aldehydes over a novel Pd fabricated chitosan-starch polyplex encapsulated Kaolin (Kaolin@CS-starch-Pd) as a heterogeneous and reusable biocompatible nanocatalyst. Molecular oxygen was used as an oxidizing agent to generate water as the sole by-product. A wide variety of aldehydes was converted to their methyl esters in high yields. The process involved gentle reaction conditions to avoid any type of pre-activation. Structural features of the catalyst were determined through FT-IR, FE-SEM, TEM, EDX, elemental mapping, XRD and ICP-OES analyses. The material was found to be stable enough toward Pd leaching. Durability of Kaolin@CS-starch-Pd was further justified by retaining its catalytic activity through successful reusability for several times.
Collapse
|
37
|
Lazzarini A, Colaiezzi R, Gabriele F, Crucianelli M. Support-Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. MATERIALS 2021; 14:ma14226796. [PMID: 34832198 PMCID: PMC8619138 DOI: 10.3390/ma14226796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneous catalysts are progressively expanding their field of application, from high-throughput reactions for traditional industrial chemistry with production volumes reaching millions of tons per year, a sector in which they are key players, to more niche applications for the production of fine chemicals. These novel applications require a progressive utilization reduction of fossil feedstocks, in favor of renewable ones. Biomasses are the most accessible source of organic precursors, having as advantage their low cost and even distribution across the globe. Unfortunately, they are intrinsically inhomogeneous in nature and their efficient exploitation requires novel catalysts. In this process, an accurate design of the active phase performing the reaction is important; nevertheless, we are often neglecting the importance of the support in guaranteeing stable performances and improving catalytic activity. This review has the goal of gathering and highlighting the cases in which the supports (either derived or not from biomass wastes) share the worth of performing the catalysis with the active phase, for those reactions involving the synthesis of fine chemicals starting from biomasses as feedstocks.
Collapse
|
38
|
Nasrollahzadeh M, Ghasemzadeh M, Gharoubi H, Nezafat Z. Progresses in polysaccharide and lignin-based ionic liquids: Catalytic applications and environmental remediation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Elgorban AM, Marraiki N, Syed A. Cu Nanoparticles Anchored over Chitosan-Alginate Modified Magnetic Nanoparticles to Explore the C-N Heterocoupling Reactions. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1980063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Kanarat J, Bunchuay T, Klysubun W, Tantirungrotechai J. Cu
2
O‐CuO/Chitosan Composites as Heterogeneous Catalysts for Benzylic C−H Oxidation at Room Temperature. ChemCatChem 2021. [DOI: 10.1002/cctc.202101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jurin Kanarat
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute (SLRI) 111 University Avenue, Muang District Nakhon Ratchasima 30000 Thailand
| | - Jonggol Tantirungrotechai
- Department of Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
- Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama 6 Road Bangkok 10400 Thailand
| |
Collapse
|
41
|
Mounir C, Ahlafi H, Aazza M, Moussout H, Mounir S. Kinetics and Langmuir–Hinshelwood mechanism for the catalytic reduction of para-nitrophenol over Cu catalysts supported on chitin and chitosan biopolymers. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02066-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Halloysite Nanoclay with High Content of Sulfonic Acid-Based Ionic Liquid: A Novel Catalyst for the Synthesis of Tetrahydrobenzo[b]pyrans. Catalysts 2021. [DOI: 10.3390/catal11101172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One of the main drawbacks of supported ionic liquids is their low loading and consequently, low activity of the resultant catalysts. To furnish a solution to this issue, a novel heterocyclic ligand with multi imine sites was introduced on the surface of amino-functionalized halloysite support via successive reactions with 2,4,6-trichloro-1,3,5-triazine and 2-aminopyrimidine. Subsequently, the imine sites were transformed to sulfonic acid-based ionic liquids via reaction with 1,4-butanesultone. Using this strategy, high loading of ionic liquid was loaded on halloysite nanoclay. The supported ionic liquid was then characterized with XRD, SEM, TEM, EDS, FTIR, BET, TGA and elemental mapping analysis and utilized as a metal-free Brønsted acid catalyst for promoting one-pot reaction of aldehydes, dimedone and malononitrile to furnish tetrahydrobenzo[b]pyrans. The catalytic tests confirmed high performance of the catalyst. Moreover, the catalyst was stable upon recycling.
Collapse
|
43
|
Elgorban AM, Marraiki N, Syed A. Cu Nanoparticles Anchored over Chitosan-Alginate Modified Magnetic Nanoparticles to Explore the C-N Heterocoupling Reactions. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1970589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
|
45
|
Arora A, Oswal P, Singh S, Nautiyal D, Rao GK, Kumar S, Singh AK, Kumar A. Organoselenium ligand-stabilized copper nanoparticles: Development of a magnetically separable catalytic system for efficient, room temperature and aqueous phase reduction of nitroarenes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
47
|
Alkabli J, Rizk MA, Elshaarawy RFM, El-Sayed WN. Ionic chitosan Schiff bases supported Pd(II) and Ru(II) complexes; production, characterization, and catalytic performance in Suzuki cross-coupling reactions. Int J Biol Macromol 2021; 184:454-462. [PMID: 34157331 DOI: 10.1016/j.ijbiomac.2021.06.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
Taking the advantage of multifunctional characteristics of chitosan (CS), we have developed new scaffolds (imidazolium-vanillyl-chitosan Schiff bases (IVCSSBs)) for supporting Pd(II) and Ru(II) ions in catalyzing Suzuki coupling reactions. The structures of new materials were described based on their elemental, spectral, thermal, and microscopic analysis. The strong interactions between the binding sites of IVCSSB ligand (OH, H-C=N, and OCH3 groups) and Pd(II) ions resulted in the formation of an excellent heterogeneous catalyst (Pd(II)IVCSSB1) with amazing catalytic activity (up to 99%) and highly stable in the reaction medium. The reusability experiments for Pd(II)IVCSSB1 revealed that there is no appreciable decrease in its catalytic activity even after five consecutive operation runs. Furthermore, this heterogeneous catalyst showed an excellent selectivity toward the cross-coupling reaction where no homo-coupling byproducts were observed in the 1H NMR spectra of the obtained products. Consequently, the present ionic catalytic system may open a new window for a novel generation of ionic bio-based catalysts for organic transformations.
Collapse
Affiliation(s)
- J Alkabli
- Department of Chemistry, College of Sciences and Arts - Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Moustafa A Rizk
- Chemistry Department, College of Science and Arts-Sharurah, Najran University, Sharurah, Saudi Arabia; Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt; Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany.
| | - W N El-Sayed
- Department of Chemistry, College of Sciences and Arts - Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia; Department of Chemistry, Faculty of Science, Suez University, 43533 Suez, Egypt.
| |
Collapse
|
48
|
Alshabanah LA, Gomha SM, Al-Mutabagani LA, Abolibda TZ, El-Ghany NAA, El-Enany WAMA, El-Ziaty AK, Ali RS, Mohamed NA. Cross-Linked Chitosan/Multi-Walled Carbon Nanotubes Composite as Ecofriendly Biocatalyst for Synthesis of Some Novel Benzil Bis-Thiazoles. Polymers (Basel) 2021; 13:1728. [PMID: 34070526 PMCID: PMC8198799 DOI: 10.3390/polym13111728] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Aminohydrazide cross-linked chitosan (CLCS) and its MWCNTs (CLCS/MWCNTs) were formulated and utilized as a potent ecofriendly basic heterogeneous biocatalyst under ultrasonic irradiation for synthesis of two novel series of benzil bis-aryldiazenylthiazoles and benzil bis-arylhydrazonothiazolones from the reaction of benzil bis-thiosemicarbazone with 2-oxo-N'-arylpropanehydrazonoyl chlorides and ethyl 2-chloro-2-(2-phenylhydrazono) acetates, respectively. The chemical structures of the newly synthesized derivatives were elucidated by spectral data and alternative methods, where available. Additionally, their yield % was estimated using a traditional catalyst as TEA and green recyclable catalysts as CLCS and CLCS/MWCNTs composite in a comparative study. We observed that, under the same reaction conditions, the yield % of the desired products increased by changing TEA to CLCS then to CLCS/MWCNT from 72-78% to 79-83% to 84-87%, respectively. The thermal stability of the investigated samples could be arranged as CLCS/MWCNTs composite > CLCS > chitosan, where the weight losses of chitosan, CLCS and CLCS/MWCNTs composite at 500 °C were 65.46%, 57.95% and 53.29%, respectively.
Collapse
Affiliation(s)
- Latifah A. Alshabanah
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; (N.A.A.E.-G.); (W.A.M.A.E.-E.); (N.A.M.)
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara 42351, Saudi Arabia;
| | - Laila A. Al-Mutabagani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara 42351, Saudi Arabia;
| | - Nahed A. Abd El-Ghany
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; (N.A.A.E.-G.); (W.A.M.A.E.-E.); (N.A.M.)
| | - Waleed A. M. A. El-Enany
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; (N.A.A.E.-G.); (W.A.M.A.E.-E.); (N.A.M.)
| | - Ahmed K. El-Ziaty
- Chemistry Department, Faculty of Science, Ain Shams University, El-Khalifa El-Mamoun, Abbassia, Cairo 11566, Egypt;
| | - Rania S. Ali
- Department of Basic Science, Faculty of Technology and Education, Helwan University, Cairo 11795, Egypt;
| | - Nadia A. Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; (N.A.A.E.-G.); (W.A.M.A.E.-E.); (N.A.M.)
- Department of Chemistry, College of Science & Arts, Qassim University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
49
|
Moccia F, Rigamonti L, Messori A, Zanotti V, Mazzoni R. Bringing Homogeneous Iron Catalysts on the Heterogeneous Side: Solutions for Immobilization. Molecules 2021; 26:2728. [PMID: 34066456 PMCID: PMC8124704 DOI: 10.3390/molecules26092728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Noble metal catalysts currently dominate the landscape of chemical synthesis, but cheaper and less toxic derivatives are recently emerging as more sustainable solutions. Iron is among the possible alternative metals due to its biocompatibility and exceptional versatility. Nowadays, iron catalysts work essentially in homogeneous conditions, while heterogeneous catalysts would be better performing and more desirable systems for a broad industrial application. In this review, approaches for heterogenization of iron catalysts reported in the literature within the last two decades are summarized, and utility and critical points are discussed. The immobilization on silica of bis(arylimine)pyridyl iron complexes, good catalysts in the polymerization of olefins, is the first useful heterogeneous strategy described. Microporous molecular sieves also proved to be good iron catalyst carriers, able to provide confined geometries where olefin polymerization can occur. Same immobilizing supports (e.g., MCM-41 and MCM-48) are suitable for anchoring iron-based catalysts for styrene, cyclohexene and cyclohexane oxidation. Another excellent example is the anchoring to a Merrifield resin of an FeII-anthranilic acid complex, active in the catalytic reaction of urea with alcohols and amines for the synthesis of carbamates and N-substituted ureas, respectively. A SILP (Supported Ionic Liquid Phase) catalytic system has been successfully employed for the heterogenization of a chemoselective iron catalyst active in aldehyde hydrogenation. Finally, FeIII ions supported on polyvinylpyridine grafted chitosan made a useful heterogeneous catalytic system for C-H bond activation.
Collapse
Affiliation(s)
- Fabio Moccia
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy;
| | - Alessandro Messori
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Valerio Zanotti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Rita Mazzoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| |
Collapse
|
50
|
Functionalized chitosan as a novel support for stabilizing palladium in Suzuki reactions. Carbohydr Polym 2021; 260:117815. [DOI: 10.1016/j.carbpol.2021.117815] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
|