1
|
Li W, Li C, Guo J, Jiang T, Kang W, Pang H. Advanced Alkali Metal Batteries Based on MOFs and Their Composites. CHEMSUSCHEM 2025; 18:e202402289. [PMID: 39745193 DOI: 10.1002/cssc.202402289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/28/2024] [Indexed: 01/19/2025]
Abstract
The integration of metal-organic frameworks (MOFs) with functional materials has established a versatile platform for a wide range of energy storage applications. Due to their large specific surface area, high porosity, and tunable structural properties, MOFs hold significant promise as components in energy storage systems, including electrodes, electrolytes, and separators for alkali metal-ion batteries (AIBs). Although lithium-ion batteries (LIBs) are widely used, their commercial graphite anode materials are nearing their theoretical capacity limits, and the scarcity of lithium and cobalt resources increases costs. Although zinc-ion batteries (ZIBs) suffer from limited cycling stability, they are attractive for their low cost, high capacity, and excellent safety. Meanwhile, potassium-ion (PIBs) and sodium-ion batteries (SIBs) show promise due to their affordability and abundant resources, but they encounter issues such as short cycle life and low energy density. This review outlines the applications of MOF composites in LIBs, SIBs, and ZIBs, introduces common synthesis methods, and forecasts future development directions and challenges in energy storage applications. We emphasize how the understanding can lay the foundation for developing MOF composites with enhanced functionalities.
Collapse
Affiliation(s)
- Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Chengze Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Jin Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Tianhao Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Wei Kang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| |
Collapse
|
2
|
Chen W, Sun Q, Li J, Gong Z, Xie W, Ouyang Z, Zheng B, Zhao J, Xiao Y, Lei S, Cheng B. Modulation of Surface/Interface States in Bi 2S 3/VS 4 Heterostructure With CN Layer for High-Performance Sodium-Ion Batteries: Enhanced Built-in Electric Field and Polysulfide Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500359. [PMID: 40167524 DOI: 10.1002/smll.202500359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/23/2025] [Indexed: 04/02/2025]
Abstract
Metal sulfides are promising materials for sodium-ion batteries (SIBs) owing to unique structures and high theoretical capacity. However, issues like poor conductivity, large volume changes, and polysulfide dissolution limit practical application. This study introduces a novel Christmas tree-like heterostructure composed of Bi2S3 and VS4 encapsulated in nitrogen-doped carbon shell (Bi2S3/VS4@CN), synthesized by sulfurizing dopamine-coated BiVO4 precursor. The in situ synthesis ensures excellent lattice matching between Bi2S3 and VS4, minimizing interface states and enhancing effective built-in electric field. This design accelerates electrochemical reaction kinetics; moreover, it promotes progressive reaction that mitigates structural fragmentation, suppresses degradation, and prevents polysulfide dissolution and shuttle. Additionally, the CN shell effectively passivates the surface states of Bi2S3 and VS4 nanostructures, lowering surface barrier and improving overall conductivity. As a result, Bi2S3/VS4@CN-based half-SIBs demonstrate remarkable long-cycle stability, maintaining 387.1 mAh g-1 after 1600 cycles at 2 A g-1, and excellent rate performance with 376.3 mAh g-1 at 5 A g-1. Full-SIBs using Na3V2(PO4)3//Bi2S3/VS4@CN exhibit outstanding cycling stability, retaining 117.2 mAh g-1 after 200 cycles at 1 A g-1, along with 218 Wh kg-1 high energy density at 145.3 W kg-1. This work highlights the potential of heterostructures in advancing metal sulfide-based SIBs for high-performance energy storage.
Collapse
Affiliation(s)
- Weiwei Chen
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Qinghua Sun
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Jianchao Li
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Ziwei Gong
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Wenju Xie
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
- Institute for Advanced Study, Nanchang University, Jiangxi, 330031, P. R. China
- College of Ecology and Resources Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Fujian, 354300, P. R. China
| | - Zhiyong Ouyang
- School of Materials and Energy, Jiangxi Science and Technology Normal University, Jiangxi, 330038, P. R. China
| | - Bai Zheng
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Jiangxi, 330031, P. R. China
- Institute for Advanced Study, Nanchang University, Jiangxi, 330031, P. R. China
| |
Collapse
|
3
|
Xie Y, Yu J, Cui L, Yang G, Lu S, Zhang X, Lai F, Qin L, Fan X, Wang H. In Situ Phase Transformation of Nanoporous Fe 2O 3 Dendrite to Fe 2O 3/FeS 2 Polycrystalline Texture Achieving Superior Rate Capability and Ultra-Long Cycling Stability with High Capacity. SMALL METHODS 2025:e2500282. [PMID: 40259640 DOI: 10.1002/smtd.202500282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/23/2025] [Indexed: 04/23/2025]
Abstract
Structural design combined with crystal engineering is an external and internal modifying strategy for metal oxides and sulfides as anode materials for lithium/sodium-ion batteries (LIBs/SIBs). In this paper, the low-cost iron-based oxide of Fe2O3 shaped into dendritic nanostructure is locally in situ phase converted to FeS2 and form porous Fe2O3/FeS2 polycrystalline texture. The Fe2O3/FeS2 maintains the original porous, cross-linked and low-dimension structural advantages of the Fe2O3 precursor for electron transport and ions exchange and alleviating volume expansion. Then, the abundant heterogeneous in the converted Fe2O3/FeS2 dramatically enhances electron diffusion in crystal and the structural stability at phase boundary. The prepared anode achieves superior rate capability and ultra-long cycling stability with high capacity both in LIBs and SIBs. Specially, it shows 1017 and 1016 mAh g-1 at 10 A g-1 in LIBs and SIBs, separately. After 3000 cycles, the electrodes maintain 266 mAh g-1 at 10 A g-1 in LIBs and 279 mAh g-1 in SIBs. In addition, the LiFePO4//Fe2O3/FeS2 and (Na3V2(PO4)3)//Fe2O3/FeS2 full cells are successfully packaged and also show satisfactory electrochemical performances.
Collapse
Affiliation(s)
- Yishun Xie
- Key Laboratory of Natural and Biomedical Polymer Materials (Education Department of Guangxi Zhuang Autonomous Region), College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- College of Materials and Chemical Engineering, Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, China
| | - Jinlian Yu
- Guangxi Key Laboratory of Low-Carbon Energy Materials, School of Chemical and, Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Lisan Cui
- Guangxi Key Laboratory of Low-Carbon Energy Materials, School of Chemical and, Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| | - Guangchang Yang
- College of Materials and Chemical Engineering, Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, China
| | - Shaorong Lu
- Key Laboratory of Natural and Biomedical Polymer Materials (Education Department of Guangxi Zhuang Autonomous Region), College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiaohui Zhang
- Key Laboratory of Natural and Biomedical Polymer Materials (Education Department of Guangxi Zhuang Autonomous Region), College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- College of Materials and Chemical Engineering, Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, China
| | - Feiyan Lai
- Key Laboratory of Natural and Biomedical Polymer Materials (Education Department of Guangxi Zhuang Autonomous Region), College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
- College of Materials and Chemical Engineering, Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, China
| | - Lin Qin
- Key Laboratory of Natural and Biomedical Polymer Materials (Education Department of Guangxi Zhuang Autonomous Region), College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xin Fan
- Key Laboratory of Natural and Biomedical Polymer Materials (Education Department of Guangxi Zhuang Autonomous Region), College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low-Carbon Energy Materials, School of Chemical and, Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
4
|
Liang Z, Liu C, Bai X, Zhang J, Chang X, Zhang B, Xia M, Du H, Huang H, Wu B, Yang C, Wang S, Liu W, Wang Q. Integrating Competitive Li + Coordination with Immobilized Anions in Composite Solid Electrolyte for High-Performance Li Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413875. [PMID: 39965149 PMCID: PMC11984912 DOI: 10.1002/advs.202413875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/19/2025] [Indexed: 02/20/2025]
Abstract
Poly(vinylidene fluoride) (PVDF)-based polymer electrolytes have attracted widespread attention due to their unique Li+ transport mechanism. However, their low ionic conductivity and porous structure, as well as residual solvent limit their application at high current densities. Here, a composite solid electrolyte (CSE) is developed by integrating poly(vinylidene-co-trifluoroethylene) [P(VDF-TrFE)] in its all-trans conformation with aminofunctionalized metal-organic framework (ZIF-90-NH2). In such a CSE, all F atoms located on one side of the polymer chain, providing fast Li+ transport channels. Concurrently, the functionalized ZIF-90-NH2 can effectively anchor the residual N, N-dimethylformamide (DMF) in CSEs while weakening Li+-DMF solvent coordination, inducing the rearrangement of Li+ solvation structure and inhibiting the decomposition of DMF at the interface. Synergistically, ZIF-90-NH2 can immobilize anions in Li salts, promoting their dissociation. Based on integrating competitive Li+ coordination with immobilized anions, the obtained CSEs exhibit a high Li+ transference number (0.77). The full cells with LiFePO4 cathode can run stably over 400 cycles at 5 C, while the Li || LiNi0.7Co0.1Mn0.2O2 full cells deliver a high capacity retention (>85%) after 200 cycles at a charge cutoff voltage of 4.5 V. This work opens up a new path for building CSEs with high interfacial stability and fast Li+ transport.
Collapse
Affiliation(s)
- Ziyang Liang
- College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanShanxi030024China
| | - Chang Liu
- College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanShanxi030024China
| | - Xiang Bai
- Shanxi Energy Internet Research InstituteTaiyuanShanxi030024China
| | - Jiahui Zhang
- Shanxi Energy Internet Research InstituteTaiyuanShanxi030024China
| | - Xinyue Chang
- Shanxi Energy Internet Research InstituteTaiyuanShanxi030024China
| | - Bo Zhang
- College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanShanxi030024China
| | - Mengxue Xia
- College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanShanxi030024China
| | - Huayun Du
- College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanShanxi030024China
| | - Hao Huang
- College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanShanxi030024China
| | - Bing Wu
- Emergency Research InstituteChinese Institute of Coal Science (CICS)Beijing100013China
| | - Chengkai Yang
- Key Laboratory of Advanced Materials TechnologyCollege of Materials Science and EngineeringFuzhou UniversityFuzhou350108China
| | - Shi Wang
- State Key Laboratory of Organic Electronics & Information Displays (SKLOEID)Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjing210023China
| | - Wen Liu
- State Key Lab of Chemical Resource Engineering College of Science and College of EnergyBeijing University of Chemical TechnologyBeijing100092China
| | - Qian Wang
- College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanShanxi030024China
| |
Collapse
|
5
|
Sun Y, Li S, Dai Y, Zhang H, Luo C. An electrochemical biosensor for the detection of BRCA1 based on MOF-derived CeO 2@CuS nanosheets with high electrocatalytic H 2O 2 reduction performance. Anal Chim Acta 2025; 1345:343765. [PMID: 40015767 DOI: 10.1016/j.aca.2025.343765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/25/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Since the incidence of breast cancer ranks first among female malignant tumors, early diagnosis and treatment of breast cancer are crucial to women's health. Therefore, the detection and monitoring of breast cancer susceptibility gene (BRCA1) is particularly important. In this paper, an electrochemical biosensor was developed to detect BRCA1 based on MOF-derived CeO2@CuS nanosheets with efficient electrocatalytic activity of H2O2 reduction. RESULTS CeO2 nanotube derived from MOF possessed excellent charge transfer ability and high specific surface area, making it an ideal substrate for loading CuS nanosheets. The combination of CeO2 and CuS enhanced the electrocatalytic activity and conductivity of H2O2 redox reaction. Then gold nanoparticles (Au) were introduced to synthesize Au@CeO2@CuS to further improve conductivity and electrocatalytic activity. Based on the excellent properties of the above synthetic materials, the non-enzymatic electrochemical sensing platform for detecting BRCA1 were constructed. The proposed method demonstrated wide linearity ranges and low detection limits for detecting BRCA1 (0.1 pmol/L - 10 nmol/L, 0.02 fmol/L), respectively. SIGNIFICANCE These showed that the sensing strategy provides a new approach for the detection of BRCA1 and has important significance for the early diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Shurui Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuxue Dai
- College of Resources and Environmental Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, China
| | - Han Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
6
|
Fu Y, Qiu W, Huang H, Huang Q, Guo Y, Mai W, Luo Y, Xu Z, Wu Y, Lin X. Bimetal-organic framework-templated Zn-Fe-based transition metal oxide composites through heterostructure optimization to boost lithium storage. J Colloid Interface Sci 2025; 683:507-520. [PMID: 39740567 DOI: 10.1016/j.jcis.2024.12.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs). In this paper, we successfully synthesized a series of ZnFe2O4/Fe2O3 compounds (named as ZFFO) with Zn/Fe-MOFs (metal-organic frameworks) as sacrificial templates, and then obtained single-component ZnFe2O4 contrast samples (named as ZFO) by etching ZFFO with NaOH. Density Functional Theory (DFT) calculations display that the bi-component ZFFO materials formed by the introduction of Fe2O3 exhibit a lower Li+ migration energy barrier compared to the single-component ZFO materials, indicating better ion diffusion kinetics of ZFFO. The bi-components of ZnFe2O4 and Fe2O3 in ZFFO electrodes can exert a synergistic effect to achieve mutual constraints on volume expansion and alleviate volume strain during charging/discharging processes, thus improving structural stability and electrochemical performance. Besides, the ZnFe2O4/Fe2O3 constructed with 2-methylimidazole as a ligand not only has the synergistic effect of bi-components, but also exhibits a uniformly distributed small-size particle morphology, so that the discharge capacity is 864.2 mAh g-1 after 200 cycles at 0.1 A g-1 when used as an anode for LIBs. This approach presents a feasible and efficient way to synthesize bi-component transition metal oxides with improved practical applications for LIBs.
Collapse
Affiliation(s)
- Yuanxiang Fu
- School of Chemical Engineering & Key Laboratory of Energy Chemistry in Guizhou Universities, Guizhou Institute of Technology, Guiyang 550003, China
| | - Wei Qiu
- School of Chemical Engineering & Key Laboratory of Energy Chemistry in Guizhou Universities, Guizhou Institute of Technology, Guiyang 550003, China
| | - Hongsheng Huang
- School of Chemical Engineering & Key Laboratory of Energy Chemistry in Guizhou Universities, Guizhou Institute of Technology, Guiyang 550003, China
| | - Qianhong Huang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yun Guo
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Wanxin Mai
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yuhong Luo
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Zhiguang Xu
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Yongbo Wu
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Xiaoming Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Salah A, Ren HD, Al-Ansi N, Al-Salihy A, Mahyoub SA, Qaraah FA, Hezam A, Drmosh QA. RuCo@C Hollow Nanoprisms Derived from ZIF-67 for Enhanced Hydrogen and Oxygen Evolution Reactions. CHEMSUSCHEM 2025; 18:e202401862. [PMID: 39429098 DOI: 10.1002/cssc.202401862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/22/2024]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are commonly used to create complex hollow structures for energy applications. This study presents a simple method to produce a novel hollow nanoprism Co@C hierarchical composite from ZIF-67 through high-temperature treatment at 800 °C. This composite serves as a platform for Ru nanoparticle deposition, forming RuCo@C hollow nanoprism (RuCo@C HNP). As an electrocatalyst in 1 M KOH, RuCo@C HNP exhibits excellent hydrogen evolution reaction (HER) performance, with a low overpotential of 32 mV to reach 10 mA cm-2, a Tafel slope of 39.67 mV dec-1, a high turnover frequency (TOF) of 3.83 s-1 at η200, and stable performance over 50 h. It also achieves a low η10 of 266 mV for the oxygen evolution reaction (OER) with a Tafel slope of 45.22 mV dec-1. Density functional theory (DFT) calculations reveal that Ru doping in Ni/Co maintains a low water dissociation barrier, reduces the energy barrier for the OER rate-determining step, and creates active sites for H*, enhancing adsorption/desorption abilities. These results are attributed to the synergy between Co and Ru and the hollow prism structure's increased surface area. This method for synthesizing hollow structures using ZIF composites shows promise for applications in the energy sector.
Collapse
Affiliation(s)
- Abdulwahab Salah
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Hong-Da Ren
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Nabilah Al-Ansi
- National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Adel Al-Salihy
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Samah A Mahyoub
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Fahim A Qaraah
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Abdo Hezam
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany
| | - Qasem A Drmosh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
8
|
Lv W, Song Y, Mo Z. Synthesis of metal-organic framework-luminescent guest (MOF@LG) composites and their applications in environmental health sensing: A mini review. Talanta 2025; 283:127105. [PMID: 39486302 DOI: 10.1016/j.talanta.2024.127105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Metal-organic framework (MOF) materials are three-dimensional structures formed by the combination of metal ions and organic ligands. So far, various typical metal organic framework materials have emerged, such as ZIF-8, MOF-5, UIO-66, etc. These traditional MOF materials have the advantages of simple synthesis, high porosity, and high stability, and have great research potential in the field of fluorescence sensing. However, MOF materials with excellent luminescent properties often involve fine regulation of organic ligands to ensure that fluorescence emission can be achieved between metal ions and organic ligands through energy transfer and photo induced electron transfer. The long synthesis cycle and cumbersome preparation process pose challenges for the research of fluorescent MOF materials. Combining MOF materials with luminescent guests is an effective way to prepare simple fluorescent chemical sensors. These luminescent guests include quantum dots, organic dyes, fluorescent nanoparticles, etc. They have the characteristic of high luminescence quantum yield, but high concentrations often lead to aggregation and collision, which in turn cause emission quenching. MOF materials with excellent porosity and specific surface area can serve as an ideal platform for encapsulating luminescent guests and preventing their aggregation. The preparation of MOF@luminescent guest composite material (MOF@LG) is easy to synthesize, which not only effectively improves the poor fluorescence performance of MOFs themselves, but also preserves the excellent fluorescence performance of luminescent guests. Composite materials often have excellent solid-state luminescence performance, making them a good choice for constructing a simple fluorescence sensing platform.
Collapse
Affiliation(s)
- Wenbo Lv
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou, 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou, 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yafang Song
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou, 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou, 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou, 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou, 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| |
Collapse
|
9
|
Tan Y, Mo F, Li H. Advanced Bismuth-Based Anode Materials for Efficient Potassium Storage: Structural Features, Storage Mechanisms and Modification Strategies. NANO-MICRO LETTERS 2025; 17:126. [PMID: 39888535 PMCID: PMC11785892 DOI: 10.1007/s40820-024-01641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/25/2024] [Indexed: 02/01/2025]
Abstract
Potassium-ion batteries (PIBs) are considered as a promising energy storage system owing to its abundant potassium resources. As an important part of the battery composition, anode materials play a vital role in the future development of PIBs. Bismuth-based anode materials demonstrate great potential for storing potassium ions (K+) due to their layered structure, high theoretical capacity based on the alloying reaction mechanism, and safe operating voltage. However, the large radius of K+ inevitably induces severe volume expansion in depotassiation/potassiation, and the sluggish kinetics of K+ insertion/extraction limits its further development. Herein, we summarize the strategies used to improve the potassium storage properties of various types of materials and introduce recent advances in the design and fabrication of favorable structural features of bismuth-based materials. Firstly, this review analyzes the structure, working mechanism and advantages and disadvantages of various types of materials for potassium storage. Then, based on this, the manuscript focuses on summarizing modification strategies including structural and morphological design, compositing with other materials, and electrolyte optimization, and elucidating the advantages of various modifications in enhancing the potassium storage performance. Finally, we outline the current challenges of bismuth-based materials in PIBs and put forward some prospects to be verified.
Collapse
Affiliation(s)
- Yiye Tan
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Fanglan Mo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Hongyan Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
10
|
Yıldır M, Genc AA, Buğday N, Erk N, Peighambardoust NS, Aydemir U, Yaşar S. Novel Electrochemical Approaches for Anticancer Drug Monitoring: Application of CoS@Nitrogen-Doped Amorphous Porous Carbon Composite in Nilotinib Detection. ACS OMEGA 2025; 10:261-271. [PMID: 39829576 PMCID: PMC11740382 DOI: 10.1021/acsomega.4c05505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/09/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
A novel composite containing CoS and nitrogen-doped amorphous porous carbon (NAPC), denoted as CoS@NAPC, was successfully synthesized from a mixture of cobalt-based ZIF-12 and sulfur through one-pot pyrolysis. The morphology and microstructure of the composites are evaluated with appropriate spectroscopic techniques. CoS@NAPC was used to modify the glassy carbon electrode (GCE) to detect Nilotinib. Under optimized conditions, the GCE electrode modified with CoS@NAPC showed a low limit of detection (LOD) of 11.8 ng/mL and two wide linear concentration ranges of 59.7-1570 and 1570-11200 ng/mL for the determination of Nilotinib. GCE electrode modified with CoS@NAPC has excellent recoveries ranging from 98.41 to 102.03% for real samples, demonstrating its superior analytical performance. The enhanced performance of CoS@NAPC as an electrochemical sensor may stem from the combined action of two key components: CoS, known for its potent reactivity toward Nilotinib, and NAPC, which offers a consistent conductive carbon matrix. CoS contributes to its reactivity, while NAPC facilitates electron transfer during Nilotinib detection. This synergistic effect likely underlies the superior sensor performance observed.
Collapse
Affiliation(s)
- Merve Yıldır
- Faculty
of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560 Ankara, Turkey
- Graduate
School of Health Sciences, Ankara University, 06110 Ankara, Turkey
| | - Asena Ayse Genc
- Faculty
of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560 Ankara, Turkey
- Graduate
School of Health Sciences, Ankara University, 06110 Ankara, Turkey
| | - Nesrin Buğday
- Faculty
of Science and Art, Department of Chemistry, İnönü Üniversity, 44280 Malatya, Turkey
| | - Nevin Erk
- Faculty
of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560 Ankara, Turkey
| | | | - Umut Aydemir
- Boron
and Advanced Materials Research Center (KUBAM), Koç University, 34450 Istanbul, Turkey
| | - Sedat Yaşar
- Faculty
of Science and Art, Department of Chemistry, İnönü Üniversity, 44280 Malatya, Turkey
| |
Collapse
|
11
|
Tang M, Yin X, Cao Y, Ma H, Zhang X, Jia D. Enhanced Structural VS 4 Grown onto Hollow Carbon Mesoporous Spheres via Surficial Bonding for High Cycling Stability in Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406547. [PMID: 39463054 DOI: 10.1002/smll.202406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Transition metal sulfides are recognized as an excellent alternative to sodium ion anodes ascribed to the outstanding theoretical capacity. The unique crystal arrangement of VS4 gives it exceptional theoretical capacity, despite challenges like insufficient electrical conductivity and undesirable volume expansion. Herein, a novel stabilized anode featuring a distinctive 3D hollow spherical structure is proposed, providing a simple strategy to synthesize such anodes for VS4-HCMSs bonded via C-O-S and V-O-C interfaces. The kinetic investigations and density functional theory reveal that the unique structure connected by interfacial bonds enhances Na+ transport rate and charge transfer efficiency, while carbon greatly mitigates the volume expansion. Unsurprisingly, the VS4-HCMSs exhibit an impressive first-cycle Coulombic efficiency of 91.31% and an ultrahigh reversible capacity of 612 mAh g-1 after 300 cycles at 0.5 A g-1, even exhibit the reversible capacity of 498.8 mAh g-1 after 1000 cycles at 5 A g-1. Additionally, the NaFePO4//VS4-HCMSs full cell is cycled for 200 cycles at 0.2 C and powered the light-emitting diodes for up to 30 minutes afterward. Overall, this work enhances the conductivity and stability of the material by combining VS4 with hollow carbon mesoporous spheres through interfacial bonding, offering an efficient strategy to anode materials in sodium-ion batteries.
Collapse
Affiliation(s)
- Mingxuan Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Xinxin Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Huan Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Xuntao Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
12
|
Xie Y, Nuñez CG, Wang H, Gao X, Zhang H, Jiang F, Jia K, Li Q, Bai H, Yao F, Yue H. Hollow transition metal chalcogenides derived from vanadium-based metal organic framework for hybrid supercapacitors with excellent energy-density and stability. J Colloid Interface Sci 2024; 680:446-455. [PMID: 39577241 DOI: 10.1016/j.jcis.2024.11.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
In-situ synthesized hollow transition metal chalcogenides have gained significant attention on account of their excellent electrochemical properties. Here, Ni-doped V-MOF (V(Ni)-MOF) nanorod arrays as precursor are first grown on nickel foam (NF). Subsequently, the nanorod arrays are converted into V(NiCo)-OH hollow nanotube arrays with cross-linked nanosheets by Co2+ etching. Finally, V(NiCo)-OH/NF is converted into V(NiCo)-X/NF (X = O, S and Se) by annealing or ion exchange. Due to the unique morphology of hollow nanotube arrays with cross-linked nanosheets and synergistic effect of multi-metal components, the V(NiCo)-Se/NF achieves an outstanding specific capacity (1806.7 C g-1 at 1 A g-1), which is higher than that of V(NiCo)-O/NF (1208.3 C g-1) and V(NiCo)-S/NF (1558.4 C g-1). In addition, the capacity retention rate is 91.7 % (at 10 A g-1 after 10, 000 cycles). Utilizing V(NiCo)-Se/NF (positive) and activated carbon/NF (negative), the hybrid supercapacitor (HSC) achieves an impressive high energy density of 114.8 Wh kg-1 (at 679.5 W kg-1). Moreover, two HSCs in series can power the LED and stopwatch, and keep working for more than 60 min, displaying good practical application capabilities.
Collapse
Affiliation(s)
- Yanqiu Xie
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Carlos Garcia Nuñez
- Electronics and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Haoze Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Xin Gao
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Haopeng Zhang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Fan Jiang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Kemeng Jia
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Qian Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - He Bai
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China
| | - Fei Yao
- Department of Materials Design and Innovation, University at Buffalo, North Campus, Buffalo 14260, United States
| | - Hongyan Yue
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic of China.
| |
Collapse
|
13
|
Yue M, Zhong L, Sheng Y, He H, Xiao Y, Cheng B, Chen W, Lei S. Carbon-Coated MOF-Derived Porous SnPS 3 Core-Shell Structure as Superior Anode for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405262. [PMID: 39152930 DOI: 10.1002/smll.202405262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Metal thiophosphites have recently emerged as a hot electrode material system for sodium-ion batteries because of their large theoretical capacity. Nevertheless, the sluggish electrochemical reaction kinetics and drastic volume expansion induced by the low conductivity and inherent conversion-alloying reaction mechanism, require urgent resolution. Herein, a distinctive porous core-shell structure, denoted as SnPS3@C, is controllably synthesized by synchronously phosphor-sulfurizing resorcinol-formaldehyde-coated tin metal-organic framework cubes. Thanks to the 3D porous structure, the ion diffusion kinetics are accelerated. In addition, SnPS3@C features a tough protective carbon layer, which improves the electrochemical activity and reduces the polarization. As expected, the as-prepared SnPS3@C electrode exhibits superior electrochemical performance compared to pure SnPS3, including excellent rate capability (1342.4 and 731.1 mAh g-1 at 0.1 and 4 A g-1, respectively), and impressive long-term cycling stability (97.9% capacity retention after 1000 cycles at 1 A g-1). Moreover, the sodium storage mechanism is thoroughly studied by in-situ and ex-situ characterizations. This work offers an innovative approach to enhance the energy storage performance of metal thiophosphite materials through meticulous structural design, including the introduction of porous characteristics and core-shell structures.
Collapse
Affiliation(s)
- Ming Yue
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Longsheng Zhong
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Yanzhe Sheng
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Hongxiao He
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| | - Wen Chen
- China State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou, 570228, China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
14
|
Ren YJ, Guan HB, Hou YL, Zhang BH, Tian KK, Xiong BQ, Chen JZ, Zhao DL. Enhancing Rapid Li +/Na + Storage Performance via Interface Engineering of Reduced Graphene Oxide-Wrapped Bimetallic Sulfide Nanocages. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45619-45631. [PMID: 39162184 DOI: 10.1021/acsami.4c06039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Transition-metal sulfide is considered to be an admirable transformational electrode material due to low cost, large specific capacity, and good reversibility in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Herein, the reduced graphene oxide-wrapped open bimetallic sulfide (NiS2-Co3S4@rGO) nanocage, derived from nickel-cobalt Prussian blue, was obtained by two-step calcination. There are luxuriant pore structures in the nanocage composite with a specific surface area of 85.28 m2 g-1, which provides plentiful paths for rapid transmission of Li+/Na+ and alleviates the volume stress caused by insertion and extraction of alkali metal ions. The excellent interface combination of bimetallic sulfide wrapped in reduced graphene oxide improves the conductivity and overall performance of the battery. Thanks to the special interface engineering, the open NiS2-Co3S4@rGO nanocage composite displays rapid lithium storage properties with an average diffusion coefficient of 8.5 × 10-13 cm2 s-1. Moreover, after 300 cycles, the reversible capacity of the composite is 1113.2 mAh g-1 at 1 A g-1. In SIBs, the capacity of the open NiS2-Co3S4@rGO composite is 487.9 mAh g-1 when the current density is 5 A g-1. These preeminent performances demonstrate the enormous development prospects of bimetallic sulfide nanocage as anode material in LIBs and SIBs.
Collapse
Affiliation(s)
- Yu-Jie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Hao-Bo Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yun-Lei Hou
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Bo-Han Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Kuan-Kuan Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Bai-Qin Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Jing-Zhou Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Dong-Lin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
15
|
Chang Z, Zhu M, Li Z, Wu S, Yin S, Sun Y, Xu W. 2D Conductive Metal-Organic Frameworks Based on Tetraoxa[8]circulenes as Promising Cathode for Aqueous Zinc Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400923. [PMID: 38459642 DOI: 10.1002/smll.202400923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Aqueous zinc-ion batteries (ZIBs) are the new generation electrochemical energy storage systems. Recently, two-dimensional conductive metal-organic frameworks (2D c-MOFs) are attractive to serve as cathode materials of ZIBs due to their compositional diversity, abundant active sites, and excellent conductivity. Despite the growing interest in 2D c-MOFs, their application prospects are still to be explored. Herein, a tetraoxa[8]circulene (TOC) derivative with unique electronic structure and interesting redox-active property are synthesized to construct c-MOFs. A series of novel 2D c-MOFs (Cu-TOC, Zn-TOC and Mn-TOC) with different conductivities and packing modes are obtained by combining the linker tetraoxa[8]circulenes-2,3,5,6,8,9,11,12-octaol (8OH-TOC) and corresponding metal ions. Three c-MOFs all exhibit typical semiconducting properties, and Cu-TOC exhibits the highest electrical conductivity of 0.2 S cm-1 among them. Furthermore, their electrochemical performance as cathode materials for ZIBs have been investigated. They all performed high reversible capacity, decent cycle stability and excellent rate capability. This work reveals the key insights into the electrochemical application potential of 2D c-MOFs and advances their development as cathode materials in ZIBs.
Collapse
Affiliation(s)
- Zixin Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengsu Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sha Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siping Yin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yimeng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
16
|
Fang S, Wang H, Zhao S, Yu M, Liu X, Li Y, Wu F, Zuo W, Zhou N, Ortiz GF. In Situ Formation of Heterojunction in Composite Lithium Anode Facilitates Fast and Uniform Interfacial Ion Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402108. [PMID: 38586916 DOI: 10.1002/smll.202402108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 04/09/2024]
Abstract
Lithium metal is a highly promising anode for next-generation high-energy-density rechargeable batteries. Nevertheless, its practical application faces challenges due to the uncontrolled lithium dendrites growth and infinite volumetric expansion during repetitive cycling. Herein, a composite lithium anode is designed by mechanically rolling and pressing a cerium oxide-coated carbon textile with lithium foil (Li@CeO2/CT). The in situ generated cerium dioxide (CeO2) and cerium trioxide (Ce2O3) form a heterojunction with a reduced lithium-ion migration barrier, facilitating the rapid lithium ions migration. Additionally, both CeO2 and Ce2O3 exhibit higher adsorbed energy with lithium, enabling faster and more distributed interfacial transport of lithium ions. Furthermore, the high specific surface area of 3D skeleton can effectively reduce local current density, and alleviate the lithium volumetric changes upon plating/stripping. Benefiting from this unique structure, the highly compact and uniform lithium deposition is constructed, allowing the Li@CeO2/CT symmetric cells to maintain a stable cycling for over 500 cycles at an exceptional high current density of 100 mA cm-2. When paired with LiNi0.91Co0.06Mn0.03O2 (NCM91) cathode, the cell achieves 74.3% capacity retention after 800 cycles at 1 C, and a remarkable capacity retention of 81.1% after 500 cycles even at a high rate of 4 C.
Collapse
Affiliation(s)
- Shan Fang
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Huasong Wang
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shangquan Zhao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Miaomiao Yu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiang Liu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yong Li
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Fanglin Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenhua Zuo
- Helmholtz Institute Ulm (HIU), 89081, Ulm, Germany
- Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
| | - Naigen Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Gregorio F Ortiz
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
17
|
Anil Kumar Y, Sana SS, Ramachandran T, Assiri MA, Srinivasa Rao S, Kim SC. From lab to field: Prussian blue frameworks as sustainable cathode materials. Dalton Trans 2024; 53:10770-10804. [PMID: 38859722 DOI: 10.1039/d4dt00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Prussian blue and Prussian blue analogues have attracted increasing attention as versatile framework materials with a wide range of applications in catalysis, energy conversion and storage, and biomedical and environmental fields. In terms of energy storage and conversion, Prussian blue-based materials have emerged as suitable candidates of growing interest for the fabrication of batteries and supercapacitors. Their outstanding electrochemical features such as fast charge-discharge rates, high capacity and prolonged cycling life make them favorable for energy storage application. Furthermore, Prussian blue and its analogues as rechargeable battery anodes can advance significantly by the precise control of their structure, morphology, and composition at the nanoscale. Their tunable structural and electronic properties enable the detection of many types of analytes with high sensitivity and specificity, and thus, they are ideal materials for the development of sensors for environmental detection, disease trend monitoring, and industrial safety. Additionally, Prussian blue-based catalysts display excellent photocatalytic performance for the degradation of pollutants and generation of hydrogen. Specifically, their excellent light capturing and charge separation capabilities make them stand out in photocatalytic processes, providing a sustainable option for environmental remediation and renewable energy production. Besides, Prussian blue coatings have been studied particularly for corrosion protection, forming stable and protective layers on metal surfaces, which extend the lifespan of infrastructural materials in harsh environments. Prussian blue and its analogues are highly valuable materials in healthcare fields such as imaging, drug delivery and theranostics because they are biocompatible and their further functionalization is possible. Overall, this review demonstrates that Prussian blue and related framework materials are versatile and capable of addressing many technical challenges in various fields ranging from power generation to healthcare and environmental management.
Collapse
Affiliation(s)
- Yedluri Anil Kumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, P. O. Box 127788, United Arab Emirates
- Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, India
| | - Mohammed A Assiri
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sunkara Srinivasa Rao
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad, 500 043, Telangana, India
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
18
|
Chen Y, Li S, Chen J, Gao L, Guo P, Wei C, Fu J, Xu Q. Sulfur-bridged bonds enabled structure modulation and space confinement of MnS for superior sodium-ion capacitors. J Colloid Interface Sci 2024; 664:360-370. [PMID: 38479272 DOI: 10.1016/j.jcis.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024]
Abstract
Manganese sulfide (MnS) is a promising converion-type anode for sodium storage, owing to the virtues of high theoretical capacity, coupled with it crustal abundance and cost-effectiveness. Nevertheless, MnS suffers from inadequate electronic conductivity, sluggish Na+ reaction kinetics and considerable volume variation during discharge/charge process, thereby impeding its rate capability and capacity retention. Herein, a novel lamellar heterostructured composite of Fe-doped MnS nanoparticles/positively charged reduced graphene oxide (Fe-MnS/PG) was synthesized to overcome these issues. The Fe-doping can accelerate the ion/electron transfer, endowing fast electrochemical kinetics of MnS. Meanwhile, the graphene space confinement with strong MnSC bond interactions can facilite the interfacial electron transfer, hamper volume expansion and aggregation of MnS nanoparticles, stabilizing the structural integrity, thus improving the Na+ storage reversibility and cyclic stability. Combining the synergistic effect of Fe-doping and space confinement with strong MnSC bond interactions, the as-produced Fe-MnS/PG anode presents a remarkable capacity of 567 mAh/g at 0.1 A/g and outstanding rate performance (192 mAh/g at 10 A/g). Meanwhile, the as-assembled sodium-ion capacitor (SIC) can yield a high energy density of 119 Wh kg-1 and a maximum power density of 17500 W kg-1, with capacity retention of 77 % at 1 A/g after 5000 cycles. This work offers a promising strategy to develop MnS-based practical SICs with high energy and long lifespan, and paves the way for fabricating advanced anode materials.
Collapse
Affiliation(s)
- Yining Chen
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shaohui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Lin Gao
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, PR China
| | - Pengzhi Guo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Cong Wei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
19
|
Bao T, Xi Y, Zhang C, Du P, Xiang Y, Li J, Yuan L, Yu C, Liu C. Highly efficient nitrogen fixation over S-scheme heterojunction photocatalysts with enhanced active hydrogen supply. Natl Sci Rev 2024; 11:nwae093. [PMID: 38577667 PMCID: PMC10989659 DOI: 10.1093/nsr/nwae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Photocatalytic N2 fixation is a promising strategy for ammonia (NH3) synthesis; however, it suffers from relatively low ammonia yield due to the difficulty in the design of photocatalysts with both high charge transfer efficiency and desirable N2 adsorption/activation capability. Herein, an S-scheme CoSx/ZnS heterojunction with dual active sites is designed as an efficient N2 fixation photocatalyst. The CoSx/ZnS heterojunction exhibits a unique pocket-like nanostructure with small ZnS nanocrystals adhered on a single-hole CoSx hollow dodecahedron. Within the heterojunction, the electronic interaction between ZnS and CoSx creates electron-deficient Zn sites with enhanced N2 chemisorption and electron-sufficient Co sites with active hydrogen supply for N2 hydrogenation, cooperatively reducing the energy barrier for N2 activation. In combination with the promoted photogenerated electron-hole separation of the S-scheme heterojunction and facilitated mass transfer by the pocket-like nanostructure, an excellent N2 fixation performance with a high NH3 yield of 1175.37 μmol g-1 h-1 is achieved. This study provides new insights into the design of heterojunction photocatalysts for N2 fixation.
Collapse
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Peiyang Du
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yitong Xiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiaxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
20
|
Peng Q, Sun Y, Wang L, Dong H, Wang H, Xiao Y, Chou S, Xu Y, Wang Y, Chen S. Constructing Carbon Nanotube-Enhanced Ultra-Thin Organic Compounds with Multi-Redox Sites for "All-Temperature" Potassium-Ion Battery Anode and its Step-Wise K-Storage Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308953. [PMID: 38072790 DOI: 10.1002/smll.202308953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Indexed: 05/18/2024]
Abstract
Organic compounds are regarded as important candidates for potassium-ion batteries (KIBs) due to their light elements, controllable polymerization, and tunable functional groups. However, intrinsic drawbacks largely restrict their application, including possible solubility in electrolytes, poor conductivity, and low diffusion coefficients. To address these issues, an ultrathin layered pyrazine/carbonyl-rich material (CT) is synthesized via an acid-catalyzed solvothermal reaction and homogeneously grown on carbon nanotubes (CNTs), marked as CT@CNT. Such materials have shown good features of exposing functional groups to guest ions and good electron transport paths, exhibiting high reversible capacity and remarkable rate capability over a wide temperature range. Two typical electrolytes are compared, demonstrating that the electrolyte of LX-146 is more suitable to maximize the electrochemical performances of electrodes at different temperatures. A stepwise reaction mechanism of K-chelating with C═O and C═N functional groups is proposed, verified by in/ex situ spectroscopic techniques and theoretical calculations, illustrating that pyrazines and carbonyls play the main roles in reacting with K+ cations, and CNTs promote conductivity and restrain electrode dissolution. This study provides new insights to understand the K-storage behaviors of organic compounds and their "all-temperature" application.
Collapse
Affiliation(s)
- Qianqian Peng
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Yi Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Lei Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Hanghang Dong
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Haichao Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yi Xu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
| | - Shuangqiang Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, P. R. China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
21
|
Li D, Pan K, Li A, Jiang J, Wu Y, Li J, Zheng F, Xie F, Wang H, Pan Q. Well-Dispersed Bi nanoparticles for promoting the lithium storage performance of Si Anode: Effect of the bridging Bi nanoparticles. J Colloid Interface Sci 2024; 659:611-620. [PMID: 38198938 DOI: 10.1016/j.jcis.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Silicon (Si) is considered a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical specific capacity of up to 4200 mAh/g. However, the poor cycling and rate performances of Si induced by the low intrinsic electronic conductivity and large volume expansion during the lithiation/delithiation process limit its practical application. Herein, a novel silicon/bismuth@nitrogen-doped carbon (Si/Bi@NC) composite with nanovoids was synthesized and investigated as an advanced anode material for LIBs. In such a structure, ultrafine bismuth nanoparticles coupled with an N-doped carbon layer were introduced to modify the surface of Si nanoparticles. Subsequently, the lithiated LixBi has excellent high ionic conductivity and acts as a fast transport bridge for lithium ions. The introduced carbon coating layer and nanovoids can buffer the volume expansion of Si during the lithiation/delithiation process, thus maintaining structural stability during the cycling process. As a result, the Si/Bi@NC composite exhibits excellent electrochemical performance, providing a relatively high capacity of 955.8 mAh/g at 0.5 A/g after 450 cycles and excellent rate performance with a high capacity of 477.8 mAh/g even at 10.0 A/g. Furthermore, the assembled full cell with LiFePO4 as cathode and pre-lithium Si/Bi@NC as anode can provide a high capacity of 138.8 mAh/g at 1C after 90 cycles, exhibiting outstanding cycling performance.
Collapse
Affiliation(s)
- Dan Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Kai Pan
- Institute of New Functional Materials, Guangxi Institute of Industrial Technology, Nanning 530200, China
| | - Anqi Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Juantao Jiang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yao Wu
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jiakun Li
- Wuzhou Tongchuang New Energy Materials Co., Ltd, Wuzhou 543000, China
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Fengqiang Xie
- Wuzhou Tongchuang New Energy Materials Co., Ltd, Wuzhou 543000, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery Engineering Technology Research Center, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
22
|
Zhao Y, Feng K, Yu Y. A Review on Covalent Organic Frameworks as Artificial Interface Layers for Li and Zn Metal Anodes in Rechargeable Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308087. [PMID: 38063856 PMCID: PMC10870086 DOI: 10.1002/advs.202308087] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Indexed: 02/17/2024]
Abstract
Li and Zn metals are considered promising negative electrode materials for the next generation of rechargeable metal batteries because of their non-toxicity and high theoretical capacity. However, the uneven deposition of metal ions (Li+ , Zn2+ ) and the uncontrolled growth of dendrites result in poor electrochemical stability, unsatisfactory cycle life, and rapid capacity decay of batteries assembled with Li and Zn electrodes. Owing to the unique internal directional channels and abundant redox active sites of covalent organic frameworks (COFs), they can be used to promote uniform deposition of metal ions during stripping/electroplating through interface modification strategies, thereby inhibiting dendrite growth. COFs provide a new perspective in addressing the challenges faced by the anodes of Li metal batteries and Zn ion batteries. This article discusses the stability and types of COFs, and summarizes some novel COF synthesis methods. Additionally, it reviews the latest progress and optimization methods of using COFs for metal anodes to improve battery performance. Finally, the main challenges faced in these areas are discussed. This review will inspire future research on metal anodes in rechargeable batteries.
Collapse
Affiliation(s)
- Yunyu Zhao
- College of Physics Science and TechnologyKunming UniversityKunmingYunnan650214China
| | - Kaiyong Feng
- College of Physics Science and TechnologyKunming UniversityKunmingYunnan650214China
| | - Yingjian Yu
- College of Physics Science and TechnologyKunming UniversityKunmingYunnan650214China
| |
Collapse
|
23
|
Yuan W, Xu M, Li L, Chen N, Zhang Q, Chen J. Ni-Co-Mn complexed 3,4,9,10-perylenetetracarboxylic acid complexes as novel organic electrode materials for lithium-ion batteries. Dalton Trans 2024; 53:1833-1848. [PMID: 38175197 DOI: 10.1039/d3dt03559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ni-Co-Mn complexed 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA-NiCoMn) is prepared by hydrolysis of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and complexed reaction with Ni, Co and Mn ions. At the same time, graphene was added to PTCDA-NiCoMnin situ to obtain graphene in situ composited Ni-Co-Mn complexed 3,4,9,10-perylenetetracarboxylic dianhydride composites (PTCDA-NiCoMn-G). The prepared PTCDA-NiCoMn composite exhibited a fibrous structure, and the number of pore units increased with the expansion of the fibrous structure. After the in situ recombination of graphene, shorter PTCDA-NiCoMn tubular fibers were dispersed between the thin layers of graphene, showing a larger surface area with more PTCDA-NiCoMn active components exposed, which is conducive to better electrochemical properties. As a result, the initial charge/discharge capacities of PTCDA-NiCoMn and PTCDA-NiCoMn-G electrodes are 1972.9 and 1806.6 mA h g-1 with initial coulombic efficiencies of 56.3% and 62.52%, respectively, at 100 mA g-1. After 200 cycles, the charge/discharge capacities of PTCDA-NiCoMn and PTCDA-NiCoMn-G are 617.0 and 876.4 mA h g-1 with capacity retention ratios of 51.4% and 73.0% at 100 mA g-1, respectively. Similarly, PTCA-NiCoMn-G electrodes show higher capacities than the PTCA-NiCoMn electrode at different current densities of 0.1, 0.2, 0.5, 1.0, 2.0 and 5 A g-1. The results show that PTCDA-NiCoMn-G electrode displays superior capacity, ICE, cycle and rate behaviors. The complexation of NiCoMn reduces the solubility of the PTCDA active units in the electrolyte, and the in situ recombination of graphene increases the dispersion of the active components, exposes more active sites, and effectively improves the conductive performance, which contributes to the electrochemical properties of the PTCDA-NiCoMn-G electrode.
Collapse
Affiliation(s)
- Wenfeng Yuan
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Mengqian Xu
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Lucheng Li
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Nei Chen
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Qian Zhang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
- Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Yichuan 336023, China
| | - Jun Chen
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| |
Collapse
|
24
|
Guan B, Yang SJ, Tian SH, Sun T, Wang PF, Yi TF. In-situ-grown multidimensional Cu-doped Co 1-xS 2@MoS 2 on N-doped carbon nanofibers as anode materials for high-performance alkali metal ion batteries. J Colloid Interface Sci 2023; 650:369-380. [PMID: 37413871 DOI: 10.1016/j.jcis.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Transition metal sulfides with the high theoretical capacity and low cost have been considered as advanced anode candidate for alkali metal ion batteries, but suffered from unsatisfactory electrical conductivity and huge volume expansion. Herein, a multidimensional structure Cu-doped Co1-xS2@MoS2 in-situ-grown on N-doped carbon nanofibers (denoted as Cu-Co1-xS2@MoS2 NCNFs) have been elaborately constructed for the first time. The bimetallic zeolitic imidazolate framework CuCo-ZIFs were encapsulated in the one-dimensional (1D) NCNFs through an electrospinning route and then on which the two-dimensional (2D) MoS2 nanosheets were in-situ grown via a hydrothermal process. The architecture of 1D NCNFs can effectively shorten ion diffusion path and enhance electrical conductivity. Besides, the formed heterointerface between MOF-derived binary metal sulfides and MoS2 can provide extra active centers and accelerate reaction kinetics, which guarantee a superior reversibility. As expected, the resulting Cu-Co1-xS2@MoS2 NCNFs electrode delivers excellent specific capacity of Na-ion batteries (845.6 mAh/g at 0.1 A/g), Li-ion batteries (1145.7 mAh/g at 0.1 A/g), and K-ion batteries (474.3 mAh/g at 0.1 A/g). Therefore, this innovative design strategy will bring a meaningful prospect for developing high-performance multi-component metal sulfides electrode for alkali metal ion batteries.
Collapse
Affiliation(s)
- Baole Guan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shao-Jie Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Shu-Hui Tian
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ting Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Peng-Fei Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ting-Feng Yi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| |
Collapse
|
25
|
Yang D, Xu P, Tian C, Li S, Xing T, Li Z, Wang X, Dai P. Biomass-Derived Flexible Carbon Architectures as Self-Supporting Electrodes for Energy Storage. Molecules 2023; 28:6377. [PMID: 37687208 PMCID: PMC10489653 DOI: 10.3390/molecules28176377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
With the swift advancement of the wearable electronic devices industry, the energy storage components of these devices must possess the capability to maintain stable mechanical and chemical properties after undergoing multiple bending or tensile deformations. This circumstance has expedited research efforts toward novel electrode materials for flexible energy storage devices. Nonetheless, among the numerous materials investigated to date, the incorporation of metal current collectors or insulative adhesives remains requisite, which entails additional costs, unnecessary weight, and high contact resistance. At present, biomass-derived flexible architectures stand out as a promising choice in electrochemical energy device applications. Flexible self-supporting properties impart a heightened mechanical performance, obviating the need for additional binders and lowering the contact resistance. Renewable, earth-abundant biomass endows these materials with cost-effectiveness, diversity, and modulable chemical properties. To fully exploit the application potential in biomass-derived flexible carbon architectures, understanding the latest advancements and the comprehensive foundation behind their synthesis assumes significance. This review delves into the comprehensive analysis of biomass feedstocks and methods employed in the synthesis of flexible self-supporting carbon electrodes. Subsequently, the advancements in their application in energy storage devices are elucidated. Finally, an outlook on the potential of flexible carbon architectures and the challenges they face is provided.
Collapse
Affiliation(s)
- Dehong Yang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Peng Xu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Chaofan Tian
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Sen Li
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Tao Xing
- New Energy Division, National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jining 273500, China
| | - Zhi Li
- New Energy Division, National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shandong Energy Group Co., Ltd., Jining 273500, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China;
| | - Pengcheng Dai
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
26
|
Khan R, Wan Z, Ahmad W, Hussain S, Zhu J, Qian D, Wu Z, Saleem MF, Ling M. Breaking Barriers: Binder-Assisted NiS/NiS 2 Heterostructure Anode with High Initial Coulombic Efficiency for Advanced Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37486-37496. [PMID: 37492883 DOI: 10.1021/acsami.3c06896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Developing sodium-ion batteries (SIBs) with high initial coulombic efficiency (ICE) and long-term cycling stability is crucial to meet energy storage device requirements. Designing anode materials that could exhibit high ICE is a promising strategy to realize enhanced energy density in SIBs. A trifunctional network binder substantially improves the electrochemical performance and ICE, providing excellent mechanical properties and strong adhesion strength. A rationally designed electrode material and binder can achieve high ICE, long cycling performance, and excellent specific capacity. Here, a NiS/NiS2 heterostructure as an anode material and a trifunctional network binder (SA-g-PAM) are designed for SIBs. Unprecedently, the anode comprising of an SA-g-PAM binder achieved the highest ICE of 90.7% and remarkable cycling stability for 19000 cycles at a current density of 10 A g-1 and maintained the specific capacity of 482.3 mAh g-1 even after 19000 cycles. This exciting work provides an alternate direction to the battery industry for developing high-performance electrode materials and binders with high ICE and excellent cycling stability for energy storage devices.
Collapse
Affiliation(s)
- Rashid Khan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhengwei Wan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Waqar Ahmad
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shabab Hussain
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianhua Zhu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Dan Qian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhuoying Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Muhammad Farooq Saleem
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Science, Guangzhou 510700, P. R. China
| | - Min Ling
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
27
|
Zhu C, Wang X, Yang L, Gao Z, Tian W, Chen J, Shi J, Liu S, Huang M, Wu J, Wang H. Densified graphene-like carbon nanosheets with enriched heteroatoms enabling superior gravimetric and volumetric potassium storage capacities. J Colloid Interface Sci 2023; 647:296-305. [PMID: 37262992 DOI: 10.1016/j.jcis.2023.05.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Constructing carbon electrodes with abundant heteroatoms and appropriate graphitic interlayer spacing remains a major challenge for achieving high gravimetric and volumetric potassium storage capacities with fast kinetics. Herein, we constructed 3D graphene-like N, F dual-doped carbon sheets induced by Ni template (N, F-CNS-Ni) with dense structure and rich active sites, providing a promising approach to address the facing obstacles. Highly reversible K-ion insertion/extraction is realized in the graphitic carbon structure, and K-adsorption capability is enhanced by introducing N/F heteroatoms. As a result, the N, F-CNS-Ni electrode exhibits ultrahigh gravimetric and volumetric capacities of 404.5 mA h g-1 and 281.3 mA h cm-3 at 0.05 A/g, respectively, and a superb capacity of 259.3 mA h g-1 with a capacity retention ratio of 90 % even after 600 cycles at 5 A/g. This work presents a simple Ni-based template method to prepare graphene-like carbon nanosheets with high packing density and rich heteroatoms, and offers mechanism insight for achieving superior K-ion storage.
Collapse
Affiliation(s)
- Chunliu Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xuehui Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lei Yang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zongying Gao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Weiqian Tian
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Shi
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingyi Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
28
|
Chu Y, Wang P, Ding Y, Lin J, Zhu X, Zhao S, Jin H, Zeng T. High-Capacity Sb/Fe 2S 3 Sodium-Ion Battery Anodes Fabricated by a One-Step Redox Reaction, Followed by Ball Milling with Graphite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24354-24365. [PMID: 37167087 DOI: 10.1021/acsami.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Antimony (Sb) has been considered a promising anode for sodium-ion batteries (SIBs) owing to its high theoretical capacity (660 mA h g-1) and low redox voltage (0.2-0.9 V vs Na+/Na). However, the capacity degradation caused by the volumetric variation during battery discharge/charge hinders the practical application. Herein, guided by the DFT calculation, Sb/Fe2S3 was fabricated by annealing Fe and Sb2S3 mixed powder. Next, Sb/Fe2S3 was blended with 15 wt % graphite by ball milling, yielding nano-Sb/Fe2S3 anchored on an exfoliated graphite composite (denoted as Sb/Fe2S3-15%). When applied as an anode of SIBs, Sb/Fe2S3-15% delivered reversible capacities of 565, 542, 467, 366, 285, and 236 mA h g-1 at current rates of 1, 2, 4, 6, 8, and 10 A g-1, respectively, surpassing most of the Sb-based anodes. The co-existence of highly conductive Fe2S3 and Sb minimizes the polarization of the anode. Our experiments proved that the Sb and Fe2S3 phases were reversible during discharge/charge cycling, and the exfoliated graphite can accelerate the Na+ diffusion and e- conduction. The proposed synthesis method of this work can also be applicable to synthesize various antimony/transition metal sulfide heterostructures (Sb/M1-xS), which may be applied in a series of fields.
Collapse
Affiliation(s)
- Ying Chu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Peng Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Yihong Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Jie Lin
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Xinxin Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Shiqiang Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Tianbiao Zeng
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
- Printable Electronics Research Center & i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| |
Collapse
|
29
|
Lamiel C, Hussain I, Rabiee H, Ogunsakin OR, Zhang K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Cheng B, Wang B, Lei H, Zhang F, Liu X, Wang H, Zhai G. Nickel sulfide/nickel phosphide heterostructures anchored on porous carbon nanosheets with rapid electron/ion transport dynamics for sodium-ion half/full batteries. J Colloid Interface Sci 2023; 643:574-584. [PMID: 36997395 DOI: 10.1016/j.jcis.2023.03.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Nickel-based materials have been extensively deemed as promising anodes for sodium-ion batteries (SIBs) owing to their superior capacity. Unfortunately, the rational design of electrodes as well as long-term cycling performance remains a thorny challenge due to the huge irreversible volume change during the charge/discharge process. Herein, the heterostructured ultrafine nickel sulfide/nickel phosphide (NiS/Ni2P) nanoparticles closely attached to the interconnected porous carbon sheets (NiS/Ni2P@C) are designed by facile hydrothermal and annealing methods. The NiS/Ni2P heterostructure promotes ion/electron transport, thus accelerating the electrochemical reaction kinetics benefited from the built-in electric field effect. Moreover, the interconnected porous carbon sheets offer rapid electron migration and excellent electronic conductivity, while releasing the volume variance during Na+ intercalation and deintercalation, guaranteeing superior structural stability. As expected, the NiS/Ni2P@C electrode exhibits a high reversible specific capacity of 344 mAh g-1 at 0.1 A g-1 and great rate stability. Significantly, the implementation of NiS/Ni2P@C//Na3(VPO4)2F3 SIB full cell configuration exhibits relatively satisfactory cycle performance, which suggests its widely practical application. This research will develop an effective method for constructing heterostructured hybrids for electrochemical energy storage.
Collapse
Affiliation(s)
- Bingxue Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Beibei Wang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photo-Technology, Northwest University, Xi'an 710127, PR China.
| | - Hongyu Lei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China
| | - Gaohong Zhai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
31
|
Wang C, Zhang Q, Yan B, You B, Zheng J, Feng L, Zhang C, Jiang S, Chen W, He S. Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. NANO-MICRO LETTERS 2023; 15:52. [PMID: 36795218 PMCID: PMC9935811 DOI: 10.1007/s40820-023-01024-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/19/2023]
Abstract
The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy. The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER. The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided. The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Collapse
Affiliation(s)
- Changshui Wang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qian Zhang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 2150009, People's Republic of China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|