1
|
Chowdhury SR, Shilpi A, Felsenfeld G. RNA Pol-II transcripts in nucleolar associated domains of cancer cell nucleoli. Nucleus 2025; 16:2468597. [PMID: 39987497 PMCID: PMC11849958 DOI: 10.1080/19491034.2025.2468597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/03/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
We performed a comparative study of the non-ribosomal gene content of nucleoli from seven cancer cell lines, using identical methods of purification and analysis. We identified unique chromosomal domains associated with the nucleolus (NADs) and genes within these domains (NAGs). Four cell lines have relatively few NAGs, which appears mostly transcriptionally inactive, consistent with literature. The remaining three lines formed a separate group with nucleoli with unique features and NADS. They constitute larger number of common NAGs, marked by ATAC-seq and having accessible promoters, with histone markers for transcriptional activity and detectable RNA Pol II bound at their promoters. The transcripts of these genes are almost entirely exported from the nucleolus. These results indicate that RNA Pol II dependent transcription in NADs can vary widely in different cell types, presumably dependent on the cell's developmental stage. Nucleolus-associated genes are likely to be distinguished marks reflecting the cell's metabolism.
Collapse
Affiliation(s)
- Soumya Roy Chowdhury
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | - Arunima Shilpi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases
| | | |
Collapse
|
2
|
Vercellone F, Chiariello AM, Esposito A, Conte M, Abraham A, Fontana A, Di Pierno F, Tafuri F, Guha S, Kundu S, Di Carluccio C, Nicodemi M, Bianco S. A Multiscale Perspective on Chromatin Architecture through Polymer Physics. Physiology (Bethesda) 2025; 40:0. [PMID: 39601793 DOI: 10.1152/physiol.00050.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The spatial organization of chromatin within the eukaryotic nucleus is critical in regulating key cellular functions, such as gene expression, and its disruption can lead to disease. Advances in experimental techniques, such as Hi-C and microscopy, have significantly enhanced our understanding of chromatin's intricate and dynamic architecture, revealing complex patterns of interaction at multiple scales. Along with experimental methods, physics-based computational models, including polymer phase separation and loop-extrusion mechanisms, have been developed to explain chromatin structure in a principled manner. Here, we illustrate genomewide applications of these models, highlighting their ability to predict chromatin contacts across different scales and to spread light on the underlying molecular determinants. Additionally, we discuss how these models provide a framework for understanding alterations in chromosome folding associated with disease states, such as SARS-CoV-2 infection and pathogenic structural variants, providing valuable insights into the role of chromatin architecture in health and disease.
Collapse
Affiliation(s)
- Francesca Vercellone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale-DICMaPI,11, Università degli Studi di Napoli Federico II and INFN Napoli, Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Fontana
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Florinda Di Pierno
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale-DICMaPI,11, Università degli Studi di Napoli Federico II and INFN Napoli, Naples, Italy
| | - Fabrizio Tafuri
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sougata Guha
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sumanta Kundu
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Ciro Di Carluccio
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale-DICMaPI,11, Università degli Studi di Napoli Federico II and INFN Napoli, Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| |
Collapse
|
3
|
Lucero K, Han S, Huang PY, Qiu X, Mazzoni EO, Reinberg D. CTCF-RNA interactions orchestrate cell-specific chromatin loop organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.643339. [PMID: 40166279 PMCID: PMC11956997 DOI: 10.1101/2025.03.19.643339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
CCCTC-binding factor (CTCF) is essential for chromatin organization. CTCF interacts with endogenous RNAs, and deletion of its ZF1 RNA-binding region (ΔZF1) disrupts chromatin loops in mouse embryonic stem cells (ESCs). However, the functional significance of CTCF-ZF1 RNA interactions during cell differentiation is unknown. Using an ESC-to-neural progenitor cell (NPC) differentiation model, we show that CTCF-ZF1 is crucial for maintaining cell-type-specific chromatin loops. Expression of CTCF-ΔZF1 leads to disrupted loops and dysregulation of genes within these loops, particularly those involved in neuronal development and function. We identified NPC-specific, CTCF-ZF1 interacting RNAs. Truncation of two such coding RNAs, Podxl and Grb10, disrupted chromatin loops in cis, similar to the disruption seen in CTCF-ΔZF1 expressing NPCs. These findings underscore the inherent importance of CTCF-ZF1 RNA interactions in preserving cell-specific genome structure and cellular identity.
Collapse
Affiliation(s)
- Kimberly Lucero
- Department of Cell Biology and Regenerative Medicine, New York University Langone Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Sungwook Han
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Howard Hughes Medical Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pin-Yao Huang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Xiang Qiu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Esteban O. Mazzoni
- Department of Cell Biology and Regenerative Medicine, New York University Langone Medical Center, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Howard Hughes Medical Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Lead Contact
| |
Collapse
|
4
|
Lokesh NR, Pownall ME. Microscopy methods for the in vivo study of nanoscale nuclear organization. Biochem Soc Trans 2025; 53:BST20240629. [PMID: 39898979 DOI: 10.1042/bst20240629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Eukaryotic genomes are highly compacted within the nucleus and organized into complex 3D structures across various genomic and physical scales. Organization within the nucleus plays a key role in gene regulation, both facilitating regulatory interactions to promote transcription while also enabling the silencing of other genes. Despite the functional importance of genome organization in determining cell identity and function, investigating nuclear organization across this wide range of physical scales has been challenging. Microscopy provides the opportunity for direct visualization of nuclear structures and has pioneered key discoveries in this field. Nonetheless, visualization of nanoscale structures within the nucleus, such as nucleosomes and chromatin loops, requires super-resolution imaging to go beyond the ~220 nm diffraction limit. Here, we review recent advances in imaging technology and their promise to uncover new insights into the organization of the nucleus at the nanoscale. We discuss different imaging modalities and how they have been applied to the nucleus, with a focus on super-resolution light microscopy and its application to in vivo systems. Finally, we conclude with our perspective on how continued technical innovations in super-resolution imaging in the nucleus will advance our understanding of genome structure and function.
Collapse
Affiliation(s)
- Nidhi Rani Lokesh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| | - Mark E Pownall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| |
Collapse
|
5
|
Knecht H, Petrogiannis-Haliotis T, Louis S, Mai S. 3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma. Cells 2024; 13:1748. [PMID: 39513855 PMCID: PMC11545283 DOI: 10.3390/cells13211748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The bi- or multinucleated Reed-Sternberg cell (RS) is the diagnostic cornerstone of Epstein-Barr Virus (EBV)-positive and EBV-negative classical Hodgkin lymphoma (cHL). cHL is a germinal center (GC)-derived B-cell disease. Hodgkin cells (H) are the mononuclear precursors of RS. An experimental model has to fulfill three conditions to qualify as common pathogenic denominator: (i) to be of GC-derived B-cell origin, (ii) to be EBV-negative to avoid EBV latency III expression and (iii) to support permanent EBV-encoded oncogenic latent membrane protein (LMP1) expression upon induction. These conditions are unified in the EBV-, diffuse large B-Cell lymphoma (DLBCL) cell line BJAB-tTA-LMP1. 3D reconstructive nanotechnology revealed spatial, quantitative and qualitative disturbance of telomere/shelterin interactions in mononuclear H-like cells, with further progression during transition to RS-like cells, including progressive complexity of the karyotype with every mitotic cycle, due to BBF (breakage/bridge/fusion) events. The findings of this model were confirmed in diagnostic patient samples and correlate with clinical outcomes. Moreover, in vitro, significant disturbance of the lamin AC/telomere interaction progressively occurred. In summary, our research over the past three decades identified cHL as the first lymphoid malignancy driven by a disturbed telomere/shelterin/lamin AC interaction, generating the diagnostic RS. Our findings may act as trailblazer for tailored therapies in refractory cHL.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Hematology, Department of Medicine, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | | | - Sherif Louis
- Telo Genomics Corp., Ontario, ON M5G 1L7, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
6
|
Kwok ACM, Yan KTH, Wen S, Sun S, Li C, Wong JTY. Dinochromosome Heterotermini with Telosomal Anchorages. Int J Mol Sci 2024; 25:11312. [PMID: 39457094 PMCID: PMC11508785 DOI: 10.3390/ijms252011312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Dinoflagellate birefringent chromosomes (BfCs) contain some of the largest known genomes, yet they lack typical nucleosomal micrococcal-nuclease protection patterns despite containing variant core histones. One BfC end interacts with extranuclear mitotic microtubules at the nuclear envelope (NE), which remains intact throughout the cell cycle. Ultrastructural studies, polarized light and fluorescence microscopy, and micrococcal nuclease-resistant profiles (MNRPs) revealed that NE-associated chromosome ends persisted post-mitosis. Histone H3K9me3 inhibition caused S-G2 delay in synchronous cells, without any effects at G1. Differential labeling and nuclear envelope swelling upon decompaction indicate an extension of the inner compartment into telosomal anchorages (TAs). Additionally, limited effects of low-concentration sirtinol on bulk BfCs, coupled with distinct mobility patterns in MNase-digested and psoralen-crosslinked nuclei observed on 2D gels, suggest that telomeric nucleosomes (TNs) are the primary histone structures. The absence of a nucleosomal ladder with cDNA probes, the presence of histone H2A and telomere-enriched H3.3 variants, along with the immuno-localization of H3 variants mainly at the NE further reinforce telomeric regions as the main nucleosomal domains. Cumulative biochemical and molecular analyses suggest that telomeric repeats constitute the major octameric MNRPs that provision chromosomal anchorage at the NE.
Collapse
Affiliation(s)
| | | | | | | | | | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; (A.C.M.K.); (K.T.H.Y.); (S.W.); (S.S.); (C.L.)
| |
Collapse
|
7
|
Gordon R. The chromolinker hypothesis: Are eukaryotic genomes also circular? Biosystems 2024; 244:105280. [PMID: 39097218 DOI: 10.1016/j.biosystems.2024.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Over more than the past century, reports that chromosomes in Eukaryotes are linked have been published. Recently this has been confirmed by micromanipulation. The chromolinkers are DNAse sensitive, as has been previously reported. The arguments for and against chromolinkers have been reviewed, and a call for definitive research made, because if chromolinkers do exist, the whole basis for genetics may require revision.
Collapse
Affiliation(s)
- Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive, Panacea, FL, 32346, USA.
| |
Collapse
|
8
|
Nahali N, Oshaghi M, Paulsen J. Modeling properties of chromosome territories using polymer filaments in diverse confinement geometries. Chromosome Res 2024; 32:11. [PMID: 39126507 PMCID: PMC11316705 DOI: 10.1007/s10577-024-09753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 08/12/2024]
Abstract
Interphase chromosomes reside within distinct nuclear regions known as chromosome territories (CTs). Recent observations from Hi-C analyses, a method mapping chromosomal interactions, have revealed varied decay in contact probabilities among different chromosomes. Our study explores the relationship between this contact decay and the particular shapes of the chromosome territories they occupy. For this, we employed molecular dynamics (MD) simulations to examine how confined polymers, resembling chromosomes, behave within different confinement geometries similar to chromosome territory boundaries. Our simulations unveil so far unreported relationships between contact probabilities and end-to-end distances varying based on different confinement geometries. These findings highlight the crucial impact of chromosome territories on shaping the larger-scale properties of 3D genome organization. They emphasize the intrinsic connection between the shapes of these territories and the contact behaviors exhibited by chromosomes. Understanding these correlations is key to accurately interpret Hi-C and microscopy data, and offers vital insights into the foundational principles governing genomic organization.
Collapse
Affiliation(s)
- Negar Nahali
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| | - Mohammadsaleh Oshaghi
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
De Falco A, Gambale A, Pinelli M, Suero T, De Falco L, Iolascon A, Martone S. Trisomy 21 with Maternally Inherited Balanced Translocation (15q;22q) in a Female Fetus: A Rare Case of Probable Interchromosomal Effect. Cells 2024; 13:1078. [PMID: 38994932 PMCID: PMC11240558 DOI: 10.3390/cells13131078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Chromosomal rearrangements can interfere with the disjunction and segregation of other chromosome pairs not involved in the rearrangements, promoting the occurrence of numerical abnormalities in resulting gametes and predisposition to trisomy in offspring. This phenomenon of interference is known as the interchromosomal effect (ICE). Here we report a prenatal case potentially generated by ICE. The first-trimester screening ultrasound of the pregnant woman was normal, but the NIPT indicated a high risk for three copies of chromosome 21, thus suspecting trisomy 21 (T21). After a comprehensive clinical evaluation and genetic counseling, the couple decided to undergo amniocentesis. The prenatal karyotype confirmed T21 but also showed a balanced translocation between the long arm of chromosome 15 (q22) and the long arm of chromosome 22. The parents' karyotypes also showed that the mother had the 15;22 translocation. We reviewed T21 screening methods, and we performed a literature review on ICE, a generally overlooked phenomenon. We observed that ours is the first report of a prenatal case potentially due to ICE derived from the mother. The recurrence risk of aneuploidy in the offspring of translocated individuals is likely slightly increased, but it is not possible to estimate to what extent. In addition to supporting observations, there are still open questions such as, how frequent is ICE? How much is the aneuploidy risk altered by ICE?
Collapse
Affiliation(s)
- Alessandro De Falco
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| | - Antonella Gambale
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| | - Michele Pinelli
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| | - Teresa Suero
- AMES-Centro Polidiagnostico Strumentale, Srl, 80013 Naples, Italy;
| | - Luigia De Falco
- AMES-Centro Polidiagnostico Strumentale, Srl, 80013 Naples, Italy;
| | - Achille Iolascon
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Stefania Martone
- U.O.C. Genetica Medica, A.O.U. Federico II, 80131 Naples, Italy; (A.D.F.); (A.G.); (M.P.); (A.I.); (S.M.)
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, 80131 Naples, Italy
| |
Collapse
|
10
|
Doležalová A, Beránková D, Koláčková V, Hřibová E. Insight into chromatin compaction and spatial organization in rice interphase nuclei. FRONTIERS IN PLANT SCIENCE 2024; 15:1358760. [PMID: 38863533 PMCID: PMC11165205 DOI: 10.3389/fpls.2024.1358760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Chromatin organization and its interactions are essential for biological processes, such as DNA repair, transcription, and DNA replication. Detailed cytogenetics data on chromatin conformation, and the arrangement and mutual positioning of chromosome territories in interphase nuclei are still widely missing in plants. In this study, level of chromatin condensation in interphase nuclei of rice (Oryza sativa) and the distribution of chromosome territories (CTs) were analyzed. Super-resolution, stimulated emission depletion (STED) microscopy showed different levels of chromatin condensation in leaf and root interphase nuclei. 3D immuno-FISH experiments with painting probes specific to chromosomes 9 and 2 were conducted to investigate their spatial distribution in root and leaf nuclei. Six different configurations of chromosome territories, including their complete association, weak association, and complete separation, were observed in root meristematic nuclei, and four configurations were observed in leaf nuclei. The volume of CTs and frequency of their association varied between the tissue types. The frequency of association of CTs specific to chromosome 9, containing NOR region, is also affected by the activity of the 45S rDNA locus. Our data suggested that the arrangement of chromosomes in the nucleus is connected with the position and the size of the nucleolus.
Collapse
Affiliation(s)
| | | | | | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Science, Centre of Plants Structural and Functional Genomics, Olomouc, Czechia
| |
Collapse
|
11
|
Guo J, Chen Y, Zhu H, Tong X, Cao L, Zhang Y, Xie W, Li C. Three-dimensional chromatin landscapes in somatotroph tumour. Clin Transl Med 2024; 14:e1682. [PMID: 38769659 PMCID: PMC11106515 DOI: 10.1002/ctm2.1682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/01/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The three-dimensional (3D) genome architecture plays a critical role inregulating gene expression. However, the specific alterations in thisarchitecture within somatotroph tumors and their implications for gene expression remain largely unexplored. METHODS We employed Hi-C and RNA-seq analyses to compare the 3D genomic structures of somatotroph tumors with normal pituitary tissue. This comprehensive approachenabled the characterization of A/B compartments, topologically associateddomains (TADs), and chromatin loops, integrating these with gene expression patterns. RESULTS We observed a decrease in both the frequency of chromosomal interactions andthe size of TADs in tumor tissue compared to normal tissue. Conversely, the number of TADs and chromatin loops was found to be increased in tumors. Integrated analysis of Hi-C and RNA-seq data demonstrated that changes inhigher-order chromat in structure were associated with alterations in gene expression. Specifically, genes in A compartments showed higher density and increased expression relative to those in B compartments. Moreover, the weakand enhanced insulation boundaries were identified, and the associated genes were enriched in the Wnt/β-Catenin signaling pathway. We identified the gainedand lost loops in tumor and integrated these differences with transcriptional changes to examine the functional relevance of the identified loops. Notably, we observed an enhanced insulation boundary and a greater number of loops in the TCF7L2 gene region within tumors, which was accompanied by an upregulation of TCF7L2 expression. Subsequently, TCF7L2 expression was confirmed through qRT-PCR, and upregulated TCF7L2 prompted cell proliferation and growth hormone (GH) secretion in vitro. CONCLUSION Our results provide comprehensive 3D chromatin architecture maps of somatotroph tumors and offer a valuable resource for furthering the understanding of the underlying biology and mechanisms of gene expression regulation.
Collapse
Affiliation(s)
- Jing Guo
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yiyuan Chen
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Haibo Zhu
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
| | - Xinyu Tong
- Annoroad Gene Technology Co., LtdBeijingChina
| | - Lei Cao
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
| | - Yazhuo Zhang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders Brain Tumor CenterBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Weiyan Xie
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Chuzhong Li
- Department of NeurosurgeryBeijing Tiantan Hospital affiliated to Capital Medical UniversityBeijingChina
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders Brain Tumor CenterBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
12
|
Sarić A, Rajić J, Tolić A, Dučić T, Vidaković M. Synchrotron-based FTIR microspectroscopy reveals DNA methylation profile in DNA-HALO structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123090. [PMID: 37413921 DOI: 10.1016/j.saa.2023.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a rapid, non-destructive and label-free technique for identifying subtle changes in all bio-macromolecules, and has been used as a method of choice for studying DNA conformation, secondary DNA structure transition and DNA damage. In addition, the specific level of chromatin complexity is introduced via epigenetic modifications forcing the technological upgrade in the analysis of such an intricacy. As the most studied epigenetic mechanism, DNA methylation is a major regulator of transcriptional activity, involved in the suppression of a broad spectrum of genes and its deregulation is involved in all non-communicable diseases. The present study was designed to explore the use of synchrotron-based FTIR analysis to monitor the subtle changes in molecule bases regarding the DNA methylation status of cytosine in the whole genome. In order to reveal the conformation-related best sample for FTIR-based DNA methylation analysis in situ, we used methodology for nuclear HALO preparations and slightly modified it to isolated DNA in HALO formations. Nuclear DNA-HALOs represent samples with preserved higher-order chromatin structure liberated of any protein residues that are closer to native DNA conformation than genomic DNA (gDNA) isolated by the standard batch procedure. Using FTIR spectroscopy we analyzed the DNA methylation profile of isolated gDNA and compared it with the DNA-HALOs. This study demonstrated the potential of FTIR microspectroscopy to detect DNA methylation marks in analyzed DNA-HALO specimens more precisely in comparison with classical DNA extraction procedures that yield unstructured whole genomic DNA. In addition, we used different cell types to assess their global DNA methylation profile, as well as defined specific infrared peaks that can be used for screening DNA methylation.
Collapse
Affiliation(s)
- Ana Sarić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Anja Tolić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Tanja Dučić
- ALBA CELLS Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Barcelona, Spain.
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| |
Collapse
|
13
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
14
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Fundamental insights into the correlation between chromosome configuration and transcription. Phys Biol 2023; 20:051002. [PMID: 37467757 DOI: 10.1088/1478-3975/ace8e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Eukaryotic chromosomes exhibit a hierarchical organization that spans a spectrum of length scales, ranging from sub-regions known as loops, which typically comprise hundreds of base pairs, to much larger chromosome territories that can encompass a few mega base pairs. Chromosome conformation capture experiments that involve high-throughput sequencing methods combined with microscopy techniques have enabled a new understanding of inter- and intra-chromosomal interactions with unprecedented details. This information also provides mechanistic insights on the relationship between genome architecture and gene expression. In this article, we review the recent findings on three-dimensional interactions among chromosomes at the compartment, topologically associating domain, and loop levels and the impact of these interactions on the transcription process. We also discuss current understanding of various biophysical processes involved in multi-layer structural organization of chromosomes. Then, we discuss the relationships between gene expression and genome structure from perturbative genome-wide association studies. Furthermore, for a better understanding of how chromosome architecture and function are linked, we emphasize the role of epigenetic modifications in the regulation of gene expression. Such an understanding of the relationship between genome architecture and gene expression can provide a new perspective on the range of potential future discoveries and therapeutic research.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
15
|
Li P, Shang X, Jiao Q, Mi Q, Zhu M, Ren Y, Li J, Li L, Liu J, Wang C, Shi Y, Wang Y, Du L. Alteration of chromatin high-order conformation associated with oxaliplatin resistance acquisition in colorectal cancer cells. EXPLORATION (BEIJING, CHINA) 2023; 3:20220136. [PMID: 37933235 PMCID: PMC10624369 DOI: 10.1002/exp.20220136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/24/2023] [Indexed: 11/08/2023]
Abstract
Oxaliplatin is a first-line chemotherapy drug widely adopted in colorectal cancer (CRC) treatment. However, a large proportion of patients tend to become resistant to oxaliplatin, causing chemotherapy to fail. At present, researches on oxaliplatin resistance mainly focus on the genetic and epigenetic alterations during cancer evolution, while the characteristics of high-order three-dimensional (3D) conformation of genome are yet to be explored. In order to investigate the chromatin conformation alteration during oxaliplatin resistance, we performed multi-omics study by combining DLO Hi-C, ChIP-seq as well as RNA-seq technologies on the established oxaliplatin-resistant cell line HCT116-OxR, as well as the control cell line HCT116. The results indicate that 19.33% of the genome regions have A/B compartments transformation after drug resistance, further analysis of the genes converted by A/B compartments reveals that the acquisition of oxaliplatin resistance in tumor cells is related to the reduction of reactive oxygen species and enhanced metastatic capacity. Our research reveals the spatial chromatin structural difference between CRC cells and oxaliplatin resistant cells based on the DLO Hi-C and other epigenetic omics experiments. More importantly, we provide potential targets for oxaliplatin-resistant cancer treatment and a new way to investigate drug resistance behavior under the perspective of 3D genome alteration.
Collapse
Affiliation(s)
- Peilong Li
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Xueying Shang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Qinlian Jiao
- Shandong Quality Inspection Center for Medical DevicesJinanShandongChina
| | - Qi Mi
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Mengqian Zhu
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Yidan Ren
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Juan Li
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Li Li
- Wuhan GeneCreate Biological Engineering Co., LtdWuhanHubeiChina
| | - Jin Liu
- Wuhan GeneCreate Biological Engineering Co., LtdWuhanHubeiChina
| | - Chuanxin Wang
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Yi Shi
- Bio‐X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research CenterShanghai Jiao Tong UniversityShanghaiChina
- School of Information TechnologiesUniversity of SydneySydneyNew South WalesAustralia
| | - Yunshan Wang
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Lutao Du
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
16
|
Zhang L, Zheng H, Xu L, You S, Shen Y, Han Y, Anderson S. A Robust FISH Assay to Detect FGFR2 Translocations in Intrahepatic Cholangiocarcinoma Patients. Diagnostics (Basel) 2023; 13:2088. [PMID: 37370984 DOI: 10.3390/diagnostics13122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
FGFR fusions retaining the FGFR kinase domain are active kinases that are either overexpressed or constitutively activated throughout diverse cancer types. The presence of FGFR translocations enhances tumor cell proliferation and contributes to significant sensitivity to FGFR kinase inhibitors. FGFR2 as an actionable target in intrahepatic cholangiocarcinoma (iCCA) has been tested in many clinical trials. FISH (fluorescence in situ hybridization) and NGS (next-generation sequence) are well-known tools to investigate the translocations of FGFR with multiple or unknown translocation partners. A rapid and robust FISH assay was developed and validated to detect FGFR2 translocations from FFPE specimens in iCCA. The analytical performance of the FISH assay was evaluated for probe localization, probe sensitivity and specificity, and assay precision. Twenty-five archival FFPE specimens from local iCCA patients were tested for FGFR2 translocations. FISH results were correlated with that of NGS on some samples. Biallelic translocations and a novel FGFR2 translocation involving the partner gene, SHROOM3, t(4;10) (q21;q26), were identified in a local iCCA patient.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Hao Zheng
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Linyu Xu
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Si You
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Yuanyuan Shen
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Yang Han
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| | - Steve Anderson
- Department of Anatomic Pathology and Histology, Central Laboratory Service, Labcorp Drug Development, 8211 Scicor Dr, Indianapolis, IN 46214, USA
| |
Collapse
|
17
|
Dos Santos Á, Rollins DE, Hari-Gupta Y, McArthur H, Du M, Ru SYZ, Pidlisna K, Stranger A, Lorgat F, Lambert D, Brown I, Howland K, Aaron J, Wang L, Ellis PJI, Chew TL, Martin-Fernandez M, Pyne ALB, Toseland CP. Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription. Nat Commun 2023; 14:2855. [PMID: 37202403 PMCID: PMC10195817 DOI: 10.1038/s41467-023-38572-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
NDP52 is an autophagy receptor involved in the recognition and degradation of invading pathogens and damaged organelles. Although NDP52 was first identified in the nucleus and is expressed throughout the cell, to date, there is no clear nuclear functions for NDP52. Here, we use a multidisciplinary approach to characterise the biochemical properties and nuclear roles of NDP52. We find that NDP52 clusters with RNA Polymerase II (RNAPII) at transcription initiation sites and that its overexpression promotes the formation of additional transcriptional clusters. We also show that depletion of NDP52 impacts overall gene expression levels in two model mammalian cells, and that transcription inhibition affects the spatial organisation and molecular dynamics of NDP52 in the nucleus. This directly links NDP52 to a role in RNAPII-dependent transcription. Furthermore, we also show that NDP52 binds specifically and with high affinity to double-stranded DNA (dsDNA) and that this interaction leads to changes in DNA structure in vitro. This, together with our proteomics data indicating enrichment for interactions with nucleosome remodelling proteins and DNA structure regulators, suggests a possible function for NDP52 in chromatin regulation. Overall, here we uncover nuclear roles for NDP52 in gene expression and DNA structure regulation.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
- MRC LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Daniel E Rollins
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- MRC LMCB, University College London, Gower Street, London, WC1E 6BT, UK
| | - Hannah McArthur
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Mingxue Du
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | | | - Kseniia Pidlisna
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Ane Stranger
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Faeeza Lorgat
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Danielle Lambert
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Ian Brown
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Kevin Howland
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Peter J I Ellis
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Alice L B Pyne
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | | |
Collapse
|
18
|
Martino S, Carollo PS, Barra V. A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation. Genes (Basel) 2023; 14:genes14051046. [PMID: 37239406 DOI: 10.3390/genes14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, stem cells undergo the differentiation process so that they can specialize for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, through the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini-review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role the nuclear lamina plays in neurogenesis to ensure the tethering of the chromatin to the nuclear envelope.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Viviana Barra
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
19
|
Burgers TCQ, Vlijm R. Fluorescence-based super-resolution-microscopy strategies for chromatin studies. Chromosoma 2023:10.1007/s00412-023-00792-9. [PMID: 37000292 PMCID: PMC10356683 DOI: 10.1007/s00412-023-00792-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.
Collapse
Affiliation(s)
- Thomas C Q Burgers
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
20
|
de Wit E, Nora EP. New insights into genome folding by loop extrusion from inducible degron technologies. Nat Rev Genet 2023; 24:73-85. [PMID: 36180596 DOI: 10.1038/s41576-022-00530-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 01/24/2023]
Abstract
Chromatin folds into dynamic loops that often span hundreds of kilobases and physically wire distant loci together for gene regulation. These loops are continuously created, extended and positioned by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin, and their regulators, including CTCF, in a highly dynamic process known as loop extrusion. Genetic loss of extrusion factors is lethal, complicating their study. Inducible protein degradation technologies enable the depletion of loop extrusion factors within hours, leading to the rapid reconfiguration of chromatin folding. Here, we review how these technologies have changed our understanding of genome organization, upsetting long-held beliefs on its role in transcription. Finally, we examine recent models that attempt to reconcile observations after chronic versus acute perturbations, and discuss future developments in this rapidly developing field of research.
Collapse
Affiliation(s)
- Elzo de Wit
- Division of Gene Regulation, Oncode Institute, Amsterdam, the Netherlands.
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Elphège P Nora
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Teng Z, Zhu Y, Lin D, Hao Q, Yue Q, Yu X, Sun S, Jiang L, Lu S. Deciphering the chromatin spatial organization landscapes during BMMSC differentiation. J Genet Genomics 2023; 50:264-275. [PMID: 36720443 DOI: 10.1016/j.jgg.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
The differentiation imbalance in bone marrow mesenchymal stem cells (BMMSCs) is critical for the development of bone density diseases as the population ages. BMMSCs are precursor cells for osteoblasts and adipocytes; however, the chromatin organization landscapes during BMMSC differentiation remain elusive. In this study, we systematically delineate the four-dimensional (4D) genome and dynamic epigenetic atlas of BMMSCs by RNA sequencing (RNA-seq), assay for transposase-accessible chromatin sequencing (ATAC-seq), and high-throughput chromosome conformation capture (Hi-C). The structure analyses reveal 17.5% common and 28.5%-30% specific loops among BMMSCs, osteoblasts, and adipocytes. The subsequent correlation of genome-wide association studies (GWAS) and expression quantitative trait locus (eQTL) data with multi-omics analysis reveal 274 genes and 3634 single nucleotide polymorphisms (SNPs) associated with bone degeneration and osteoporosis (OP). We hypothesize that SNP mutations affect transcription factor (TF) binding sites, thereby affecting changes in gene expression. Furthermore, 26 motifs, 260 TFs, and 291 SNPs are identified to affect the eQTL. Among these genes, DAAM2, TIMP2, and TMEM241 were found to be essential for diseases such as bone degeneration and OP and may serve as potential drug targets.
Collapse
Affiliation(s)
- Zhaowei Teng
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China; Key Laboratory of Yunnan Provincial Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China; Clinical Medical Research Center, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Yun Zhu
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qinggang Hao
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650504, China
| | - Qiaoning Yue
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Xiaochao Yu
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Shuo Sun
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan 653100, China
| | - Lihong Jiang
- Key Laboratory of Yunnan Provincial Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Sheng Lu
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650032, China.
| |
Collapse
|
22
|
Andreu MJ, Alvarez-Franco A, Portela M, Gimenez-Llorente D, Cuadrado A, Badia-Careaga C, Tiana M, Losada A, Manzanares M. Establishment of 3D chromatin structure after fertilization and the metabolic switch at the morula-to-blastocyst transition require CTCF. Cell Rep 2022; 41:111501. [DOI: 10.1016/j.celrep.2022.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/22/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
|
23
|
DNA methylation in transposable elements buffers the connection between three-dimensional chromatin organization and gene transcription upon rice genome duplication. J Adv Res 2022; 42:41-53. [PMID: 35933090 PMCID: PMC9788948 DOI: 10.1016/j.jare.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Polyploidy is a major force in plant evolution and the domestication of cultivated crops. OBJECTIVES The study aimed to explore the relationship and underlying mechanism between three-dimensional (3D) chromatin organization and gene transcription upon rice genome duplication. METHODS The 3D chromatin structures between diploid (2C) and autotetraploid (4C) rice were compared using high-throughput chromosome conformation capture (Hi-C) analysis. The study combined genetics, transcriptomics, whole-genome bisulfite sequencing (WGBS-seq) and 3D genomics approaches to uncover the mechanism for DNA methylation in modulating gene transcription through 3D chromatin architectures upon rice genome duplication. RESULTS We found that 4C rice presents weakened intra-chromosomal interactions compared to its 2C progenitor in some chromosomes. In addition, we found that changes of 3D chromatin organizations including chromatin compartments, topologically associating domains (TADs), and loops, are uncorrelated with gene transcription. Moreover, DNA methylations in the regulatory sequences of genes in compartment A/B switched regions and TAD boundaries are unrelated to their expression. Importantly, although there was no significant difference in the methylation levels in transposable elements (TEs) in differentially expressed gene (DEG) and non-DEG promoters between 2C and 4C rice, we found that the hypermethylated TEs across genes in compartment A/B switched regions and TAD boundaries may suppress the expression of these genes. CONCLUSION The study proposed that the rice genome doubling might modulate TE methylation to buffer the effects of chromatin architecture on gene transcription in compartment A/B switched regions and TAD boundaries, resulting in the disconnection between 3D chromatin structure alteration and gene transcription upon rice genome duplication.
Collapse
|
24
|
The era of 3D and spatial genomics. Trends Genet 2022; 38:1062-1075. [PMID: 35680466 DOI: 10.1016/j.tig.2022.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/28/2022]
Abstract
Over a decade ago the advent of high-throughput chromosome conformation capture (Hi-C) sparked a new era of 3D genomics. Since then the number of methods for mapping the 3D genome has flourished, enabling an ever-increasing understanding of how DNA is packaged in the nucleus and how the spatiotemporal organization of the genome orchestrates its vital functions. More recently, the next generation of spatial genomics technologies has begun to reveal how genome sequence and 3D genome organization vary between cells in their tissue context. We summarize how the toolkit for charting genome topology has evolved over the past decade and discuss how new technological developments are advancing the field of 3D and spatial genomics.
Collapse
|
25
|
Sun Y, Zhang Z, Bing T, Liu J, Li W, Liu X, Zhang N, Shu Y, Wang J, Shangguan D. Aptamer-Based Cell Nucleus Imaging via Expansion Microscopy. Anal Chem 2022; 94:6044-6049. [PMID: 35380789 DOI: 10.1021/acs.analchem.2c00773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expansion microscopy (ExM) is a newly developed technology in recent years that enables nanoscale imaging under conventional microscopes. Herein, we report an aptamer-based ExM imaging strategy. A nucleus-targeting aptamer Ch4-1 was chemically labeled with a dye and an acrydite at each end to perform the functions of molecular recognition, fluorescence reporting, and gel anchoring. After binding cell nucleus, the dual labeled aptamer Ac-Ch4-1-FAM directly participated in gelation and anchored in polyacrylamide gel. After expanding the gel, high-resolution imaging was achieved by confocal microscopy. Multicolor ExM imaging was also realized by combining Ac-Ch4-1-FAM, antibodies and fluorescent dyes. This aptamer-based ExM could clearly image the chromatin morphology at different mitotic stages. The expansion process is simple and the aptamer labeling is easy. The aptamer-based ExM holds great promise in super-resolution imaging of cells and tissues.
Collapse
Affiliation(s)
- Yue Sun
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhicheng Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Bing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310013, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Cuadrado Á, Figueroa RI, Sixto M, Bravo I, De Bustos A. First record of the spatial organization of the nucleosome-less chromatin of dinoflagellates: The nonrandom distribution of microsatellites and bipolar arrangement of telomeres in the nucleus of Gambierdiscus australes (Dinophyceae). JOURNAL OF PHYCOLOGY 2022; 58:297-307. [PMID: 35038777 DOI: 10.1111/jpy.13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Dinoflagellates are a group of protists whose exceptionally large genome is organized in permanently condensed nucleosome-less chromosomes. In this study, we examined the potential role of repetitive DNAs in both the structure of dinoflagellate chromosomes and the architecture of the dinoflagellate nucleus. Non-denaturing fluorescent in situ hybridization (ND-FSH) was used to determine the abundance and physical distribution of telomeric DNA and 16 microsatellites (1- to 4-bp repeats) in the nucleus of Gambierdiscus australes. The results showed an increased relative abundance of the different microsatellite motifs with increasing GC content. Two ND-FISH probes, (A)20 and (AAT)5 , did not yield signals whereas the remainder revealed a dispersed but nonrandom distribution of the microsatellites, mostly in clusters. The bean-shaped interphase nucleus of G. australes contained a region with a high density of trinucleotides. This nuclear compartment was located between the nucleolar organizer region (NOR), located on the concave side of the nucleus, and the convex side. Telomeric DNA was grouped in multiple foci and distributed in two polarized compartments: one associated with the NOR and the other peripherally located along the convex side of the nucleus. Changes in the position of the telomeres during cell division evidenced their dynamic distribution and thus that of the chromosomes during dinomitosis. These insights into the spatial organization of microsatellites and telomeres and thus into the nuclear architecture of G. australes will open up new lines of research into the structure and function of the nucleosome-less chromatin of dinoflagellates.
Collapse
Affiliation(s)
- Ángeles Cuadrado
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, 28805, Spain
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, Vigo, 36390, Spain
| | - Marta Sixto
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, Vigo, 36390, Spain
- Campus do Mar, Facultad de Ciencias del Mar, Universidad de Vigo, Vigo, 36311, Spain
| | - Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, Vigo, 36390, Spain
| | - Alfredo De Bustos
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid, 28805, Spain
| |
Collapse
|
27
|
Cheng Q, Delafrouz P, Liang J, Liu C, Shen J. Modeling and simulation of cell nuclear architecture reorganization process. JOURNAL OF COMPUTATIONAL PHYSICS 2022; 449:110808. [PMID: 36185393 PMCID: PMC9524197 DOI: 10.1016/j.jcp.2021.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We develop a special phase field/diffusive interface method to model the nuclear architecture reorganization process. In particular, we use a Lagrange multiplier approach in the phase field model to preserve the specific physical and geometrical constraints for the biological events. We develop several efficient and robust linear and weakly nonlinear schemes for this new model. To validate the model and numerical methods, we present ample numerical simulations which in particular reproduce several processes of nuclear architecture reorganization from the experiment literature.
Collapse
Affiliation(s)
- Qing Cheng
- Department of Mathematics,Purdue University, West Lafayette, IN 47907, USA
| | - Pourya Delafrouz
- Department of Bioengineering, University of Illinois at Chicago, SEO, MC-063, Chicago, IL, 60607-7052, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, SEO, MC-063, Chicago, IL, 60607-7052, USA
| | - Chun Liu
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jie Shen
- Department of Mathematics,Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
28
|
RNA gradients: Shapers of 3D genome architecture. Curr Opin Cell Biol 2022; 74:7-12. [PMID: 34998095 DOI: 10.1016/j.ceb.2021.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023]
Abstract
A growing body of evidence points to a role of nuclear RNAs (nucRNAs) in shaping the three-dimensional (3D) architecture of the genome within the nucleus of a eukaryotic cell. nucRNAs are non-homogeneously distributed within the nucleus where they can form global and local gradients that might contribute to instructing the formation and coordinating the function of different types of 3D genome structures. In this article, we highlight the available literature supporting a role of nucRNAs as 3D genome shapers and propose that nucRNA gradients are key mediators of genome structure and function.
Collapse
|
29
|
Zhang X, Zhu Y, Kremling KAG, Romay MC, Bukowski R, Sun Q, Gao S, Buckler ES, Lu F. Genome-wide analysis of deletions in maize population reveals abundant genetic diversity and functional impact. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:273-290. [PMID: 34661697 DOI: 10.1007/s00122-021-03965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Two read depth methods were jointly used in next-generation sequencing data to identify deletions in maize population. GWAS by deletions were analyzed for gene expression pattern and classical traits, respectively. Many studies have confirmed that structural variation (SV) is pervasive throughout the maize genome. Deletion is one type of SV that may impact gene expression and cause phenotypic changes in quantitative traits. In this study, two read count approaches were used to analyze the deletions in the whole-genome sequencing data of 270 maize inbred lines. A total of 19,754 deletion windows overlapped 12,751 genes, which were unevenly distributed across the genome. The deletions explained population structure well and correlated with genomic features. The deletion proportion of genes was determined to be negatively correlated with its expression. The detection of gene expression quantitative trait loci (eQTL) indicated that local eQTL were fewer but had larger effects than distant ones. The common associated genes were related to basic metabolic processes, whereas unique associated genes with eQTL played a role in the stress or stimulus responses in multiple tissues. Compared with the eQTL detected by SNPs derived from the same sequencing data, 89.4% of the associated genes could be detected by both markers. The effect of top eQTL detected by SNPs was usually larger than that detected by deletions for the same gene. A genome-wide association study (GWAS) on flowering time and plant height illustrated that only a few loci could be consistently captured by SNPs, suggesting that combining deletion and SNP for GWAS was an excellent strategy to dissect trait architecture. Our findings will provide insights into characteristic and biological function of genome-wide deletions in maize.
Collapse
Affiliation(s)
- Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China.
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA.
| | - Yonghui Zhu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Karl A G Kremling
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA
| | - Robert Bukowski
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Qi Sun
- Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA
- USDA-ARS, R. W. Holley Center, Cornell University, Ithaca, NY, USA
| | - Fei Lu
- Institute for Genomic Diversity, Cornell University, 175 Biotechnology Building, Ithaca, NY, USA.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
30
|
Mirzaei G, Petreaca RC. Distribution of copy number variations and rearrangement endpoints in human cancers with a review of literature. Mutat Res 2022; 824:111773. [PMID: 35091282 PMCID: PMC11301607 DOI: 10.1016/j.mrfmmm.2021.111773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Copy number variations (CNVs) which include deletions, duplications, inversions, translocations, and other forms of chromosomal re-arrangements are common to human cancers. In this report we investigated the pattern of these variations with the goal of understanding whether there exist specific cancer signatures. We used re-arrangement endpoint data deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC) for our analysis. Indeed, we find that human cancers are characterized by specific patterns of chromosome rearrangements endpoints which in turn result in cancer specific CNVs. A review of the literature reveals tissue specific mutations which either drive these CNVs or appear as a consequence of CNVs because they confer an advantage to the cancer cell. We also identify several rearrangement endpoints hotspots that were not previously reported. Our analysis suggests that in addition to local chromosomal architecture, CNVs are driven by the internal cellular or nuclear physiology of each cancer tissue.
Collapse
Affiliation(s)
- Golrokh Mirzaei
- Department of Computer Science and Engineering, The Ohio State University at Marion, Marion, OH, 43302, USA
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University at Marion, Marion, OH, 43302, USA; Cancer Biology Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
31
|
Nuñez-Olvera SI, Puente-Rivera J, Ramos-Payán R, Pérez-Plasencia C, Salinas-Vera YM, Aguilar-Arnal L, López-Camarillo C. Three-Dimensional Genome Organization in Breast and Gynecological Cancers: How Chromatin Folding Influences Tumorigenic Transcriptional Programs. Cells 2021; 11:75. [PMID: 35011637 PMCID: PMC8750285 DOI: 10.3390/cells11010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research on the transcriptome and cancer genome has demonstrated that many gynecological tumor-specific gene mutations are located in cis-regulatory elements. Through chromosomal looping, cis-regulatory elements interact which each other to control gene expression by bringing distant regulatory elements, such as enhancers and insulators, into close proximity with promoters. It is well known that chromatin connections may be disrupted in cancer cells, promoting transcriptional dysregulation and the expression of abnormal tumor suppressor genes and oncogenes. In this review, we examine the roles of alterations in 3D chromatin interactions. This includes changes in CTCF protein function, cancer-risk single nucleotide polymorphisms, viral integration, and hormonal response as part of the mechanisms that lead to the acquisition of enhancers or super-enhancers. The translocation of existing enhancers, as well as enhancer loss or acquisition of insulator elements that interact with gene promoters, is also revised. Remarkably, similar processes that modify 3D chromatin contacts in gene promoters may also influence the expression of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which have emerged as key regulators of gene expression in a variety of cancers, including gynecological malignancies.
Collapse
Affiliation(s)
- Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | | | - Yarely M. Salinas-Vera
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados, Mexico City 07360, Mexico;
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| |
Collapse
|
32
|
Cardozo Gizzi AM. A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization. Front Genet 2021; 12:780822. [PMID: 34868269 PMCID: PMC8640135 DOI: 10.3389/fgene.2021.780822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The genome tridimensional (3D) organization and its role towards the regulation of key cell processes such as transcription is currently a main question in biology. Interphase chromosomes are spatially segregated into "territories," epigenetically-defined large domains of chromatin that interact to form "compartments" with common transcriptional status, and insulator-flanked domains called "topologically associating domains" (TADs). Moreover, chromatin organizes around nuclear structures such as lamina, speckles, or the nucleolus to acquire a higher-order genome organization. Due to recent technological advances, the different hierarchies are being solved. Particularly, advances in microscopy technologies are shedding light on the genome structure at multiple levels. Intriguingly, more and more reports point to high variability and stochasticity at the single-cell level. However, the functional consequences of such variability in genome conformation are still unsolved. Here, I will discuss the implication of the cell-to-cell heterogeneity at the different scales in the context of newly developed imaging approaches, particularly multiplexed Fluorescence in situ hybridization methods that enabled "chromatin tracing." Extensions of these methods are now combining spatial information of dozens to thousands of genomic loci with the localization of nuclear features such as the nucleolus, nuclear speckles, or even histone modifications, creating the fast-moving field of "spatial genomics." As our view of genome organization shifts the focus from ensemble to single-cell, new insights to fundamental questions begin to emerge.
Collapse
Affiliation(s)
- Andres M Cardozo Gizzi
- Centro de Investigación en Medicina Traslacional Severo Amuchastegui (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), CONICET, Córdoba, Argentina
| |
Collapse
|
33
|
Zhang X, Pandey MK, Wang J, Zhao K, Ma X, Li Z, Zhao K, Gong F, Guo B, Varshney RK, Yin D. Chromatin spatial organization of wild type and mutant peanuts reveals high-resolution genomic architecture and interaction alterations. Genome Biol 2021; 22:315. [PMID: 34784945 PMCID: PMC8594070 DOI: 10.1186/s13059-021-02520-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Three-dimensional (3D) chromatin organization provides a critical foundation to investigate gene expression regulation and cellular homeostasis. RESULTS Here, we present the first 3D genome architecture maps in wild type and mutant allotetraploid peanut lines, which illustrate A/B compartments, topologically associated domains (TADs), and widespread chromatin interactions. Most peanut chromosomal arms (52.3%) have active regions (A compartments) with relatively high gene density and high transcriptional levels. About 2.0% of chromosomal regions switch from inactive to active (B-to-A) in the mutant line, harboring 58 differentially expressed genes enriched in flavonoid biosynthesis and circadian rhythm functions. The mutant peanut line shows a higher number of genome-wide cis-interactions than its wild-type. The present study reveals a new TAD in the mutant line that generates different chromatin loops and harbors a specific upstream AP2EREBP-binding motif which might upregulate the expression of the GA2ox gene and decrease active gibberellin (GA) content, presumably making the mutant plant dwarf. CONCLUSIONS Our findings will shed new light on the relationship between 3D chromatin architecture and transcriptional regulation in plants.
Collapse
Affiliation(s)
- Xingguo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Kunkun Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xingli Ma
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhongfeng Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Kai Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Fangping Gong
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, USA.
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Dongmei Yin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
34
|
Marti-Marimon M, Vialaneix N, Lahbib-Mansais Y, Zytnicki M, Camut S, Robelin D, Yerle-Bouissou M, Foissac S. Major Reorganization of Chromosome Conformation During Muscle Development in Pig. Front Genet 2021; 12:748239. [PMID: 34675966 PMCID: PMC8523936 DOI: 10.3389/fgene.2021.748239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The spatial organization of the genome in the nucleus plays a crucial role in eukaryotic cell functions, yet little is known about chromatin structure variations during late fetal development in mammals. We performed in situ high-throughput chromosome conformation capture (Hi-C) sequencing of DNA from muscle samples of pig fetuses at two late stages of gestation. Comparative analysis of the resulting Hi-C interaction matrices between both groups showed widespread differences of different types. First, we discovered a complex landscape of stable and group-specific Topologically Associating Domains (TADs). Investigating the nuclear partition of the chromatin into transcriptionally active and inactive compartments, we observed a genome-wide fragmentation of these compartments between 90 and 110 days of gestation. Also, we identified and characterized the distribution of differential cis- and trans-pairwise interactions. In particular, trans-interactions at chromosome extremities revealed a mechanism of telomere clustering further confirmed by 3D Fluorescence in situ Hybridization (FISH). Altogether, we report major variations of the three-dimensional genome conformation during muscle development in pig, involving several levels of chromatin remodeling and structural regulation.
Collapse
Affiliation(s)
| | | | | | | | - Sylvie Camut
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - David Robelin
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | - Sylvain Foissac
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
35
|
Mompart F, Kamgoué A, Lahbib-Mansais Y, Robelin D, Bonnet A, Rogel-Gaillard C, Kocanova S, Yerle-Bouissou M. The 3D nuclear conformation of the major histocompatibility complex changes upon cell activation both in porcine and human macrophages. BMC Mol Cell Biol 2021; 22:45. [PMID: 34521351 PMCID: PMC8442435 DOI: 10.1186/s12860-021-00384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The crucial role of the major histocompatibility complex (MHC) for the immune response to infectious diseases is well-known, but no information is available on the 3D nuclear organization of this gene-dense region in immune cells, whereas nuclear architecture is known to play an essential role on genome function regulation. We analyzed the spatial arrangement of the three MHC regions (class I, III and II) in macrophages using 3D-FISH. Since this complex presents major differences in humans and pigs with, notably, the presence of the centromere between class III and class II regions in pigs, the analysis was implemented in both species to determine the impact of this organization on the 3D conformation of the MHC. The expression level of the three genes selected to represent each MHC region was assessed by quantitative real-time PCR. Resting and lipopolysaccharide (LPS)-activated states were investigated to ascertain whether a response to a pathogen modifies their expression level and their 3D organization. RESULTS While the three MHC regions occupy an intermediate radial position in porcine macrophages, the class I region was clearly more peripheral in humans. The BAC center-to-center distances allowed us to propose a 3D nuclear organization of the MHC in each species. LPS/IFNγ activation induces a significant decompaction of the chromatin between class I and class III regions in pigs and between class I and class II regions in humans. We detected a strong overexpression of TNFα (class III region) in both species. Moreover, a single nucleus analysis revealed that the two alleles can have either the same or a different compaction pattern. In addition, macrophage activation leads to an increase in alleles that present a decompacted pattern in humans and pigs. CONCLUSIONS The data presented demonstrate that: (i) the MHC harbors a different 3D organization in humans and pigs; (ii) LPS/IFNγ activation induces chromatin decompaction, but it is not the same area affected in the two species. These findings were supported by the application of an original computation method based on the geometrical distribution of the three target genes. Finally, the position of the centromere inside the swine MHC could influence chromatin reorganization during the activation process.
Collapse
Affiliation(s)
- Florence Mompart
- GenPhySE, Université de Toulouse, INRAE, ENVT, 1388 GenPhySE, 24 Chemin de Borde Rouge, 31326 Cedex, Castanet-Tolosan, France
| | - Alain Kamgoué
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France
| | - Yvette Lahbib-Mansais
- GenPhySE, Université de Toulouse, INRAE, ENVT, 1388 GenPhySE, 24 Chemin de Borde Rouge, 31326 Cedex, Castanet-Tolosan, France
| | - David Robelin
- GenPhySE, Université de Toulouse, INRAE, ENVT, 1388 GenPhySE, 24 Chemin de Borde Rouge, 31326 Cedex, Castanet-Tolosan, France
| | - Agnès Bonnet
- GenPhySE, Université de Toulouse, INRAE, ENVT, 1388 GenPhySE, 24 Chemin de Borde Rouge, 31326 Cedex, Castanet-Tolosan, France
| | | | - Silvia Kocanova
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France
| | - Martine Yerle-Bouissou
- GenPhySE, Université de Toulouse, INRAE, ENVT, 1388 GenPhySE, 24 Chemin de Borde Rouge, 31326 Cedex, Castanet-Tolosan, France.
| |
Collapse
|
36
|
MacPhillamy C, Pitchford WS, Alinejad-Rokny H, Low WY. Opportunity to improve livestock traits using 3D genomics. Anim Genet 2021; 52:785-798. [PMID: 34494283 DOI: 10.1111/age.13135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
The advent of high-throughput chromosome conformation capture and sequencing (Hi-C) has enabled researchers to probe the 3D architecture of the mammalian genome in a genome-wide manner. Simultaneously, advances in epigenomic assays, such as chromatin immunoprecipitation and sequencing (ChIP-seq) and DNase-seq, have enabled researchers to study cis-regulatory interactions and chromatin accessibility across the same genome-wide scale. The use of these data has revealed many unique insights into gene regulation and disease pathomechanisms in several model organisms. With the advent of these high-throughput sequencing technologies, there has been an ever-increasing number of datasets available for study; however, this is often limited to model organisms. Livestock species play critical roles in the economies of developing and developed nations alike. Despite this, they are greatly underrepresented in the 3D genomics space; Hi-C and related technologies have the potential to revolutionise livestock breeding by enabling a more comprehensive understanding of how production traits are controlled. The growth in human and model organism Hi-C data has seen a surge in the availability of computational tools for use in 3D genomics, with some tools using machine learning techniques to predict features and improve dataset quality. In this review, we provide an overview of the 3D genome and discuss the status of 3D genomics in livestock before delving into advancing the field by drawing inspiration from research in human and mouse. We end by offering future directions for livestock research in the field of 3D genomics.
Collapse
Affiliation(s)
- C MacPhillamy
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, SA, 5371, Australia
| | - W S Pitchford
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, SA, 5371, Australia
| | - H Alinejad-Rokny
- Biological & Medical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.,School of Computer Science and Engineering, The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - W Y Low
- Davies Livestock Research Centre, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, SA, 5371, Australia
| |
Collapse
|
37
|
Wei J, Tian H, Zhou R, Shao Y, Song F, Gao YQ. Topological Constraints with Optimal Length Promote the Formation of Chromosomal Territories at Weakened Degree of Phase Separation. J Phys Chem B 2021; 125:9092-9101. [PMID: 34351763 DOI: 10.1021/acs.jpcb.1c03523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is generally agreed that the nuclei of eukaryotic cells at interphase are partitioned into disjointed territories, with distinct regions occupied by certain chromosomes. However, the underlying mechanism for such territorialization is still under debate. Here we model chromosomes as coarse-grained block copolymers and to investigate the effect of loop domains (LDs) on the formation of compartments and territories based on dissipative particle dynamics. A critical length of LDs, which depends sensitively on the length of polymeric blocks, is obtained to minimize the degree of phase separation. This also applies to the two-polymer system: The critical length not only maximizes the degree of territorialization but also minimizes the degree of phase separation. Interestingly, by comparing with experimental data, we find the critical length for LDs and the corresponding length of blocks to be respectively very close to the mean length of topologically associating domains (TADs) and chromosomal segments with different densities of CpG islands for human chromosomes. The results indicate that topological constraints with optimal length can contribute to the formation of territories by weakening the degree of phase separation, which likely promotes the chromosomal flexibility in response to genetic regulations.
Collapse
Affiliation(s)
- Jiachen Wei
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,Shenzhen Bay Laboratory, 5F, No. 9 Duxue Road, Nanshan District, 518055 Shenzhen, Guangdong, China
| | - Hao Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Rui Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yingfeng Shao
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qin Gao
- Shenzhen Bay Laboratory, 5F, No. 9 Duxue Road, Nanshan District, 518055 Shenzhen, Guangdong, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Deolal P, Mishra K. Regulation of diverse nuclear shapes: pathways working independently, together. Commun Integr Biol 2021; 14:158-175. [PMID: 34262635 PMCID: PMC8259725 DOI: 10.1080/19420889.2021.1939942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane-bound organelles provide physical and functional compartmentalization of biological processes in eukaryotic cells. The characteristic shape and internal organization of these organelles is determined by a combination of multiple internal and external factors. The maintenance of the shape of nucleus, which houses the genetic material within a double membrane bilayer, is crucial for a seamless spatio-temporal control over nuclear and cellular functions. Dynamic morphological changes in the shape of nucleus facilitate various biological processes. Chromatin packaging, nuclear and cytosolic protein organization, and nuclear membrane lipid homeostasis are critical determinants of overall nuclear morphology. As such, a multitude of molecular players and pathways act together to regulate the nuclear shape. Here, we review the known mechanisms governing nuclear shape in various unicellular and multicellular organisms, including the non-spherical nuclei and non-lamin-related structural determinants. The review also touches upon cellular consequences of aberrant nuclear morphologies.
Collapse
Affiliation(s)
- Pallavi Deolal
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
39
|
Baroux C. Three-dimensional genome organization in epigenetic regulations: cause or consequence? CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102031. [PMID: 33819713 DOI: 10.1016/j.pbi.2021.102031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The evolution of the nucleus is an evolutionary milestone. By enabling genome compartmentalization, it contributes to the fine-tuning of genome functions. The genome is partitioned into functional domains differing in spatial positioning and topological folding at different scales. The rise of '3D Genomics' embracing experimental, theoretical, and modeling approaches allowed the proposal of a multiscale model of the eukaryotic genome, capturing its organizing principles and functionalities. In these efforts, resolving causality remains an important objective. Are positioning and folding the cause or consequence of functional states? This minireview presents emerging answers to this question, borrowing examples from recent studies of the three-dimensional genome in both plants and animals.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Switzerland.
| |
Collapse
|
40
|
Kim KD. Potential roles of condensin in genome organization and beyond in fission yeast. J Microbiol 2021; 59:449-459. [PMID: 33877578 DOI: 10.1007/s12275-021-1039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
The genome is highly organized hierarchically by the function of structural maintenance of chromosomes (SMC) complex proteins such as condensin and cohesin from bacteria to humans. Although the roles of SMC complex proteins have been well characterized, their specialized roles in nuclear processes remain unclear. Condensin and cohesin have distinct binding sites and mediate long-range and short-range genomic associations, respectively, to form cell cycle-specific genome organization. Condensin can be recruited to highly expressed genes as well as dispersed repeat genetic elements, such as Pol III-transcribed genes, LTR retrotransposon, and rDNA repeat. In particular, mitotic transcription factors Ace2 and Ams2 recruit condensin to their target genes, forming centromeric clustering during mitosis. Condensin is potentially involved in various chromosomal processes such as the mobility of chromosomes, chromosome territories, DNA reannealing, and transcription factories. The current knowledge of condensin in fission yeast summarized in this review can help us understand how condensin mediates genome organization and participates in chromosomal processes in other organisms.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
41
|
New Insights into Cellular Functions of Nuclear Actin. BIOLOGY 2021; 10:biology10040304. [PMID: 33916969 PMCID: PMC8067577 DOI: 10.3390/biology10040304] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary It is well known that actin forms a cytoplasmic network of microfilaments, the part of the cytoskeleton, in the cytoplasm of eukaryotic cells. The presence of nuclear actin was elusive for a very long time. Now, there is a very strong evidence that actin plays many important roles in the nucleus. Here, we discuss the recently discovered functions of the nuclear actin pool. Actin does not have nuclear localization signal (NLS), so its import to the nucleus is facilitated by the NLS-containing proteins. Nuclear actin plays a role in the maintenance of the nuclear structure and the nuclear envelope breakdown. It is also involved in chromatin remodeling, and chromatin and nucleosome movement necessary for DNA recombination, repair, and the initiation of transcription. It also binds RNA polymerases, promoting transcription. Because of the multifaceted role of nuclear actin, the future challenge will be to further define its functions in various cellular processes and diseases. Abstract Actin is one of the most abundant proteins in eukaryotic cells. There are different pools of nuclear actin often undetectable by conventional staining and commercial antibodies used to identify cytoplasmic actin. With the development of more sophisticated imaging and analytical techniques, it became clear that nuclear actin plays a crucial role in shaping the chromatin, genomic, and epigenetic landscape, transcriptional regulation, and DNA repair. This multifaceted role of nuclear actin is not only important for the function of the individual cell but also for the establishment of cell fate, and tissue and organ differentiation during development. Moreover, the changes in the nuclear, chromatin, and genomic architecture are preamble to various diseases. Here, we discuss some of the newly described functions of nuclear actin.
Collapse
|
42
|
The vacuole controls nucleolar dynamics and micronucleophagy via the NVJ. Biochem Biophys Res Commun 2021; 550:158-165. [PMID: 33706099 DOI: 10.1016/j.bbrc.2021.02.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022]
Abstract
Chromosomes have their own territories and dynamically translocate in response to internal and external cues. However, whether and how territories and the relocation of chromosomes are controlled by other intracellular organelles remains unknown. Upon nutrient starvation and target of rapamycin complex 1 (TORC1) inactivation, micronucleophagy, which preferentially degrades nucleolar proteins, occurs at the nucleus-vacuole junction (NVJ) in budding yeast. Ribosomal DNA (rDNA) is condensed and relocated against the NVJ, whereas nucleolar proteins move towards the NVJ for micronucleophagic degradation, causing dissociation of nucleolar proteins from rDNA. These findings imply that the NVJ is the critical platform in the directional movements of rDNA and nucleolar proteins. Here, we show that cells lacking the NVJ (NVJΔ cells) largely lost rDNA condensation and rDNA-nucleolar protein separation after TORC1 inactivation. The macronucleophagy receptor Atg39, an outer nuclear membrane protein, accumulated at the NVJ and was degraded by micronucleophagy. These suggested that macronucleophagy is also dependent on the presence of the NVJ. However, micronucleophagy, but not macronucleophagy, was abolished in NVJΔ cells. This study clearly demonstrated that vacuoles controls intranuclear events, nucleolar dynamics, from outside of the nucleus via the NVJ under the control of TORC1.
Collapse
|
43
|
Liu J, Wang Z, Li J, Xu L, Liu J, Feng S, Guo C, Chen S, Ren Z, Rao J, Wei K, Chen Y, Jarvis ED, Zhang G, Zhou Q. A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes. Genome Res 2021; 31:497-511. [PMID: 33408157 PMCID: PMC7919449 DOI: 10.1101/gr.271569.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/30/2020] [Indexed: 01/30/2023]
Abstract
Emu and other ratites are more informative than any other birds in reconstructing the evolution of the ancestral avian or vertebrate karyotype because of their much slower rate of genome evolution. Here, we generated a new chromosome-level genome assembly of a female emu, and estimated the tempo of chromosome evolution across major avian phylogenetic branches, by comparing it to chromosome-level genome assemblies of 11 other bird and one turtle species. We found ratites exhibited the lowest numbers of intra- and inter-chromosomal changes among birds since their divergence with turtles. The small-sized and gene-rich emu microchromosomes have frequent inter-chromosomal contacts that are associated with housekeeping genes, which appears to be driven by clustering their centromeres in the nuclear interior, away from the macrochromosomes in the nuclear periphery. Unlike nonratite birds, only less than one-third of the emu W Chromosome regions have lost homologous recombination and diverged between the sexes. The emu W is demarcated into a highly heterochromatic region (WS0) and another recently evolved region (WS1) with only moderate sequence divergence with the Z Chromosome. WS1 has expanded its inactive chromatin compartment, increased chromatin contacts within the region, and decreased contacts with the nearby regions, possibly influenced by the spreading of heterochromatin from WS0. These patterns suggest that alteration of chromatin conformation comprises an important early step of sex chromosome evolution. Overall, our results provide novel insights into the evolution of avian genome structure and sex chromosomes in three-dimensional space.
Collapse
Affiliation(s)
- Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China
| | - Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
| | - Jiaqi Liu
- Wuhan Gooalgene Technology Company, Wuhan 430070, China
| | - Shaohong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen 518083, China
| | - Shengchan Chen
- Longteng Ecological Culture Company, Limited, Zhashui 711400, China
| | - Zhanjun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| | - Yuezhou Chen
- Jianzhou Poultry Industry Company, Limited, Yong'an 366000, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, New York 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
| |
Collapse
|
44
|
Davis SZ, Hollin T, Lenz T, Le Roch KG. Three-dimensional chromatin in infectious disease-A role for gene regulation and pathogenicity? PLoS Pathog 2021; 17:e1009207. [PMID: 33539484 PMCID: PMC7861443 DOI: 10.1371/journal.ppat.1009207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recent Coronavirus Disease 2019 pandemic has once again reminded us the importance of understanding infectious diseases. One important but understudied area in infectious disease research is the role of nuclear architecture or the physical arrangement of the genome in the nucleus in controlling gene regulation and pathogenicity. Recent advances in research methods, such as Genome-wide chromosome conformation capture using high-throughput sequencing (Hi-C), have allowed for easier analysis of nuclear architecture and chromosomal reorganization in both the infectious disease agents themselves as well as in their host cells. This review will discuss broadly on what is known about nuclear architecture in infectious disease, with an emphasis on chromosomal reorganization, and briefly discuss what steps are required next in the field.
Collapse
Affiliation(s)
- Sage Z. Davis
- Department of Molecular, Cell and Systems Biology (MCSB), University of California Riverside, California, United States of America
| | - Thomas Hollin
- Department of Molecular, Cell and Systems Biology (MCSB), University of California Riverside, California, United States of America
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology (MCSB), University of California Riverside, California, United States of America
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology (MCSB), University of California Riverside, California, United States of America
| |
Collapse
|
45
|
Heng J, Heng HH. Genome chaos: Creating new genomic information essential for cancer macroevolution. Semin Cancer Biol 2020; 81:160-175. [PMID: 33189848 DOI: 10.1016/j.semcancer.2020.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022]
Abstract
Cancer research has traditionally focused on the characterization of individual molecular mechanisms that can contribute to cancer. Due to the multiple levels of genomic and non-genomic heterogeneity, however, overwhelming molecular mechanisms have been identified, most with low clinical predictability. It is thus necessary to search for new concepts to unify these diverse mechanisms and develop better strategies to understand and treat cancer. In recent years, two-phased cancer evolution (comprised of the genome reorganization-mediated punctuated phase and gene mutation-mediated stepwise phase), initially described by tracing karyotype evolution, was confirmed by the Cancer Genome Project. In particular, genome chaos, the process of rapid and massive genome reorganization, has been commonly detected in various cancers-especially during key phase transitions, including cellular transformation, metastasis, and drug resistance-suggesting the importance of genome-level changes in cancer evolution. In this Perspective, genome chaos is used as a discussion point to illustrate new genome-mediated somatic evolutionary frameworks. By rephrasing cancer as a new system emergent from normal tissue, we present the multiple levels (or scales) of genomic and non-genomic information. Of these levels, evolutionary studies at the chromosomal level are determined to be of ultimate importance, since altered genomes change the karyotype coding and karyotype change is the key event for punctuated cellular macroevolution. Using this lens, we differentiate and analyze developmental processes and cancer evolution, as well as compare the informational relationship between genome chaos and its various subtypes in the context of macroevolution under crisis. Furthermore, the process of deterministic genome chaos is discussed to interpret apparently random events (including stressors, chromosomal variation subtypes, surviving cells with new karyotypes, and emergent stable cellular populations) as nonrandom patterns, which supports the new cancer evolutionary model that unifies genome and gene contributions during different phases of cancer evolution. Finally, the new perspective of using cancer as a model for organismal evolution is briefly addressed, emphasizing the Genome Theory as a new and necessary conceptual framework for future research and its practical implications, not only in cancer but evolutionary biology as a whole.
Collapse
Affiliation(s)
- Julie Heng
- Harvard College, 86 Brattle Street Cambridge, MA, 02138, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
46
|
Němečková A, Koláčková V, Vrána J, Doležel J, Hřibová E. DNA replication and chromosome positioning throughout the interphase in three-dimensional space of plant nuclei. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6262-6272. [PMID: 32805034 DOI: 10.1093/jxb/eraa370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/31/2020] [Indexed: 05/23/2023]
Abstract
Despite much recent progress, our understanding of the principles of plant genome organization and its dynamics in three-dimensional space of interphase nuclei remains surprisingly limited. Notably, it is not clear how these processes could be affected by the size of a plant's nuclear genome. In this study, DNA replication timing and interphase chromosome positioning were analyzed in seven Poaceae species that differ in their genome size. To provide a comprehensive picture, a suite of advanced, complementary methods was used: labeling of newly replicated DNA by ethynyl-2'-deoxyuridine, isolation of nuclei at particular cell cycle phases by flow cytometric sorting, three-dimensional immunofluorescence in situ hybridization, and confocal microscopy. Our results revealed conserved dynamics of DNA replication in all species, and a similar replication timing order for telomeres and centromeres, as well as for euchromatin and heterochromatin regions, irrespective of genome size. Moreover, stable chromosome positioning was observed while transitioning through different stages of interphase. These findings expand upon earlier studies in suggesting that a more complex interplay exists between genome size, organization of repetitive DNA sequences along chromosomes, and higher order chromatin structure and its maintenance in interphase, albeit controlled by currently unknown factors.
Collapse
Affiliation(s)
- Alžběta Němečková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Veronika Koláčková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| |
Collapse
|
47
|
Matveevsky S, Tretiakov A, Kashintsova A, Bakloushinskaya I, Kolomiets O. Meiotic Nuclear Architecture in Distinct Mole Vole Hybrids with Robertsonian Translocations: Chromosome Chains, Stretched Centromeres, and Distorted Recombination. Int J Mol Sci 2020; 21:E7630. [PMID: 33076404 PMCID: PMC7589776 DOI: 10.3390/ijms21207630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022] Open
Abstract
Genome functioning in hybrids faces inconsistency. This mismatch is manifested clearly in meiosis during chromosome synapsis and recombination. Species with chromosomal variability can be a model for exploring genomic battles with high visibility due to the use of advanced immunocytochemical methods. We studied synaptonemal complexes (SC) and prophase I processes in 44-chromosome intraspecific (Ellobius tancrei × E. tancrei) and interspecific (Ellobius talpinus × E. tancrei) hybrid mole voles heterozygous for 10 Robertsonian translocations. The same pachytene failures were found for both types of hybrids. In the intraspecific hybrid, the chains were visible in the pachytene stage, then 10 closed SC trivalents formed in the late pachytene and diplotene stage. In the interspecific hybrid, as a rule, SC trivalents composed the SC chains and rarely could form closed configurations. Metacentrics involved with SC trivalents had stretched centromeres in interspecific hybrids. Linkage between neighboring SC trivalents was maintained by stretched centromeric regions of acrocentrics. This centromeric plasticity in structure and dynamics of SC trivalents was found for the first time. We assume that stretched centromeres were a marker of altered nuclear architecture in heterozygotes due to differences in the ancestral chromosomal territories of the parental species. Restructuring of the intranuclear organization and meiotic disturbances can contribute to the sterility of interspecific hybrids, and lead to the reproductive isolation of studied species.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.T.); (A.K.); (O.K.)
| | - Artemii Tretiakov
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.T.); (A.K.); (O.K.)
| | - Anna Kashintsova
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.T.); (A.K.); (O.K.)
| | - Irina Bakloushinskaya
- Laboratory of Genome Evolution and Mechanisms of Speciation, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Oxana Kolomiets
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (A.T.); (A.K.); (O.K.)
| |
Collapse
|
48
|
Tsai A, Galupa R, Crocker J. Robust and efficient gene regulation through localized nuclear microenvironments. Development 2020; 147:147/19/dev161430. [PMID: 33020073 DOI: 10.1242/dev.161430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Developmental enhancers drive gene expression in specific cell types during animal development. They integrate signals from many different sources mediated through the binding of transcription factors, producing specific responses in gene expression. Transcription factors often bind low-affinity sequences for only short durations. How brief, low-affinity interactions drive efficient transcription and robust gene expression is a central question in developmental biology. Localized high concentrations of transcription factors have been suggested as a possible mechanism by which to use these enhancer sites effectively. Here, we discuss the evidence for such transcriptional microenvironments, mechanisms for their formation and the biological consequences of such sub-nuclear compartmentalization for developmental decisions and evolution.
Collapse
Affiliation(s)
- Albert Tsai
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Rafael Galupa
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
49
|
Kinney N, Hickman M, Anandakrishnan R, Garner HR. Crossing complexity of space-filling curves reveals entanglement of S-phase DNA. PLoS One 2020; 15:e0238322. [PMID: 32866178 PMCID: PMC7458320 DOI: 10.1371/journal.pone.0238322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/13/2020] [Indexed: 01/26/2023] Open
Abstract
Space-filling curves have been used for decades to study the folding principles of globular proteins, compact polymers, and chromatin. Formally, space-filling curves trace a single circuit through a set of points (x,y,z); informally, they correspond to a polymer melt. Although not quite a melt, the folding principles of Human chromatin are likened to the Hilbert curve: a type of space-filling curve. Hilbert-like curves in general make biologically compelling models of chromatin; in particular, they lack knots which facilitates chromatin folding, unfolding, and easy access to genes. Knot complexity has been intensely studied with the aid of Alexander polynomials; however, the approach does not generalize well to cases of more than one chromosome. Crossing complexity is an understudied alternative better suited for quantifying entanglement between chromosomes. Do Hilbert-like configurations limit crossing complexity between chromosomes? How does crossing complexity for Hilbert-like configurations compare to equilibrium configurations? To address these questions, we extend the Mansfield algorithm to enable sampling of Hilbert-like space filling curves on a simple cubic lattice. We use the extended algorithm to generate equilibrium, intermediate, and Hilbert-like configurational ensembles and compute crossing complexity between curves (chromosomes) in each configurational snapshot. Our main results are twofold: (a) Hilbert-like configurations limit entanglement between chromosomes and (b) Hilbert-like configurations do not limit entanglement in a model of S-phase DNA. Our second result is particularly surprising yet easily rationalized with a geometric argument. We explore ergodicity of the extended algorithm and discuss our results in the context of more sophisticated models of chromatin.
Collapse
Affiliation(s)
- Nick Kinney
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, SC, United States of America
| | - Molly Hickman
- Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Ramu Anandakrishnan
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, SC, United States of America
| | - Harold R. Garner
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, United States of America
- Gibbs Cancer Center & Research Institute, Spartanburg, SC, United States of America
| |
Collapse
|
50
|
Interphase Cytogenetic Analysis of G0 Lymphocytes Exposed to α-Particles, C-Ions, and Protons Reveals their Enhanced Effectiveness for Localized Chromosome Shattering-A Critical Risk for Chromothripsis. Cancers (Basel) 2020; 12:cancers12092336. [PMID: 32825012 PMCID: PMC7563219 DOI: 10.3390/cancers12092336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 01/21/2023] Open
Abstract
For precision cancer radiotherapy, high linear energy transfer (LET) particle irradiation offers a substantial advantage over photon-based irradiation. In contrast to the sparse deposition of low-density energy by χ- or γ-rays, particle irradiation causes focal DNA damage through high-density energy deposition along the particle tracks. This is characterized by the formation of multiple damage sites, comprising localized clustered patterns of DNA single- and double-strand breaks as well as base damage. These clustered DNA lesions are key determinants of the enhanced relative biological effectiveness (RBE) of energetic nuclei. However, the search for a fingerprint of particle exposure remains open, while the mechanisms underlying the induction of chromothripsis-like chromosomal rearrangements by high-LET radiation (resembling chromothripsis in tumors) await to be elucidated. In this work, we investigate the transformation of clustered DNA lesions into chromosome fragmentation, as indicated by the induction and post-irradiation repair of chromosomal damage under the dynamics of premature chromosome condensation in G0 human lymphocytes. Specifically, this study provides, for the first time, experimental evidence that particle irradiation induces localized shattering of targeted chromosome domains. Yields of chromosome fragments and shattered domains are compared with those generated by γ-rays; and the RBE values obtained are up to 28.6 for α-particles (92 keV/μm), 10.5 for C-ions (295 keV/μm), and 4.9 for protons (28.5 keV/μm). Furthermore, we test the hypothesis that particle radiation-induced persistent clustered DNA lesions and chromatin decompaction at damage sites evolve into localized chromosome shattering by subsequent chromatin condensation in a single catastrophic event—posing a critical risk for random rejoining, chromothripsis, and carcinogenesis. Consistent with this hypothesis, our results highlight the potential use of shattered chromosome domains as a fingerprint of high-LET exposure, while conforming to the new model we propose for the mechanistic origin of chromothripsis-like rearrangements.
Collapse
|