1
|
Ageta-Ishihara N, Fukazawa Y, Arima-Yoshida F, Okuno H, Ishii Y, Takao K, Konno K, Fujishima K, Ageta H, Hioki H, Tsuchida K, Sato Y, Kengaku M, Watanabe M, Watabe AM, Manabe T, Miyakawa T, Inokuchi K, Bito H, Kinoshita M. Septin 3 regulates memory and L-LTP-dependent extension of endoplasmic reticulum into spines. Cell Rep 2025; 44:115352. [PMID: 40023151 DOI: 10.1016/j.celrep.2025.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
Transient memories are converted to persistent memories at the synapse and circuit/systems levels. The synapse-level consolidation parallels electrophysiological transition from early- to late-phase long-term potentiation of synaptic transmission (E-/L-LTP). While glutamate signaling upregulations coupled with dendritic spine enlargement are common underpinnings of E-LTP and L-LTP, synaptic mechanisms conferring persistence on L-LTP remain unclear. Here, we show that L-LTP induced at the perforant path-hippocampal dentate gyrus (DG) synapses accompanies cytoskeletal remodeling that involves actin and the septin subunit SEPT3. L-LTP in DG neurons causes fast spine enlargement, followed by SEPT3-dependent smooth endoplasmic reticulum (sER) extension into enlarged spines. Spines containing sER show greater Ca2+ responses upon synaptic input and local synaptic activity. Consistently, Sept3 knockout in mice (Sept3-/-) impairs memory consolidation and causes a scarcity of sER-containing spines. These findings indicate a concept that sER extension into active spines serves as a synaptic basis of memory consolidation.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan; Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Fumiko Arima-Yoshida
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuichiro Ishii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mineko Kengaku
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study (KUIAS-iCeMS), Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kaoru Inokuchi
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makoto Kinoshita
- Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
2
|
Maddala R, Gorijavolu P, Lankford LK, Skiba NP, Challa P, Singh RK, Nair KS, Choquet H, Rao PV. Dysregulation of septin cytoskeletal organization in the trabecular meshwork contributes to ocular hypertension. JCI Insight 2024; 9:e179468. [PMID: 39641270 PMCID: PMC11623952 DOI: 10.1172/jci.insight.179468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Ocular hypertension, believed to result partly from increased contractile activity, cell adhesive interactions, and stiffness within the trabecular meshwork (TM), is a major risk factor for glaucoma, a leading cause of blindness. However, the identity of molecular mechanisms governing organization of actomyosin and cell adhesive interactions in the TM remains limited. Based on our previous findings, in which proteomics analyses revealed elevated levels of septins, including septin-9 in human TM cells treated with the ocular hypertensive agent dexamethasone, here, we evaluated the effects of septin-9 overexpression, deficiency, and pharmacological targeting in TM cells. These studies demonstrated a profound impact on actomyosin organization, cell adhesion, contraction, and phagocytosis. Overexpression raised intraocular pressure (IOP) in mice, while inhibition increased cell permeability. In addition, we replicated a significant association between a common variant (rs9038) in SEPT9 with IOP in the Genetic Epidemiology Research on Adult Healthy and Aging (GERA) cohort. Collectively, these data reveal a link between dysregulated septin cytoskeletal organization in the TM and increased IOP, likely due to enhanced cell contraction, adhesive interactions, and fibrotic activity. This suggests that targeting the septin cytoskeleton could offer a novel approach for lowering IOP in patients with glaucoma.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pallavi Gorijavolu
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Levi K. Lankford
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nikolai P. Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Pratap Challa
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rakesh K. Singh
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York, USA
| | - K. Saidas Nair
- Department of Ophthalmology, UCSF, San Francisco, California, USA
| | - Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, California, USA
| | - Ponugoti V. Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Khairat J, Hatta M, Abdullah N, Azman A, Calvin S, Syed Hassan S. Unearthing the role of septins in viral infections. Biosci Rep 2024; 44:BSR20231827. [PMID: 38372298 PMCID: PMC10920062 DOI: 10.1042/bsr20231827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.
Collapse
Affiliation(s)
- Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Nur Adam Hatta
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Adzzie Shazleen Azman
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Shee Yin Ming Calvin
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
4
|
Nakazawa K, Chauvin B, Mangenot S, Bertin A. Reconstituted in vitro systems to reveal the roles and functions of septins. J Cell Sci 2023; 136:jcs259448. [PMID: 37815088 DOI: 10.1242/jcs.259448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Septins are essential cytoskeletal proteins involved in key cellular processes and have also been implicated in diseases from cancers to neurodegenerative pathologies. However, they have not been as thoroughly studied as other cytoskeletal proteins. In vivo, septins interact with other cytoskeletal proteins and with the inner plasma membrane. Hence, bottom-up in vitro cell-free assays are well suited to dissect the roles and behavior of septins in a controlled environment. Specifically, in vitro studies have been invaluable in describing the self-assembly of septins into a large diversity of ultrastructures. Given that septins interact specifically with membrane, the details of these septin-membrane interactions have been analyzed using reconstituted lipid systems. In particular, at a membrane, septins are often localized at curvatures of micrometer scale. In that context, in vitro assays have been performed with substrates of varying curvatures (spheres, cylinders or undulated substrates) to probe the sensitivity of septins to membrane curvature. This Review will first present the structural properties of septins in solution and describe the interplay of septins with cytoskeletal partners. We will then discuss how septins interact with biomimetic membranes and induce their reshaping. Finally, we will highlight the curvature sensitivity of septins and how they alter the mechanical properties of membranes.
Collapse
Affiliation(s)
- Koyomi Nakazawa
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Brieuc Chauvin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| | - Stéphanie Mangenot
- Laboratoire Matière et Systèmes Complexes , Université de Paris Cité, CNRS UMR 7057, 45 Rue des Saint Pères, 75006 Paris, France
| | - Aurélie Bertin
- Physico Chimie Curie , Institut Curie, CNRS UMR 168, Sorbonne Université, 11 Rue Pierre et Paris Curie, 75005 Paris, France
| |
Collapse
|
5
|
Qu Y, Wang W, Xiao MZX, Zheng Y, Liang Q. The interplay between lipid droplets and virus infection. J Med Virol 2023; 95:e28967. [PMID: 37496184 DOI: 10.1002/jmv.28967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
As an intracellular parasite, the virus usurps cellular machinery and modulates cellular metabolism pathways to replicate itself in cells. Lipid droplets (LDs) are universally conserved energy storage organelles that not only play vital roles in maintaining lipid homeostasis but are also involved in viral replication. Increasing evidence has demonstrated that viruses take advantage of cellular lipid metabolism by targeting the biogenesis, hydrolysis, and lipophagy of LD during viral infection. In this review, we summarize the current knowledge about the modulation of cellular LD by different viruses, with a special emphasis on the Hepatitis C virus, Dengue virus, and SARS-CoV-2.
Collapse
Affiliation(s)
- Yafei Qu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai University of Traditional Medicine, Shanghai, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Medicine, Shanghai, China
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Ríos-Valencia DG, Ambrosio J, Tirado-Mendoza R, Carrero JC, Laclette JP. What about the Cytoskeletal and Related Proteins of Tapeworms in the Host's Immune Response? An Integrative Overview. Pathogens 2023; 12:840. [PMID: 37375530 DOI: 10.3390/pathogens12060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advances have increased our understanding of the molecular machinery in the cytoskeleton of mammalian cells, in contrast to the case of tapeworm parasites, where cytoskeleton remains poorly characterized. The pertinence of a better knowledge of the tapeworm cytoskeleton is linked to the medical importance of these parasitic diseases in humans and animal stock. Moreover, its study could offer new possibilities for the development of more effective anti-parasitic drugs, as well as better strategies for their surveillance, prevention, and control. In the present review, we compile the results of recent experiments on the cytoskeleton of these parasites and analyze how these novel findings might trigger the development of new drugs or the redesign of those currently used in addition to supporting their use as biomarkers in cutting-edge diagnostic tests.
Collapse
Affiliation(s)
- Diana G Ríos-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Javier Ambrosio
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Julio César Carrero
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Juan Pedro Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
7
|
K S V Castro D, V D Rosa H, Mendonça DC, Cavini IA, P U Araujo A, Garratt RC. Dissecting the binding interface of the septin polymerization enhancer Borg BD3. J Mol Biol 2023; 435:168132. [PMID: 37121395 DOI: 10.1016/j.jmb.2023.168132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The molecular basis for septin filament assembly has begun to emerge over recent years. These filaments are essential for many septin functions which depend on their association with biological membranes or components of the cytoskeleton. Much less is known about how septins specifically interact with their binding partners. Here we describe the essential role played by the C-terminal domains in both septin polymerization and their association with the BD3 motif of the Borg family of Cdc42 effector proteins. We provide a detailed description, at the molecular level, of a previously reported interaction between BD3 and the NC-interface between SEPT6 and SEPT7. Upon ternary complex formation, the heterodimeric coiled coil formed by the C-terminal domains of the septins becomes stabilized and filament formation is promoted under conditions of ionic strength/protein concentration which are not normally permissible, likely by favouring hexamers over smaller oligomeric states. This demonstrates that binding partners, such as Borg's, have the potential to control filament assembly/disassembly in vivo in a way which can be emulated in vitro by altering the ionic strength. Experimentally validated models indicate that the BD3 peptide lies antiparallel to the coiled coil and is stabilized by a mixture of polar and apolar contacts. At its center, an LGPS motif, common to all human Borg sequences, interacts with charged residues from both helices of the coiled coil (K368 from SEPT7 and the conserved E354 from SEPT6) suggesting a universal mechanism which governs Borg-septin interactions.
Collapse
Affiliation(s)
- Danielle K S V Castro
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil; São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Higor V D Rosa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Deborah C Mendonça
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Ana P U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
| |
Collapse
|
8
|
PIAS1 Regulates Hepatitis C Virus-Induced Lipid Droplet Accumulation by Controlling Septin 9 and Microtubule Filament Assembly. Pathogens 2021; 10:pathogens10101327. [PMID: 34684276 PMCID: PMC8537804 DOI: 10.3390/pathogens10101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection often leads to fibrosis and chronic hepatitis, then cirrhosis and ultimately hepatocellular carcinoma (HCC). The processes of the HVC life cycle involve intimate interactions between viral and host cell proteins and lipid metabolism. However, the molecules and mechanisms involved in this tripartite interaction remain poorly understood. Herein, we show that the infection of HCC-derived Huh7.5 cells with HCV promotes upregulation of the protein inhibitor of activated STAT1 (PIAS1). Reciprocally, PIAS1 regulated the expression of HCV core protein and HCV-induced LD accumulation and impaired HCV replication. Furthermore, PIAS1 controlled HCV-promoted septin 9 filament formation and microtubule polymerization. Subsequently, we found that PIAS1 interacted with septin 9 and controlled its assembly on filaments, which thus affected septin 9-induced lipid droplet accumulation. Taken together, these data reveal that PIAS1 regulates the accumulation of lipid droplets and offer a meaningful insight into how HCV interacts with host proteins.
Collapse
|
9
|
Takagi J, Cho C, Duvalyan A, Yan Y, Halloran M, Hanson-Smith V, Thorner J, Finnigan GC. Reconstructed evolutionary history of the yeast septins Cdc11 and Shs1. G3-GENES GENOMES GENETICS 2021; 11:6025175. [PMID: 33561226 PMCID: PMC7849910 DOI: 10.1093/g3journal/jkaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
Septins are GTP-binding proteins conserved across metazoans. They can polymerize into extended filaments and, hence, are considered a component of the cytoskeleton. The number of individual septins varies across the tree of life—yeast (Saccharomyces cerevisiae) has seven distinct subunits, a nematode (Caenorhabditis elegans) has two, and humans have 13. However, the overall geometric unit (an apolar hetero-octameric protomer and filaments assembled there from) has been conserved. To understand septin evolutionary variation, we focused on a related pair of yeast subunits (Cdc11 and Shs1) that appear to have arisen from gene duplication within the fungal clade. Either Cdc11 or Shs1 occupies the terminal position within a hetero-octamer, yet Cdc11 is essential for septin function and cell viability, whereas Shs1 is not. To discern the molecular basis of this divergence, we utilized ancestral gene reconstruction to predict, synthesize, and experimentally examine the most recent common ancestor (“Anc.11-S”) of Cdc11 and Shs1. Anc.11-S was able to occupy the terminal position within an octamer, just like the modern subunits. Although Anc.11-S supplied many of the known functions of Cdc11, it was unable to replace the distinct function(s) of Shs1. To further evaluate the history of Shs1, additional intermediates along a proposed trajectory from Anc.11-S to yeast Shs1 were generated and tested. We demonstrate that multiple events contributed to the current properties of Shs1: (1) loss of Shs1–Shs1 self-association early after duplication, (2) co-evolution of heterotypic Cdc11–Shs1 interaction between neighboring hetero-octamers, and (3) eventual repurposing and acquisition of novel function(s) for its C-terminal extension domain. Thus, a pair of duplicated proteins, despite constraints imposed by assembly into a highly conserved multi-subunit structure, could evolve new functionality via a complex evolutionary pathway.
Collapse
Affiliation(s)
- Julie Takagi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Christina Cho
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Angela Duvalyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Victor Hanson-Smith
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
10
|
Castro DKSDV, da Silva SMDO, Pereira HD, Macedo JNA, Leonardo DA, Valadares NF, Kumagai PS, Brandão-Neto J, Araújo APU, Garratt RC. A complete compendium of crystal structures for the human SEPT3 subgroup reveals functional plasticity at a specific septin interface. IUCRJ 2020; 7:462-479. [PMID: 32431830 PMCID: PMC7201284 DOI: 10.1107/s2052252520002973] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Human septins 3, 9 and 12 are the only members of a specific subgroup of septins that display several unusual features, including the absence of a C-terminal coiled coil. This particular subgroup (the SEPT3 septins) are present in rod-like octameric protofilaments but are lacking in similar hexameric assemblies, which only contain representatives of the three remaining subgroups. Both hexamers and octamers can self-assemble into mixed filaments by end-to-end association, implying that the SEPT3 septins may facilitate polymerization but not necessarily function. These filaments frequently associate into higher order complexes which associate with biological membranes, triggering a wide range of cellular events. In the present work, a complete compendium of crystal structures for the GTP-binding domains of all of the SEPT3 subgroup members when bound to either GDP or to a GTP analogue is provided. The structures reveal a unique degree of plasticity at one of the filamentous interfaces (dubbed NC). Specifically, structures of the GDP and GTPγS complexes of SEPT9 reveal a squeezing mechanism at the NC interface which would expel a polybasic region from its binding site and render it free to interact with negatively charged membranes. On the other hand, a polyacidic region associated with helix α5', the orientation of which is particular to this subgroup, provides a safe haven for the polybasic region when retracted within the interface. Together, these results suggest a mechanism which couples GTP binding and hydrolysis to membrane association and implies a unique role for the SEPT3 subgroup in this process. These observations can be accounted for by constellations of specific amino-acid residues that are found only in this subgroup and by the absence of the C-terminal coiled coil. Such conclusions can only be reached owing to the completeness of the structural studies presented here.
Collapse
Affiliation(s)
- Danielle Karoline Silva do Vale Castro
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos-SP 13566-590, Brazil
| | - Sabrina Matos de Oliveira da Silva
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos-SP 13566-590, Brazil
| | - Humberto D’Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - Joci Neuby Alves Macedo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
- Federal Institute of Education, Science and Technology of Rondonia, Rodovia BR-174, Km 3, Vilhena-RO 76980-000, Brazil
| | - Diego Antonio Leonardo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - Napoleão Fonseca Valadares
- Departamento de Biologia Celular, Universidade de Brasília, Instituto de Ciências Biológicas, Brasília-DF 70910900, Brazil
| | - Patricia Suemy Kumagai
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - José Brandão-Neto
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ana Paula Ulian Araújo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Joao Dagnone 1100, São Carlos-SP 13563-723, Brazil
| |
Collapse
|
11
|
Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene 2019; 38:5839-5859. [PMID: 31285548 PMCID: PMC6859949 DOI: 10.1038/s41388-019-0844-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
The cytoskeletal interacting protein Septin 9 (SEPT9), a member of the septin gene family, has been proposed to have oncogenic functions. It is a known hot spot of retroviral tagging insertion and a fusion partner of both de novo and therapy-induced mixed lineage leukemia (MLL). Of all septins, SEPT9 holds the strongest link to cancer, especially breast cancer. Murine models of breast cancer frequently exhibit Sept9 amplification in the form of double minute chromosomes, and about 20% of human breast cancer display genomic amplification and protein over expression at the SEPT9 locus. Yet, a clear mechanism by which SEPT9 elicits tumor-promoting functions is lacking. To obtain unbiased insights on molecular signatures of SEPT9 upregulation in breast tumors, we overexpressed several of its isoforms in breast cancer cell lines. Global transcriptomic profiling supports a role of SEPT9 in invasion. Functional studies reveal that SEPT9 upregulation is sufficient to increase degradation of the extracellular matrix, while SEPT9 downregulation inhibits this process. The degradation pattern is peripheral and associated with focal adhesions (FA), where it is coupled with increased expression of matrix metalloproteinases. SEPT9 overexpression induces MMP upregulation in human tumors and in culture models and promotes MMP3 secretion to the media at FAs. Downregulation of SEPT9 or chemical inhibition of septin filament assembly impairs recruitment of MMP3 to FAs. Our results indicate that SEPT9 promotes upregulation and both trafficking and secretion of MMPs near FAs, thus enhancing migration and invasion of breast cancer cells.
Collapse
|
12
|
Erwig MS, Patzig J, Steyer AM, Dibaj P, Heilmann M, Heilmann I, Jung RB, Kusch K, Möbius W, Jahn O, Nave KA, Werner HB. Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. eLife 2019; 8:43888. [PMID: 30672734 PMCID: PMC6344079 DOI: 10.7554/elife.43888] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022] Open
Abstract
Myelin serves as an axonal insulator that facilitates rapid nerve conduction along axons. By transmission electron microscopy, a healthy myelin sheath comprises compacted membrane layers spiraling around the cross-sectioned axon. Previously we identified the assembly of septin filaments in the innermost non-compacted myelin layer as one of the latest steps of myelin maturation in the central nervous system (CNS) (Patzig et al., 2016). Here we show that loss of the cytoskeletal adaptor protein anillin (ANLN) from oligodendrocytes disrupts myelin septin assembly, thereby causing the emergence of pathological myelin outfoldings. Since myelin outfoldings are a poorly understood hallmark of myelin disease and brain aging we assessed axon/myelin-units in Anln-mutant mice by focused ion beam-scanning electron microscopy (FIB-SEM); myelin outfoldings were three-dimensionally reconstructed as large sheets of multiple compact membrane layers. We suggest that anillin-dependent assembly of septin filaments scaffolds mature myelin sheaths, facilitating rapid nerve conduction in the healthy CNS.
Collapse
Affiliation(s)
- Michelle S Erwig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Julia Patzig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Payam Dibaj
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Mareike Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
13
|
Lam M, Calvo F. Regulation of mechanotransduction: Emerging roles for septins. Cytoskeleton (Hoboken) 2018; 76:115-122. [PMID: 30091182 PMCID: PMC6519387 DOI: 10.1002/cm.21485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/10/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022]
Abstract
Cells exist in dynamic three‐dimensional environments where they experience variable mechanical forces due to their interaction with the extracellular matrix, neighbouring cells and physical stresses. The ability to constantly and rapidly alter cellular behaviour in response to the mechanical environment is therefore crucial for cell viability, tissue development and homeostasis. Mechanotransduction is the process whereby cells translate mechanical inputs into biochemical signals. These signals in turn adjust cell morphology and cellular functions as diverse as proliferation, differentiation, migration and apoptosis. Here, we provide an overview of the current understanding of mechanotransduction and how septins may participate in it, drawing on their architecture and localization, their ability to directly bind and modify actomyosin networks and membranes, and their associations with the nuclear envelope.
Collapse
Affiliation(s)
- Maxine Lam
- Tumour Microenvironment Team, Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Fernando Calvo
- Tumour Microenvironment Team, Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom.,Tumour Microenvironment Team, Department of Molecular and Cellular Signalling, Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| |
Collapse
|
14
|
Orellana-Muñoz S, Dueñas-Santero E, Arnáiz-Pita Y, Del Rey F, Correa-Bordes J, Vázquez de Aldana CR. The anillin-related Int1 protein and the Sep7 septin collaborate to maintain cellular ploidy in Candida albicans. Sci Rep 2018; 8:2257. [PMID: 29396461 PMCID: PMC5797091 DOI: 10.1038/s41598-018-20249-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Variation in cell ploidy is a common feature of Candida albicans clinical isolates that are resistant to the antifungal drug fluconazole. Here, we report that the anillin-related protein Int1 interacts with septins for coupling cytokinesis with nuclear segregation. Loss of Int1 results in a rapid disassembly of duplicated septin rings from the bud neck at the onset of actomyosin ring contraction. Strikingly, this has no major impact on cytokinesis and septum formation. However, Int1 genetically interacts with the Sep7 septin, maintaining the diffusion barrier at the bud neck and guarantying a faithful nuclear segregation. Indeed, int1ΔΔ sep7ΔΔ mutant cells, in contrast to int1ΔΔ cdc10ΔΔ, undergo a premature activation of mitotic exit prior to the alignment of the mitotic spindle with the division axis, producing large multinucleated cells. Some of these multinucleated cells arise from trimeras similar to those observed upon fluconazole exposure. Finally, the defects in nuclear segregation could be in part due to the inability to maintain the Lte1 mitotic exit activator at the cortex of the daughter cell. These results suggest that Int1 and Sep7 play a role in maintaining genome stability by acting as a diffusion barrier for Lte1.
Collapse
Affiliation(s)
- Sara Orellana-Muñoz
- Instituto de Biología Funcional y Genómica, IBFG-CSIC. Universidad de Salamanca, Salamanca, Spain
| | | | - Yolanda Arnáiz-Pita
- Instituto de Biología Funcional y Genómica, IBFG-CSIC. Universidad de Salamanca, Salamanca, Spain
| | - Francisco Del Rey
- Instituto de Biología Funcional y Genómica, IBFG-CSIC. Universidad de Salamanca, Salamanca, Spain
| | - Jaime Correa-Bordes
- Departamento de Ciencias Biomédicas, Universidad de Extremadura, Badajoz, Spain
| | | |
Collapse
|
15
|
Miyamoto T, Minase G, Shin T, Ueda H, Okada H, Sengoku K. Human male infertility and its genetic causes. Reprod Med Biol 2017; 16:81-88. [PMID: 29259455 PMCID: PMC5661822 DOI: 10.1002/rmb2.12017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 01/11/2023] Open
Abstract
Background Infertility affects about 15% of couples who wish to have children and half of these cases are associated with male factors. Genetic causes of azoospermia include chromosomal abnormalities, Y chromosome microdeletions, and specific mutations/deletions of several Y chromosome genes. Many researchers have analyzed genes in the AZF region on the Y chromosome; however, in 2003 the SYCP3 gene on chromosome 12 (12q23) was identified as causing azoospermia by meiotic arrest through a point mutation. Methods We mainly describe the SYCP3 and PLK4 genes that we have studied in our laboratory, and add comments on other genes associated with human male infertility. Results Up to now, The 17 genes causing male infertility by their mutation have been reported in human. Conclusions Infertility caused by nonobstructive azoospermia (NOA) is very important in the field of assisted reproductive technology. Even with the aid of chromosomal analysis, ultrasonography of the testis, and detailed endocrinology, only MD‐TESE can confirm the presence of immature spermatozoa in the testes. We strongly hope that these studies help clinics avoid ineffective MD‐TESE procedures.
Collapse
Affiliation(s)
- Toshinobu Miyamoto
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| | - Gaku Minase
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| | - Takeshi Shin
- Department of Urology Dokkyo Medical University Koshigaya Hospital Koshigaya City Japan
| | - Hiroto Ueda
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| | - Hiroshi Okada
- Department of Urology Dokkyo Medical University Koshigaya Hospital Koshigaya City Japan
| | - Kazuo Sengoku
- Department of Obstetrics and Gynecology Asahikawa Medical University Asahikawa Japan
| |
Collapse
|
16
|
Akil A, Peng J, Omrane M, Gondeau C, Desterke C, Marin M, Tronchère H, Taveneau C, Sar S, Briolotti P, Benjelloun S, Benjouad A, Maurel P, Thiers V, Bressanelli S, Samuel D, Bréchot C, Gassama-Diagne A. Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV. Nat Commun 2016; 7:12203. [PMID: 27417143 PMCID: PMC4947189 DOI: 10.1038/ncomms12203] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 06/07/2016] [Indexed: 01/09/2023] Open
Abstract
The accumulation of lipid droplets (LD) is frequently observed in hepatitis C virus (HCV) infection and represents an important risk factor for the development of liver steatosis and cirrhosis. The mechanisms of LD biogenesis and growth remain open questions. Here, transcriptome analysis reveals a significant upregulation of septin 9 in HCV-induced cirrhosis compared with the normal liver. HCV infection increases septin 9 expression and induces its assembly into filaments. Septin 9 regulates LD growth and perinuclear accumulation in a manner dependent on dynamic microtubules. The effects of septin 9 on LDs are also dependent on binding to PtdIns5P, which, in turn, controls the formation of septin 9 filaments and its interaction with microtubules. This previously undescribed cooperation between PtdIns5P and septin 9 regulates oleate-induced accumulation of LDs. Overall, our data offer a novel route for LD growth through the involvement of a septin 9/PtdIns5P signalling pathway.
Collapse
Affiliation(s)
- Abdellah Akil
- INSERM, Unité 1193, F-94800 Villejuif, France.,University of Paris-Sud, UMR-S 1193, F-94800 Villejuif, France.,Laboratoire des Hépatites Virales, Département de Virologie. Institut Pasteur du Maroc, BP 20360 Casablanca, Maroc.,Faculté des Sciences, Laboratoire de Biochimie-Immunologie, Univ. Mohammed V, Rabat, Maroc
| | - Juan Peng
- INSERM, Unité 1193, F-94800 Villejuif, France.,University of Paris-Sud, UMR-S 1193, F-94800 Villejuif, France.,DHU Hepatinov, Villejuif F-94800, France
| | - Mohyeddine Omrane
- INSERM, Unité 1193, F-94800 Villejuif, France.,University of Paris-Sud, UMR-S 1193, F-94800 Villejuif, France.,DHU Hepatinov, Villejuif F-94800, France
| | - Claire Gondeau
- INSERM U1183, Institute of Regenerative Medicine and Biotherapy, University of Montpellier, 34295 Montpellier, France.,Department of Hepato-Gastroenterology A, Hospital Saint Eloi, CHRU, 34295 Montpellier, France
| | | | - Mickaël Marin
- INSERM, Unité 1193, F-94800 Villejuif, France.,University of Paris-Sud, UMR-S 1193, F-94800 Villejuif, France
| | - Hélène Tronchère
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France
| | - Cyntia Taveneau
- Virologie Moléculaire et Structurale CNRS UPR 3296 - INRA UsC 1358, 91198 Gif-sur-Yvette, France
| | - Sokhavuth Sar
- INSERM, Unité 1193, F-94800 Villejuif, France.,University of Paris-Sud, UMR-S 1193, F-94800 Villejuif, France
| | - Philippe Briolotti
- INSERM U1183, Institute of Regenerative Medicine and Biotherapy, University of Montpellier, 34295 Montpellier, France.,Department of Hepato-Gastroenterology A, Hospital Saint Eloi, CHRU, 34295 Montpellier, France
| | - Soumaya Benjelloun
- Laboratoire des Hépatites Virales, Département de Virologie. Institut Pasteur du Maroc, BP 20360 Casablanca, Maroc
| | - Abdelaziz Benjouad
- Faculté des Sciences, Laboratoire de Biochimie-Immunologie, Univ. Mohammed V, Rabat, Maroc.,Univ. Internationale de Rabat, Sala Al Jadida, Maroc
| | - Patrick Maurel
- INSERM U1183, Institute of Regenerative Medicine and Biotherapy, University of Montpellier, 34295 Montpellier, France.,Department of Hepato-Gastroenterology A, Hospital Saint Eloi, CHRU, 34295 Montpellier, France
| | | | - Stéphane Bressanelli
- Virologie Moléculaire et Structurale CNRS UPR 3296 - INRA UsC 1358, 91198 Gif-sur-Yvette, France
| | - Didier Samuel
- INSERM, Unité 1193, F-94800 Villejuif, France.,University of Paris-Sud, UMR-S 1193, F-94800 Villejuif, France.,DHU Hepatinov, Villejuif F-94800, France.,AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, Villejuif F-94800, France
| | - Christian Bréchot
- INSERM, Unité 1193, F-94800 Villejuif, France.,University of Paris-Sud, UMR-S 1193, F-94800 Villejuif, France.,Institut Pasteur, 75724 Paris, France
| | - Ama Gassama-Diagne
- INSERM, Unité 1193, F-94800 Villejuif, France.,University of Paris-Sud, UMR-S 1193, F-94800 Villejuif, France.,DHU Hepatinov, Villejuif F-94800, France
| |
Collapse
|
17
|
Au Yong JY, Wang YM, Wang Y. The Nim1 kinase Gin4 has distinct domains crucial for septin assembly, phospholipid binding and mitotic exit. J Cell Sci 2016; 129:2744-56. [PMID: 27231094 PMCID: PMC4958294 DOI: 10.1242/jcs.183160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/20/2016] [Indexed: 12/29/2022] Open
Abstract
In fungi, the Nim1 protein kinases, such as Gin4, are important regulators of multiple cell cycle events, including the G2–M transition, septin assembly, polarized growth and cytokinesis. Compelling evidence has linked some key functions of Gin4 with the large C-terminal non-kinase region which, however, is poorly defined. By systematically dissecting and functionally characterizing the non-kinase region of Gin4 in the human fungal pathogen Candida albicans, we report the identification of three new domains with distinct functions: a lipid-binding domain (LBD), a septin-binding domain (SBD) and a nucleolus-associating domain (NAD). The LBD and SBD are indispensable for the function of Gin4, and they alone could sufficiently restore septin ring assembly in GIN4-null mutants. The NAD localizes to the periphery of the nucleolus and physically associates with Cdc14, the ultimate effector of the mitotic exit network. Gin4 mutants that lack the NAD are defective in spindle orientation and exit mitosis prematurely. Furthermore, we show that Gin4 is a substrate of Cdc14. These findings provide novel insights into the roles and mechanisms of Nim1 kinases in the regulation of some crucial cell cycle events. Summary: Systematic dissection of the Gin4 kinase in the human pathogenic fungus Candida albicans uncovers three new functional domains that interact with distinct cellular components.
Collapse
Affiliation(s)
- Jie Ying Au Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673
| | - Yan-Ming Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
18
|
Abstract
Primary cilia are cellular antennae that receive and transduce extracellular cues. These microtubule-rich structures are comprised of at least three distinct ciliary compartments: basal bodies, transition zone, and axoneme. Septins have been implicated in cilia function at the transition zone, but accumulating evidence suggests that they localize predominantly within the axoneme. Here, we describe three fixation conditions that preserve the substructure of primary cilia and demonstrate known ciliary proteins that localize to these distinct ciliary substructures. Finally, we show immunostaining and live microscopy methods to detect septins within the axoneme.
Collapse
Affiliation(s)
- M S Kim
- University of Toronto, Toronto, ON, Canada
| | - C D Froese
- University of Toronto, Toronto, ON, Canada
| | - H Xie
- University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
19
|
Septin6 and Septin7 GTP binding proteins regulate AP-3- and ESCRT-dependent multivesicular body biogenesis. PLoS One 2014; 9:e109372. [PMID: 25380047 PMCID: PMC4224394 DOI: 10.1371/journal.pone.0109372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies.
Collapse
|
20
|
Igarashi M. Proteomic identification of the molecular basis of mammalian CNS growth cones. Neurosci Res 2014; 88:1-15. [PMID: 25066522 DOI: 10.1016/j.neures.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Abstract
The growth cone, which is a unique structure with high motility that forms at the tips of extending axons and dendrites, is crucial to neuronal network formation. Axonal growth of the mammalian CNS is most likely achieved by the complicated coordination of cytoskeletal rearrangement and vesicular trafficking via many proteins. Before recent advances, no methods to identify numerous proteins existed; however, proteomics revolutionarily resolved such problems. In this review, I summarize the profiles of the mammalian growth cone proteins revealed by proteomics as the molecular basis of the growth cone functions, with molecular mapping. These results should be used as a basis for understanding the mechanisms of the complex mammalian CNS developmental process.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Trans-disciplinary Program, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
21
|
Reversible paralysis of Schistosoma mansoni by forchlorfenuron, a phenylurea cytokinin that affects septins. Int J Parasitol 2014; 44:523-31. [PMID: 24768753 DOI: 10.1016/j.ijpara.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 02/06/2023]
Abstract
Septins are guanosine-5'-triphosphate-binding proteins involved in wide-ranging cellular processes including cytokinesis, vesicle trafficking, membrane remodelling and scaffolds, and with diverse binding partners. Precise roles for these structural proteins in most processes often remain elusive. Identification of small molecules that inhibit septins could aid in elucidating the functions of septins and has become increasingly important, including the description of roles for septins in pathogenic phenomena such as tumorigenesis. The plant growth regulator forchlorfenuron, a synthetic cytokinin known to inhibit septin dynamics, likely represents an informative probe for septin function. This report deals with septins of the human blood fluke Schistosoma mansoni and their interactions with forchlorfenuron. Recombinant forms of three schistosome septins, SmSEPT5, SmSEPT7.2 and SmSEPT10, interacted with forchlorfenuron, leading to rapid polymerization of filaments. Culturing developmental stages (miracidia, cercariae, adult males) of schistosomes in FCF at 50-500 μM rapidly led to paralysis, which was reversible upon removal of the cytokinin. The reversible paralysis was concentration-, time- and developmental stage-dependent. Effects of forchlorfenuron on the cultured schistosomes were monitored by video and/or by an xCELLigence-based assay of motility, which quantified the effect of forchlorfenuron on fluke motility. The findings implicated a mechanism targeting a molecular system controlling movement in these developmental stages: a direct effect on muscle contraction due to septin stabilization might be responsible for the reversible paralysis, since enrichment of septins has been described within the muscles of schistosomes. This study revealed the reversible effect of forchlorfenuron on both schistosome motility and its striking impact in hastening polymerization of septins. These novel findings suggested routes to elucidate roles for septins in this pathogen, and exploitation of derivatives of forchlorfenuron for anti-schistosomal drugs.
Collapse
|
22
|
Patzig J, Dworschak MS, Martens AK, Werner HB. Septins in the glial cells of the nervous system. Biol Chem 2014; 395:143-9. [DOI: 10.1515/hsz-2013-0240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023]
Abstract
Abstract
The capacity of cytoskeletal septins to mediate diverse cellular processes is related to their ability to assemble as distinct heterooligomers and higher order structures. However, in many cell types the functional relevance of septins is not well understood. This minireview provides a brief overview of our current knowledge about septins in the non-neuronal cells of the vertebrate nervous system, collectively termed ‘glial cells’, i.e., astrocytes, microglia, oligodendrocytes, and Schwann cells. The dysregulation of septins observed in various models of myelin pathology is discussed with respect to implications for hereditary neuralgic amyotrophy (HNA) caused by mutations of the human SEPT9-gene.
Collapse
|
23
|
Abstract
Septins assemble into filaments and higher-order structures that act as scaffolds for diverse cell functions including cytokinesis, cell polarity, and membrane remodeling. Despite their conserved role in cell organization, little is known about how septin filaments elongate and are knitted together into higher-order assemblies. Using fluorescence correlation spectroscopy, we determined that cytosolic septins are in small complexes, suggesting that septin filaments are not formed in the cytosol. When the plasma membrane of live cells is monitored by total internal reflection fluorescence microscopy, we see that septin complexes of variable size diffuse in two dimensions. Diffusing septin complexes collide and make end-on associations to form elongated filaments and higher-order structures, an assembly process we call annealing. Septin assembly by annealing can be reconstituted in vitro on supported lipid bilayers with purified septin complexes. Using the reconstitution assay, we show that septin filaments are highly flexible, grow only from free filament ends, and do not exchange subunits in the middle of filaments. This work shows that annealing is a previously unidentified intrinsic property of septins in the presence of membranes and demonstrates that cells exploit this mechanism to build large septin assemblies.
Collapse
|
24
|
Costessi L, Porro F, Iaconcig A, Nedeljkovic M, Muro AF. Characterization of the distal polyadenylation site of the ß-adducin (Add2) pre-mRNA. PLoS One 2013; 8:e58879. [PMID: 23554949 PMCID: PMC3598803 DOI: 10.1371/journal.pone.0058879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/07/2013] [Indexed: 12/05/2022] Open
Abstract
Most genes have multiple polyadenylation sites (PAS), which are often selected in a tissue-specific manner, altering protein products and affecting mRNA stability, subcellular localization and/or translability. Here we studied the polyadenylation mechanisms associated to the beta-adducin gene (Add2). We have previously shown that the Add2 gene has a very tight regulation of alternative polyadenylation, using proximal PAS in erythroid tissues, and a distal one in brain. Using chimeric minigenes and cell transfections we identified the core elements responsible for polyadenylation at the distal PAS. Deletion of either the hexanucleotide motif (Hm) or the downstream element (DSE) resulted in reduction of mature mRNA levels and activation of cryptic PAS, suggesting an important role for the DSE in polyadenylation of the distal Add2 PAS. Point mutation of the UG repeats present in the DSE, located immediately after the cleavage site, resulted in a reduction of processed mRNA and in the activation of the same cryptic site. RNA-EMSA showed that this region is active in forming RNA-protein complexes. Competition experiments showed that RNA lacking the DSE was not able to compete the RNA-protein complexes, supporting the hypothesis of an essential important role for the DSE. Next, using a RNA-pull down approach we identified some of the proteins bound to the DSE. Among these proteins we found PTB, TDP-43, FBP1 and FBP2, nucleolin, RNA helicase A and vigilin. All these proteins have a role in RNA metabolism, but only PTB has a reported function in polyadenylation. Additional experiments are needed to determine the precise functional role of these proteins in Add2 polyadenylation.
Collapse
Affiliation(s)
- Luisa Costessi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Fabiola Porro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Iaconcig
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mirjana Nedeljkovic
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Andrés Fernando Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- * E-mail:
| |
Collapse
|
25
|
Matrix stiffness regulates endothelial cell proliferation through septin 9. PLoS One 2012; 7:e46889. [PMID: 23118862 PMCID: PMC3485289 DOI: 10.1371/journal.pone.0046889] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 09/06/2012] [Indexed: 01/06/2023] Open
Abstract
Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α(v)β(3) caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.
Collapse
|
26
|
Chin E, Kirker K, Zuck M, James G, Hybiske K. Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors. PLoS One 2012; 7:e46949. [PMID: 23071671 PMCID: PMC3469565 DOI: 10.1371/journal.pone.0046949] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
The ability to exit host cells at the end of their developmental growth is a critical step for the intracellular bacterium Chlamydia. One exit strategy, extrusion, is mediated by host signaling pathways involved with actin polymerization. Here, we show that actin is recruited to the chlamydial inclusion as a late event, occurring after 20 hours post-infection (hpi) and only within a subpopulation of cells. This event increases significantly in prevalence and extent from 20 to 68 hpi, and actin coats strongly correlated with extrusions. In contrast to what has been reported for other intracellular pathogens, actin nucleation on Chlamydia inclusions did not 'flash', but rather exhibited moderate depolymerization dynamics. By using small molecule agents to selectively disrupt host signaling pathways involved with actin nucleation, modulate actin polymerization dynamics and also to disable the synthesis and secretion of chlamydial proteins, we further show that host and bacterial proteins are required for actin coat formation. Transient disruption of either host or bacterial signaling pathways resulted in rapid loss of coats in all infected cells and a reduction in extrusion formation. Inhibition of Chlamydia type III secretion also resulted in rapid loss of actin association on inclusions, thus implicating chlamydial effector proteins(s) as being central factors for engaging with host actin nucleating factors, such as formins. In conclusion, our data illuminate the host and bacterial driven process by which a dense actin matrix is dynamically nucleated and maintained on the Chlamydia inclusion. This late stage event is not ubiquitous for all infected cells in a population, and escalates in prevalence and extent throughout the developmental cycle of Chlamydia, culminating with their exit from the host cell by extrusion. The initiation of actin recruitment by Chlamydia appears to be novel, and may serve as an upstream determinant of the extrusion mechanism.
Collapse
Affiliation(s)
- Elizabeth Chin
- Division of Infectious Diseases, School of Public Health, University of California at Berkeley, California, United States of America
| | - Kelly Kirker
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Meghan Zuck
- Division of Infectious Diseases, School of Public Health, University of California at Berkeley, California, United States of America
| | - Garth James
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Kevin Hybiske
- Division of Infectious Diseases, School of Public Health, University of California at Berkeley, California, United States of America
| |
Collapse
|
27
|
Kim MS, Froese CD, Xie H, Trimble WS. Uncovering principles that control septin-septin interactions. J Biol Chem 2012; 287:30406-13. [PMID: 22815479 DOI: 10.1074/jbc.m112.387464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Septins comprise a conserved family of GTPases important in cytokinesis. These proteins polymerize into filaments from rod-shaped heteromeric septin complexes. Septins interact with one another at two interfaces (NC and G) that alternate within the complex. Here, we show that small mutations at the N terminus greatly enhance the formation of SEPT2 homopolymers. Taking advantage of this mutation to examine polymer formation using SEPT2 alone, we show that both NC and G interfaces are required for filament formation. However, co-expression of wild type SEPT2 with SEPT2 containing mutations at either NC or G interfaces revealed that only the NC mutant suppressed filament formation. NC mutants are able to interact with one another at putative G interfaces, whereas G mutants fail to interact at NC interfaces. In addition, all promiscuous septin pairwise interactions occur at the G interface. These findings suggest that G interface interactions must occur before NC interactions during polymer formation.
Collapse
Affiliation(s)
- Moshe S Kim
- Program in Cell Biology, Department of Biochemistry, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
28
|
Application of in utero electroporation and live imaging in the analyses of neuronal migration during mouse brain development. Med Mol Morphol 2012; 45:1-6. [PMID: 22431177 DOI: 10.1007/s00795-011-0557-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/08/2011] [Indexed: 10/28/2022]
Abstract
Correct neuronal migration is crucial for brain architecture and function. During cerebral cortex development (corticogenesis), excitatory neurons generated in the proliferative zone of the dorsal telencephalon (mainly ventricular zone) move through the intermediate zone and migrate past the neurons previously located in the cortical plate and come to rest just beneath the marginal zone. The in utero electroporation technique is a powerful method for rapid gain- and loss-of-function studies of neuronal development, especially neuronal migration. This method enabled us to introduce genes of interest into ventricular zone progenitor cells of mouse embryos and to observe resulting phenotypes such as proliferation, migration, and cell morphology at later stages. In this Award Lecture Review, we focus on the application of the in utero electroporation method to functional analyses of cytoskeleton-related protein septin. We then refer to, as an advanced technique, the in utero electroporation-based real-time imaging method for analyses of cell signaling regulating neuronal migration. The in utero electroporation method and its application would contribute to medical molecular morphology through identification and characterization of the signaling pathways disorganized in various neurological and psychiatric disorders.
Collapse
|
29
|
Kuo YC, Lin YH, Chen HI, Wang YY, Chiou YW, Lin HH, Pan HA, Wu CM, Su SM, Hsu CC, Kuo PL. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat 2012; 33:710-9. [PMID: 22275165 DOI: 10.1002/humu.22028] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 01/03/2012] [Indexed: 11/11/2022]
Abstract
Septins are members of the GTPase superfamily, which has been implicated in diverse cellular functions including cytokinesis and morphogenesis. Septin 12 (SEPT12) is a testis-specific gene critical for the terminal differentiation of male germ cells. We report the identification of two missense SEPT12 mutations, c.266C>T/p.Thr89Met and c.589G>A/p.Asp197Asn, in infertile men. Both mutations are located inside the GTPase domain and may alter the protein structure as suggested by in silico modeling. The p.Thr89Met mutation significantly reduced guanosine-5'-triphosphate (GTP) hydrolytic activity, and the p.Asp197Asn mutation (SEPT12(D197N)) interfered with GTP binding. Both mutant SEPT12 proteins restricted the filament formation of the wild-type SEPT12 in a dose-dependent manner. The patient carrying SEPT12(D197N) presented with oligoasthenozoospermia, whereas the SEPT12(T89M) patient had asthenoteratozoospermia. The characteristic sperm pathology of the SEPT12(D197N) patient included defective annulus with bent tail and loss of SEPT12 from the annulus of abnormal sperm. Our finding suggests loss-of-function mutations in SEPT12 disrupted sperm structural integrity by perturbing septin filament formation.
Collapse
Affiliation(s)
- Yung-Che Kuo
- Graduate Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 2012; 31:16369-86. [PMID: 22072688 DOI: 10.1523/jneurosci.4016-11.2011] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia-axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relative abundance was previously misestimated due to technical limitations regarding protein separation and visualization. Focusing on tetraspan-transmembrane proteins, we validated novel myelin constituents using immuno-based methods. Bioinformatic comparison with mRNA-abundance profiles allowed the categorization in functional groups coregulated during myelin biogenesis and maturation. By differential myelin proteome analysis, we found that the abundance of septin 9, the protein affected in hereditary neuralgic amyotrophy, is strongly increased in a novel mouse model of demyelinating neuropathy caused by the loss of prion protein. Finally, the systematic comparison of our compendium with the positions of human disease loci allowed us to identify several candidate genes for hereditary demyelinating neuropathies. These results illustrate how the integration of unbiased proteome, transcriptome, and genome data can contribute to a molecular dissection of the biogenesis, cell biology, metabolism, and pathology of myelin.
Collapse
|
31
|
Short B. Shs1 rounds out the septin repertoire. J Biophys Biochem Cytol 2011. [PMCID: PMC3241731 DOI: 10.1083/jcb.1956if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Study reveals how changes in subunit composition and phosphorylation alter the organization of septin filaments.
Collapse
|
32
|
Garcia G, Bertin A, Li Z, Song Y, McMurray MA, Thorner J, Nogales E. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. ACTA ACUST UNITED AC 2011; 195:993-1004. [PMID: 22144691 PMCID: PMC3241732 DOI: 10.1083/jcb.201107123] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substitution of specific terminal subunits within septin complexes and septin phosphorylation drive the formation of distinct higher-order septin assemblies in budding yeast. Septins are conserved guanosine triphosphate–binding cytoskeletal proteins involved in membrane remodeling. In budding yeast, five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1), which are essential for cytokinesis, transition during bud growth from a patch to a collar, which splits into two rings in cytokinesis and is disassembled before the next cell cycle. Cdc3, Cdc10, Cdc11, and Cdc12 form an apolar octameric rod with Cdc11 at each tip, which polymerizes into straight paired filaments. We show that Shs1 substitutes for Cdc11, resulting in octameric rods that do not polymerize into filaments but associate laterally, forming curved bundles that close into rings. In vivo, half of shs1Δ mutant cells exhibit incomplete collars and disrupted neck filaments. Importantly, different phosphomimetic mutations in Shs1 can either prevent ring formation or promote formation of a gauzelike meshwork. These results show that a single alternative terminal subunit is sufficient to confer a distinctive higher-order septin ultrastructure that can be further regulated by phosphorylation.
Collapse
Affiliation(s)
- Galo Garcia
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Serrão VHB, Alessandro F, Caldas VEA, Marçal RL, Pereira HD, Thiemann OH, Garratt RC. Promiscuous interactions of human septins: the GTP binding domain of SEPT7 forms filaments within the crystal. FEBS Lett 2011; 585:3868-73. [PMID: 22064074 DOI: 10.1016/j.febslet.2011.10.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/21/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
We describe the purification, crystallization and structure for the GTP-binding domain of human septin 7 (SEPT7G). We show that it forms filaments within the crystal lattice which employ both the G and NC interfaces, similar to those seen in the hetero-filament of SEPT2/6/7. The NC interface is considered promiscuous as it is absent from the hetero-filament. Such promiscuity could provide the potential for permuting monomers along a filament in order to generate diversity in hetero-polymers. On the other hand, our results suggest that the G and NC interfaces may be necessary but insufficient for determining correct hetero-filament assembly.
Collapse
Affiliation(s)
- Vitor Hugo Balasco Serrão
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Lewellyn L, Carvalho A, Desai A, Maddox AS, Oegema K. The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly. ACTA ACUST UNITED AC 2011; 193:155-69. [PMID: 21464231 PMCID: PMC3082186 DOI: 10.1083/jcb.201008138] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In contrast to their sequential roles in midzone assembly, the CPC and centralspindlin act through independent mechanisms to regulate contractile ring assembly. The chromosomal passenger complex (CPC) and centralspindlin are conserved cytokinesis regulators that localize to the spindle midzone, which forms between the separating chromosomes. Previous work placed the CPC and centralspindlin in a linear pathway that governs midzone formation. Using Caenorhabditis elegans embryos, we test whether there is a similar linear relationship between centralspindlin and the CPC in contractile ring constriction during cytokinesis. We show that simultaneous inhibition of the CPC kinase Aurora BAIR-2 and the centralspindlin component MKLP1ZEN-4 causes an additive constriction defect. Consistent with distinct roles for the proteins, inhibition of filamentous septin guanosine triphosphatases alleviates constriction defects in Aurora BAIR-2–inhibited embryos, whereas inhibition of Rac does so in MKLP1ZEN-4-inhibited embryos. Centralspindlin and the CPC are not required to enrich ring proteins at the cell equator but instead regulate formation of a compact mature ring. Therefore, in contrast to the linear midzone assembly pathway, centralspindlin and the CPC make independent contributions to control transformation of the sheet-like equatorial band into a ribbon-like contractile ring at the furrow tip.
Collapse
Affiliation(s)
- Lindsay Lewellyn
- Department of Cellular and Molecular Medicine, Biomedical Sciences Graduate Program, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
35
|
Mostowy S, Sancho-Shimizu V, Hamon MA, Simeone R, Brosch R, Johansen T, Cossart P. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 2011; 286:26987-95. [PMID: 21646350 DOI: 10.1074/jbc.m111.223610] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autophagy is an important mechanism of innate immune defense. We have recently shown that autophagy components are recruited with septins, a new and increasingly characterized cytoskeleton component, to intracytosolic Shigella that have started to polymerize actin. On the other hand, intracytosolic Listeria avoids autophagy recognition by expressing ActA, a bacterial effector required for actin polymerization. Here, we exploit Shigella and Listeria as intracytosolic tools to characterize different pathways of selective autophagy. We show that the ubiquitin-binding adaptor proteins p62 and NDP52 target Shigella to an autophagy pathway dependent upon septin and actin. In contrast, p62 or NDP52 targets the Listeria ActA mutant to an autophagy pathway independent of septin or actin. TNF-α, a host cytokine produced upon bacterial infection, stimulates p62-mediated autophagic activity and restricts the survival of Shigella and the Listeria ActA mutant. These data provide a new molecular framework to understand the emerging complexity of autophagy and its ability to achieve specific clearance of intracytosolic bacteria.
Collapse
Affiliation(s)
- Serge Mostowy
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France.
| | | | | | | | | | | | | |
Collapse
|
36
|
Mostowy S, Janel S, Forestier C, Roduit C, Kasas S, Pizarro-Cerdá J, Cossart P, Lafont F. A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor. Biophys J 2011; 100:1949-59. [PMID: 21504731 PMCID: PMC3077699 DOI: 10.1016/j.bpj.2011.02.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/08/2011] [Accepted: 02/22/2011] [Indexed: 10/18/2022] Open
Abstract
Septins are conserved GTPases that form filaments and are required for cell division. During interphase, septin filaments associate with cellular membrane and cytoskeleton networks, yet the functional significance of these associations have, to our knowledge, remained unknown. We recently discovered that different septins, SEPT2 and SEPT11, regulate the InlB-mediated entry of Listeria monocytogenes into host cells. Here we address the role of SEPT2 and SEPT11 in the InlB-Met interactions underlying Listeria invasion to explore how septins modulate surface receptor function. We observed that differences in InlB-mediated Listeria entry correlated with differences in Met surface expression caused by septin depletion. Using atomic force microscopy on living cells, we show that septin depletion significantly reduced the unbinding force of InlB-Met interaction and the viscosity of membrane tethers at locations where the InlB-Met interaction occurs. Strikingly, the same order of difference was observed for cells in which the actin cytoskeleton was disrupted. Consistent with a proposed role of septins in association with the actin cytoskeleton, we show that cell elasticity is decreased upon septin or actin inactivation. Septins are therefore likely to participate in anchorage of the Met receptor to the actin cytoskeleton, and represent a critical determinant in surface receptor function.
Collapse
Affiliation(s)
- Serge Mostowy
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U604, Paris, France
- Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - Sébastien Janel
- Cellular Microbiology of Infectious Pathogens—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- University Lille Nord-de-France, Lille, France
| | | | - Charles Roduit
- Laboratory of Physics of the Living Matter, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandor Kasas
- Laboratory of Physics of the Living Matter, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U604, Paris, France
- Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U604, Paris, France
- Institut National de la Recherche Agronomique, USC2020, Paris, France
| | - Frank Lafont
- Cellular Microbiology of Infectious Pathogens—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- University Lille Nord-de-France, Lille, France
| |
Collapse
|
37
|
García-Fernández M, Kissel H, Brown S, Gorenc T, Schile AJ, Rafii S, Larisch S, Steller H. Sept4/ARTS is required for stem cell apoptosis and tumor suppression. Genes Dev 2010; 24:2282-93. [PMID: 20952537 DOI: 10.1101/gad.1970110] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inhibitor of Apoptosis Proteins (IAPs) are frequently overexpressed in tumors and have become promising targets for developing anti-cancer drugs. IAPs can be inhibited by natural antagonists, but a physiological requirement of mammalian IAP antagonists remains to be established. Here we show that deletion of the mouse Sept4 gene, which encodes the IAP antagonist ARTS, promotes tumor development. Sept4-null mice have increased numbers of hematopoietic stem and progenitor cells, elevated XIAP protein, increased resistance to cell death, and accelerated tumor development in an Eμ-Myc background. These phenotypes are partially suppressed by inactivation of XIAP. Our results suggest that apoptosis plays an important role as a frontline defense against cancer by restricting the number of normal stem cells.
Collapse
Affiliation(s)
- María García-Fernández
- Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tachibana T, Okazaki E, Yoshimi T, Azuma M, Kakehashi A, Wanibuchi H. Rat monoclonal antibody specific for septin 9. Hybridoma (Larchmt) 2010; 29:169-71. [PMID: 20443710 DOI: 10.1089/hyb.2009.0092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The septin family of GTPase proteins has been shown to be important for cell division, cytoskeletal organization, and membrane-remodeling events. Septin 9 (SEPT9) is a member of the septin family (also designated MSF/eseptin/Sint1) and has been implicated in tumorigenesis. The present study reports on the preparation and properties of a monoclonal antibody (MAb) directed against SEPT9. The antibody was produced by hybridization of mouse myeloma cells with lymph node cells from an immunized rat. The MAb 7B5 specifically recognized SEPT9, as evidenced by immunoblotting using a variety of extracts from cultured cells. In immunostaining using MAb 7B5, a filamentous pattern near the plasma membrane was observed. The MAb 7B5 promises to be useful in immunoblotting and immunostaining experiments in various cells and tissues to determine the expression levels of SEPT9, as well as to further the analysis of the biological function of this protein.
Collapse
Affiliation(s)
- Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Yang YM, Fedchyshyn MJ, Grande G, Aitoubah J, Tsang CW, Xie H, Ackerley CA, Trimble WS, Wang LY. Septins regulate developmental switching from microdomain to nanodomain coupling of Ca(2+) influx to neurotransmitter release at a central synapse. Neuron 2010; 67:100-15. [PMID: 20624595 DOI: 10.1016/j.neuron.2010.06.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2010] [Indexed: 01/04/2023]
Abstract
Neurotransmitter release depends critically on close spatial coupling of Ca(2+) entry to synaptic vesicles at the nerve terminal; however, the molecular substrates determining their physical proximity are unknown. Using the calyx of Held synapse, where "microdomain" coupling predominates at immature stages and developmentally switches to "nanodomain" coupling, we demonstrate that deletion of the filamentous protein Septin 5 imparts immature synapses with striking morphological and functional features reminiscent of mature synapses. This includes synaptic vesicles tightly localized to active zones, resistance to the slow Ca(2+) buffer EGTA and a reduced number of Ca(2+) channels required to trigger single fusion events. Disrupting Septin 5 organization acutely transforms microdomain to nanodomain coupling and potentiates quantal output in immature wild-type terminals. These observations suggest that Septin 5 is a core molecular substrate that differentiates distinct release modalities at the central synapse.
Collapse
Affiliation(s)
- Yi-Mei Yang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gilden J, Krummel MF. Control of cortical rigidity by the cytoskeleton: emerging roles for septins. Cytoskeleton (Hoboken) 2010; 67:477-86. [PMID: 20540086 PMCID: PMC2906656 DOI: 10.1002/cm.20461] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/21/2010] [Indexed: 12/13/2022]
Abstract
The cortex is the outermost region of the cell, comprising all of the elements from the plasma membrane to the cortical actin cytoskeleton that cooperate to maintain the cell's shape and topology. In eukaryotes without cell walls, this cortex governs the contact between their plasma membranes and the environment and thereby influences cell shape, motility, and signaling. It is therefore of considerable interest to understand how cells control their cortices, both globally and with respect to small subdomains. Here we review the current understanding of this control, including the regulation of cell shape by balances of outward hydrostatic pressure and cortical tension. The actomyosin cytoskeleton is the canonical regulator of cortical rigidity and indeed many would consider the cortex to comprise the actin cortex nearly exclusively. However, this actomyosin array is intimately linked to the membrane, for example via ERM and PIP2 proteins. Additionally, the lipid membrane likely undergoes rigidification by other players, such as Bin-Amphiphysin-Rvs proteins. Recent data also indicates that the septin cytoskeleton may play a formidable and more direct role in stabilization of membranes, particularly in contexts where cells receive limited external stabilization from their environments. Here, we review how septins may play this role, drawing on their physical form, their ability to directly bind and modify membranes and actomyosin, and their interactions with vesicular machinery. Deficiencies and alterations in the nature of the septin cytoskeleton may thus be relevant in multiple disease settings.
Collapse
Affiliation(s)
- Julia Gilden
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143-0511, USA
| | | |
Collapse
|
41
|
Amir S, Golan M, Mabjeesh NJ. Targeted knockdown of SEPT9_v1 inhibits tumor growth and angiogenesis of human prostate cancer cells concomitant with disruption of hypoxia-inducible factor-1 pathway. Mol Cancer Res 2010; 8:643-52. [PMID: 20407014 DOI: 10.1158/1541-7786.mcr-09-0497] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor in the hypoxic response pathway. We recently identified a novel interaction between HIF-1alpha and the mammalian septin family member, septin 9 protein, isoform 1 (SEPT9_i1), a protein product of septin 9 transcript variant 1 (SEPT9_v1). Septins are a highly conserved family of GTP-binding cytoskeletal proteins that are implicated in multiple cellular functions, including oncogenesis. SEPT9_i1 binds and stabilizes HIF-1alpha protein and stimulates HIF-1 transcriptional activity by preventing its RACK1-mediated ubiquitination and degradation. SEPT9_i1-HIF-1 activation promotes tumor growth and angiogenesis. The effect of SEPT9_v1 silencing in prostate cancer cells was studied. SEPT9_v1 stable knockdown was generated in PC-3 cells using a specific shRNA. SEPT9_v1 silencing reduced HIF-1alpha protein expression and inhibited HIF-1 transcriptional activity. SEPT9_v1 knockdown affected cell morphology, deregulated cell cycle, and decreased migration. The antiproliferative effect of shSEPT9_v1 was abolished in HIF-1alpha knockout colon cancer cells. In vivo, SEPT9_i1 depletion reduced HIF-1alpha protein expression, cellular proliferation, tumor growth, and angiogenesis. These results provide new insights and validation for applying SEPT9_v1 as a potential target for antitumor therapy by interrupting the HIF-1 pathway.
Collapse
Affiliation(s)
- Sharon Amir
- Prostate Cancer Research Laboratory, Department of Urology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
42
|
Shinoda T, Ito H, Sudo K, Iwamoto I, Morishita R, Nagata KI. Septin 14 is involved in cortical neuronal migration via interaction with Septin 4. Mol Biol Cell 2010; 21:1324-34. [PMID: 20181826 PMCID: PMC2854091 DOI: 10.1091/mbc.e09-10-0869] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Septins are a family of conserved GTP/GDP-binding proteins implicated in a variety of cellular functions. We found that knockdown of Septin 14 or Septin 4 resulted in inhibition of cortical neuronal migration and defective leading process formation. These results suggest a novel function of septin in cortical development. Septins are a family of conserved guanosine triphosphate/guanosine diphosphate-binding proteins implicated in a variety of cellular functions such as cell cycle control and cytokinesis. Although several members of septin family, including Septin 14 (Sept14), are abundantly expressed in nervous tissues, little is known about their physiological functions, especially in neuronal development. Here, we report that Sept14 is strongly expressed in the cortical plate of developing cerebral cortex. Knockdown experiments by using the method of in utero electroporation showed that reduction of Sept14 caused inhibition of cortical neuronal migration. Whereas cDNA encoding RNA interference-resistant Sept14 rescued the migration defect, the C-terminal deletion mutant of Sept14 did not. Biochemical analyses revealed that C-terminal coiled-coil region of Sept14 interacts with Septin 4 (Sept4). Knockdown experiments showed that Sept4 is also involved in cortical neuronal migration in vivo. In addition, knockdown of Sept14 or Sept4 inhibited leading process formation in migrating cortical neurons. These results suggest that Sept14 is involved in neuronal migration in cerebral cortex via interaction with Sept4.
Collapse
Affiliation(s)
- Tomoyasu Shinoda
- Department of Molecular Neurobiology, Aichi Human Service Center, Institute for Developmental Research, Kasugai, Aichi 480-0392, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Mostowy S, Cossart P. Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game. ACTA ACUST UNITED AC 2009; 66:816-23. [PMID: 19296488 DOI: 10.1002/cm.20353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of an infection process can reveal how microbes exploit the host, and can illuminate unknown host cellular functions. Invasive pathogens have evolved efficient strategies to promote their internalization within normally non-phagocytic host cells. The so-called "zippering" bacteria present to host cell receptors molecules that mimic endogenous ligands, thereby inducing specific intracellular signaling cascades ultimately resulting in actin polymerization and uptake. Here we review how the bacterial pathogen Listeria monocytogenes enters into cells, and present a series of studies revealing that in addition to actin rearrangements this bacterium exploits the clathrin-mediated endocytosis machinery together with septins, a novel cytoskeleton element. The challenge is now to decipher how all of these components orchestrate themselves to permit entry into normally non-phagocytic cells.
Collapse
Affiliation(s)
- Serge Mostowy
- Institut Pasteur, Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France
| | | |
Collapse
|
44
|
Kozubowski L, Heitman J. Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans. Mol Microbiol 2009; 75:658-75. [PMID: 19943902 DOI: 10.1111/j.1365-2958.2009.06983.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Septins are conserved, cytoskeletal GTPases that contribute to cytokinesis, exocytosis, cell surface organization and vesicle fusion by mechanisms that are poorly understood. Roles of septins in morphogenesis and virulence of a human pathogen and basidiomycetous yeast Cryptococcus neoformans were investigated. In contrast to a well-established paradigm in S. cerevisiae, Cdc3 and Cdc12 septin homologues are dispensable for growth in C. neoformans yeast cells at 24 degrees C but are essential at 37 degrees C. In a bilateral cross between septin mutants, cells fuse but the resulting hyphae exhibit morphological abnormalities, including lack of properly fused specialized clamp cells and failure to produce spores. Interestingly, post-mating hyphae of the septin mutants have a defect in nuclear distribution. Thus, septins are essential for the development of spores, clamp cell fusion and also play a specific role in nuclear dynamics in hyphae. In the post-mating hyphae the septins localize to discrete sites in clamp connections, to the septa and the bases of the initial emerging spores. Strains lacking CDC3 or CDC12 exhibit significantly reduced virulence in a Galleria mellonella model of infection. Thus, C. neoformans septins are vital to morphology of the hyphae and contribute to virulence.
Collapse
Affiliation(s)
- Lukasz Kozubowski
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
45
|
Cao L, Yu W, Wu Y, Yu L. The evolution, complex structures and function of septin proteins. Cell Mol Life Sci 2009; 66:3309-23. [PMID: 19597764 PMCID: PMC11115805 DOI: 10.1007/s00018-009-0087-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/21/2009] [Accepted: 06/25/2009] [Indexed: 12/14/2022]
Abstract
The septin family is a conserved GTP-binding protein family and was originally discovered through genetic screening for budding yeast mutants. Septins are implicated in many cellular processes in fungi and metazoa. The function of septins usually depends on septin assembling into oligomeric complexes and highly ordered polymers. The expansion of the septin gene number in vertebrates increased the complex diversity of septins. In this review, we first discuss the evolution, structures and assembly of septin proteins in yeast and metazoa. Then, we review the function of septin proteins in cytokinesis, membrane remodeling and compartmentalization.
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| |
Collapse
|
46
|
Abstract
AbstractSeptins are a conserved family of GTP-binding proteins found in living organisms ranging from yeasts to mammals. They are able to polymerize and form hetero-oligomers that assemble into higher-order structures whose detailed molecular architecture has recently been described in different organisms. In Saccharomyces cerevisiae, septins exert numerous functions throughout the cell cycle, serving as scaffolds for many different proteins or as diffusion barriers at the bud neck. In other fungi, septins are required for the proper completion of diverse functions such as polarized growth or pathogenesis. Recent results from several fungi have revealed important differences in septin organization and regulation as compared with S. cerevisiae, especially during Candida albicans hyphal growth and in Ashbya gossypii. Here we focus on these recent findings, their relevance in the biology of these eukaryotes and in consequence the “renaissance” of the study of septin structures in cells showing a different kind of morphological behaviour.
Collapse
|
47
|
Charych EI, Liu F, Moss SJ, Brandon NJ. GABA(A) receptors and their associated proteins: implications in the etiology and treatment of schizophrenia and related disorders. Neuropharmacology 2009; 57:481-95. [PMID: 19631671 DOI: 10.1016/j.neuropharm.2009.07.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 07/02/2009] [Accepted: 07/13/2009] [Indexed: 02/05/2023]
Abstract
Gamma-aminobutyric acid type A (GABA(A)) receptors play an important role in mediating fast synaptic inhibition in the brain. They are ubiquitously expressed in the CNS and also represent a major site of action for clinically relevant drugs. Recent technological advances have greatly clarified the molecular and cellular roles played by distinct GABA(A) receptor subunit classes and isoforms in normal brain function. At the same time, postmortem and genetic studies have linked neuropsychiatric disorders including schizophrenia and bipolar disorder with GABAergic neurotransmission and various specific GABA(A) receptor subunits, while evidence implicating GABA(A)R-associated proteins is beginning to emerge. In this review we discuss the mounting genetic, molecular, and cellular evidence pointing toward a role for GABA(A) receptor heterogeneity in both schizophrenia etiology and therapeutic development. Finally, we speculate on the relationship between schizophrenia-related disorders and selected GABA(A) receptor associated proteins, key regulators of GABA(A) receptor trafficking, targeting, clustering, and anchoring that often carry out these functions in a subtype-specific manner.
Collapse
Affiliation(s)
- Erik I Charych
- Wyeth Research, Neuroscience Discovery, Princeton NJ 08852, USA.
| | | | | | | |
Collapse
|
48
|
Li X, Serwanski DR, Miralles CP, Nagata KI, De Blas AL. Septin 11 is present in GABAergic synapses and plays a functional role in the cytoarchitecture of neurons and GABAergic synaptic connectivity. J Biol Chem 2009; 284:17253-17265. [PMID: 19380581 PMCID: PMC2719362 DOI: 10.1074/jbc.m109.008870] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/15/2009] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometry and immunoblot analysis of a rat brain fraction enriched in type-II postsynaptic densities and postsynaptic GABAergic markers showed enrichment in the protein septin 11. Septin 11 is expressed throughout the brain, being particularly high in the spiny branchlets of the Purkinje cells in the molecular layer of cerebellum and in the olfactory bulb. Immunofluorescence of cultured hippocampal neurons showed that 54 +/- 4% of the GABAergic synapses and 25 +/- 2% of the glutamatergic synapses had colocalizing septin 11 clusters. Similar colocalization numbers were found in the molecular layer of cerebellar sections. In cultured hippocampal neurons, septin 11 clusters were frequently present at the base of dendritic protrusions and at the bifurcation points of the dendritic branches. Electron microscopy immunocytochemistry of the rat brain cerebellum revealed the accumulation of septin 11 at the neck of dendritic spines, at the bifurcation of dendritic branches, and at some GABAergic synapses. Knocking down septin 11 in cultured hippocampal neurons with septin 11 small hairpin RNAs showed (i) reduced dendritic arborization; (ii) decreased density and increased length of dendritic protrusions; and (iii) decreased GABAergic synaptic contacts that these neurons receive. The results indicate that septin 11 plays important roles in the cytoarchitecture of neurons, including dendritic arborization and dendritic spines, and that septin 11 also plays a role in GABAergic synaptic connectivity.
Collapse
Affiliation(s)
- Xuejing Li
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - David R Serwanski
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Celia P Miralles
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya-Cho, Kasugai, Aichi 480-0392, Japan
| | - Angel L De Blas
- From the Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269.
| |
Collapse
|
49
|
Caudron F, Barral Y. Septins and the lateral compartmentalization of eukaryotic membranes. Dev Cell 2009; 16:493-506. [PMID: 19386259 DOI: 10.1016/j.devcel.2009.04.003] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic cells from neurons and epithelial cells to unicellular fungi frequently rely on cellular appendages such as axons, dendritic spines, cilia, and buds for their biology. The emergence and differentiation of these appendages depend on the formation of lateral diffusion barriers at their bases to insulate their membranes from the rest of the cell. Here, we review recent progress regarding the molecular mechanisms and functions of such barriers. This overview underlines the importance and conservation of septin-dependent diffusion barriers, which coordinately compartmentalize both plasmatic and internal membranes. We discuss their role in memory establishment and the control of cellular aging.
Collapse
Affiliation(s)
- Fabrice Caudron
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
50
|
Abstract
Guanine nucleotide-binding (G) proteins, which cycle between a GDP- and a GTP-bound conformation, are conventionally regulated by GTPase-activating proteins (GAPs) and guanine nucleotide-exchange factors (GEFs), and function by interacting with effector proteins in the GTP-bound 'on' state. Here we present another class of G proteins that are regulated by homodimerization, which we would categorize as G proteins activated by nucleotide-dependent dimerization (GADs). This class includes proteins such as signal recognition particle (SRP), dynamin, septins and the newly discovered Roco protein Leu-rich repeat kinase 2 (LRRK2). We propose that the juxtaposition of the G domains of two monomers across the GTP-binding sites activates the biological function of these proteins and the GTPase reaction.
Collapse
|