1
|
Werner JM, Hover J, Gillis J. Population variability in X-chromosome inactivation across 10 mammalian species. Nat Commun 2024; 15:8991. [PMID: 39420003 PMCID: PMC11487087 DOI: 10.1038/s41467-024-53449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
One of the two X-chromosomes in female mammals is epigenetically silenced in embryonic stem cells by X-chromosome inactivation. This creates a mosaic of cells expressing either the maternal or the paternal X allele. The X-chromosome inactivation ratio, the proportion of inactivated parental alleles, varies widely among individuals, representing the largest instance of epigenetic variability within mammalian populations. While various contributing factors to X-chromosome inactivation variability are recognized, namely stochastic and/or genetic effects, their relative contributions are poorly understood. This is due in part to limited cross-species analysis, making it difficult to distinguish between generalizable or species-specific mechanisms for X-chromosome inactivation ratio variability. To address this gap, we measure X-chromosome inactivation ratios in ten mammalian species (9531 individual samples), ranging from rodents to primates, and compare the strength of stochastic models or genetic factors for explaining X-chromosome inactivation variability. Our results demonstrate the embryonic stochasticity of X-chromosome inactivation is a general explanatory model for population X-chromosome inactivation variability in mammals, while genetic factors play a minor role.
Collapse
Affiliation(s)
- Jonathan M Werner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - John Hover
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Bowness JS, Almeida M, Nesterova TB, Brockdorff N. YY1 binding is a gene-intrinsic barrier to Xist-mediated gene silencing. EMBO Rep 2024; 25:2258-2277. [PMID: 38654121 PMCID: PMC11094009 DOI: 10.1038/s44319-024-00136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
X chromosome inactivation (XCI) in mammals is mediated by Xist RNA which functions in cis to silence genes on a single X chromosome in XX female cells, thereby equalising levels of X-linked gene expression relative to XY males. XCI progresses over a period of several days, with some X-linked genes silencing faster than others. The chromosomal location of a gene is an important determinant of silencing rate, but uncharacterised gene-intrinsic features also mediate resistance or susceptibility to silencing. In this study, we examine mouse embryonic stem cell lines with an inducible Xist allele (iXist-ChrX mESCs) and integrate allele-specific data of gene silencing and decreasing inactive X (Xi) chromatin accessibility over time courses of Xist induction with cellular differentiation. Our analysis reveals that motifs bound by the transcription factor YY1 are associated with persistently accessible regulatory elements, including many promoters and enhancers of slow-silencing genes. We further show that YY1 is evicted relatively slowly from target sites on Xi, and that silencing of X-linked genes is increased upon YY1 degradation. Together our results suggest that YY1 acts as a barrier to Xist-mediated silencing until the late stages of the XCI process.
Collapse
Affiliation(s)
- Joseph S Bowness
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mafalda Almeida
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
3
|
Hu B, Jin H, Shi Y, Yu H, Wu X, Wang S, Zhang K. Single-cell RNA-Seq reveals the earliest lineage specification and X chromosome dosage compensation in bovine preimplantation embryos. FASEB J 2024; 38:e23492. [PMID: 38363564 DOI: 10.1096/fj.202302035rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Lineage specification and X chromosome dosage compensation are two crucial biological processes that occur during preimplantation embryonic development. Although extensively studied in mice, the timing and regulation of these processes remain elusive in other species, including humans. Previous studies have suggested conserved principles of human and bovine early development. This study aims to provide fundamental insights into these programs and the regulation using a bovine embryo model by employing single-cell transcriptomics and genome editing approaches. The study analyzes the transcriptomes of 286 individual cells and reveals that bovine trophectoderm/inner cell mass transcriptomes diverge at the early blastocyst stage, after cavitation but before blastocyst expansion. The study also identifies transcriptomic markers and provides the timing of lineage specification events in the bovine embryo. Importantly, we find that SOX2 is required for the first cell decision program in bovine embryos. Moreover, the study shows the occurrence of X chromosome dosage compensation from morula to late blastocyst and reveals that this compensation results from downregulation of X-linked genes in female embryonic cells. The transcriptional atlas generated by this study is expected to be widely useful in improving our understanding of mammalian early embryo development.
Collapse
Affiliation(s)
- Bingjie Hu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Jin
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Shi
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haotian Yu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotong Wu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaohua Wang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun Zhang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Zhou J, Hu J, Wang Y, Gao S. Induction and application of human naive pluripotency. Cell Rep 2023; 42:112379. [PMID: 37043354 DOI: 10.1016/j.celrep.2023.112379] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past few decades, many attempts have been made to capture different states of pluripotency in vitro. Naive and primed pluripotent stem cells, corresponding to the pluripotency states of pre- and post-implantation epiblasts, respectively, have been well characterized in mice and can be interconverted in vitro. Here, we summarize the recently reported strategies to generate human naive pluripotent stem cells in vitro. We discuss their applications in studies of regulatory mechanisms involved in early developmental processes, including identification of molecular features, X chromosome inactivation modeling, transposable elements regulation, metabolic characteristics, and cell fate regulation, as well as potential for extraembryonic differentiation and blastoid construction for embryogenesis modeling. We further discuss the naive pluripotency-related research, including 8C-like cell establishment and disease modeling. We also highlight limitations of current naive pluripotency studies, such as imperfect culture conditions and inadequate responsiveness to differentiation signals.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jindian Hu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Szanto A, Aguilar R, Kesner B, Blum R, Wang D, Cifuentes-Rojas C, Del Rosario BC, Kis-Toth K, Lee JT. A disproportionate impact of G9a methyltransferase deficiency on the X chromosome. Genes Dev 2021; 35:1035-1054. [PMID: 34168040 PMCID: PMC8247598 DOI: 10.1101/gad.337592.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/27/2021] [Indexed: 01/05/2023]
Abstract
In this study from Szanto et al., the authors investigated the role of G9a, a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2) that plays key roles in transcriptional silencing of developmentally regulated genes, in X-chromosome inactivation (XCI). They found a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome, and show RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a–RNA interaction is essential for XCI. G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome. G9a deficiency causes a failure of XCI and female-specific hypersensitivity to drug inhibition of H3K9me2. We show that G9a interacts with Tsix and Xist RNAs, and that competitive inhibition of the G9a-RNA interaction recapitulates the XCI defect. During XCI, Xist recruits G9a to silence X-linked genes on the future inactive X. In parallel on the future Xa, Tsix recruits G9a to silence Xist in cis. Thus, RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a-RNA interaction is essential for XCI.
Collapse
Affiliation(s)
- Attila Szanto
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rodrigo Aguilar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Roy Blum
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Danni Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Catherine Cifuentes-Rojas
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brian C Del Rosario
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Katalin Kis-Toth
- Department of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Massachusetts 02115, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Evolutionary hypotheses on the ratio of males to females at birth posit that women terminate pregnancies with low likelihood of surviving and producing grandchildren. Thus, females are preferred to males under unfavorable conditions. Much of this literature has focused on catastrophic disruptions that induce maternal stress and result in fewer males. Diabetes may similarly affect the sex ratio. RECENT FINDINGS A male bias at birth among infants born to women with GDM is widely recognized; mild hyperglycemia experienced early in pregnancy may signal favorable conditions and warrant investment in males. There are sparse data on women with pregestational diabetes, but some evidence for a female bias born to those with type 1 diabetes and severe hyperglycemia (i.e., requiring insulin). Disease-related maternal stress in these women may lead to the selective termination of male fetuses. Further examination of pregestational diabetes stands to contribute to scientific understanding of the sex ratio.
Collapse
Affiliation(s)
- Samantha F Ehrlich
- The University of Tennessee, Knoxville, 390 HPER, 1914 Andy Holt Ave, Knoxville, TN, 37996, USA.
| |
Collapse
|
7
|
Brekke TD, Moore EC, Campbell-Staton SC, Callahan CM, Cheviron ZA, Good JM. X chromosome-dependent disruption of placental regulatory networks in hybrid dwarf hamsters. Genetics 2021; 218:6168998. [PMID: 33710276 DOI: 10.1093/genetics/iyab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/16/2021] [Indexed: 11/14/2022] Open
Abstract
Embryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species.
Collapse
Affiliation(s)
- Thomas D Brekke
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Emily C Moore
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Shane C Campbell-Staton
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,Department of Ecology and Evolutionary Biology; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Colin M Callahan
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
8
|
Lobato R. A quantum mechanical approach to random X chromosome inactivation. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>The X chromosome inactivation is an essential mechanism in mammals' development, that despite having been investigated for 60 years, many questions about its choice process have yet to be fully answered. Therefore, a theoretical model was proposed here for the first time in an attempt to explain this puzzling phenomenon through a quantum mechanical approach. Based on previous data, this work theoretically demonstrates how a shared delocalized proton at a key base pair position could explain the random, instantaneous, and mutually exclusive nature of the choice process in X chromosome inactivation. The main purpose of this work is to contribute to a comprehensive understanding of the X inactivation mechanism with a model proposal that can complement the existent ones, along with introducing a quantum mechanical approach that could be applied to other cell differentiation mechanisms.</p>
</abstract>
Collapse
|
9
|
Patrat C, Ouimette JF, Rougeulle C. X chromosome inactivation in human development. Development 2020; 147:147/1/dev183095. [PMID: 31900287 DOI: 10.1242/dev.183095] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
X chromosome inactivation (XCI) is a key developmental process taking place in female mammals to compensate for the imbalance in the dosage of X-chromosomal genes between sexes. It is a formidable example of concerted gene regulation and a paradigm for epigenetic processes. Although XCI has been substantially deciphered in the mouse model, how this process is initiated in humans has long remained unexplored. However, recent advances in the experimental capacity to access human embryonic-derived material and in the laws governing ethical considerations of human embryonic research have allowed us to enlighten this black box. Here, we will summarize the current knowledge of human XCI, mainly based on the analyses of embryos derived from in vitro fertilization and of pluripotent stem cells, and highlight any unanswered questions.
Collapse
Affiliation(s)
- Catherine Patrat
- Université de Paris, UMR 1016, Institut Cochin, 75014 Paris, France .,Service de Biologie de la Reproduction - CECOS, Paris Centre Hospital, APHP.centre, 75014 Paris, France
| | | | - Claire Rougeulle
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013 Paris, France
| |
Collapse
|
10
|
Farhadova S, Gomez-Velazquez M, Feil R. Stability and Lability of Parental Methylation Imprints in Development and Disease. Genes (Basel) 2019; 10:genes10120999. [PMID: 31810366 PMCID: PMC6947649 DOI: 10.3390/genes10120999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
DNA methylation plays essential roles in mammals. Of particular interest are parental methylation marks that originate from the oocyte or the sperm, and bring about mono-allelic gene expression at defined chromosomal regions. The remarkable somatic stability of these parental imprints in the pre-implantation embryo—where they resist global waves of DNA demethylation—is not fully understood despite the importance of this phenomenon. After implantation, some methylation imprints persist in the placenta only, a tissue in which many genes are imprinted. Again here, the underlying epigenetic mechanisms are not clear. Mouse studies have pinpointed the involvement of transcription factors, covalent histone modifications, and histone variants. These and other features linked to the stability of methylation imprints are instructive as concerns their conservation in humans, in which different congenital disorders are caused by perturbed parental imprints. Here, we discuss DNA and histone methylation imprints, and why unravelling maintenance mechanisms is important for understanding imprinting disorders in humans.
Collapse
|
11
|
Cruz-Topete D, Oakley RH, Carroll NG, He B, Myers PH, Xu X, Watts MN, Trosclair K, Glasscock E, Dominic P, Cidlowski JA. Deletion of the Cardiomyocyte Glucocorticoid Receptor Leads to Sexually Dimorphic Changes in Cardiac Gene Expression and Progression to Heart Failure. J Am Heart Assoc 2019; 8:e011012. [PMID: 31311395 PMCID: PMC6761632 DOI: 10.1161/jaha.118.011012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The contribution of glucocorticoids to sexual dimorphism in the heart is essentially unknown. Therefore, we sought to determine the sexually dimorphic actions of glucocorticoid signaling in cardiac function and gene expression. To accomplish this goal, we conducted studies on mice lacking glucocorticoid receptors (GR) in cardiomyocytes (cardioGRKO mouse model). Methods and Results Deletion of cardiomyocyte GR leads to an increase in mortality because of the development of spontaneous cardiac pathology in both male and female mice; however, females are more resistant to GR signaling inactivation in the heart. Male cardioGRKO mice had a median survival age of 6 months. In contrast, females had a median survival age of 10 months. Transthoracic echocardiography data showed phenotypic differences between male and female cardioGRKO hearts. By 3 months of age, male cardioGRKO mice exhibited left ventricular systolic dysfunction. Conversely, no significant functional deficits were observed in female cardioGRKO mice at the same time point. Functional sensitivity of male hearts to the loss of cardiomyocyte GR was reversed following gonadectomy. RNA‐Seq analysis showed that deleting GR in the male hearts leads to a more profound dysregulation in the expression of genes implicated in heart rate regulation (calcium handling). In agreement with these gene expression data, cardiomyocytes isolated from male cardioGRKO hearts displayed altered intracellular calcium responses. In contrast, female GR‐deficient cardiomyocytes presented a response comparable with controls. Conclusions These data suggest that GR regulates calcium responses in a sex‐biased manner, leading to sexually distinct responses to stress in male and female mice hearts, which may contribute to sex differences in heart disease, including the development of ventricular arrhythmias that contribute to heart failure and sudden death.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Department of Molecular and Cellular Physiology LSU Health Sciences Center Shreveport LA.,Center for Cardiovascular Diseases and Sciences LSU Health Sciences Center Shreveport LA
| | - Robert H Oakley
- Signal Transduction Laboratory National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Natalie G Carroll
- Department of Molecular and Cellular Physiology LSU Health Sciences Center Shreveport LA
| | - Bo He
- Signal Transduction Laboratory National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Page H Myers
- Comparative Medicine Branch National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Megan N Watts
- Department of Cardiology LSU Health Sciences Center Shreveport LA
| | - Krystle Trosclair
- Department of Cellular Biology and Anatomy LSU Health Sciences Center Shreveport LA
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy LSU Health Sciences Center Shreveport LA.,Center for Cardiovascular Diseases and Sciences LSU Health Sciences Center Shreveport LA
| | - Paari Dominic
- Department of Cardiology LSU Health Sciences Center Shreveport LA.,Center for Cardiovascular Diseases and Sciences LSU Health Sciences Center Shreveport LA
| | - John A Cidlowski
- Signal Transduction Laboratory National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| |
Collapse
|
12
|
Khamlichi AA, Feil R. Parallels between Mammalian Mechanisms of Monoallelic Gene Expression. Trends Genet 2018; 34:954-971. [PMID: 30217559 DOI: 10.1016/j.tig.2018.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Different types of monoallelic gene expression are present in mammals, some of which are highly flexible, whereas others are more rigid. These include allelic exclusion at antigen receptor loci, the expression of olfactory receptor genes, genomic imprinting, X-chromosome inactivation, and random monoallelic expression (MAE). Although these processes play diverse biological roles, and arose through different selective pressures, the underlying epigenetic mechanisms show striking resemblances. Regulatory transcriptional events are important in all systems, particularly in the specification of MAE. Combined with comparative studies between species, this suggests that the different MAE systems found in mammals may have evolved from analogous ancestral processes.
Collapse
Affiliation(s)
- Ahmed Amine Khamlichi
- Institute of Pharmacology and Structural Biology (IPBS), Centre National de la Recherche Scientifique (CNRS) and Paul Sabatier University (UPS), 205 route de Narbonne, 31077 Toulouse, France.
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS and the University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
13
|
Haase S, Garcia-Fabiani MB, Carney S, Altshuler D, Núñez FJ, Méndez FM, Núñez F, Lowenstein PR, Castro MG. Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 2018; 22:599-613. [PMID: 29889582 PMCID: PMC6044414 DOI: 10.1080/14728222.2018.1487953] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022]
Abstract
INTRODUCTION ATRX is a chromatin remodeling protein whose main function is the deposition of the histone variant H3.3. ATRX mutations are widely distributed in glioma, and correlate with alternative lengthening of telomeres (ALT) development, but they also affect other cellular functions related to epigenetic regulation. Areas covered: We discuss the main molecular characteristics of ATRX, from its various functions in normal development to the effects of its loss in ATRX syndrome patients and animal models. We focus on the salient consequences of ATRX mutations in cancer, from a clinical to a molecular point of view, focusing on both adult and pediatric glioma. Finally, we will discuss the therapeutic opportunities future research perspectives. Expert opinion: ATRX is a major component of various essential cellular pathways, exceeding its functions as a histone chaperone (e.g. DNA replication and repair, chromatin higher-order structure regulation, gene transcriptional regulation, etc.). However, it is unclear how the loss of these functions in ATRX-null cancer cells affects cancer development and progression. We anticipate new treatments and clinical approaches will emerge for glioma and other cancer types as mechanistic and molecular studies on ATRX are only just beginning to reveal the many critical functions of this protein in cancer.
Collapse
Affiliation(s)
- Santiago Haase
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - María Belén Garcia-Fabiani
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Stephen Carney
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - David Altshuler
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Felipe J Núñez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Flor M Méndez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Fernando Núñez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Pedro R Lowenstein
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Maria G Castro
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell & Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| |
Collapse
|
14
|
Studying X chromosome inactivation in the single-cell genomic era. Biochem Soc Trans 2018; 46:577-586. [PMID: 29678955 DOI: 10.1042/bst20170346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Single-cell genomics is set to revolutionise our understanding of how epigenetic silencing works; by studying specific epigenetic marks or chromatin conformations in single cells, it is possible to ask whether they cause transcriptional silencing or are instead a consequence of the silent state. Here, we review what single-cell genomics has revealed about X chromosome inactivation, perhaps the best characterised mammalian epigenetic process, highlighting the novel findings and important differences between mouse and human X inactivation uncovered through these studies. We consider what fundamental questions these techniques are set to answer in coming years and propose that X chromosome inactivation is an ideal model to study gene silencing by single-cell genomics as technical limitations are minimised through the co-analysis of hundreds of genes.
Collapse
|
15
|
Roy SW. Intragenomic Conflict and Immune Tolerance: Do Selfish X-Linked Alleles Drive Skewed X Chromosome Inactivation? Genome Biol Evol 2018; 10:857-862. [PMID: 29092048 PMCID: PMC5861445 DOI: 10.1093/gbe/evx221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2017] [Indexed: 12/18/2022] Open
Abstract
In mammalian females, diploid somatic cells contain two X chromosomes, one of which is transcriptionally silenced, in a process termed X chromosome inactivation (XCI). Whereas XCI is largely random in placental females, many women exhibit skewed XCI (SXCI), in which the vast majority cells have the same X chromosome inactivated. SXCI has serious health consequences, associated with conditions ranging from Alzheimer’s to various autoimmune disorders. SXCI is also associated with outcomes of pregnancies, with higher rates of recurrent spontaneous abortion in women with SXCI. Here, I suggest that SXCI could be driven by selfish X-linked alleles. Consistent with the association of SXCI with autoimmunity, I first note the possibility that recurrent spontaneous abortion could reflect immune rejection of fetuses inheriting alleles from the largely silenced maternal X chromosome. Preferential abortion of fetuses carrying silenced X-linked alleles implies a transmission advantage for X-linked alleles on the largely expressed chromosome, which could drive the emergence of X-linked alleles that make the chromosome resistant to XCI. I discuss the evolutionary dynamics, fitness tradeoffs and implications of this hypothesis, and suggest future directions.
Collapse
Affiliation(s)
- Scott W Roy
- Department of Biology, San Francisco State University
| |
Collapse
|
16
|
Yue M, Ogawa A, Yamada N, Charles Richard JL, Barski A, Ogawa Y. Xist RNA repeat E is essential for ASH2L recruitment to the inactive X and regulates histone modifications and escape gene expression. PLoS Genet 2017; 13:e1006890. [PMID: 28686623 PMCID: PMC5521851 DOI: 10.1371/journal.pgen.1006890] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 07/21/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNA Xist plays a crucial role in establishing and maintaining X-chromosome inactivation (XCI) which is a paradigm of long non-coding RNA-mediated gene regulation. Xist has Xist-specific repeat elements A-F which are conserved among eutherian mammals, underscoring their functional importance. Here we report that Xist RNA repeat E, a conserved Xist repeat element in the Xist exon 7, interacts with ASH2L and contributes to maintenance of escape gene expression level on the inactive X-chromosome (Xi) during XCI. The Xist repeat E-deletion mutant female ES cells show the depletion of ASH2L from the Xi upon differentiation. Furthermore, a subset of escape genes exhibits unexpectedly higher expression in the repeat E mutant cells than the cells expressing wildtype Xist during X-inactivation, whereas the silencing of X-linked non-escape genes is not affected. We discuss the implications of these results to understand the role of ASH2L and Xist repeat E for histone modifications and escape gene regulation during random X-chromosome inactivation.
Collapse
Affiliation(s)
- Minghui Yue
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Akiyo Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Norishige Yamada
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - John Lalith Charles Richard
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Artem Barski
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Allergy & Immunology and Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yuya Ogawa
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
17
|
Yang X, Ye Z, Zhang X, Wang H, Liu C. A finding in genetic polymorphism analysis study: A case of non-mosaic 47, XXX without manifestations. Leg Med (Tokyo) 2017; 27:38-42. [DOI: 10.1016/j.legalmed.2017.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022]
|
18
|
Brinkhof B, van Tol HTA, Groot Koerkamp MJA, Wubbolts RW, Haagsman HP, Roelen BAJ. Characterization of bovine embryos cultured under conditions appropriate for sustaining human naïve pluripotency. PLoS One 2017; 12:e0172920. [PMID: 28241084 PMCID: PMC5328396 DOI: 10.1371/journal.pone.0172920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/02/2017] [Indexed: 12/27/2022] Open
Abstract
In mammalian preimplantation development, pluripotent cells are set aside from cells that contribute to extra-embryonic tissues. Although the pluripotent cell population of mouse and human embryos can be cultured as embryonic stem cells, little is known about the pathways involved in formation of a bovine pluripotent cell population, nor how to maintain these cells in vitro. The objective of this study was to determine the transcriptomic profile related to bovine pluripotency. Therefore, in vitro derived embryos were cultured in various culture media that recently have been reported capable of maintaining the naïve pluripotent state of human embryonic cells. Gene expression profiles of embryos cultured in these media were compared using microarray analysis and quantitative RT-PCR. Compared to standard culture conditions, embryo culture in ‘naïve’ media reduced mRNA expression levels of the key pluripotency markers NANOG and POU5F1. A relatively high percentage of genes with differential expression levels were located on the X-chromosome. In addition, reduced XIST expression was detected in embryos cultured in naïve media and female embryos contained fewer cells with H3K27me3 foci, indicating a delay in X-chromosome inactivation. Whole embryos cultured in one of the media, 5iLA, could be maintained until 23 days post fertilization. Together these data indicate that ‘naïve’ conditions do not lead to altered expression of known genes involved in pluripotency. Interestingly, X-chromosome inactivation and development of bovine embryos were dependent on the culture conditions.
Collapse
Affiliation(s)
- Bas Brinkhof
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Helena T. A. van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Richard W. Wubbolts
- Center for Cellular Imaging (CCI), Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P. Haagsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A. J. Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Sangrithi MN, Royo H, Mahadevaiah SK, Ojarikre O, Bhaw L, Sesay A, Peters AHFM, Stadler M, Turner JMA. Non-Canonical and Sexually Dimorphic X Dosage Compensation States in the Mouse and Human Germline. Dev Cell 2017; 40:289-301.e3. [PMID: 28132849 PMCID: PMC5300051 DOI: 10.1016/j.devcel.2016.12.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/01/2016] [Accepted: 12/27/2016] [Indexed: 12/02/2022]
Abstract
Somatic X dosage compensation requires two mechanisms: X inactivation balances X gene output between males (XY) and females (XX), while X upregulation, hypothesized by Ohno and documented in vivo, balances X gene with autosomal gene output. Whether X dosage compensation occurs in germ cells is unclear. We show that mouse and human germ cells exhibit non-canonical X dosage states that differ from the soma and between the sexes. Prior to genome-wide reprogramming, X upregulation is present, consistent with Ohno's hypothesis. Subsequently, however, it is erased. In females, erasure follows loss of X inactivation, causing X dosage excess. Conversely, in males, erasure leads to permanent X dosage decompensation. Sex chromosomally abnormal models exhibit a “sex-reversed” X dosage state: XX males, like XX females, develop X dosage excess, while XO females, like XY males, develop X dosage decompensation. Thus, germline X dosage compensation states are determined by X chromosome number, not phenotypic sex. These unexpected differences in X dosage compensation states between germline and soma offer unique perspectives on sex chromosome infertility. X dosage compensation in germ cells is reset during GWR PGCs exhibit X upregulation before GWR, in keeping with Ohno's hypothesis X upregulation is lost during GWR Mouse and human germ cells exhibit X dosage states that are sexually dimorphic
Collapse
Affiliation(s)
- Mahesh N Sangrithi
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK; UCL EGA Institute for Women's Health UCL, Medical School Building, 74 Huntley Street, London WC1E 6AU, UK
| | - Helene Royo
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Shantha K Mahadevaiah
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Obah Ojarikre
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Leena Bhaw
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Abdul Sesay
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Michael Stadler
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - James M A Turner
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
20
|
Brekke TD, Henry LA, Good JM. Genomic imprinting, disrupted placental expression, and speciation. Evolution 2016; 70:2690-2703. [PMID: 27714796 PMCID: PMC5123974 DOI: 10.1111/evo.13085] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
The importance of regulatory incompatibilities to the early stages of speciation remains unclear. Hybrid mammals often show extreme parent-of-origin growth effects that are thought to be a consequence of disrupted genetic imprinting (parent-specific epigenetic gene silencing) during early development. Here, we test the long-standing hypothesis that abnormal hybrid growth reflects disrupted gene expression due to loss of imprinting (LOI) in hybrid placentas, resulting in dosage imbalances between paternal growth factors and maternal growth repressors. We analyzed placental gene expression in reciprocal dwarf hamster hybrids that show extreme parent-of-origin growth effects relative to their parental species. In massively enlarged hybrid placentas, we observed both extensive transgressive expression of growth-related genes and biallelic expression of many genes that were paternally silenced in normal sized hybrids. However, the apparent widespread disruption of paternal silencing was coupled with reduced gene expression levels overall. These patterns are contrary to the predictions of the LOI model and indicate that hybrid misexpression of dosage-sensitive genes is caused by other regulatory mechanisms in this system. Collectively, our results support a central role for disrupted gene expression and imprinting in the evolution of mammalian hybrid inviability, but call into question the generality of the widely invoked LOI model.
Collapse
Affiliation(s)
- Thomas D. Brekke
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Lindy A. Henry
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| |
Collapse
|
21
|
Furlan G, Rougeulle C. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:702-22. [PMID: 27173581 DOI: 10.1002/wrna.1359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
X-chromosome inactivation (XCI) is a chromosome-wide regulatory process that ensures dosage compensation for X-linked genes in Theria. XCI is established during early embryogenesis and is developmentally regulated. Different XCI strategies exist in mammalian infraclasses and the regulation of this process varies also among closely related species. In Eutheria, initiation of XCI is orchestrated by a cis-acting locus, the X-inactivation center (Xic), which is particularly enriched in genes producing long noncoding RNAs (lncRNAs). Among these, Xist generates a master transcript that coats and propagates along the future inactive X-chromosome in cis, establishing X-chromosome wide transcriptional repression through interaction with several protein partners. Other lncRNAs also participate to the regulation of X-inactivation but the extent to which their function has been maintained in evolution is still poorly understood. In Metatheria, Xist is not conserved, but another, evolutionary independent lncRNA with similar properties, Rsx, has been identified, suggesting that lncRNA-mediated XCI represents an evolutionary advantage. Here, we review current knowledge on the interplay of X chromosome-encoded lncRNAs in ensuring proper establishment and maintenance of chromosome-wide silencing, and discuss the evolutionary implications of the emergence of species-specific lncRNAs in the control of XCI within Theria. WIREs RNA 2016, 7:702-722. doi: 10.1002/wrna.1359 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Giulia Furlan
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216 CNRS, Université Paris Diderot, Paris, France
| | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR7216 CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
22
|
An overview of X inactivation based on species differences. Semin Cell Dev Biol 2016; 56:111-116. [PMID: 26805440 DOI: 10.1016/j.semcdb.2016.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 12/29/2022]
Abstract
X inactivation, a developmental process that takes place in early stages of mammalian embryogenesis, balances the sex difference in dosage of X-linked genes. Although all mammals use this form of dosage compensation, the details differ from one species to another because of variations in the staging of embryogenesis and evolutionary tinkering with the DNA blueprint for development. Such differences provide a broader view of the process than that afforded by a single species. My overview of X inactivation is based on these species variations.
Collapse
|
23
|
How Many Non-coding RNAs Does It Take to Compensate Male/Female Genetic Imbalance? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:33-49. [PMID: 26659486 DOI: 10.1007/978-94-017-7417-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genetic sex determination in mammals relies on dimorphic sex chromosomes that confer phenotypic/physiologic differences between males and females. In this heterogametic system, X and Y chromosomes diverged from an ancestral pair of autosomes, creating a genetic disequilibrium between XX females and XY males. Dosage compensation mechanisms alleviate intrinsic gene dosage imbalance, leading to equal expression levels of most X-linked genes in the two sexes. In therian mammals, this is achieved through inactivation of one of the two X chromosomes in females. Failure to undergo X-chromosome inactivation (XCI) results in developmental arrest and death. Although fundamental for survival, a surprising loose conservation in the mechanisms to achieve XCI during development in therian lineage has been, and continues, to be uncovered. XCI involves the concerted action of non-coding RNAs (ncRNAs), including the well-known Xist RNA, and has thus become a classical paradigm to study the mode of action of this particular class of transcripts. In this chapter, we will describe the processes coping with sex chromosome genetic imbalance and how ncRNAs underlie dosage compensation mechanisms and influence male-female differences in mammals. Moreover, we will discuss how ncRNAs have been tinkered with during therian evolution to adapt XCI mechanistic to species-specific constraints.
Collapse
|
24
|
Zhang S, Bian Y, Li L, Sun K, Wang Z, Zhao Q, Zha L, Cai J, Gao Y, Ji C, Li C. Population genetic study of 34 X-Chromosome markers in 5 main ethnic groups of China. Sci Rep 2015; 5:17711. [PMID: 26634331 PMCID: PMC4669481 DOI: 10.1038/srep17711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/04/2015] [Indexed: 01/09/2023] Open
Abstract
As a multi-ethnic country, China has some indigenous population groups which vary in culture and social customs, perhaps as a result of geographic isolation and different traditions. However, upon close interactions and intermarriage, admixture of different gene pools among these ethnic groups may occur. In order to gain more insight on the genetic background of X-Chromosome from these ethnic groups, a set of X-markers (18 X-STRs and 16 X-Indels) was genotyped in 5 main ethnic groups of China (HAN, HUI, Uygur, Mongolian, Tibetan). Twenty-three private alleles were detected in HAN, Uygur, Tibetan and Mongolian. Significant differences (p < 0.0001) were all observed for the 3 parameters of heterozygosity (Ho, He and UHe) among the 5 ethnic groups. Highest values of Nei genetic distance were always observed at HUI-Uygur pairwise when analyzed with X-STRs or X-Indels separately and combined. Phylogenetic tree and PCA analyses revealed a clear pattern of population differentiation of HUI and Uygur. However, the HAN, Tibetan and Mongolian ethnic groups were closely clustered. Eighteen X-Indels exhibited in general congruent phylogenetic signal and similar cluster among the 5 ethnic groups compared with 16 X-STRs. Aforementioned results proved the genetic polymorphism and potential of the 34 X-markers in the 5 ethnic groups.
Collapse
Affiliation(s)
- Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, P.R. China, Shanghai 200063, P.R. China.,State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yingnan Bian
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, P.R. China, Shanghai 200063, P.R. China
| | - Li Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, P.R. China, Shanghai 200063, P.R. China
| | - Kuan Sun
- Institute of Forensic Medicine, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu 610041, P.R.China
| | - Zheng Wang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, P.R. China, Shanghai 200063, P.R. China
| | - Qi Zhao
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, P.R. China, Shanghai 200063, P.R. China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, P.R. China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, P.R. China
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, P.R. China, Shanghai 200063, P.R. China
| |
Collapse
|
25
|
Abstract
Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.
Collapse
|
26
|
Imprinted X chromosome inactivation offers up a double dose of epigenetics. Proc Natl Acad Sci U S A 2015; 112:14408-9. [PMID: 26578809 DOI: 10.1073/pnas.1520097112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
27
|
Green MP, Harvey AJ, Spate LD, Kimura K, Thompson JG, Roberts RM. The effects of 2,4-dinitrophenol and d
-glucose concentration on the development, sex ratio, and interferon-tau (IFNT) production of bovine blastocysts. Mol Reprod Dev 2015; 83:50-60. [DOI: 10.1002/mrd.22590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Green
- Division of Animal Sciences; University of Missouri, Columbia; Missouri
| | - Alexandra J. Harvey
- School of BioSciences, University of Melbourne, Parkville; Melbourne Australia
| | - Lee D. Spate
- Division of Animal Sciences; University of Missouri, Columbia; Missouri
| | - Koji Kimura
- Division of Animal Sciences; University of Missouri, Columbia; Missouri
- Reproductive Physiology Laboratory, National Institute of Livestock and Grassland Science; 768 Senbonmatsu Nishinasuno Tochigi Japan
| | - Jeremy G. Thompson
- Robinson Research Institute, University of Adelaide and ARC Centre of Excellence for Nanoscale BioPhotonics; Adelaide Australia
| | - R. Michael Roberts
- Division of Animal Sciences; University of Missouri, Columbia; Missouri
- 240b Christopher S. Bond Life Sciences Center, Columbia; Missouri
| |
Collapse
|
28
|
Abstract
X chromosome inactivation (XCI) is the dosage compensation mechanism that evolved in female mammals to correct the genetic imbalance of X-linked genes between sexes. X chromosome inactivation occurs in early development when one of the two X chromosomes of females is nearly-completely silenced. Differentiating Embryonic Stem cells (ESC) are regarded as a useful tool to study XCI, since they recapitulate many events occurring during early development. In this review we aim to summarise the advances in the field and to discuss the close connection between cell differentiation and X chromosome inactivation, with a particular focus on mouse ESCs.
Collapse
Affiliation(s)
- Greta Pintacuda
- />Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Andrea Cerase
- />EMBL Mouse Biology Unit, Monterotondo, 00015 RM Italy
| |
Collapse
|
29
|
Imbalance between the expression dosages of X-chromosome and autosomal genes in mammalian oocytes. Sci Rep 2015; 5:14101. [PMID: 26370379 PMCID: PMC4572927 DOI: 10.1038/srep14101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 08/18/2015] [Indexed: 01/03/2023] Open
Abstract
Oocytes have unique characteristics compared with other cell types. In mouse and human oocytes, two X chromosomes are maintained in the active state. Previous microarray studies have shown that the balance of the expression state is maintained in haploid oocytes. Here, we investigated transcripts using RNA-sequence technology in mouse and human oocytes. The median expression ratio between X chromosome and autosomal genes (X:A) in immature mouse oocytes increased as the gene expression levels increased, reaching a value of 1. However, the ratio in mature oocytes was under 1 for all expression categories. Moreover, we observed a markedly low ratio resulting from the bimodal expression patterns of X–linked genes. The low X:A expression ratio in mature oocyte was independent of DNA methylation. While mature human oocytes exhibited a slightly low X:A expression ratio, this was the result of the skewed high frequency of lowly expressed X-linked genes rather than the bimodal state. We propose that this imbalance between the expression dosages of X-chromosome and autosomal genes is a feature of transcripts in mammalian oocytes lacking X-chromosome inactivation.
Collapse
|
30
|
Andergassen D, Dotter CP, Kulinski TM, Guenzl PM, Bammer PC, Barlow DP, Pauler FM, Hudson QJ. Allelome.PRO, a pipeline to define allele-specific genomic features from high-throughput sequencing data. Nucleic Acids Res 2015. [PMID: 26202974 PMCID: PMC4666383 DOI: 10.1093/nar/gkv727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Detecting allelic biases from high-throughput sequencing data requires an approach that maximises sensitivity while minimizing false positives. Here, we present Allelome.PRO, an automated user-friendly bioinformatics pipeline, which uses high-throughput sequencing data from reciprocal crosses of two genetically distinct mouse strains to detect allele-specific expression and chromatin modifications. Allelome.PRO extends approaches used in previous studies that exclusively analyzed imprinted expression to give a complete picture of the ‘allelome’ by automatically categorising the allelic expression of all genes in a given cell type into imprinted, strain-biased, biallelic or non-informative. Allelome.PRO offers increased sensitivity to analyze lowly expressed transcripts, together with a robust false discovery rate empirically calculated from variation in the sequencing data. We used RNA-seq data from mouse embryonic fibroblasts from F1 reciprocal crosses to determine a biologically relevant allelic ratio cutoff, and define for the first time an entire allelome. Furthermore, we show that Allelome.PRO detects differential enrichment of H3K4me3 over promoters from ChIP-seq data validating the RNA-seq results. This approach can be easily extended to analyze histone marks of active enhancers, or transcription factor binding sites and therefore provides a powerful tool to identify candidate cis regulatory elements genome wide.
Collapse
Affiliation(s)
- Daniel Andergassen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Christoph P Dotter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Tomasz M Kulinski
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Philipp M Guenzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Philipp C Bammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Florian M Pauler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| | - Quanah J Hudson
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3,1090 Vienna, Austria
| |
Collapse
|
31
|
Sarma K, Cifuentes-Rojas C, Ergun A, Del Rosario A, Jeon Y, White F, Sadreyev R, Lee JT. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 2015; 159:869-83. [PMID: 25417162 DOI: 10.1016/j.cell.2014.10.019] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/22/2014] [Accepted: 10/08/2014] [Indexed: 12/20/2022]
Abstract
X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function.
Collapse
Affiliation(s)
- Kavitha Sarma
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Catherine Cifuentes-Rojas
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Ayla Ergun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Amanda Del Rosario
- Department of Bioengineering, Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Yesu Jeon
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA
| | - Forest White
- Department of Bioengineering, Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA; Department of Genetics, Harvard Medical School, Boston, MA USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA.
| |
Collapse
|
32
|
Deak T, Quinn M, Cidlowski JA, Victoria NC, Murphy AZ, Sheridan JF. Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease. Stress 2015; 18:367-80. [PMID: 26176590 PMCID: PMC4813310 DOI: 10.3109/10253890.2015.1053451] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The last decade has witnessed profound growth in studies examining the role of fundamental neuroimmune processes as key mechanisms that might form a natural bridge between normal physiology and pathological outcomes. Rooted in core concepts from psychoneuroimmunology, this review utilizes a succinct, exemplar-driven approach of several model systems that contribute significantly to our knowledge of the mechanisms by which neuroimmune processes interact with stress physiology. Specifically, we review recent evidence showing that (i) stress challenges produce time-dependent and stressor-specific patterns of cytokine/chemokine expression in the CNS; (ii) inflammation-related genes exhibit unique expression profiles in males and females depending upon individual, cooperative or antagonistic interactions between steroid hormone receptors (estrogen and glucocorticoid receptors); (iii) adverse social experiences incurred through repeated social defeat engage a dynamic process of immune cell migration from the bone marrow to brain and prime neuroimmune function and (iv) early developmental exposure to an inflammatory stimulus (carageenin injection into the hindpaw) has a lasting influence on stress reactivity across the lifespan. As such, the present review provides a theoretical framework for understanding the role that neuroimmune mechanisms might play in stress plasticity and pathological outcomes, while at the same time pointing toward features of the individual (sex, developmental experience, stress history) that might ultimately be used for the development of personalized strategies for therapeutic intervention in stress-related pathologies.
Collapse
Affiliation(s)
- Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000
- Address correspondence to: Terrence Deak, Ph.D., , Phone: 607-777-5918
| | - Matt Quinn
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - John A. Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Nicole C. Victoria
- Neuroscience Institute, Georgia State University, Petit Science Center, PO Box 5030, Atlanta, GA 30302-5030
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, Petit Science Center, PO Box 5030, Atlanta, GA 30302-5030
| | - John F. Sheridan
- The Ohio State University College of Dentistry and Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| |
Collapse
|
33
|
D'Amico F, Skarmoutsou E, Mazzarino MC. The sex bias in systemic sclerosis: on the possible mechanisms underlying the female disease preponderance. Clin Rev Allergy Immunol 2014; 47:334-43. [PMID: 24126759 DOI: 10.1007/s12016-013-8392-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Systemic sclerosis is a multifactorial and heterogeneous disease. Genetic and environmental factors are known to interplay in the onset and progression of systemic sclerosis. Sex plays an important and determinant role in the development of such a disorder. Systemic sclerosis shows a significant female preponderance. However, the reason for this female preponderance is incompletely understood. Hormonal status, genetic and epigenetic differences, and lifestyle have been considered in order to explain female preponderance in systemic sclerosis. Sex chromosomes play a determinant role in contributing to systemic sclerosis onset and progression, as well as in its sex-biased prevalence. It is known, in fact, that X chromosome contains many sex- and immuno-related genes, thus contributing to immuno tolerance and sex hormone status. This review focuses mainly on the recent progress on epigenetic mechanisms--exclusively linked to the X chromosome--which would contribute to the development of systemic sclerosis. Furthermore, we report also some hypotheses (dealing with skewed X chromosome inactivation, X gene reactivation, acquired monosomy) that have been proposed in order to justify the female preponderance in autoimmune diseases. However, despite the intensive efforts in elucidating the mechanisms involved in the pathogenesis of systemic sclerosis, many questions remain still unanswered.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Bio-medical Sciences, University of Catania, via Androne 83, 95124, Catania, Italy,
| | | | | |
Collapse
|
34
|
Wade BSC, Joshi SH, Reuter M, Blumenthal JD, Toga AW, Thompson PM, Giedd JN. Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies. Biol Sex Differ 2014; 5:16. [PMID: 25780557 PMCID: PMC4360142 DOI: 10.1186/s13293-014-0016-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual’s karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). Methods We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Results Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Conclusions Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups.
Collapse
Affiliation(s)
- Benjamin S C Wade
- Imaging Genetics Center, Institute for Neuro Imaging and Informatics, USC, 4676 Admiralty Way, Marina del Rey, Los Angeles 90292, CA, USA
| | - Shantanu H Joshi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, UCLA, Los Angeles 90095, CA, USA
| | - Martin Reuter
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown 02129, MA, USA
| | - Jonathan D Blumenthal
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda 20892-1600, MD, USA
| | - Arthur W Toga
- Institute for Neuro Imaging and Informatics, Keck School of Medicine, USC, Los Angeles 90032, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuro Imaging and Informatics, USC, 4676 Admiralty Way, Marina del Rey, Los Angeles 90292, CA, USA
| | - Jay N Giedd
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda 20892-1600, MD, USA
| |
Collapse
|
35
|
Chapman AG, Cotton AM, Kelsey AD, Brown CJ. Differentially methylated CpG island within human XIST mediates alternative P2 transcription and YY1 binding. BMC Genet 2014; 15:89. [PMID: 25200388 PMCID: PMC4363909 DOI: 10.1186/s12863-014-0089-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/18/2014] [Indexed: 11/30/2022] Open
Abstract
Background X-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males. While most genes are silenced on the inactive X chromosome, the gene for the long non-coding RNA XIST is silenced on the active X chromosome and expressed from the inactive X chromosome with which the XIST RNA associates, triggering silencing of the chromosome. In mouse, an alternative Xist promoter, P2 is also the site of YY1 binding, which has been shown to serve as a tether between the Xist RNA and the DNA of the chromosome. In humans there are many differences from the initial events of mouse Xist activation, including absence of a functional antisense regulator Tsix, and absence of strictly paternal inactivation in extraembryonic tissues, prompting us to examine regulatory regions for the human XIST gene. Results We demonstrate that the female-specific DNase hypersensitivity site within XIST is specific to the inactive X chromosome and correlates with transcription from an internal P2 promoter. P2 is located within a CpG island that is differentially methylated between males and females and overlaps conserved YY1 binding sites that are only bound on the inactive X chromosome where the sites are unmethylated. However, YY1 binding is insufficient to drive P2 expression or establish the DHS, which may require a development-specific factor. Furthermore, reduction of YY1 reduces XIST transcription in addition to causing delocalization of XIST. Conclusions The differentially methylated DNase hypersensitive site within XIST marks the location of an alternative promoter, P2, that generates a transcript of unknown function as it lacks the A repeats that are critical for silencing. In addition, this region binds YY1 on the unmethylated inactive X chromosome, and depletion of YY1 untethers the XIST RNA as well as decreasing transcription of XIST.
Collapse
Affiliation(s)
- Andrew G Chapman
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Allison M Cotton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Angela D Kelsey
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
36
|
Pollema-Mays SL, Centeno MV, Apkarian AV, Martina M. Expression of DNA methyltransferases in adult dorsal root ganglia is cell-type specific and up regulated in a rodent model of neuropathic pain. Front Cell Neurosci 2014; 8:217. [PMID: 25152711 PMCID: PMC4126486 DOI: 10.3389/fncel.2014.00217] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 07/17/2014] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is associated with hyperexcitability and intrinsic firing of dorsal root ganglia (DRG) neurons. These phenotypical changes can be long lasting, potentially spanning the entire life of animal models, and depend on altered expression of numerous proteins, including many ion channels. Yet, how DRGs maintain long-term changes in protein expression in neuropathic conditions remains unclear. DNA methylation is a well-known mechanism of epigenetic control of gene expression and is achieved by the action of three enzymes: DNA methyltransferase (DNMT) 1, 3a, and 3b, which have been studied primarily during development. We first performed immunohistochemical analysis to assess whether these enzymes are expressed in adult rat DRGs (L4–5) and found that DNMT1 is expressed in both glia and neurons, DNMT3a is preferentially expressed in glia and DNMT3b is preferentially expressed in neurons. A rat model of neuropathic pain was then used to determine whether nerve injury may induce epigenetic changes in DRGs at multiple time points after pain onset. Real-time RT PCR analysis revealed robust and time-dependent changes in DNMT transcript expression in ipsilateral DRGs from spared nerve injury (SNI) but not sham rats. Interestingly, DNMT3b transcript showed a robust upregulation that appeared already 1 week after surgery and persisted at 4 weeks (our endpoint); in contrast, DNMT1 and DNMT3a transcripts showed only moderate upregulation that was transient and did not appear until the second week. We suggest that DNMT regulation in adult DRGs may be a contributor to the pain phenotype and merits further study.
Collapse
Affiliation(s)
- Sarah L Pollema-Mays
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Maria V Centeno
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - A V Apkarian
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Marco Martina
- Department of Physiology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| |
Collapse
|
37
|
Davies W. Sex differences in attention Deficit Hyperactivity Disorder: candidate genetic and endocrine mechanisms. Front Neuroendocrinol 2014; 35:331-46. [PMID: 24680800 DOI: 10.1016/j.yfrne.2014.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a developmental condition characterised by severe inattention, pathological impulsivity and hyperactivity; it is relatively common affecting up to 6% of children, and is associated with a risk of long-term adverse educational and social consequences. Males are considerably more likely to be diagnosed with ADHD than females; the course of the disorder and its associated co-morbidities also appear to be sensitive to sex. Here, I discuss fundamental biological (genetic and endocrine) mechanisms that have been shown to, or could theoretically, contribute towards these sexually dimorphic phenomena. Greater understanding of how and why the sexes differ with respect to ADHD vulnerability should allow us to identify and characterise novel protective and risk factors for the disorder, and should ultimately facilitate improved diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
| |
Collapse
|
38
|
Peeters SB, Cotton AM, Brown CJ. Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression. Bioessays 2014; 36:746-56. [PMID: 24913292 PMCID: PMC4143967 DOI: 10.1002/bies.201400032] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In humans over 15% of X-linked genes have been shown to ‘escape’ from X-chromosome inactivation (XCI): they continue to be expressed to some extent from the inactive X chromosome. Mono-allelic expression is anticipated within a cell for genes subject to XCI, but random XCI usually results in expression of both alleles in a cell population. Using a study of allelic expression from cultured lymphoblasts and fibroblasts, many of which showed substantial skewing of XCI, we recently reported that the expression of genes lies on a contiunuum between those that are subject to inactivation, and those that escape. We now review allelic expression studies from mouse, and discuss the variability in escape seen in both humans and mice in genic expression levels, between X chromosomes and between tissues. We also discuss current knowledge of the heterochromatic features, DNA elements and three-dimensional topology of the inactive X that contribute to the balance of expression from the otherwise inactive X chromosome.
Collapse
Affiliation(s)
- Samantha B Peeters
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
39
|
Shin J, Wallingford MC, Gallant J, Marcho C, Jiao B, Byron M, Bossenz M, Lawrence JB, Jones SN, Mager J, Bach I. RLIM is dispensable for X-chromosome inactivation in the mouse embryonic epiblast. Nature 2014; 511:86-9. [PMID: 24870238 PMCID: PMC4105192 DOI: 10.1038/nature13286] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/26/2014] [Indexed: 01/12/2023]
Abstract
In female mice, two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X chromosome. Later, around implantation, epiblast cells of the inner cell mass that give rise to the embryo reactivate the paternal X chromosome and undergo a random form of XCI (rXCI). Xist, a long non-coding RNA crucial for both forms of XCI, is activated by the ubiquitin ligase RLIM (also known as Rnf12). Although RLIM is required for triggering iXCI in mice, its importance for rXCI has been controversial. Here we show that RLIM levels are downregulated in embryonic cells undergoing rXCI. Using mouse genetics we demonstrate that female cells lacking RLIM from pre-implantation stages onwards show hallmarks of XCI, including Xist clouds and H3K27me3 foci, and have full embryogenic potential. These results provide evidence that RLIM is dispensable for rXCI, indicating that in mice an RLIM-independent mechanism activates Xist in the embryo proper.
Collapse
Affiliation(s)
- JongDae Shin
- Program in Gene Function and Expression, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts 01605, USA
| | - Mary C Wallingford
- Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Judith Gallant
- Department of Cell and Developmental Biology, UMMS, Worcester, Massachusetts 01605, USA
| | - Chelsea Marcho
- Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Baowei Jiao
- 1] Program in Gene Function and Expression, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts 01605, USA [2] Kunming Institute of Zoology, Chinese Academy of Science, Kunming 650223, China
| | - Meg Byron
- Department of Cell and Developmental Biology, UMMS, Worcester, Massachusetts 01605, USA
| | - Michael Bossenz
- Ortenau Klinikum Lahr-Ettenheim, Institut für Pathologie, 77933 Lahr, Germany
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, UMMS, Worcester, Massachusetts 01605, USA
| | - Stephen N Jones
- Department of Cell and Developmental Biology, UMMS, Worcester, Massachusetts 01605, USA
| | - Jesse Mager
- Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Ingolf Bach
- 1] Program in Gene Function and Expression, University of Massachusetts Medical School (UMMS), Worcester, Massachusetts 01605, USA [2] Program in Molecular Medicine, UMMS, Worcester, Massachusetts 01605, USA
| |
Collapse
|
40
|
Kuijk E, Geijsen N, Cuppen E. Pluripotency in the light of the developmental hourglass. Biol Rev Camb Philos Soc 2014; 90:428-43. [DOI: 10.1111/brv.12117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Ewart Kuijk
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
| | - Niels Geijsen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Department of Companion Animals; School of Veterinary Medicine, Utrecht University; Utrecht 3584 CM The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Center Utrecht; Utrecht 3584 CT The Netherlands
- Center for Molecular Medicine; UMC Utrecht; Universiteitsweg 100 Utrecht 3584 GG The Netherlands
| |
Collapse
|
41
|
Abstract
Studies of X chromosome evolution in various organisms have indicated that sex-biased genes are nonrandomly distributed between the X and autosomes. Here, to extend these studies to nematodes, we annotated and analyzed X chromosome gene content in four Caenorhabditis species and in Pristionchus pacificus. Our gene expression analyses comparing young adult male and female mRNA-seq data indicate that, in general, nematode X chromosomes are enriched for genes with high female-biased expression and depleted of genes with high male-biased expression. Genes with low sex-biased expression do not show the same trend of X chromosome enrichment and depletion. Combined with the observation that highly sex-biased genes are primarily expressed in the gonad, differential distribution of sex-biased genes reflects differences in evolutionary pressures linked to tissue-specific regulation of X chromosome transcription. Our data also indicate that X dosage imbalance between males (XO) and females (XX) is influential in shaping both expression and gene content of the X chromosome. Predicted upregulation of the single male X to match autosomal transcription (Ohno's hypothesis) is supported by our observation that overall transcript levels from the X and autosomes are similar for highly expressed genes. However, comparison of differentially located one-to-one orthologs between C. elegans and P. pacificus indicates lower expression of X-linked orthologs, arguing against X upregulation. These contradicting observations may be reconciled if X upregulation is not a global mechanism but instead acts locally on a subset of tissues and X-linked genes that are dosage sensitive.
Collapse
|
42
|
Quinn M, Ramamoorthy S, Cidlowski JA. Sexually dimorphic actions of glucocorticoids: beyond chromosomes and sex hormones. Ann N Y Acad Sci 2014; 1317:1-6. [PMID: 24739020 DOI: 10.1111/nyas.12425] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sexual dimorphism is a well-documented phenomenon that is observed at all levels of the animal kingdom. Historically, sex hormones (testosterone and estrogen) have been implicated as key players in a wide array of pathologies displaying sexual dimorphism in their etiology and progression. While these hormones clearly contribute to sexually dimorphic diseases, other factors may be involved in this phenomenon as well. In particular, the stress hormone cortisol exerts differential effects in both males and females. The underlying molecular basis for the sexually dimorphic actions of glucocorticoids is unknown but clearly important to understand, since synthetic glucocorticoids are the most widely prescribed medication for the treatment of chronic inflammatory diseases and hematological cancers in humans.
Collapse
Affiliation(s)
- Matthew Quinn
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, U. S. Department of Health and Human Services, Research Triangle Park, North Carolina
| | | | | |
Collapse
|
43
|
Pessia E, Engelstädter J, Marais GAB. The evolution of X chromosome inactivation in mammals: the demise of Ohno's hypothesis? Cell Mol Life Sci 2014; 71:1383-94. [PMID: 24173285 PMCID: PMC11113734 DOI: 10.1007/s00018-013-1499-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022]
Abstract
Ohno's hypothesis states that dosage compensation in mammals evolved in two steps: a twofold hyperactivation of the X chromosome in both sexes to compensate for gene losses on the Y chromosome, and silencing of one X (X-chromosome inactivation, XCI) in females to restore optimal dosage. Recent tests of this hypothesis have returned contradictory results. In this review, we explain this ongoing controversy and argue that a novel view on dosage compensation evolution in mammals is starting to emerge. Ohno's hypothesis may be true for a few, dosage-sensitive genes only. If so few genes are compensated, then why has XCI evolved as a chromosome-wide mechanism? This and several other questions raised by the new data in mammals are discussed, and future research directions are proposed.
Collapse
Affiliation(s)
- Eugénie Pessia
- Laboratoire de Biométrie et Biologie Évolutive, Centre National de la Recherche Scientifique, Université Lyon 1, Bat. Gregor Mendel, 16 rue Raphaël Dubois, 69622, Villeurbanne Cedex, France,
| | | | | |
Collapse
|
44
|
Skinner JPJ, Keown AA, Chong MMW. The miR-17 ∼ 92a cluster of microRNAs is required for the fitness of Foxp3+ regulatory T cells. PLoS One 2014; 9:e88997. [PMID: 24523948 PMCID: PMC3921252 DOI: 10.1371/journal.pone.0088997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/14/2014] [Indexed: 12/15/2022] Open
Abstract
By genetic inactivation of key microRNA biogenesis enzymes, we and others have previously demonstrated the critical requirement of the microRNA pathway for the differentiation and function of Foxp3+ regulatory T cells. In this study, we identified members of the miR-17∼92a cluster of microRNAs to be enriched in regulatory T cells. To investigate the function of this microRNA cluster, we deleted the gene specifically in Foxp3+ cells in mice. We found that miR-17∼92a is required for the fitness of regulatory T cells, and deficiency impacted at the level of apoptosis and proliferation of these cells. This led to a loss of Foxp3+ cells over time, particularly in competitive settings, and culminated in a range of immunologic perturbations. Thus, miR-17∼92a-target interactions are part of the essential microRNA networks that safeguard the regulatory T cell lineage.
Collapse
Affiliation(s)
| | - Ashleigh A. Keown
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Mark M. W. Chong
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|