1
|
Dang K, Singh A, Chen X, Cotton JL, Guo S, Hu X, Tao Z, Liu H, Zhu LJ, Ip YT, Wu X, Mao J. Mesenchymal Hippo signaling regulates intestinal homeostasis in adult mice. iScience 2025; 28:111847. [PMID: 39981512 PMCID: PMC11841074 DOI: 10.1016/j.isci.2025.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/16/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Intestinal homeostasis is tightly regulated by the reciprocal interaction between the gut epithelium and adjacent mesenchyme. The Hippo pathway is intimately associated with intestinal epithelial homeostasis and regeneration; however, its role in postnatal gut mesenchyme remains poorly defined. Here, we find that removal of the core Hippo kinases Lats1/2 or activation of YAP in adult intestinal smooth muscle layers has largely no effect; however, Hippo-YAP signaling in the niche-forming Gli1+ mesenchymal cells plays intrinsic roles in regulating intestinal homeostasis. We find that Lats1/2 deletion drives robust mesenchymal over-proliferation, and YAP activation in Gli1+ pericryptal cells disrupts the intestinal epithelial-mesenchymal crosstalk via promoting Wnt ligand production. We show that YAP is upregulated in the stroma during dextran sodium sulfate (DSS)-induced injury, and mesenchymal YAP activation facilitates intestinal epithelial regeneration. Altogether, our data suggest an important role for mesenchymal Hippo-YAP signaling in the stem cell niche during intestinal homeostasis and pathogenesis.
Collapse
Affiliation(s)
- Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alka Singh
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xin Chen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L. Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Susu Guo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xiaodi Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Nutrition and Food Sciences, Texas Woman’s University, Denton, TX 76204, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua J. Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Kim M, Park Y, Kim YS, Ko S. Cellular Plasticity in Gut and Liver Regeneration. Gut Liver 2024; 18:949-960. [PMID: 39081200 PMCID: PMC11565004 DOI: 10.5009/gnl240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intestine and liver share a unique regenerative property that sets them apart from other mammalian visceral organs. The intestinal epithelium exhibits rapid renewal, making it one of the fastest renewing tissues in humans. Under physiological conditions, intestinal stem cells within each intestinal crypt continuously differentiate into the different types of intestinal epithelial cells to maintain intestinal homeostasis. However, when exposed to tissue damage or stressful conditions such as inflammation, intestinal epithelial cells in the gastrointestinal tract exhibit plasticity, allowing fully differentiated cells to regain their stem cell properties. Likewise, hepatic epithelial cells possess a remarkable regenerative capacity to restore lost liver mass through proliferation-mediated liver regeneration. When the proliferation-mediated regenerative capacity is impaired, hepatocytes and biliary epithelial cells (BECs) can undergo plasticity-mediated regeneration and replenish each other. The transition of mammalian liver progenitor cells to hepatocytes/BECs can be observed under tightly controlled experimental conditions such as severe hepatocyte injury accompanied by the loss of regenerative capacity. In this review, we will discuss the mechanism by which cellular plasticity contributes to the regeneration process and the potential therapeutic implications of understanding and harnessing cellular plasticity in the gut and liver.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoojeong Park
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - You Sun Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Wang Z, Song X, Yin W, Shi K, Lin Y, Liu J, Li X, Tan J, Rong J, Xu K, Wang G. Exposure to High Concentrations of Tetrabromobisphenol A Slows the Process of Tissue Regeneration and Induces an Imbalance of Metabolic Homeostasis in the Regenerated Intestines of Apostichopus japonicus. Genes (Basel) 2024; 15:1448. [PMID: 39596648 PMCID: PMC11594171 DOI: 10.3390/genes15111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Tissue regenerative capacity following evisceration, potentially influenced by environmental contaminants and intestinal microflora, is essential for the financial success of Apostichopus japonicus farming. However, the morphological structure, gut microbiome composition, and genes expression pattern of the regenerated gut after exposure to high levels of TBBPA remain poorly unclear. METHODS In this research, the effect of TBBPA exposure on tissue regeneration in A. japonicus was investigated through a comprehensive multi-omics approach. RESULTS Our results showed that the integrity, the intestinal wall thickness, and the villi length of the regenerated intestines in A. japonicus decreased after treatment with high levels of TBBPA. The findings from PCoA and NMDS analyses revealed that the microbial community composition was significantly altered following exposure to high concentrations of TBBPA in the regenerated intestines of A. japonicus. The KEGG pathway enrichment analysis indicated that the DEGs (differentially expressed genes) were predominantly enriched on metabolism and immunity-related signaling pathways after exposure to high levels of TBBPA. These included pathways involved in the PPAR signaling pathway, ECM receptor interaction, glycerolipid metabolism, and fatty acid degradation. Interestingly, the results have demonstrated that there are 77 transcript factors that were significantly different after exposure to TBBPA. CONCLUSIONS These results suggested that high levels of exposure to TBBPA induces an imbalance of the metabolic homeostasis by regulating the expression levels of transcription factors in the regenerated intestines of A. japonicus.
Collapse
Affiliation(s)
- Zi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Xiaojun Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Wenhui Yin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Kuntao Shi
- Weihai Huancui District Marine Development Research Center, Weihai 264200, China;
| | - Ying Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Jixiang Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Xiaohan Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Jiabo Tan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Junjie Rong
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| | - Kefeng Xu
- Marine Science Research Institute of Shandong Province, National Oceanographic Center, Qingdao 266104, China
| | - Guodong Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Z.W.); (X.S.); (W.Y.); (Y.L.); (J.L.); (X.L.); (J.T.); (J.R.)
| |
Collapse
|
4
|
Chen SM, Guo BJ, Feng AQ, Wang XL, Zhang SL, Miao CY. Pathways regulating intestinal stem cells and potential therapeutic targets for radiation enteropathy. MOLECULAR BIOMEDICINE 2024; 5:46. [PMID: 39388072 PMCID: PMC11467144 DOI: 10.1186/s43556-024-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Radiotherapy is a pivotal intervention for cancer patients, significantly impacting their treatment outcomes and survival prospects. Nevertheless, in the course of treating those with abdominal, pelvic, or retroperitoneal malignant tumors, the procedure inadvertently exposes adjacent intestinal tissues to radiation, posing risks of radiation-induced enteropathy upon reaching threshold doses. Stem cells within the intestinal crypts, through their controlled proliferation and differentiation, support the critical functions of the intestinal epithelium, ensuring efficient nutrient absorption while upholding its protective barrier properties. Intestinal stem cells (ISCs) regulation is intricately orchestrated by diverse signaling pathways, among which are the WNT, BMP, NOTCH, EGF, Hippo, Hedgehog and NF-κB, each contributing to the complex control of these cells' behavior. Complementing these pathways are additional regulators such as nutrient metabolic states, and the intestinal microbiota, all of which contribute to the fine-tuning of ISCs behavior in the intestinal crypts. It is the harmonious interplay among these signaling cascades and modulating elements that preserves the homeostasis of intestinal epithelial cells (IECs), thereby ensuring the gut's overall health and function. This review delves into the molecular underpinnings of how stem cells respond in the context of radiation enteropathy, aiming to illuminate potential biological targets for therapeutic intervention. Furthermore, we have compiled a summary of several current treatment methodologies. By unraveling these mechanisms and treatment methods, we aspire to furnish a roadmap for the development of novel therapeutics, advancing our capabilities in mitigating radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China
| | - Bing-Jie Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An-Qiang Feng
- Department of Digestive Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xue-Lian Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Zhu H, Lu J, Fu M, Chen P, Yu Y, Chen M, Zhao Q, Wu M, Ye M. YAP represses intestinal inflammation through epigenetic silencing of JMJD3. Clin Epigenetics 2024; 16:14. [PMID: 38245781 PMCID: PMC10800074 DOI: 10.1186/s13148-024-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Epigenetics plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Some studies have reported that YAP is involved in inflammatory response and can regulate target genes through epigenetic modifications. JMJD3, a histone H3K27me3 demethylase, is associated with some inflammatory diseases. In this study, we investigated the role of YAP in the development of IBD and the underlying epigenetic mechanisms. RESULTS YAP expression was significantly increased in both in vitro and in vivo colitis models as well as in patients with IBD. Epithelial-specific knockout of YAP aggravates disease progression in dextran sodium sulfate (DSS)-induced murine colitis. In the TNF-α-activated cellular inflammation model, YAP knockdown significantly increased JMJD3 expression. Coimmunoprecipitation experiments showed that YAP and EZH2 bind to each other, and chromatin immunoprecipitation-PCR (ChIP-PCR) assay indicated that silencing of YAP or EZH2 decreases H3K27me3 enrichment on the promoter of JMJD3. Finally, administration of the JMJD3 pharmacological inhibitor GSK-J4 alleviated the progression of DSS-induced murine colitis. CONCLUSION Our findings elucidate an epigenetic mechanism by which YAP inhibits the inflammatory response in colitis through epigenetic silencing of JMJD3 by recruiting EZH2.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jiali Lu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - MingYue Fu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ping Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yali Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Intestinal and Colorectal Diseases, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Hubei Clinical Centre and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
6
|
Chen H, Shang Y, Li X, Wang R. YAP1 expression in colorectal cancer confers the aggressive phenotypes via its target genes. Cell Cycle 2024; 23:83-91. [PMID: 38263746 PMCID: PMC11005797 DOI: 10.1080/15384101.2024.2309017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/05/2023] [Indexed: 01/25/2024] Open
Abstract
Yes-associated protein1 (YAP1), a downstream effector of the Hippo pathway, is over-expressed in several types of malignancies. We analyzed retrospectively the TCGA database using 447 colorectal cancer (CRC) samples to determine the correlation between YAP1 expression level and CRC patient prognosis. YAP1-enforced expressed CRC cell lines were constructed using the lentivirus particles containing a YAP1 insert. YAP1 was highly expressed in CRC cancerous tissues and is associated with distant metastasis of CRC patients. Kaplan - Meier analysis indicated that CRC patients with a higher YAP1 expression group (n = 104) had worse disease-free survival (DFS) and overall survival (OS) than lower YAP1 expression group (n = 343) (p = 0.008 and p = 0.022). Univariate and multivariate analysis indicated that the elevated YAP1 expression predicted the aggressive phenotype and was an independent indicator for OS and DFS of CRC patients. YAP1 over-expression in CRC cells enhanced their migration and invasion significantly which can be reversed by AXL, CTGF, or CYR61 interference. The study suggested that YAP1 affected the prognosis of CRC patients and controlled the abilities of invasion and migration of CRC cells via its target genes AXL, CTGF, and CYR61.
Collapse
Affiliation(s)
- Haoyuan Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Rocket Force Guangzhou Special Service Center, Guangzhou, China
| | - Yangyang Shang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xia Li
- Rocket Force Guangzhou Special Service Center, Guangzhou, China
| | - Rongquan Wang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Yang S, Guo LJ, Liang Y, He ZM, Luo J, Mu YD. ADCY6 is a potential prognostic biomarker and suppresses OTSCC progression via Hippo signaling pathway. Kaohsiung J Med Sci 2023; 39:978-988. [PMID: 37574908 DOI: 10.1002/kjm2.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 08/15/2023] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) is a malignant tumor. Recently, studies have found that adenylate cyclase 6 (ADCY6) plays a pivotal role in many lethal tumors formation processes. The role of ADCY6 in OTSCC remains unknown. The expression of ADCY6 in OTSCC tissue samples was detected. The clinical significance of ADCY6 in OTSCC was analyzed by statistical methods. OTSCC cell lines were selected to analyze the biological function of ADCY6. Meanwhile, the effect of ADCY6 on the growth of OTSCC in vivo was explored using subcutaneous tumorigenesis assay. WB assay was used to detect the underlying signaling pathway. Cell function recovery test used to investigate the mechanism of ADCY6-promoting OTSCC malignant biological behavior via Hippo signaling pathway. We report that ADCY6 was obviously downregulated in OTSCC tissue samples and cell lines. Importantly, lower expression of ADCY6 indicates a poorer prognosis in patients with OTSCC, and its expression is significantly correlated with TNM stage and tumor size. Functionally, forced expression of ADCY6 can significantly inhibit the proliferation, migration, invasion, and promote apoptosis of OTSCC cells. Mechanistically, we demonstrated that ADCY6 upregulation impaired Hippo signaling pathway to reduce the malignant biological behavior of OTSCC. Generally, our findings suggest that ADCY6 suppressed Hippo signaling pathway to regulate malignant biological behavior in OTSCC, which provide new cues for further exploring the mechanism of occurrence and development of OTSCC.
Collapse
Affiliation(s)
- Sen Yang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Suining Central Hospital, Sichuan, China
| | - Li-Juan Guo
- Department of Medical Cosmetology, Suining Central Hospital, Sichuan, China
| | - Yong Liang
- Institute of Electronic and Information Engineering of UESTC in Guangdong, University of Electronic Science and Technology of China, Dongguan, China
| | - Zhi-Ming He
- Institute of Electronic and Information Engineering of UESTC in Guangdong, University of Electronic Science and Technology of China, Dongguan, China
| | - Jia Luo
- Department of Stomatology Center, Suining Central Hospital, Sichuan, China
| | - Yan-Dong Mu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Chen Y, Wang Y, Zhai Y, Yuan Y, Wang J, Jin Y, Dang L, Song L, Chen C, Wang Y. Cinobufacini injection suppresses the proliferation of human osteosarcoma cells by inhibiting PIN1-YAP/TAZ signaling pathway. Front Pharmacol 2023; 14:1081363. [PMID: 37006999 PMCID: PMC10063998 DOI: 10.3389/fphar.2023.1081363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Cinobufacini injection (CI), an aqueous extract of Cutis Bufonis, is clinically used for cancer therapy in China, but its molecular mechanism for the treatment of osteosarcoma (OS) remains unclear. We constructed U2OS ectopic subcutaneous tumor model to verify the anti-OS effect of CI in vivo. Meanwhile, cell proliferation of U2OS and MG63 cells was monitored in vitro using the CCK-8 assay, colony formation and morphological changes. Cell cycle arrest and apoptosis were detected by flow cytometry and western blot, which showed that CI significantly inhibited proliferation, induced cell cycle arrest and apoptosis in human OS cells. The further RNA-seq results identified that the Hippo signaling pathway was involved in the anti-OS effect of CI. YAP/TAZ are two major components of the Hippo pathway in breast cancer and are positively regulated by prolyl isomerase PIN1, we assessed their role in OS using both clinicopathological sections and western blots. CI also inhibited PIN1 enzyme activity in a dose-dependent manner, which resulted in impaired PIN1, YAP, and TAZ expression in vitro and in vivo. Additionally, 15 potential compounds of CI were found to occupy the PIN1 kinase domain and inhibit its activity. In summary, CI plays an anti-OS role by down-regulating the PIN1-YAP/TAZ pathway.
Collapse
Affiliation(s)
- Yuru Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Yanyan Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Zhai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ye Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Junhong Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Lingling Dang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Liming Song
- Department of Joint Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Karo-Atar D, Ouladan S, Javkar T, Joumier L, Matheson MK, Merritt S, Westfall S, Rochette A, Gentile ME, Fontes G, Fonseca GJ, Parisien M, Diatchenko L, von Moltke J, Malleshaiah M, Gregorieff A, King IL. Helminth-induced reprogramming of the stem cell compartment inhibits type 2 immunity. J Exp Med 2022; 219:e20212311. [PMID: 35938990 PMCID: PMC9365672 DOI: 10.1084/jem.20212311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/23/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Enteric helminths form intimate physical connections with the intestinal epithelium, yet their ability to directly alter epithelial stem cell fate has not been resolved. Here we demonstrate that infection of mice with the parasite Heligmosomoides polygyrus bakeri (Hpb) reprograms the intestinal epithelium into a fetal-like state marked by the emergence of Clusterin-expressing revival stem cells (revSCs). Organoid-based studies using parasite-derived excretory-secretory products reveal that Hpb-mediated revSC generation occurs independently of host-derived immune signals and inhibits type 2 cytokine-driven differentiation of secretory epithelial lineages that promote their expulsion. Reciprocally, type 2 cytokine signals limit revSC differentiation and, consequently, Hpb fitness, indicating that helminths compete with their host for control of the intestinal stem cell compartment to promote continuation of their life cycle.
Collapse
Affiliation(s)
- Danielle Karo-Atar
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- McGill Regenerative Medicine Network, Montreal, Quebec, Canada
| | - Shaida Ouladan
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Regenerative Medicine Network, Montreal, Quebec, Canada
| | - Tanvi Javkar
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Regenerative Medicine Network, Montreal, Quebec, Canada
| | - Loick Joumier
- Division of Systems Biology, Montreal Clinical Research Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Sydney Merritt
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Susan Westfall
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Annie Rochette
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Regenerative Medicine Network, Montreal, Quebec, Canada
| | - Maria E. Gentile
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Ghislaine Fontes
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Gregory J. Fonseca
- McGill University Health Centre, Meakins-Christie Laboratories, Department of Medicine, Division of Quantitative Life Sciences, Montreal, Quebec, Canada
| | - Marc Parisien
- Department of Human Genetics, Allen Edwards Centre for Pain Research, McGill University, Montreal, Quebec, Canada
| | - Luda Diatchenko
- Department of Human Genetics, Allen Edwards Centre for Pain Research, McGill University, Montreal, Quebec, Canada
| | | | - Mohan Malleshaiah
- Division of Systems Biology, Montreal Clinical Research Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
- McGill Regenerative Medicine Network, Montreal, Quebec, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University and Cancer Research Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Regenerative Medicine Network, Montreal, Quebec, Canada
| | - Irah L. King
- Department of Microbiology and Immunology, Meakins-Christie Laboratories, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
- McGill Regenerative Medicine Network, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Zhang J, Tong Y, Lu X, Dong F, Ma X, Yin S, He Y, Liu Y, Liu Q, Fan D. A derivant of ginsenoside CK and its inhibitory effect on hepatocellular carcinoma. Life Sci 2022; 304:120698. [PMID: 35690105 DOI: 10.1016/j.lfs.2022.120698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
Epidemiological studies have shown that hepatocellular carcinoma (HCC) is a main cause of tumor death worldwide. Accumulating data indicate that ginsenoside CK is an effective compound for preventing HCC growth and development. However, improvement of pharmaceutical effect of the ginsenoside CK is still needed. In our study, we performed acetylation of ginsenoside CK (CK-3) and investigated the antitumor effects of the derivative in vitro and in vivo. The cytotoxicity analysis revealed that compared with CK, CK-3 could inhibit the proliferation of multiple tumor cell lines at a lower concentration. Treating with CK-3 on HCC cells arrested cell cycle in G2/M phase and induced cell apoptosis through AO/EB staining, TUNEL analysis and flow cytometry. Meanwhile, CK-3 significantly inhibited tumor growth in an HCC xenograft model and showed no side effect on the function of the main organs. Mechanistically, whole transcriptome analysis revealed that the antitumor effect of CK-3 was involved in the Hippo signaling pathway. The immunoblotting and immunofluorescence results illustrated that CK-3 directly facilitated the phosphorylation of YAP1 and decreased the expression of the main transcription factor TEAD2 in HCC cell lines and tumor tissue sections. Collectively, our results demostrate the formation of a new derivative of ginsenoside CK and its regulatory mechanism in HCC, which could activate the Hippo-YAP1-TEAD2 signaling pathway to regulate HCC progression. This research could provide a new direction for traditional Chinese medicine in the therapy of tumors.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yangliu Tong
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xun Lu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Fangming Dong
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Shiyu Yin
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Ying He
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Yonghong Liu
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
11
|
Khoramjoo SM, Kazemifard N, Baradaran Ghavami S, Farmani M, Shahrokh S, Asadzadeh Aghdaei H, Sherkat G, Zali MR. Overview of Three Proliferation Pathways (Wnt, Notch, and Hippo) in Intestine and Immune System and Their Role in Inflammatory Bowel Diseases (IBDs). Front Med (Lausanne) 2022; 9:865131. [PMID: 35677821 PMCID: PMC9170180 DOI: 10.3389/fmed.2022.865131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder, which involves the gastrointestinal (GI) tract consisting Crohn's disease (CD) and ulcerative colitis (UC). The etiology of this disease is not yet clear and, hence, there are numerous medications and treatments for patients with IBD, although a definite and permanent treatment is still missing. Therefore, finding novel therapeutic approaches are vital for curing patients with IBD. In the GI tract, there are various lineages of cells with different roles that their existence is necessary for the barrier function of intestinal epithelial cells (IECs). Therefore, signaling pathways, which manage the hemostasis of cell lineages in intestine, such as Wnt, Notch, and Hippo, could have crucial roles in regulation of barrier function in the intestine. Additionally, these signaling pathways function as a governor of cell growth, tissue homeostasis, and organ size. In patients with IBD, recent studies have revealed that these signaling pathways are dysregulated that it could result in depletion or excess of a cell lineage in the intestine. Moreover, dysregulation of these signaling pathways in different cell lineages of the immune system could lead to dysregulation of the immune system's responses in IBD. In this article, we summarized the components and signaling of Wnt, Notch, and Hippo pathways and their role in the intestine and immune system. Furthermore, we reviewed latest scientific literature on the crosstalk among these three signaling pathways in IBD. An overview of these three signaling pathways and their interactions in IBD could provide a novel insight for prospective study directions into finding efficient medications or treatments.
Collapse
Affiliation(s)
- Seyed Mobin Khoramjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nesa Kazemifard
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Shaghayegh Baradaran Ghavami
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Sherkat
- Faculty of Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Guo Q, Quan MY, Xu L, Cai Y, Cai JT, Li X, Feng G, Chen A, Yang W, Dhlamini Q, Jiang TF, Shen C, Chen C, Zhang JS. Enhanced nuclear localization of YAP1-2 contributes to EGF-induced EMT in NSCLC. J Cell Mol Med 2022; 26:1013-1023. [PMID: 35014181 PMCID: PMC8831977 DOI: 10.1111/jcmm.17150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
YAP1, a key mediator of the Hippo pathway, plays an important role in tumorigenesis. Alternative splicing of human YAP1 mRNA results in two major isoforms: YAP1‐1, which contains a single WW domain, and YAP1‐2, which contains two WW domains, respectively. We here investigated the functions and the underlying regulatory mechanisms of the two YAP1 isoforms in the context of EGF‐induced epithelial‐mesenchymal transition (EMT) in non‐small cell lung cancer (NSCLC). Human NSCLC cell lines express both YAP1‐1 and YAP1‐2 isoforms—although when compared to YAP1‐1, YAP1‐2 mRNA levels are higher while its protein expression levels are lower. EGF treatment significantly promoted YAP1 expression as well as EMT process in NSCLCs, whereas EGF‐induced EMT phenotype was significantly alleviated upon YAP1 knockdown. Under normal culture condition, YAP1‐1 stable expression cells exhibited a stronger migration ability than YAP1‐2 expressing cells. However, upon EGF treatment, YAP1‐2 stable cells showed more robust migration than YAP1‐1 expressing cells. The protein stability and nuclear localization of YAP1‐2 were preferentially enhanced with EGF treatment. Moreover, EGF‐induced EMT and YAP1‐2 activity were suppressed by inhibitor of AKT. Our results suggest that YAP1‐2 is the main isoform that is functionally relevant in promoting EGF‐induced EMT and ultimately NSCLC progression.
Collapse
Affiliation(s)
- Qiang Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mei-Yu Quan
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Le Xu
- Division of Respiratory Medicine, Taizhou Enze Medical Center Enze Hospital, Taizhou, Zhejiang, China
| | - Yaxin Cai
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jue-Ting Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guifeng Feng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aiping Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiwei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qhaweni Dhlamini
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tian-Fang Jiang
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengguo Shen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin-San Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Meyer AR, Brown ME, McGrath PS, Dempsey PJ. Injury-Induced Cellular Plasticity Drives Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2021; 13:843-856. [PMID: 34915204 PMCID: PMC8803615 DOI: 10.1016/j.jcmgh.2021.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The epithelial lining of the intestine, particularly the stem cell compartment, is affected by harsh conditions in the luminal environment and also is susceptible to genotoxic agents such as radiation and chemotherapy. Therefore, the ability for intestinal epithelial cells to revert to a stem cell state is an important physiological damage response to regenerate the intestinal epithelium at sites of mucosal injury. Many signaling networks involved in maintaining the stem cell niche are activated as part of the damage response to promote cellular plasticity and regeneration. The relative contribution of each cell type and signaling pathway is a critical area of ongoing research, likely dependent on the nature of injury as well as the regional specification within the intestine. Here, we review the current understanding of the multicellular cooperation to restore the intestinal epithelium after damage.
Collapse
Affiliation(s)
| | | | | | - Peter J. Dempsey
- Correspondence Address correspondence to: Peter J. Dempsey, PhD, Section of Developmental Biology, Department of Pediatrics, University of Colorado School of Medicine, 1775 Aurora Court, Barbara Davis Center, M20–3306, Aurora, Colorado 80045. fax: (303) 724-6538.
| |
Collapse
|
14
|
Yang D, Zhang N, Li M, Hong T, Meng W, Ouyang T. The Hippo Signaling Pathway: The Trader of Tumor Microenvironment. Front Oncol 2021; 11:772134. [PMID: 34858852 PMCID: PMC8632547 DOI: 10.3389/fonc.2021.772134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway regulates cancer biology in many aspects and the crosstalk with other pathways complicates its role. Accumulated evidence has shown that the bidirectional interactions between tumor cells and tumor microenvironment (TME) are the premises of tumor occurrence, development, and metastasis. The relationship among different components of the TME constitutes a three-dimensional network. We point out the core position of the Hippo pathway in this network and discuss how the regulatory inputs cause the chain reaction of the network. We also discuss the important role of Hippo-TME involvement in cancer treatment.
Collapse
Affiliation(s)
- Duo Yang
- Department of the Forth Clinical Medical College of Nanchang University, Nanchang, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Morice S, Danieau G, Tesfaye R, Mullard M, Brion R, Dupuy M, Ory B, Brounais-Le Royer B, Corre I, Redini F, Verrecchia F. Involvement of the TGF-β Signaling Pathway in the Development of YAP-Driven Osteosarcoma Lung Metastasis. Front Oncol 2021; 11:765711. [PMID: 34765560 PMCID: PMC8576330 DOI: 10.3389/fonc.2021.765711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Background The poor survival rate of patients with osteosarcoma (OS), specifically with metastases at diagnosis, undergoes the urgency to develop new therapeutic strategies. Although we recently demonstrated the key role of YAP/TEAD signaling in the growth of OS primary tumor, the molecular mechanisms by which YAP regulates metastases development remain poorly understood. Methods The molecular mechanisms by which YAP regulates metastases development were studied using an overexpression of mutated forms of YAP able or not able to interact with TEAD. Molecular signatures were identified using RNA-sequencing analysis and gene set enrichment. Interactions between YAP and Smad3 were studied using proximity ligation assay (PLA), immunoprecipitation, and promoter/specific gene assays. The involvement of the TGF-β pathway in the ability of YAP to stimulate metastatic development in vivo was studied using an inhibitor of the TGF-β cascade in a preclinical model of OS and in vitro on the ability of OS cells to migrate and invade. Results Our work shows that a high YAP expression is associated with the presence of lung metastases which predicts a poor prognosis. Molecular analysis indicates that TGF-β signaling is involved in YAP-driven osteosarcoma cell pro-migratory phenotype, epithelial mesenchymal transition, cell migration, and in vivo lung metastasis development. Regardless of its ability to bind to TEAD, YAP interacts with Smad3 and stimulates the transcriptional activity of TGF-β/Smad3, thereby enhancing the ability of TGF-β to stimulate lung metastasis development. Conclusions We demonstrated the crucial involvement of the TGF-β/Smad3 signaling pathway in YAP-driven lung metastasis development in OS.
Collapse
Affiliation(s)
- Sarah Morice
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| | - Geoffroy Danieau
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| | - Robel Tesfaye
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| | - Mathilde Mullard
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| | - Régis Brion
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France.,Centre Hospitalier Universitaire (CHU) Hôtel Dieu, Nantes, France
| | - Maryne Dupuy
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| | - Benjamin Ory
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| | - Bénédicte Brounais-Le Royer
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| | - Isabelle Corre
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| | - Françoise Redini
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| | - Franck Verrecchia
- Université de Nantes, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche (INSERM UMR) 1238, Nantes, France
| |
Collapse
|
16
|
Identifying key regulators of the intestinal stem cell niche. Biochem Soc Trans 2021; 49:2163-2176. [PMID: 34665221 PMCID: PMC8589435 DOI: 10.1042/bst20210223] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
The intestinal tract is lined by a single layer of epithelium that is one of the fastest regenerating tissues in the body and which therefore requires a very active and exquisitely controlled stem cell population. Rapid renewal of the epithelium is necessary to provide a continuous physical barrier from the intestinal luminal microenvironment that contains abundant microorganisms, whilst also ensuring an efficient surface for the absorption of dietary components. Specialised epithelial cell populations are important for the maintenance of intestinal homeostasis and are derived from adult intestinal stem cells (ISCs). Actively cycling ISCs divide by a neutral drift mechanism yielding either ISCs or transit-amplifying epithelial cells, the latter of which differentiate to become either absorptive lineages or to produce secretory factors that contribute further to intestinal barrier maintenance or signal to other cellular compartments. The mechanisms controlling ISC abundance, longevity and activity are regulated by several different cell populations and signalling pathways in the intestinal lamina propria which together form the ISC niche. However, the complexity of the ISC niche and communication mechanisms between its different components are only now starting to be unravelled with the assistance of intestinal organoid/enteroid/colonoid and single-cell imaging and sequencing technologies. This review explores the interaction between well-established and emerging ISC niche components, their impact on the intestinal epithelium in health and in the context of intestinal injury and highlights future directions and implications for this rapidly developing field.
Collapse
|
17
|
Guillermin O, Angelis N, Sidor CM, Ridgway R, Baulies A, Kucharska A, Antas P, Rose MR, Cordero J, Sansom O, Li VSW, Thompson BJ. Wnt and Src signals converge on YAP-TEAD to drive intestinal regeneration. EMBO J 2021; 40:e105770. [PMID: 33950519 PMCID: PMC8246259 DOI: 10.15252/embj.2020105770] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Wnt signalling induces a gradient of stem/progenitor cell proliferation along the crypt-villus axis of the intestine, which becomes expanded during intestinal regeneration or tumour formation. The YAP transcriptional co-activator is known to be required for intestinal regeneration, but its mode of regulation remains controversial. Here we show that the YAP-TEAD transcription factor is a key downstream effector of Wnt signalling in the intestine. Loss of YAP activity by Yap/Taz conditional knockout results in sensitivity of crypt stem cells to apoptosis and reduced cell proliferation during regeneration. Gain of YAP activity by Lats1/2 conditional knockout is sufficient to drive a crypt hyperproliferation response. In particular, Wnt signalling acts transcriptionally to induce YAP and TEAD1/2/4 expression. YAP normally localises to the nucleus only in crypt base stem cells, but becomes nuclear in most intestinal epithelial cells during intestinal regeneration after irradiation, or during organoid growth, in a Src family kinase-dependent manner. YAP-driven crypt expansion during regeneration involves an elongation and flattening of the Wnt signalling gradient. Thus, Wnt and Src-YAP signals cooperate to drive intestinal regeneration.
Collapse
Affiliation(s)
- Oriane Guillermin
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Nikolaos Angelis
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Clara M Sidor
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Rachel Ridgway
- Colorectal Cancer and Wnt signalling LaboratoryCancer Research UK Beatson InstituteGlasgowUK
| | - Anna Baulies
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Anna Kucharska
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Pedro Antas
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Melissa R Rose
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Julia Cordero
- Institute of Cancer SciencesWolfson Wohl Cancer Research CentreBearsdenUK
| | - Owen Sansom
- Colorectal Cancer and Wnt signalling LaboratoryCancer Research UK Beatson InstituteGlasgowUK
| | - Vivian S W Li
- Stem Cell and Cancer Biology LaboratoryFrancis Crick InstituteLondonUK
| | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
- EMBL Australia ACRF Department of Cancer Biology & TherapeuticsJohn Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| |
Collapse
|
18
|
Peired AJ, Antonelli G, Angelotti ML, Allinovi M, Guzzi F, Sisti A, Semeraro R, Conte C, Mazzinghi B, Nardi S, Melica ME, De Chiara L, Lazzeri E, Lasagni L, Lottini T, Landini S, Giglio S, Mari A, Di Maida F, Antonelli A, Porpiglia F, Schiavina R, Ficarra V, Facchiano D, Gacci M, Serni S, Carini M, Netto GJ, Roperto RM, Magi A, Christiansen CF, Rotondi M, Liapis H, Anders HJ, Minervini A, Raspollini MR, Romagnani P. Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Sci Transl Med 2021; 12:12/536/eaaw6003. [PMID: 32213630 DOI: 10.1126/scitranslmed.aaw6003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 10/15/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC. Furthermore, NOTCH1 overexpression in cultured human renal progenitor cells induced tumor-like 3D growth. Thus, AKI can drive tumorigenesis from local tissue progenitor cells. In particular, we find that AKI promotes the development of pRCC from single progenitors through a classical adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Anna Julie Peired
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Giulia Antonelli
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Marco Allinovi
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy.,Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence 50139, Italy
| | - Francesco Guzzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Alessandro Sisti
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Carolina Conte
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Sara Nardi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Maria Elena Melica
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Letizia De Chiara
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Elena Lazzeri
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence 50139, Italy
| | - Samuela Landini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Sabrina Giglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | - Andrea Mari
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Fabrizio Di Maida
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Alessandro Antonelli
- Department of Urology, Spedali Civili Hospital, University of Brescia, Brescia 25123, Italy
| | - Francesco Porpiglia
- Department of Urology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Riccardo Schiavina
- Department of Urology, S. Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy
| | | | - Davide Facchiano
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Mauro Gacci
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Sergio Serni
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rosa Maria Roperto
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| | - Alberto Magi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy
| | | | - Mario Rotondi
- Unit of Internal Medicine and Endocrinology, ICS Maugeri I.R.C.C.S., Scientific Institute of Pavia, Pavia 28100, Italy
| | | | - Hans-Joachim Anders
- Division of Nephrology, Medizinische Klinik and Poliklinik IV, Klinikum der LMU München, Munich 80336, Germany
| | - Andrea Minervini
- Department of Urology, Careggi Hospital, University of Florence, Florence 50139, Italy
| | | | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), University of Florence, Florence 50139, Italy. .,Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence 50139, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence 50139, Italy
| |
Collapse
|
19
|
Chen G, Li Y, Li X, Zhou D, Wang Y, Wen X, Wang C, Liu X, Feng Y, Li B, Li N. Functional foods and intestinal homeostasis: The perspective of in vivo evidence. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
21
|
Pu Z, Yang F, Wang L, Diao Y, Chen D. Advancements of compounds targeting Wnt and Notch signalling pathways in the treatment of inflammatory bowel disease and colon cancer. J Drug Target 2020; 29:507-519. [PMID: 33307848 DOI: 10.1080/1061186x.2020.1864741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Wnt and Notch signalling pathways are important for maintenance of intestinal epithelial barrier integrity by intestinal stem cells (ISCs). Dysfunction of these pathways is implicated in inflammatory bowel disease (IBD) and colon cancer. The objective of this review is to summarise advancements of drugs that regulate Wnt and Notch in the treatment of IBD and colon cancer. The compositions and biological effects of Wnt and Notch modulators in both ISCs and non-ISCs are discussed. The drugs, including phytochemicals, plant extracts, probiotics and synthetic compounds, have been found to regulate Wnt and Notch signalling pathways by targeting regulatory factors (including secreted frizzled-related proteins or pathway proteins such as β-catenin and γ-secretase) to alleviate IBD and colon cancer. This review highlights the potential for targeting Wnt and Notch pathways to treat IBD and colon cancer.
Collapse
Affiliation(s)
- Zhuonan Pu
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| | - Fang Yang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| | - Liang Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| | - Yunpeng Diao
- Colleage of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
22
|
Morice S, Mullard M, Brion R, Dupuy M, Renault S, Tesfaye R, Brounais-Le Royer B, Ory B, Redini F, Verrecchia F. The YAP/TEAD Axis as a New Therapeutic Target in Osteosarcoma: Effect of Verteporfin and CA3 on Primary Tumor Growth. Cancers (Basel) 2020; 12:cancers12123847. [PMID: 33419295 PMCID: PMC7766439 DOI: 10.3390/cancers12123847] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Although some studies suggested that disruption of the Hippo signaling pathway is associated with osteosarcoma progression, the molecular mechanisms by which YAP regulates primary tumor growth is not fully clarified. In addition, the validation of YAP as a therapeutic target through the use of inhibitors in a preclinical model must be demonstrated. RNA-seq analysis and Kaplan-Meier assays identified a YAP signature in osteosarcoma patients and a correlation with patients' outcomes. Molecular and cellular analysis (RNAseq, PLA, immunoprecipitation, promoter/specific gene, proliferation, cell cycle assays) using overexpression of mutated forms of YAP able or unable to interact with TEAD, indicate that TEAD is crucial for YAP-driven cell proliferation and in vivo tumor growth. In addition, in vivo experiments using an orthotopic mice model of osteosarcoma show that two YAP/TEAD inhibitors, verteporfin and CA3, reduce primary tumor growth. In this context, in vitro experiments demonstrate that these inhibitors decrease YAP expression, YAP/TEAD transcriptional activity and cell viability mainly by their ability to induce cell apoptosis. We thus demonstrate that the YAP/TEAD signaling axis is a central actor in mediating primary tumor growth of osteosarcoma, and that the use of YAP inhibitors may be a promising therapeutic strategy against osteosarcoma tumor growth.
Collapse
Affiliation(s)
- Sarah Morice
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Mathilde Mullard
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | | | - Maryne Dupuy
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Sarah Renault
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Robel Tesfaye
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Bénédicte Brounais-Le Royer
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Benjamin Ory
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Françoise Redini
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Franck Verrecchia
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
- Correspondence: ; Tel.: +33-244-769-116
| |
Collapse
|
23
|
Crosby K, Wood AW, Simendinger J, Grange C, Carr L, Costa-Grant K, Roller CJ, Polakiewicz RD. YAP vs. TAZ: differences in expression revealed through rigorous validation of target-specific monoclonal antibodies. J Histotechnol 2020; 43:182-195. [PMID: 33245266 DOI: 10.1080/01478885.2020.1847012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The ability to reproduce scientific findings is foundational in research; yet, it is compromised in part by poorly characterized reagents, including antibodies. In this report, we describe the application of complementary validation strategies tailored for use in immunohistochemical assays in the characterization of rabbit monoclonal antibodies against YAP and TAZ, homologous and sequentially similar transcriptional effectors of the Hippo signaling pathway. A lack of antibody reagents rigorously validated for immunohistochemistry has limited the Hippo signaling research community's ability to interrogate YAP and TAZ independently in tissue. In a series of normal and diseased human tissues, we were able to demonstrate differential expression patterns of YAP and TAZ, suggesting the potential for functional differences of these proteins. These differences can now be studied in greater detail with these highly validated tools.
Collapse
Affiliation(s)
- Katherine Crosby
- Product Development, Cell Signaling Technology , Danvers, MA, USA
| | - Antony W Wood
- Product Development, Cell Signaling Technology , Danvers, MA, USA
| | | | | | - Lauren Carr
- Product Development, Cell Signaling Technology , Danvers, MA, USA
| | | | - Caitlin J Roller
- Product Development, Cell Signaling Technology , Danvers, MA, USA
| | | |
Collapse
|
24
|
Abstract
In this issue of Cell Stem Cell, Li et al. (2020) reveal pivotal roles for Lats1/2 in adult, Wnt-mediated intestinal homeostasis through TEAD-dependent and -independent transcription. Loss of Lats1/2 mobilizes a previously unrecognized YAP/TAZ-Groucho/TLE interaction to suppress Wnt/TCF-mediated transcription, thereby resulting in intestinal stem cell depletion and Wnt-uncoupled progenitor expansion.
Collapse
|
25
|
Gu Y, Wang Y, Wang Y, Luo J, Wang X, Ma M, Hua W, Liu Y, Yu FX. Hypermethylation of LATS2 Promoter and Its Prognostic Value in IDH-Mutated Low-Grade Gliomas. Front Cell Dev Biol 2020; 8:586581. [PMID: 33195240 PMCID: PMC7642219 DOI: 10.3389/fcell.2020.586581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the enzyme isocitrate dehydrogenase 1/2 (IDH1/2) are the most common somatic mutations in low-grade glioma (LGG). The Hippo signaling pathway is known to play a key role in organ size control, and its dysregulation is involved in the development of diverse cancers. Large tumor suppressor 1/2 (LATS1/2) are core Hippo pathway components that phosphorylate and inactivate Yes-associated protein (YAP), a transcriptional co-activator that regulates expression of genes involved in tumorigenesis. A recent report from The Cancer Genome Atlas (TCGA) has highlighted a frequent hypermethylation of LATS2 in IDH-mutant LGG. However, it is unclear if LATS2 hypermethylation is associated with YAP activation and prognosis of LGG patients. Here, we performed a network analysis of the status of the Hippo pathway in IDH-mutant LGG samples and determined its association with cancer prognosis. Combining TCGA data with our biochemical assays, we found hypermethylation of LATS2 promoter in IDH-mutant LGG. LATS2 hypermethylation, however, did not translate into YAP activation but highly correlated with IDH mutation. LATS2 hypermethylation may thus serve as an alternative for IDH mutation in diagnosis and a favorable prognostic factor for LGG patients.
Collapse
Affiliation(s)
- Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yebin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqian Luo
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyue Ma
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and the Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 2020; 22:39-53. [PMID: 32958874 DOI: 10.1038/s41580-020-0278-0] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
Intestinal stem cells at the bottom of crypts fuel the rapid renewal of the different cell types that constitute a multitasking tissue. The intestinal epithelium facilitates selective uptake of nutrients while acting as a barrier for hostile luminal contents. Recent discoveries have revealed that the lineage plasticity of committed cells - combined with redundant sources of niche signals - enables the epithelium to efficiently repair tissue damage. New approaches such as single-cell transcriptomics and the use of organoid models have led to the identification of the signals that guide fate specification of stem cell progeny into the six intestinal cell lineages. These cell types display context-dependent functionality and can adapt to different requirements over their lifetime, as dictated by their microenvironment. These new insights into stem cell regulation and fate specification could aid the development of therapies that exploit the regenerative capacity and functionality of the gut.
Collapse
|
27
|
Le Beyec J, Billiauws L, Bado A, Joly F, Le Gall M. Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition? Annu Rev Nutr 2020; 40:299-321. [PMID: 32631145 DOI: 10.1146/annurev-nutr-011720-122203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Short bowel syndrome (SBS) is a rare disease that results from extensive resection of the intestine. When the remaining absorption surface of the intestine cannot absorb enough macronutrients, micronutrients, and water, SBS results in intestinal failure (IF). Patients with SBS who suffer from IF require parenteral nutrition for survival, but long-term parenteral nutrition may lead to complications such as catheter sepsis and metabolic diseases. Spontaneous intestinal adaptation occurs weeks to months after resection, resulting in hyperplasia of the remnant gut, modification of gut hormone levels, dysbiosis, and hyperphagia. Oral nutrition and presence of the colon are two major positive drivers for this adaptation. This review aims to summarize the current knowledge of the mechanisms underlying spontaneous intestinal adaptation, particularly in response to modifications of luminal content, including nutrients. In the future, dietary manipulations could be used to treat SBS.
Collapse
Affiliation(s)
- Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Biochimie Endocrinienne et Oncologique, Hôpital Pitié-Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75013 Paris, France
| | - Lore Billiauws
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - Maude Le Gall
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| |
Collapse
|
28
|
Zhao S, Xu K, Jiang R, Li DY, Guo XX, Zhou P, Tang JF, Li LS, Zeng D, Hu L, Ran JH, Li J, Chen DL. Evodiamine inhibits proliferation and promotes apoptosis of hepatocellular carcinoma cells via the Hippo-Yes-Associated Protein signaling pathway. Life Sci 2020; 251:117424. [DOI: 10.1016/j.lfs.2020.117424] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/01/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
|
29
|
Ye Z, Su Z, Xie S, Liu Y, Wang Y, Xu X, Zheng Y, Zhao M, Jiang L. Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration. eLife 2020; 9:55771. [PMID: 32352377 PMCID: PMC7250571 DOI: 10.7554/elife.55771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
The sox2 expressing (sox2+) progenitors in adult mammalian inner ear lose the capacity to regenerate while progenitors in the zebrafish lateral line are able to proliferate and regenerate damaged HCs throughout lifetime. To mimic the HC damage in mammals, we have established a zebrafish severe injury model to eliminate both progenitors and HCs. The atoh1a expressing (atoh1a+) HC precursors were the main population that survived post severe injury, and gained sox2 expression to initiate progenitor regeneration. In response to severe injury, yap was activated to upregulate lin28a transcription. Severe-injury-induced progenitor regeneration was disabled in lin28a or yap mutants. In contrary, overexpression of lin28a initiated the recovery of sox2+ progenitors. Mechanistically, microRNA let7 acted downstream of lin28a to activate Wnt pathway for promoting regeneration. Our findings that lin28a is necessary and sufficient to regenerate the exhausted sox2+ progenitors shed light on restoration of progenitors to initiate HC regeneration in mammals.
Collapse
Affiliation(s)
- Zhian Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Siyu Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Yuye Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongqiang Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xi Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Linjia Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
30
|
Li Q, Sun Y, Jarugumilli GK, Liu S, Dang K, Cotton JL, Xiol J, Chan PY, DeRan M, Ma L, Li R, Zhu LJ, Li JH, Leiter AB, Ip YT, Camargo FD, Luo X, Johnson RL, Wu X, Mao J. Lats1/2 Sustain Intestinal Stem Cells and Wnt Activation through TEAD-Dependent and Independent Transcription. Cell Stem Cell 2020; 26:675-692.e8. [PMID: 32259481 DOI: 10.1016/j.stem.2020.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
Abstract
Intestinal homeostasis is tightly regulated by complex yet poorly understood signaling networks. Here, we demonstrate that Lats1/2, the core Hippo kinases, are essential to maintain Wnt pathway activity and intestinal stem cells. Lats1/2 deletion leads to loss of intestinal stem cells but drives Wnt-uncoupled crypt expansion. To explore the function of downstream transcriptional enhanced associate domain (TEAD) transcription factors, we identified a selective small-molecule reversible inhibitor of TEAD auto-palmitoylation that directly occupies its lipid-binding site and inhibits TEAD-mediated transcription in vivo. Combining this chemical tool with genetic and proteomics approaches, we show that intestinal Wnt inhibition by Lats deletion is Yes-associated protein (YAP)/transcriptional activator with PDZ-binding domain (TAZ) dependent but TEAD independent. Mechanistically, nuclear YAP/TAZ interact with Groucho/Transducin-Like Enhancer of Split (TLE) to block Wnt/T-cell factor (TCF)-mediated transcription, and dual inhibition of TEAD and Lats suppresses Wnt-uncoupled Myc upregulation and epithelial over-proliferation in Adenomatous polyposis coli (APC)-mutated intestine. Our studies highlight a pharmacological approach to inhibit TEAD palmitoylation and have important implications for targeting Wnt and Hippo signaling in human malignancies.
Collapse
Affiliation(s)
- Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shun Liu
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jordi Xiol
- Stem Cell Program, Department of Hematology/Oncology, Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Pui Yee Chan
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael DeRan
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lifang Ma
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joyce H Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew B Leiter
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fernando D Camargo
- Stem Cell Program, Department of Hematology/Oncology, Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xuelian Luo
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy L Johnson
- Division of Basic Science Research, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
31
|
Mayr U, Serra D, Liberali P. Exploring single cells in space and time during tissue development, homeostasis and regeneration. Development 2019; 146:146/12/dev176727. [DOI: 10.1242/dev.176727] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ABSTRACT
Complex 3D tissues arise during development following tightly organized events in space and time. In particular, gene regulatory networks and local interactions between single cells lead to emergent properties at the tissue and organism levels. To understand the design principles of tissue organization, we need to characterize individual cells at given times, but we also need to consider the collective behavior of multiple cells across different spatial and temporal scales. In recent years, powerful single cell methods have been developed to characterize cells in tissues and to address the challenging questions of how different tissues are formed throughout development, maintained in homeostasis, and repaired after injury and disease. These approaches have led to a massive increase in data pertaining to both mRNA and protein abundances in single cells. As we review here, these new technologies, in combination with in toto live imaging, now allow us to bridge spatial and temporal information quantitatively at the single cell level and generate a mechanistic understanding of tissue development.
Collapse
Affiliation(s)
- Urs Mayr
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Denise Serra
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Prisca Liberali
- Department of Quantitative Biology, Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
32
|
DEK terminates diapause by activation of quiescent cells in the crustacean Artemia. Biochem J 2019; 476:1753-1769. [PMID: 31189566 DOI: 10.1042/bcj20190169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
Abstract
To cope with harsh environments, the Artemia shrimp produces gastrula embryos in diapause, a state of obligate dormancy, having cellular quiescence and suppressed metabolism. The mechanism behind these cellular events remains largely unknown. Here, we study the regulation of cell quiescence using diapause embryos of Artemia We found that Artemia DEK (Ar-DEK), a nuclear factor protein, was down-regulated in the quiescent cells of diapause embryos and enriched in the activated cells of post-diapause embryos. Knockdown of Ar-DEK induced the production of diapause embryos whereas the control Artemia released free-swimming nuaplii. Our results indicate that Ar-DEK correlated with the termination of cellular quiescence via the increase in euchromatin and decrease in heterochromatin. The phenomena of quiescence have many implications beyond shrimp ecology. In cancer cells, for example, knockdown of DEK also induced a short period of cellular quiescence and increased resistance to environmental stress in MCF-7 and MKN45 cancer cell lines. Analysis of RNA sequences in Artemia and in MCF-7 revealed that the Wnt and AURKA signaling pathways were all down-regulated and the p53 signaling pathway was up-regulated upon inhibition of DEK expression. Our results provide insight into the functions of Ar-DEK in the activation of cellular quiescence during diapause formation in Artemia.
Collapse
|
33
|
Larsen S, Davidsen J, Dahlgaard K, Pedersen OB, Troelsen JT. HNF4α and CDX2 Regulate Intestinal YAP1 Promoter Activity. Int J Mol Sci 2019; 20:ijms20122981. [PMID: 31216773 PMCID: PMC6627140 DOI: 10.3390/ijms20122981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/06/2023] Open
Abstract
The Hippo pathway is important for tissue homeostasis, regulation of organ size and growth in most tissues. The co-transcription factor yes-associated protein 1 (YAP1) serves as a main downstream effector of the Hippo pathway and its dysregulation increases cancer development and blocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation of YAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene and transcription factors important for intestinal expression. Bioinformatic analysis of caudal type homeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4α) chromatin immunoprecipitated DNA from differentiated Caco-2 cells revealed potential intragenic enhancers in the YAP1 gene. Transfection of luciferase-expressing YAP1 promoter-reporter constructs containing the potential enhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco-2 and T84 cells. Two potential CDX2 and one HNF4α binding sites were identified in the enhancer by in silico transcription factor binding site analysis and protein-DNA binding was confirmed in vitro using electrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experiments that CDX2 and HNF4α bind to the YAP1 enhancer in Caco-2 cells. These results reveal a previously unknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for high expression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4α binding are important for the YAP1 enhancer activity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sylvester Larsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Johanne Davidsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Surgery, Center for Surgical Science, Enhanced Perioperative Oncology (EPEONC) Consortium, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark.
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Ole B Pedersen
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| |
Collapse
|
34
|
Ding Y, He J, Huang J, Yu T, Shi X, Zhang T, Yan G, Chen S, Peng C. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int J Oncol 2019; 54:1995-2004. [PMID: 31081045 PMCID: PMC6521938 DOI: 10.3892/ijo.2019.4777] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Harmine (HM) is a β-carboline alkaloid found in multiple medicinal plants. It has been used in folk medicine for anticancer therapy; however, the molecular mechanism of HM on human breast cancer remains unclear. Transcriptional co-activator with PDZ-binding motif (TAZ), also known as WW domain-containing transcription regulator 1, serves an important role in the carcinogenesis and progression of breast cancer. The aim of the present study was to elucidate the potential anticancer activity and mechanism of HM in breast cancer, in vitro and in vivo. Cell proliferation was measured using a CCK-8 assay, apoptotic activity was detected by flow cytometry and DAPI staining, and cell migration was examined using a wound healing assay. The expression of proteins, including extracellular signal-regulate kinase (Erk), phosphorylated (p-) Erk, protein kinase B (Akt), p-Akt, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), were determined by western blotting. The mRNA expression of TAZ was detected using reverse transcription-quantitative polymerase chain reaction analysis. The expression of proteins in mouse tumor tissues were examined by immunohistochemistry. HM significantly suppressed cellular proliferation and migration, promoted apoptosis in vitro and inhibited tumor growth in vivo. In addition, HM significantly decreased the expression of TAZ, p-Erk, p-Akt and Bcl-2, but increased that of Bax. The overexpression of TAZ in breast cancer cells inhibited the antitumor effect of HM. In conclusion, HM was found to induce apoptosis and prevent the proliferation and migration of human breast cancer cell lines, possibly via the downregulation of TAZ.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jinrong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Juan Huang
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Tong Yu
- Department of Traditional Chinese Medicine, Humanwell Healthcare (Group) Co., Ltd., Wuhan, Hubei 430075, P.R. China
| | - Xiaoyan Shi
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Tianzhu Zhang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Ge Yan
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Caixia Peng
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
35
|
Fu Y, Sun S, Sun H, Peng J, Ma X, Bao L, Ji R, Luo C, Gao C, Zhang X, Jin Y. Scutellarin exerts protective effects against atherosclerosis in rats by regulating the Hippo-FOXO3A and PI3K/AKT signaling pathways. J Cell Physiol 2019; 234:18131-18145. [PMID: 30891776 DOI: 10.1002/jcp.28446] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis (AS), a progressive disorder, is one of the tough challenges in the clinic. Scutellarin, an extract from Herba Erigerontis, is found to have oxygen-free radicals scavenging effects and antioxidant effects. In this study, we aimed to investigate the anti-AS effects of scutellarin is related to controlling the Hippo-FOXO3A and PI3K/AKT signal pathway. To establish an AS model, the rats in the scutellarin and model groups were intraperitoneally injected with vitamin D 3 and then fed a high-fat diet for 12 weeks. In addition, in vitro angiotensin II-induced apoptosis of human aortic endothelial cells (HAECs) were used to establish models. Scutellarin significantly reduced blood lipid levels and increased antioxidase levels in both models. Additionally, scutellarin inhibited reactive oxygen species generation and apoptosis in HAECs. The impaired vascular barrier function was restored by using scutellarin in AS rats and in HAECs cells characterized by inhibiting mammalian sterile-20-like kinases 1 (Mst1) phosphorylation, Yes-associated protein (YAP) phosphorylation, forkhead box O3A (FOXO3A) phosphorylation at serine 207, nuclear translocation of FOXO3A, and upregulating protein expression of AKT and FOXO3A phosphorylation at serine 253. Scutellarin significantly reduced Bcl-2 interacting mediator of cell death (Bim), caspase-3, APO-1, CD95 (Fas), and Bax: Bcl-2-associated X (Bax) levels and activated Bcl-2: B-cell lymphoma-2 (Bcl-2). Scutellarin also significantly inhibited the expression of Mst1, YAP, FOXO3A at the messenger RNA level. When Mst1 was overexpressed or phosphoinositide 3-kinases suppressed, the effects of scutellarin were significantly blocked. In conclusion, the results of the present study suggest that scutellarin exerts protective effects against AS by inhibiting endothelial cell injury and apoptosis by regulating the Hippo-FOXO3A and PI3K/AKT signal pathways.
Collapse
Affiliation(s)
- Yufeng Fu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shuangyong Sun
- Tianjin Institute of Pharmaceutical Research New Drug Evaluation Co Ltd, Tianjin, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Liuchi Bao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Renpeng Ji
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chunxu Luo
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Cong Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaoxue Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Abstract
The intestinal epithelium withstands continuous mechanical, chemical and biological insults despite its single-layered, simple epithelial structure. The crypt-villus tissue architecture in combination with rapid cell turnover enables the intestine to act both as a barrier and as the primary site of nutrient uptake. Constant tissue replenishment is fuelled by continuously dividing stem cells that reside at the bottom of crypts. These cells are nurtured and protected by specialized epithelial and mesenchymal cells, and together constitute the intestinal stem cell niche. Intestinal stem cells and early progenitor cells compete for limited niche space and, therefore, the ability to retain or regain stemness. Those cells unable to do so differentiate to one of six different mature cell types and move upwards towards the villus, where they are shed into the intestinal lumen after 3-5 days. In this Review, we discuss the signals, cell types and mechanisms that control homeostasis and regeneration in the intestinal epithelium. We investigate how the niche protects and instructs intestinal stem cells, which processes drive differentiation of mature cells and how imbalance in key signalling pathways can cause human disease.
Collapse
|
37
|
Zhou Z, Zhang HS, Zhang ZG, Sun HL, Liu HY, Gou XM, Yu XY, Huang YH. Loss of HACE1 promotes colorectal cancer cell migration via upregulation of YAP1. J Cell Physiol 2018; 234:9663-9672. [PMID: 30362561 DOI: 10.1002/jcp.27653] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the third-leading cause of cancer mortality worldwide. HACE1 function as a tumor-suppressor gene and is downregulated in several kinds of cancers. However, the distribution and clinical significance of HACE1 in CRC is still not clarified. In this study, we found that the HACE1 expression is greatly downregulated in CRC tissues and cell lines. Moreover, the HACE1 expression was significantly associated with inhibition of CRC cell proliferation, metastasis, and invasion. HACE1 inhibited epithelial-mesenchymal transition in CRC cells. Furthermore, we found that HACE1 altered the protein expression of the Hippo pathway by downregulation of YAP1. HACE1 suppresses the invasive ability of CRC cells by negatively regulating the YAP1 pathway. Our data indicates that HACE1 directly targets YAP1 and induces downregulation of YAP1, thereby increasing the activity of the Hippo pathway. In summary, these findings demonstrated that HACE1-YAP1 axis had an important part in the CRC development and progression.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Hong-Sheng Zhang
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Zhong-Guo Zhang
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Hong-Liang Sun
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Hui-Yun Liu
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Xiao-Meng Gou
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Xiao-Ying Yu
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| | - Ying-Hui Huang
- Department of Biotechnology, College of Life Science & Bioengineering, Beijing University of Technology, Chaoyang, Beijing, China
| |
Collapse
|
38
|
Yang C, Xu W, Meng X, Zhou S, Zhang M, Cui D. SCC-S2 Facilitates Tumor Proliferation and Invasion via Activating Wnt Signaling and Depressing Hippo Signaling in Colorectal Cancer Cells and Predicts Poor Prognosis of Patients. J Histochem Cytochem 2018; 67:65-75. [PMID: 30216108 DOI: 10.1369/0022155418799957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SCC-S2 overexpression has been implicated in several human cancers, its correlation with prognosis and the mechanism how it reserved biological roles are still uncertain. The current study demonstrated that, in 142 archived colorectal carcinoma (CRC) tissue samples, SCC-S2 expression was significantly correlated with higher histological grade ( p=0.001), tumor invasion ( p=0.001), advanced Dukes staging ( p=0.002), positive regional lymph node metastasis ( p=0.024), and poor overall survival ( p<0.001). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Transwell assays showed that SCC-S2 significantly promoted the proliferation and invasion. SCC-S2 expression was also accompanied by the overexpression CyclinD1, matrix metalloproteinase-7 (MMP-7), active-β-catenin, yes-associated protein (YAP), and connective tissue growth factor (CTGF), as well as the depression of p-large tumor suppressor kinase 1 (p-LATS1) and p-YAP. Moreover, SCC-S2 interacted and colocalized with LATS1, the interaction may interrupt Hippo signaling and thereafter activate canonical Wnt signaling. In conclusion, our data suggested that SCC-S2 was associated with the progression and unfavorable prognosis of CRCs. Meanwhile, SCC-S2 facilitated canonical Wnt signaling and its downstream effectors (CyclinD1, MMP-7) and promoted tumor proliferation and invasion, which depended on the inhibition of Hippo signaling induced by SCC-S2-LATS1 interaction. These results indicated that SCC-S2 might be used as a novel target for the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chuanjia Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Weixue Xu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiangzhen Meng
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Siqi Zhou
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Minglu Zhang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dongxu Cui
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China.,Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
39
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
40
|
Li Q, Qi F, Meng X, Zhu C, Gao Y. Mst1 regulates colorectal cancer stress response via inhibiting Bnip3-related mitophagy by activation of JNK/p53 pathway. Cell Biol Toxicol 2018; 34:263-277. [PMID: 29063978 DOI: 10.1007/s10565-017-9417-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
Abstract
The Hippo-Mst1 pathway is associated with tumor development and progression. However, little evidence is available for its role in colorectal cancer (CRC) stress response via mitochondrial homeostasis. In this study, we conducted gain-of function assay about Mst1 in CRC via adenovirus transfection. Then, cellular viability and apoptosis were measured via MTT, TUNEL assay, and typan blue staining. Mitochondrial function was detected via JC1 staining, mPTP opening assay, and immunofluorescence of cyt-c. Mitophagy was observed via western blots and immunofluorescence. Cell migration and proliferation were evaluated via Transwell and BrdU assay. Western blots were used to analyze the signaling pathways with JNK inhibitors or p53 siRNA. We found that Mst1 was down-regulated in CRC. Overexpression of Mst1 induced CRC apoptosis and impaired cell proliferation and migration. Functional studies have illustrated that recovery of Mst1 could activate JNK pathway which upregulated the p53 expression. The latter repressed Bnip3 transcription and activity, leading to the mitophagy arrest. The defective mitophagy impaired mitochondrial homeostasis, evoked cellular oxidative stress, and initiated the mitochondrial apoptosis. Meanwhile, bad-structured mitophagy also hindered the cancer proliferation via CyclinD/E. Moreover, Mst1-suppressed mitophagy was associated with CRC migration inhibition via regulation of CXCR4/7 expression. Collectively, our data described the comprehensive role of Mst1 in colorectal cancer stress response involving apoptosis, mobilization, and growth via handling mitophagy by JNK/p53/Bnip3 pathways.
Collapse
Affiliation(s)
- Qi Li
- Department of General Surgery, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
- Department of General Surgery, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Feng Qi
- Department of General Surgery, General Hospital, Tianjin Medical University, Tianjin, 300052, China.
| | - Xiangchao Meng
- Department of General Surgery, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Chenpei Zhu
- Department of General Surgery, Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Yingtang Gao
- Tianjin Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| |
Collapse
|
41
|
Yu M, Luo Y, Cong Z, Mu Y, Qiu Y, Zhong M. MicroRNA-590-5p Inhibits Intestinal Inflammation by Targeting YAP. J Crohns Colitis 2018; 12:993-1004. [PMID: 29912317 DOI: 10.1093/ecco-jcc/jjy046] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/15/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Hippo signalling is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, survival, apoptosis, and stem cell self-renewal. In addition, Hippo signalling is profoundly implicated in intestinal regeneration and cancer. However, its roles in the pathogenesis of Crohn's disease [CD] remain largely unexplored. METHODS Quantitative reverse transcription-polymerase chain reaction [qRT-PCR] was performed to identify the deregulated molecules in Hippo signalling. Expression of the highly upregulated Yes-associated protein 1 [YAP] was subsequently examined by qRT-PCR, western blotting, and immunohistochemistry in the intestinal tissues of CD patients and the colons of 2,4,6-trinitrobenzene sulphonic acid [TNBS]-induced colitis mice. The microRNAs [miRNAs] predicted to target YAP were explored by transfection of miR-590-5p mimics or inhibitors and analyzed by luciferase reporter assay. The roles of the miR-590-5p/YAP axis in CD and colorectal cancer were studied in experimental colitis mice and colorectal cancer cell lines. RESULTS YAP mRNA was significantly upregulated in intestinal epithelial cells in CD patients and TNBS-induced colitis mice. MiR-590-5p suppressed YAP expression by directly targeting the YAP 3'-untranslated region in Caco-2 cells and SW620 cells. Upregulation of miR-590-5p in colon reduced YAP level and its downstream targets in intestinal epithelial cells [IECs]. Treatment of miR-590-5p or YAP inhibitor Verteporfin alleviated experimental colitis. Targeting the miR-590-5p/YAP axis inhibited cell proliferation and invasiveness of colorectal cancer [CRC] cells in vitro. CONCLUSIONS Our results suggest that miR-590-5p inhibits intestinal inflammation in mouse colon and tumourigenesis of colorectal cancer cells by inhibiting YAP. The miR-590-5p/YAP axis may be an important novel mechanism in the pathogenesis of CD and colorectal cancer.
Collapse
Affiliation(s)
- Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhijie Cong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yifei Mu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yier Qiu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
42
|
Nussinov R, Zhang M, Tsai CJ, Jang H. Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2304-2314. [DOI: 10.1016/j.bbadis.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
|
43
|
Elbediwy A, Thompson BJ. Evolution of mechanotransduction via YAP/TAZ in animal epithelia. Curr Opin Cell Biol 2018; 51:117-123. [PMID: 29477107 DOI: 10.1016/j.ceb.2018.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
Mechanical stretch forces can control the growth of epithelial tissues such as mammalian skin, whose surface area is precisely coordinated with body size. In skin keratinocytes cultured in vitro, mechanical forces acting via Integrin adhesions and the actin cytoskeleton have been shown to induce nuclear translocation of YAP/TAZ co-activators to induce cell proliferation. Furthermore, conditional knockouts of both YAP (also called YAP1) and TAZ (also called WWTR1) in mouse skin resemble the phenotype of skin-specific loss of Integrin beta1 (ITGB1), indicating that this signalling mechanism is important in vivo. Curiously, Integrins are dispensable in Drosophila to activate the sole YAP/TAZ homolog Yorkie (Yki), which has lost the C-terminal PDZ-binding motif needed to promote nuclear localization of YAP/TAZ in mammalian cells. Differences in the structure of the epidermis between deuterostomes (e.g.: stratified squamous skin of mammals) and protostomes (e.g.: monolayered columnar epidermis of Drosophila) may explain this evolutionary divergence. Monolayered columnar epithelia feature a well-differentiated apical membrane domain, where proteins such as Crumbs, Expanded, Merlin and Kibra activate the Hippo pathway to repress Drosophila Yki. Stratified squamous epithelia lack an apical domain and thus depend primarily on basal Integrin adhesions to activate YAP/TAZ in basal layer stem cells via multiple postulated signalling mechanisms. Finally, YAP and TAZ retain the ability to sense the apical domain in the columnar epithelial cells lining internal organs such as the lung bronchus, where YAP/TAZ localize to the nucleus in proliferating basal layer stem cells but translocate to the cytoplasm in differentiated columnar cells.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Epithelial Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom
| | - Barry J Thompson
- Epithelial Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, United Kingdom.
| |
Collapse
|
44
|
Watt KI, Harvey KF, Gregorevic P. Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway. Front Physiol 2017; 8:942. [PMID: 29225579 PMCID: PMC5705614 DOI: 10.3389/fphys.2017.00942] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field.
Collapse
Affiliation(s)
- Kevin I Watt
- Muscle Research and Therapeutics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | - Kieran F Harvey
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia.,Organogenesis and Cancer Programme, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul Gregorevic
- Muscle Research and Therapeutics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
45
|
Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, Hu S, Zhu P, Wang W, Zhou H. Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol 2017; 14:59-71. [PMID: 28869833 PMCID: PMC5582718 DOI: 10.1016/j.redox.2017.08.013] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/08/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Despite the increasingly important role of Hippo-Yap in hepatocellular carcinoma (HCC) development and progression, little insight is available at the time regarding the specifics interaction of Yap and cancer cells migration. Here, we identified the mechanism by which tumor-intrinsic Yap deletion resulted in HCC migratory inhibition. Yap was greatly upregulated in HCC and its expression promoted the cells migration. Functional studies found that knockdown of Yap induced JNK phosphorylation which closely bound to the Bnip3 promoter and contributed to Bnip3 expression. Higher Bnip3 employed excessive mitophagy leading to mitochondrial dysfunction and ATP shortage. The insufficient ATP inactivated SERCA and consequently triggered intracellular calcium overload. As the consequence of calcium oscillation, Ca/calmodulin-dependent protein kinases II (CaMKII) was signaled and subsequently inhibited cofilin activity via phosphorylated modification. The phosphorylated cofilin failed to manipulate F-actin polymerization and lamellipodium formation, resulting into the impairment of lamellipodium-based migration. Collectively, our results identified Hippo-Yap as the tumor promoter in hepatocellular carcinoma that mediated via activation of cofilin/F-actin/lamellipodium axis by limiting JNK-Bnip3-SERCA-CaMKII pathways, with potential application to HCC therapy involving cancer metastasis. Yap is upregulated in the hepatocellular carcinoma and promotes cancer cell migration. Loss of Yap impairs cell mobility via inhibiting cofilin/F-actin/lamellipodium by activation of JNK-Bnip3-SERCA-CaMKII. Loss of Yap enhances JNK phosphorylation which triggers Bnip3-required mitophagy. Excessive mitophagy induces mitochondrial energy disorder which blunts SERCA and causes calcium overload. The calcium overload drives CaMKII which inactivates cofilin, leading to F-actin degradation and lamellipodium collapse.
Collapse
Affiliation(s)
- Chen Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ye Li
- Department of Oncology, PLA General Hospital Cancer Center, Beijing, China
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Sai Ma
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shunying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Hao Zhou
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|