1
|
Lujan AL, Foresti O, Wojnacki J, Bigliani G, Brouwers N, Pena MJ, Androulaki S, Hashidate-Yoshida T, Kalyukina M, Novoselov SS, Shindou H, Malhotra V. TANGO2 is an acyl-CoA binding protein. J Cell Biol 2025; 224:e202410001. [PMID: 40015245 PMCID: PMC11867700 DOI: 10.1083/jcb.202410001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Loss of TANGO2 in humans precipitates metabolic crises during periods of heightened energy demand, such as fasting, infections, or high fever. TANGO2 has been implicated in various functions, including lipid metabolism and heme transport, and its cellular localization remains uncertain. In our study, we demonstrate that TANGO2 localizes to the mitochondrial lumen via a structural region containing LIL residues. Mutations in these LIL residues cause TANGO2 to relocate to the periphery of lipid droplets. We further show that purified TANGO2 binds acyl-coenzyme A, and mutations in the highly conserved NRDE sequence of TANGO2 inhibit this binding. Collectively, our findings suggest that TANGO2 serves as an acyl-coenzyme A binding protein. These insights may provide new avenues for addressing the severe cardiomyopathies and rhabdomyolysis associated with defective TANGO2 in humans.
Collapse
Affiliation(s)
- Agustin Leonardo Lujan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Jose Wojnacki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Jesus Pena
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Stefania Androulaki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Tomomi Hashidate-Yoshida
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
| | - Maria Kalyukina
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sergey S. Novoselov
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
2
|
Swan LE. VPS13 and bridge-like lipid transporters, mechanisms, and mysteries. Front Neurosci 2025; 19:1534061. [PMID: 40356703 PMCID: PMC12066543 DOI: 10.3389/fnins.2025.1534061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/14/2025] [Indexed: 05/15/2025] Open
Abstract
Bridge-like lipid transporters (BLTPs) have recently been revealed as key regulators of intraorganellar lipid trafficking, with their loss being associated with defective synaptic signalling and congenital neurological diseases. This group consists of five protein subfamilies [BLTP1-3, autophagy-related 2 (ATG2), and vacuolar protein sorting 13 (VPS13)], which mediate minimally selective lipid transfer between cellular membranes. Deceptively simple in both structure and presumed function, this review addresses open questions as to how bridge-like transporters work, the functional consequences of bulk lipid transfer on cellular signalling, and summarises some recent studies that have shed light on the surprising level of regulation and specificity found in this family of transporters.
Collapse
Affiliation(s)
- Laura Elizabeth Swan
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Cooper BF, Clark R, Kudhail A, Dunn D, Tian Q, Bhabha G, Ekiert DC, Khalid S, Isom GL. Phospholipid Transport Across the Bacterial Periplasm Through the Envelope-spanning Bridge YhdP. J Mol Biol 2025; 437:168891. [PMID: 39638236 DOI: 10.1016/j.jmb.2024.168891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The outer membrane of Gram-negative bacteria provides a formidable barrier, essential for both pathogenesis and antimicrobial resistance. Biogenesis of this complex structure necessitates the transport of phospholipids across the cell envelope. Recently, YhdP was implicated as a major protagonist in the trafficking of inner membrane phospholipids to the outer membrane; however the molecular mechanism of YhdP mediated transport remains elusive. Here, utilising AlphaFold, we observe YhdP to form an elongated assembly of 60 β-strands that curve to form a continuous hydrophobic groove. This architecture is consistent with our negative stain electron microscopy data which reveals YhdP to be approximately 250 Å in length and thus sufficient to span the bacterial cell envelope. Furthermore, molecular dynamics simulations and bacterial growth assays indicate essential helical regions at the N- and C-termini of YhdP, that may embed into the inner and outer membranes respectively, reinforcing its envelope spanning nature. Our in vivo crosslinking data reveal phosphate-containing substrates captured along the length of the YhdP groove, providing direct evidence that YhdP interacts with a phosphate-containing substrate, which we propose to be phospholipids. This finding is congruent with our molecular dynamics simulations which demonstrate the propensity for inner membrane lipids to spontaneously enter the groove of YhdP. Collectively, our results support a model in which YhdP bridges the cell envelope, providing a hydrophobic environment for the transport of phospholipids to the outer membrane.
Collapse
Affiliation(s)
- Benjamin F Cooper
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robert Clark
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anju Kudhail
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dali Dunn
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Qiaoyu Tian
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Gira Bhabha
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Damian C Ekiert
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Georgia L Isom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
4
|
Stefan C, Covino R. Making lipids very unhappy to discover how they bind to proteins. J Cell Biol 2024; 223:e202410022. [PMID: 39404823 PMCID: PMC11486829 DOI: 10.1083/jcb.202410022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2024] Open
Abstract
Membrane lipid composition is maintained by conserved lipid transfer proteins, but computational approaches to study their lipid-binding mechanisms are limiting. Srinivasan et al. (https://doi.org/10.1083/jcb.202312055) develop a clever molecular dynamics simulations assay to accurately model lipid-binding poses in lipid transfer proteins.
Collapse
Affiliation(s)
- Christopher Stefan
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Roberto Covino
- Institute of Computer Science, Goethe University Frankfurt, and Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| |
Collapse
|
5
|
Zhang C, Ye M, Melikov K, Yang D, Vale GDD, McDonald J, Eckert K, Lin MJ, Zeng X. CLSTN3B promotes lipid droplet maturation and lipid storage in mouse adipocytes. Nat Commun 2024; 15:9475. [PMID: 39488519 PMCID: PMC11531554 DOI: 10.1038/s41467-024-53750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Interorganelle contacts facilitate material exchanges and sustain the structural and functional integrity of organelles. Lipid droplets (LDs) of adipocytes are responsible for energy storage and mobilization responding to body needs. LD biogenesis defects compromise the lipid-storing capacity of adipocytes, resulting in ectopic lipid deposition and metabolic disorders, yet how the uniquely large LDs in adipocytes attain structural and functional maturation is incompletely understood. Here we show that the mammalian adipocyte-specific protein CLSTN3B is crucial for adipocyte LD maturation. CLSTN3B employs an arginine-rich segment to promote extensive contact and hemifusion-like structure formation between the endoplasmic reticulum (ER) and LD, allowing ER-to-LD phospholipid diffusion during LD expansion. CLSTN3B ablation results in reduced LD surface phospholipid density, increased turnover of LD-surface proteins, and impaired LD functions. Our results establish the central role of CLSTN3B in the adipocyte-specific LD maturation pathway that enhances lipid storage and maintenance of metabolic health under caloric overload in mice of both sexes.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mengchen Ye
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dengbao Yang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Jeffrey McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kaitlyn Eckert
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mei-Jung Lin
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xing Zeng
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Preminger N, Schuldiner M. Beyond fission and fusion-Diving into the mysteries of mitochondrial shape. PLoS Biol 2024; 22:e3002671. [PMID: 38949997 PMCID: PMC11216622 DOI: 10.1371/journal.pbio.3002671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Mitochondrial shape and network formation have been primarily associated with the well-established processes of fission and fusion. However, recent research has unveiled an intricate and multifaceted landscape of mitochondrial morphology that extends far beyond the conventional fission-fusion paradigm. These less-explored dimensions harbor numerous unresolved mysteries. This review navigates through diverse processes influencing mitochondrial shape and network formation, highlighting the intriguing complexities and gaps in our understanding of mitochondrial architecture. The exploration encompasses various scales, from biophysical principles governing membrane dynamics to molecular machineries shaping mitochondria, presenting a roadmap for future research in this evolving field.
Collapse
Affiliation(s)
- Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Kumar S, Davis RM, Ruiz N. YdbH and YnbE form an intermembrane bridge to maintain lipid homeostasis in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 2024; 121:e2321512121. [PMID: 38748582 PMCID: PMC11126948 DOI: 10.1073/pnas.2321512121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/09/2024] [Indexed: 05/27/2024] Open
Abstract
The outer membrane (OM) of didermic gram-negative bacteria is essential for growth, maintenance of cellular integrity, and innate resistance to many antimicrobials. Its asymmetric lipid distribution, with phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet, is required for these functions. Lpt proteins form a transenvelope bridge that transports newly synthesized LPS from the inner membrane (IM) to OM, but how the bulk of phospholipids are transported between these membranes is poorly understood. Recently, three members of the AsmA-like protein family, TamB, YhdP, and YdbH, were shown to be functionally redundant and were proposed to transport phospholipids between IM and OM in Escherichia coli. These proteins belong to the repeating β-groove superfamily, which includes eukaryotic lipid-transfer proteins that mediate phospholipid transport between organelles at contact sites. Here, we show that the IM-anchored YdbH protein interacts with the OM lipoprotein YnbE to form a functional protein bridge between the IM and OM in E. coli. Based on AlphaFold-Multimer predictions, genetic data, and in vivo site-directed cross-linking, we propose that YnbE interacts with YdbH through β-strand augmentation to extend the continuous hydrophobic β-groove of YdbH that is thought to shield acyl chains of phospholipids as they travel through the aqueous intermembrane periplasmic compartment. Our data also suggest that the periplasmic protein YdbL prevents extensive amyloid-like multimerization of YnbE in cells. We, therefore, propose that YdbL has a chaperone-like function that prevents uncontrolled runaway multimerization of YnbE to ensure the proper formation of the YdbH-YnbE intermembrane bridge.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Microbiology, The Ohio State University, Columbus, OH43210
| | - Rebecca M. Davis
- Department of Microbiology, The Ohio State University, Columbus, OH43210
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH43210
| |
Collapse
|
8
|
Alkahtani S, Alkahtane AA, Alarifi S. Physiological and Pathogenesis Significance of Chorein in Health and Disease. Physiol Res 2024; 73:189-203. [PMID: 38710051 PMCID: PMC11081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 05/08/2024] Open
Abstract
This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.
Collapse
Affiliation(s)
- S Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
9
|
Wang J, Xiong J, Zhang S, Li D, Chu Q, Chang W, Deng L, Ji WK. Biogenesis of Rab14-positive endosome buds at Golgi-endosome contacts by the RhoBTB3-SHIP164-Vps26B complex. Cell Discov 2024; 10:38. [PMID: 38565878 PMCID: PMC10987540 DOI: 10.1038/s41421-024-00651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024] Open
Abstract
Early endosomes (EEs) are crucial in cargo sorting within vesicular trafficking. While cargoes destined for degradation are retained in EEs and eventually transported to lysosomes, recycled cargoes for the plasma membrane (PM) or the Golgi undergo segregation into specialized membrane structures known as EE buds during cargo sorting. Despite this significance, the molecular basis of the membrane expansion during EE bud formation has been poorly understood. In this study, we identify a protein complex comprising SHIP164, an ATPase RhoBTB3, and a retromer subunit Vps26B, which promotes the formation of EE buds at Golgi-EE contacts. Our findings reveal that Vps26B acts as a novel Rab14 effector, and Rab14 activity regulates the association of SHIP164 with EEs. Depletion of SHIP164 leads to enlarged Rab14+ EEs without buds, a phenotype rescued by wild-type SHIP164 but not the lipid transfer-defective mutants. Suppression of RhoBTB3 or Vps26B mirrors the effects of SHIP164 depletion. Together, we propose a lipid transport-dependent pathway mediated by the RhoBTB3-SHIP164-Vps26B complex at Golgi-EE contacts, which is essential for EE budding.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Xiong
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dongchen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Qingzhu Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | | | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Vincent D, Reddy P, Isenegger D. Integrated Proteomics and Metabolomics of Safflower Petal Wilting and Seed Development. Biomolecules 2024; 14:414. [PMID: 38672431 PMCID: PMC11048707 DOI: 10.3390/biom14040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Safflower (Carthamus tinctorius L.) is an ancient oilseed crop of interest due to its diversity of end-use industrial and food products. Proteomic and metabolomic profiling of its organs during seed development, which can provide further insights on seed quality attributes to assist in variety and product development, has not yet been undertaken. In this study, an integrated proteome and metabolic analysis have shown a high complexity of lipophilic proteins and metabolites differentially expressed across organs and tissues during seed development and petal wilting. We demonstrated that these approaches successfully discriminated safflower reproductive organs and developmental stages with the identification of 2179 unique compounds and 3043 peptides matching 724 unique proteins. A comparison between cotyledon and husk tissues revealed the complementarity of using both technologies, with husks mostly featuring metabolites (99%), while cotyledons predominantly yielded peptides (90%). This provided a more complete picture of mechanisms discriminating the seed envelope from what it protected. Furthermore, we showed distinct molecular signatures of petal wilting and colour transition, seed growth, and maturation. We revealed the molecular makeup shift occurring during petal colour transition and wilting, as well as the importance of benzenoids, phenylpropanoids, flavonoids, and pigments. Finally, our study emphasizes that the biochemical mechanisms implicated in the growing and maturing of safflower seeds are complex and far-reaching, as evidenced by AraCyc, PaintOmics, and MetaboAnalyst mapping capabilities. This study provides a new resource for functional knowledge of safflower seed and potentially further enables the precision development of novel products and safflower varieties with biotechnology and molecular farming applications.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; (P.R.); (D.I.)
| | | | | |
Collapse
|
11
|
Chiduza GN, Garza-Garcia A, Almacellas E, De Tito S, Pye VE, van Vliet AR, Cherepanov P, Tooze SA. ATG9B is a tissue-specific homotrimeric lipid scramblase that can compensate for ATG9A. Autophagy 2024; 20:557-576. [PMID: 37938170 PMCID: PMC10936676 DOI: 10.1080/15548627.2023.2275905] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Macroautophagy/autophagy is a fundamental aspect of eukaryotic biology, and the autophagy-related protein ATG9A is part of the core machinery facilitating this process. In addition to ATG9A vertebrates encode ATG9B, a poorly characterized paralog expressed in a subset of tissues. Herein, we characterize the structure of human ATG9B revealing the conserved homotrimeric quaternary structure and explore the conformational dynamics of the protein. Consistent with the experimental structure and computational chemistry, we establish that ATG9B is a functional lipid scramblase. We show that ATG9B can compensate for the absence of ATG9A in starvation-induced autophagy displaying similar subcellular trafficking and steady-state localization. Finally, we demonstrate that ATG9B can form a heteromeric complex with ATG2A. By establishing the molecular structure and function of ATG9B, our results inform the exploration of niche roles for autophagy machinery in more complex eukaryotes and reveal insights relevant across species.Abbreviation: ATG: autophagy related; CHS: cholesteryl hemisuccinate; cryo-EM: single-particle cryogenic electron microscopy; CTF: contrast transfer function: CTH: C- terminal α helix; FSC: fourier shell correlation; HDIR: HORMA domain interacting region; LMNG: lauryl maltose neopentyl glycol; MD: molecular dynamics simulations; MSA: multiple sequence alignment; NBD-PE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl ammonium salt); POPC: palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; RBG: repeating beta groove domain; RMSD: root mean square deviation; SEC: size-exclusion chromatography; TMH: transmembrane helix.
Collapse
Affiliation(s)
- George N. Chiduza
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Eugenia Almacellas
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | | | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| |
Collapse
|
12
|
Sposato D, Mercolino J, Torrini L, Sperandeo P, Lucidi M, Alegiani R, Varone I, Molesini G, Leoni L, Rampioni G, Visca P, Imperi F. Redundant essentiality of AsmA-like proteins in Pseudomonas aeruginosa. mSphere 2024; 9:e0067723. [PMID: 38305166 PMCID: PMC10900882 DOI: 10.1128/msphere.00677-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
The outer membrane (OM) is an essential structure of Gram-negative bacteria that provides mechanical strength and protection from large and/or hydrophobic toxic molecules, including many antibiotics. The OM is composed of glycerophospholipids (GPLs) and lipopolysaccharide (LPS) in the inner and outer leaflets, respectively, and hosts integral β-barrel proteins and lipoproteins. While the systems responsible for translocation and insertion of LPS and OM proteins have been elucidated, the mechanism(s) mediating transport of GPLs from the inner membrane to the OM has remained elusive for decades. Very recently, studies performed in Escherichia coli proposed a role in this process for AsmA-like proteins that are predicted to share structural features with eukaryotic lipid transporters. In this study, we provide the first systematic investigation of AsmA-like proteins in a bacterium other than E. coli, the opportunistic human pathogen Pseudomonas aeruginosa. Bioinformatic analyses revealed that P. aeruginosa possesses seven AsmA-like proteins. Deletion of asmA-like genes in many different combinations, coupled with conditional mutagenesis, revealed that four AsmA-like proteins are redundantly essential for growth and OM integrity in P. aeruginosa, including a novel AsmA-like protein (PA4735) that is not present in E. coli. Cells depleted of AsmA-like proteins showed severe defects in the OM permeability barrier that were partially rescued by lowering the synthesis or transport of LPS. Since fine balancing of GPL and LPS levels is crucial for OM integrity, this evidence supports the role of AsmA-like proteins in GPL transport toward the OM. IMPORTANCE Given the importance of the outer membrane (OM) for viability and antibiotic resistance in Gram-negative bacteria, in the last decades, several studies have focused on the characterization of the systems involved in OM biogenesis, which have also been explored as targets for antibacterial drug development. However, the mechanism mediating translocation of glycerophospholipids (GPLs) to the OM remained unknown until recent studies provided evidence that AsmA-like proteins could be responsible for this process. Here, we demonstrate for the first time that AsmA-like proteins are essential and redundant for growth and OM integrity in a Gram-negative bacterium other than the model organism Escherichia coli and demonstrate that the human pathogen Pseudomonas aeruginosa has an additional essential AsmA-like protein that is not present in E. coli, thus expanding the range of AsmA-like proteins that play key functions in Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Luisa Torrini
- Department of Science, University Roma Tre, Rome, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Massimiliano Lucidi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | | | - Ilaria Varone
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
13
|
Durant M, Mucelli X, Huang LS. Meiotic Cytokinesis in Saccharomyces cerevisiae: Spores That Just Need Closure. J Fungi (Basel) 2024; 10:132. [PMID: 38392804 PMCID: PMC10890087 DOI: 10.3390/jof10020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, sporulation occurs during starvation of a diploid cell and results in the formation of four haploid spores forming within the mother cell ascus. Meiosis divides the genetic material that is encapsulated by the prospore membrane that grows to surround the haploid nuclei; this membrane will eventually become the plasma membrane of the haploid spore. Cellularization of the spores occurs when the prospore membrane closes to capture the haploid nucleus along with some cytoplasmic material from the mother cell, and thus, closure of the prospore membrane is the meiotic cytokinetic event. This cytokinetic event involves the removal of the leading-edge protein complex, a complex of proteins that localizes to the leading edge of the growing prospore membrane. The development and closure of the prospore membrane must be coordinated with other meiotic exit events such as spindle disassembly. Timing of the closure of the prospore membrane depends on the meiotic exit pathway, which utilizes Cdc15, a Hippo-like kinase, and Sps1, an STE20 family GCKIII kinase, acting in parallel to the E3 ligase Ama1-APC/C. This review describes the sporulation process and focuses on the development of the prospore membrane and the regulation of prospore membrane closure.
Collapse
Affiliation(s)
| | | | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; (M.D.); (X.M.)
| |
Collapse
|
14
|
Hu X, Cai Y, Ji WK. Recent Advances on Synaptotagmin-Like Mitochondrial-Lipid Binding Protein Domain Containing Lipid Transfer Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241273646. [PMID: 39139576 PMCID: PMC11320393 DOI: 10.1177/25152564241273646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
The Synaptotagmin-like mitochondrial-lipid binding protein (SMP) domain is found in a group of ER-resident lipid transfer proteins that are recruited to membrane contact sites (MCSs) by adaptors. Deciphering the molecular basis underlying the recruitment of SMP proteins to specific MCS sheds light not only on their cellular localization but also on their biological functions at these sites. Here we summarize recent advances in SMP domain-containing lipid transfer proteins, focusing on a recent study showing the localization, regulation and cellular function of a specific SMP protein named testis expressed protein 2 (Tex2). TMEM55, a potential PIP phosphatase on late endosome/lysosomal (LE/lys) membranes, was identified as an adaptor that enables the recruitment of Tex2 to ER- LE/lys MCS. In addition, we have summarized several important questions about the regulation and physiological functions of Tex2 that remained unanswered.
Collapse
Affiliation(s)
- Xuewen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yirui Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center; Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
15
|
Sengupta S, Levy DL. Organelle Communication with the Nucleus. Results Probl Cell Differ 2024; 73:3-23. [PMID: 39242372 PMCID: PMC11409190 DOI: 10.1007/978-3-031-62036-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Compartmentalization of cellular components is critical to the spatiotemporal and environmental regulation of biochemical activities inside a cell, ensures the proper division of cellular labor and resources, and increases the efficiency of metabolic processes. However, compartmentalization also poses a challenge as organelles often need to communicate across these compartments to complete reaction pathways. These communication signals are often critical aspects of the cellular response to changing environmental conditions. A central signaling hub in the cell, the nucleus communicates with mitochondria, lysosomes, the endoplasmic reticulum, and the Golgi body to ensure optimal organellar and cellular performance. Here we review different mechanisms by which these organelles communicate with the nucleus, focusing on anterograde and retrograde signaling of mitochondria, localization-based signaling of lysosomes, the unfolded protein response of the endoplasmic reticulum, and evidence for nucleus-Golgi signaling. We also include a brief overview of some less well-characterized mechanisms of communication between non-nuclear organelles.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
16
|
Hanna M, Guillén-Samander A, De Camilli P. RBG Motif Bridge-Like Lipid Transport Proteins: Structure, Functions, and Open Questions. Annu Rev Cell Dev Biol 2023; 39:409-434. [PMID: 37406299 DOI: 10.1146/annurev-cellbio-120420-014634] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The life of eukaryotic cells requires the transport of lipids between membranes, which are separated by the aqueous environment of the cytosol. Vesicle-mediated traffic along the secretory and endocytic pathways and lipid transfer proteins (LTPs) cooperate in this transport. Until recently, known LTPs were shown to carry one or a few lipids at a time and were thought to mediate transport by shuttle-like mechanisms. Over the last few years, a new family of LTPs has been discovered that is defined by a repeating β-groove (RBG) rod-like structure with a hydrophobic channel running along their entire length. This structure and the localization of these proteins at membrane contact sites suggest a bridge-like mechanism of lipid transport. Mutations in some of these proteins result in neurodegenerative and developmental disorders. Here we review the known properties and well-established or putative physiological roles of these proteins, and we highlight the many questions that remain open about their functions.
Collapse
Affiliation(s)
- Michael Hanna
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrés Guillén-Samander
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, USA
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
17
|
Cooper BF, Clark R, Kudhail A, Bhabha G, Ekiert DC, Khalid S, Isom GL. Phospholipid transport to the bacterial outer membrane through an envelope-spanning bridge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561070. [PMID: 37873249 PMCID: PMC10592960 DOI: 10.1101/2023.10.05.561070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The outer membrane of Gram-negative bacteria provides a formidable barrier, essential for both pathogenesis and antimicrobial resistance. Biogenesis of the outer membrane requires the transport of phospholipids across the cell envelope. Recently, YhdP was implicated as a major protagonist in the transport of phospholipids from the inner membrane to the outer membrane however the molecular mechanism of YhdP mediated transport remains elusive. Here, utilising AlphaFold, we observe YhdP to form an elongated assembly of 60 β strands that curve to form a continuous hydrophobic groove. This architecture is consistent with our negative stain electron microscopy data which reveals YhdP to be approximately 250 Å in length and thus sufficient to span the bacterial cell envelope. Furthermore, molecular dynamics simulations and in vivo bacterial growth assays indicate essential helical regions at the N- and C-termini of YhdP, that may embed into the inner and outer membranes respectively, reinforcing its envelope spanning nature. Our in vivo crosslinking data reveal phosphate-containing substrates captured along the length of the YhdP groove, providing direct evidence that YhdP transports phospholipids. This finding is congruent with our molecular dynamics simulations which demonstrate the propensity for inner membrane lipids to spontaneously enter the groove of YhdP. Collectively, our results support a model in which YhdP bridges the cell envelope, providing a hydrophobic environment for the transport of phospholipids to the outer membrane.
Collapse
Affiliation(s)
- Benjamin F. Cooper
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Robert Clark
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Anju Kudhail
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Damian C. Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Georgia L. Isom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
18
|
Dall'Armellina F, Stagi M, Swan LE. In silico modeling human VPS13 proteins associated with donor and target membranes suggests lipid transfer mechanisms. Proteins 2023; 91:439-455. [PMID: 36404287 PMCID: PMC10953354 DOI: 10.1002/prot.26446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
The VPS13 protein family constitutes a novel class of bridge-like lipid transferases. Autosomal recessive inheritance of mutations in VPS13 genes is associated with the development of neurodegenerative diseases in humans. Bioinformatic approaches previously recognized the domain architecture of these proteins. In this study, we model the first ever full-length structures of the four human homologs VPS13A, VPS13B, VPS13C, and VPS13D in association with model membranes, to investigate their lipid transfer ability and potential structural association with membrane leaflets. We analyze the evolutionary conservation and physicochemical properties of these proteins, focusing on conserved C-terminal amphipathic helices that disturb organelle surfaces and that, adjoined, resemble a traditional Venetian gondola. The gondola domains share significant structural homology with lipid droplet surface-binding proteins. We introduce in silico protein-membrane models displaying the mode of association of VPS13A, VPS13B, VPS13C, and VPS13D to donor and target membranes, and present potential models of action for protein-mediated lipid transfer.
Collapse
Affiliation(s)
- Filippo Dall'Armellina
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Massimiliano Stagi
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Laura E. Swan
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| |
Collapse
|
19
|
Zhen Y, Stenmark H. Autophagosome Biogenesis. Cells 2023; 12:cells12040668. [PMID: 36831335 PMCID: PMC9954227 DOI: 10.3390/cells12040668] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Autophagy-the lysosomal degradation of cytoplasm-plays a central role in cellular homeostasis and protects cells from potentially harmful agents that may accumulate in the cytoplasm, including pathogens, protein aggregates, and dysfunctional organelles. This process is initiated by the formation of a phagophore membrane, which wraps around a portion of cytoplasm or cargo and closes to form a double-membrane autophagosome. Upon the fusion of the autophagosome with a lysosome, the sequestered material is degraded by lysosomal hydrolases in the resulting autolysosome. Several alternative membrane sources of autophagosomes have been proposed, including the plasma membrane, endosomes, mitochondria, endoplasmic reticulum, lipid droplets, hybrid organelles, and de novo synthesis. Here, we review recent progress in our understanding of how the autophagosome is formed and highlight the proposed role of vesicles that contain the lipid scramblase ATG9 as potential seeds for phagophore biogenesis. We also discuss how the phagophore is sealed by the action of the endosomal sorting complex required for transport (ESCRT) proteins.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Correspondence: (Y.Z.); (H.S.); Tel.: +47-22781911 (Y.Z.); +47-22781818 (H.S.)
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Correspondence: (Y.Z.); (H.S.); Tel.: +47-22781911 (Y.Z.); +47-22781818 (H.S.)
| |
Collapse
|
20
|
Du Y, Hu X, Chang W, Deng L, Ji WK, Xiong J. A Possible Role of VPS13B in the Formation of Golgi-Lipid Droplet Contacts Associating with the ER. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231195718. [PMID: 38090145 PMCID: PMC10714374 DOI: 10.1177/25152564231195718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 02/18/2024]
Abstract
While the physical interactions between the Golgi apparatus (Golgi) and lipid droplets (LDs) have been suggested through system-level imaging, the Golgi-LD membrane contact sites (MCSs) remain largely uncharacterized. Here, we show evidence to support the existence of Golgi-LD MCSs in HEK293 cells. We further suggest that vacuolar protein sorting-associated protein 13B (VPS13B) localizes to and promotes the formation of Golgi-LD contacts upon oleic acid (OA) stimulation using 3D high-resolution microscopy. Depletion of VPS13B moderately affects the formation of Golgi-LD contacts upon OA treatment in addition to the fragmentation of the Golgi. Although cellular functions of VPS13B-mediated contacts are still elusive, these findings may provide a new insight into related diseases caused by loss-of-function mutations of VPS13B.
Collapse
Affiliation(s)
- Yuanjiao Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuewen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center; Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Xiong
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
McEwan DG, Ryan KM. ATG2 and VPS13 proteins: molecular highways transporting lipids to drive membrane expansion and organelle communication. FEBS J 2022; 289:7113-7127. [PMID: 34783437 DOI: 10.1111/febs.16280] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 01/13/2023]
Abstract
Communication between organelles is an essential process that helps maintain cellular homeostasis and organelle contact sites have recently emerged as crucial mediators of this communication. The emergence of a class of molecular bridges that span the inter-organelle gaps has now been shown to direct the flow of lipid traffic from one lipid bilayer to another. One of the key components of these molecular bridges is the presence of an N-terminal Chorein/VPS13 domain. This is an evolutionarily conserved domain present in multiple proteins within the endocytic and autophagy trafficking pathways. Herein, we discuss the current state-of-the-art of this class of proteins, focusing on the role of these lipid transporters in the autophagy and endocytic pathways. We discuss the recent biochemical and structural advances that have highlighted the essential role Chorein-N domain containing ATG2 proteins play in driving the formation of the autophagosome and how lipids are transported from the endoplasmic reticulum to the growing phagophore. We also consider the VPS13 proteins, their role in organelle contacts and the endocytic pathway and highlight how disease-causing mutations disrupt these contact sites. Finally, we open the door to discuss other Chorein_N domain containing proteins, for instance, UHRF1BP1/1L, their role in disease and look towards prokaryote examples of Chorein_N-like domains. Taken together, recent advances have highlighted an exciting opportunity to delve deeper into inter-organelle communication and understand how lipids are transported between membrane bilayers and how this process is disrupted in multiple diseases.
Collapse
Affiliation(s)
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Osawa T, Matoba K, Noda NN. Lipid Transport from Endoplasmic Reticulum to Autophagic Membranes. Cold Spring Harb Perspect Biol 2022; 14:a041254. [PMID: 35940912 PMCID: PMC9620852 DOI: 10.1101/cshperspect.a041254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Autophagy is an intracellular degradation system involving de novo generation of autophagosomes, which function as a transporting vesicle of cytoplasmic components to lysosomes for degradation. Isolation membranes (IMs) or phagophores, the precursor membranes of autophagosomes, require millions of phospholipids to expand and transform into autophagosomes, with the endoplasmic reticulum (ER) being the primary lipid source. Recent advances in structural and biochemical studies of autophagy-related proteins have revealed their lipid transport activities: Atg2 at the interface between IM and ER possesses intermembrane lipid transfer activities, while Atg9 at IM and VMP1 and TMEM41B at ER possess lipid scrambling activities. In this review, we summarize recent advances in the establishment of the lipid transport activities of these proteins and their collaboration mechanisms for lipid transport between the ER and IM, and further discuss how unidirectional lipid transport from the ER to IM occurs during autophagosome formation.
Collapse
Affiliation(s)
- Takuo Osawa
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kazuaki Matoba
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 141-0021, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
23
|
Gulyas G, Korzeniowski MK, Eugenio CEB, Vaca L, Kim YJ, Balla T. LIPID transfer proteins regulate store-operated calcium entry via control of plasma membrane phosphoinositides. Cell Calcium 2022; 106:102631. [PMID: 35853265 PMCID: PMC9444960 DOI: 10.1016/j.ceca.2022.102631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
The ER-resident proteins STIM1 together with the plasma membrane (PM)-localized Orai1 channels constitute the molecular components of the store-operated Ca2+ entry (SOCE) pathway. Prepositioning of STIM1 to the peripheral ER close to the PM ensures its efficient interaction with Orai1 upon a decrease in the ER luminal Ca2+ concentration. The C-terminal polybasic domain of STIM1 has been identified as mediating the interaction with PM phosphoinositides and hence positions the molecule to ER-PM contact sites. Here we show that STIM1 requires PM phosphatidylinositol 4-phosphate (PI4P) for efficient PM interaction. Accordingly, oxysterol binding protein related proteins (ORPs) that work at ER-PM junctions and consume PI4P gradients exert important control over the Ca2+ entry process. These studies reveal an important connection between non-vesicular lipid transport at ER-PM contact sites and regulation of ER Ca2+store refilling.
Collapse
Affiliation(s)
- Gergo Gulyas
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marek K Korzeniowski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Carlos Ernesto Bastián Eugenio
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
An acquired phosphatidylinositol 4-phosphate transport initiates T-cell deterioration and leukemogenesis. Nat Commun 2022; 13:4390. [PMID: 35906240 PMCID: PMC9338045 DOI: 10.1038/s41467-022-32104-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Lipid remodeling is crucial for malignant cell transformation and tumorigenesis, but the precise molecular processes involved and direct evidences for these in vivo remain elusive. Here, we report that oxysterol-binding protein (OSBP)-related protein 4 L (ORP4L) is expressed in adult T-cell leukemia (ATL) cells but not normal T-cells. In ORP4L knock-in T-cells, ORP4L dimerizes with OSBP to control the shuttling of OSBP between the Golgi apparatus and the plasma membrane (PM) as an exchanger of phosphatidylinositol 4-phosphate [PI(4)P]/cholesterol. The PI(4)P arriving at the PM via this transport machinery replenishes phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol (3,4,5) trisphosphate [PI(3,4,5)P3] biosynthesis, thus contributing to PI3K/AKT hyperactivation and T-cell deterioration in vitro and in vivo. Disruption of ORP4L and OSBP dimerization disables PI(4)P transport and T-cell leukemogenesis. In summary, we identify a non-vesicular lipid transport machinery between Golgi and PM maintaining the oncogenic signaling competence initiating T-cell deterioration and leukemogenesis. The oxysterol-binding protein-related protein 4 (ORP4L) is expressed in T-cell acute lymphoblastic leukemia and is required for leukemogenesis. Here the authors show that ORP4L orchestrates the transport of the phospholipid PI(4)P from Golgi to the plasma membrane, contributing to PI3K/AKT hyperactivation and T-cell leukemogenesis.
Collapse
|
25
|
Douglass MV, McLean AB, Trent MS. Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria. PLoS Genet 2022; 18:e1010096. [PMID: 35226662 PMCID: PMC8912898 DOI: 10.1371/journal.pgen.1010096] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria provides the cell with a formidable barrier that excludes external threats. The two major constituents of this asymmetric barrier are lipopolysaccharide (LPS) found in the outer leaflet, and glycerophospholipids (GPLs) in the inner leaflet. Maintaining the asymmetric nature and balance of LPS to GPLs in the OM is critical for bacterial viability. The biosynthetic pathways of LPS and GPLs are well characterized, but unlike LPS transport, how GPLs are translocated to the OM remains enigmatic. Understanding this aspect of cell envelope biology could provide a foundation for new antibacterial therapies. Here, we report that YhdP and its homologues, TamB and YdbH, members of the “AsmA-like” family, are critical for OM integrity and necessary for proper GPL transport to the OM. The absence of the two largest AsmA-like proteins (YhdP and TamB) leads to cell lysis and antibiotic sensitivity, phenotypes that are rescued by reducing LPS synthesis. We also find that yhdP, tamB double mutants shed excess LPS through outer membrane vesicles, presumably to maintain OM homeostasis when normal anterograde GPL transport is disrupted. Moreover, a yhdP, tamB, ydbH triple mutant is synthetically lethal, but if GPL transport is partially restored by overexpression of YhdP, the cell shape adjusts to accommodate increased membrane content as the cell accumulates GPLs in the IM. Our results therefore suggest a model in which “AsmA-like” proteins transport GPLs to the OM, and when hindered, changes in cell shape and shedding of excess LPS aids in maintaining OM asymmetry. Much like armor, the OM of Gram-negative bacteria serves as the cell’s first line of defense against harsh environments and toxic molecules. The two major components of the OM are LPS and GPLs. To offer effective protection, the cell must maintain the appropriate balance of LPS and GPLs at the bacterial surface. Here we report that members of the “AsmA-like” family, YhdP, TamB, and YdbH contribute to the OM barrier by aiding in GPL transport and are critical for antibiotic resistance.
Collapse
Affiliation(s)
- Martin V. Douglass
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Amanda B. McLean
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - M. Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
26
|
John Peter AT, Schie SNS, Cheung NJ, Michel AH, Peter M, Kornmann B. Rewiring phospholipid biosynthesis reveals resilience to membrane perturbations and uncovers regulators of lipid homeostasis. EMBO J 2022; 41:e109998. [PMID: 35188676 PMCID: PMC8982615 DOI: 10.15252/embj.2021109998] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
The organelles of eukaryotic cells differ in their membrane lipid composition. This heterogeneity is achieved by the localization of lipid synthesizing and modifying enzymes to specific compartments, as well as by intracellular lipid transport that utilizes vesicular and non‐vesicular routes to ferry lipids from their place of synthesis to their destination. For instance, the major and essential phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), can be produced by multiple pathways and, in the case of PE, also at multiple locations. However, the molecular components that underlie lipid homeostasis as well as the routes allowing their distribution remain unclear. Here, we present an approach in which we simplify and rewire yeast phospholipid synthesis by redirecting PE and PC synthesis reactions to distinct subcellular locations using chimeric enzymes fused to specific organelle targeting motifs. In rewired conditions, viability is expected to depend on homeostatic adaptation to the ensuing lipostatic perturbations and on efficient interorganelle lipid transport. We therefore performed genetic screens to identify factors involved in both of these processes. Among the candidates identified, we find genes linked to transcriptional regulation of lipid homeostasis, lipid metabolism, and transport. In particular, we identify a requirement for Csf1—an uncharacterized protein harboring a Chorein‐N lipid transport motif—for survival under certain rewired conditions as well as lipidomic adaptation to cold, implicating Csf1 in interorganelle lipid transport and homeostatic adaptation.
Collapse
Affiliation(s)
| | | | - Ngaam J Cheung
- Department of Biochemistry University of Oxford Oxford UK
| | - Agnès H Michel
- Department of Biochemistry University of Oxford Oxford UK
| | | | | |
Collapse
|
27
|
Levine TP. Sequence Analysis and Structural Predictions of Lipid Transfer Bridges in the Repeating Beta Groove (RBG) Superfamily Reveal Past and Present Domain Variations Affecting Form, Function and Interactions of VPS13, ATG2, SHIP164, Hobbit and Tweek. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:251525642211343. [PMID: 36571082 PMCID: PMC7613979 DOI: 10.1177/25152564221134328] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipid transfer between organelles requires proteins that shield the hydrophobic portions of lipids as they cross the cytoplasm. In the last decade a new structural form of lipid transfer protein (LTP) has been found: long hydrophobic grooves made of beta-sheet that bridge between organelles at membrane contact sites. Eukaryotes have five families of bridge-like LTPs: VPS13, ATG2, SHIP164, Hobbit and Tweek. These are unified into a single superfamily through their bridges being composed of just one domain, called the repeating beta groove (RBG) domain, which builds into rod shaped multimers with a hydrophobic-lined groove and hydrophilic exterior. Here, sequences and predicted structures of the RBG superfamily were analyzed in depth. Phylogenetics showed that the last eukaryotic common ancestor contained all five RBG proteins, with duplicated VPS13s. The current set of long RBG protein appears to have arisen in even earlier ancestors from shorter forms with 4 RBG domains. The extreme ends of most RBG proteins have amphipathic helices that might be an adaptation for direct or indirect bilayer interaction, although this has yet to be tested. The one exception to this is the C-terminus of SHIP164, which instead has a coiled-coil. Finally, the exterior surfaces of the RBG bridges are shown to have conserved residues along most of their length, indicating sites for partner interactions almost all of which are unknown. These findings can inform future cell biological and biochemical experiments.
Collapse
|
28
|
Egea PF. Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Front Cell Dev Biol 2021; 9:784367. [PMID: 34912813 PMCID: PMC8667587 DOI: 10.3389/fcell.2021.784367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis. One of the now well-acknowledged function of MCSs involves the non-vesicular trafficking of lipids; its characterization answered one long-standing question of eukaryotic cell biology revealing how some organelles receive and distribute their membrane lipids in absence of vesicular trafficking. The endoplasmic reticulum (ER) in synergy with the mitochondria, stands as the nexus for the biosynthesis and distribution of phospholipids (PLs) throughout the cell by contacting nearly all other organelle types. MCSs create and maintain lipid fluxes and gradients essential to the functional asymmetry and polarity of biological membranes throughout the cell. Membrane apposition is mediated by proteinaceous tethers some of which function as lipid transfer proteins (LTPs). We summarize here the current state of mechanistic knowledge of some of the major classes of LTPs and tethers based on the available atomic to near-atomic resolution structures of several "model" MCSs from yeast but also in Metazoans; we describe different models of lipid transfer at MCSs and analyze the determinants of their specificity and directionality. Each of these systems illustrate fundamental principles and mechanisms for the non-vesicular exchange of lipids between eukaryotic membrane-bound organelles essential to a wide range of cellular processes such as at PL biosynthesis and distribution, lipid storage, autophagy and organelle biogenesis.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
29
|
YhdP, TamB, and YdbH Are Redundant but Essential for Growth and Lipid Homeostasis of the Gram-Negative Outer Membrane. mBio 2021; 12:e0271421. [PMID: 34781743 PMCID: PMC8593681 DOI: 10.1128/mbio.02714-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial cell envelope is the first line of defense and point of contact with the environment and other organisms. Envelope biogenesis is therefore crucial for the survival and physiology of bacteria and is often targeted by antimicrobials. Gram-negative bacteria have a multilayered envelope delimited by an inner and outer membrane (IM and OM, respectively). The OM is a barrier against many antimicrobials because of its asymmetric lipid structure, with phospholipids composing the inner leaflet and lipopolysaccharides (LPS) the outer leaflet. Since lipid synthesis occurs at the IM, phospholipids and LPS are transported across the cell envelope and asymmetrically assembled at the OM during growth. How phospholipids are transported to the OM remains unknown. Recently, the Escherichia coli protein YhdP has been proposed to participate in this process through an unknown mechanism. YhdP belongs to the AsmA-like clan and contains domains homologous to those found in lipid transporters. Here, we used genetics to investigate the six members of the AsmA-like clan of proteins in E. coli. Our data show that YhdP and its paralogs TamB and YdbH are redundant, but not equivalent, in performing an essential function in the cell envelope. Among the AsmA-like paralogs, only the combined loss of YhdP, TamB, and YdbH is lethal, and any of these three proteins is sufficient for growth. We also show that these proteins are required for OM lipid homeostasis and propose that they are the long-sought-after phospholipid transporters that are required for OM biogenesis.
Collapse
|
30
|
Lenoir G, D'Ambrosio JM, Dieudonné T, Čopič A. Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Front Cell Dev Biol 2021; 9:737907. [PMID: 34540851 PMCID: PMC8440936 DOI: 10.3389/fcell.2021.737907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly uneven distribution within cellular membranes, essential for establishment of cell polarity and other processes. In this review, we discuss how combined action of PS biosynthesis enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within membrane contact sites (MCS) between the ER and other compartments, and lipid flippases and scramblases that mediate PS flip-flop between membrane leaflets controls the cellular distribution of PS. Enrichment of PS in specific compartments, in particular in the cytosolic leaflet of the plasma membrane (PM), requires input of energy, which can be supplied in the form of ATP or by phosphoinositides. Conversely, coupling between PS synthesis or degradation, PS flip-flop and PS transfer may enable PS transfer by passive flow. Such scenario is best documented by recent work on the formation of autophagosomes. The existence of lateral PS nanodomains, which is well-documented in the case of the PM and postulated for other compartments, can change the steepness or direction of PS gradients between compartments. Improvements in cellular imaging of lipids and membranes, lipidomic analysis of complex cellular samples, reconstitution of cellular lipid transport reactions and high-resolution structural data have greatly increased our understanding of cellular PS homeostasis. Our review also highlights how budding yeast has been instrumental for our understanding of the organization and transport of PS in cells.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Juan Martín D'Ambrosio
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Thibaud Dieudonné
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
31
|
Nakamura TS, Suda Y, Muneshige K, Fujieda Y, Okumura Y, Inoue I, Tanaka T, Takahashi T, Nakanishi H, Gao XD, Okada Y, Neiman AM, Tachikawa H. Suppression of Vps13 adaptor protein mutants reveals a central role for PI4P in regulating prospore membrane extension. PLoS Genet 2021; 17:e1009727. [PMID: 34407079 PMCID: PMC8372973 DOI: 10.1371/journal.pgen.1009727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/20/2021] [Indexed: 01/19/2023] Open
Abstract
Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71–Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation. Vps13 family proteins are conserved lipid transfer proteins that function at organelle contact sites and have been implicated in a number of different neurological diseases. In the yeast Saccharomyces cerevisiae, Vps13 is encoded by a single gene and is localized to various contact sites by interaction with different adaptor proteins and/or lipids, however its regulation is yet to be clarified. We have previously shown that during the developmental process of sporulation, Vps13 is recruited to de novo membrane structures called prospore membranes (PSMs) by a specific adaptor complex, and Vps13 and its adaptors are required for PSM extension. Here we reveal that loss of an adaptor can be overcome by lowering phosphatidylinositol-4-phosphate (PI4P) levels, either by inhibiting PI 4-kinase on the PSM or recruiting PI 4-phospatase to the PSM and that PI4P levels in the PSM affect Vps13 function. Further, we show that Vps13 forms endoplasmic reticulum (ER)-PSM contact sites, that ER-plasma membrane tethering proteins are recruited to ER-PSM contacts, and these proteins may function in conjunction with Vps13. Thus, our work shines light on both the mechanisms of intracellular remodeling and the function of this important class of lipid transfer proteins.
Collapse
Affiliation(s)
- Tsuyoshi S. Nakamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Kenji Muneshige
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Fujieda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuya Okumura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ichiro Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Takahashi
- Laboratory of Glycobiology and Glycotechnology, Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa, Japan
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yasushi Okada
- Laboratory for Cell Dynamics Observation, Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Department of Physics and Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Physics, Universal Biology Institute, and the International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Hiroyuki Tachikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
32
|
Gabrielle PH, Faivre L, Audo I, Zanlonghi X, Dollfus H, Thiadens AAHJ, Zeitz C, Mancini GMS, Perdomo Y, Mohand-Saïd S, Lizé E, Lhussiez V, Nandrot EF, Acar N, Creuzot-Garcher C, Sahel JA, Ansar M, Thauvin-Robinet C, Duplomb L, Da Costa R. Cystoid maculopathy is a frequent feature of Cohen syndrome-associated retinopathy. Sci Rep 2021; 11:16412. [PMID: 34385517 PMCID: PMC8361024 DOI: 10.1038/s41598-021-95743-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
Cohen syndrome (CS) is a rare syndromic form of rod-cone dystrophy. Recent case reports have suggested that cystoid maculopathy (CM) could affect CS patients with an early onset and high prevalence. Our study aims at improving our understanding and management of CM in CS patients through a retrospective case series of ten CS patients with identified pathogenic variants in VPS13B. Longitudinal optical coherence tomography (OCT) imaging was performed and treatment with carbonic anhydrase inhibitors (CAI) was provided to reduce the volume of cystoid spaces. CM affected eight out of ten patients in our cohort. The youngest patient showed a strong progression of macular cysts from the age of 4.5 to 5 years despite oral CAI medication. Other teenage and young adult patients showed stable macular cysts with and without treatment. One patient showed a moderate decrease of cystoid spaces in the absence of treatment at 22 years of age. Through a correlative analysis we found that the volume of cystoid spaces was positively correlated to the thickness of peripheral and macular photoreceptor-related layers. This study suggests that CAI treatments may not suffice to improve CM in CS patients, and that CM may resolve spontaneously during adulthood as photoreceptor dystrophy progresses.
Collapse
Affiliation(s)
- Pierre-Henry Gabrielle
- Department of Ophthalmology, University Hospital, 14 rue Paul Gaffarel, 21079, Dijon, France
| | - Laurence Faivre
- Inserm, UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Bâtiment B3, 15 Boulevard du Maréchal de Lattre de Tassigny, 21079, Dijon Cedex, France.,FHU TRANSLAD, CHU Dijon, 21000, Dijon, France.,Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon, 21000, Dijon, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France.,CHNO Des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 75012, Paris, France
| | - Xavier Zanlonghi
- Maladies Rares, Service d'Ophtalmologie, CHU Rennes, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Hélène Dollfus
- Centre de Référence Pour Les Affections Rares en Génétique Ophtalmologique (CARGO), FSMR SENSGENE, ERN-EYE, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France.,Laboratoire de Génétique Médicale, Inserm, UMR1112, Institut de Génétique Médicale D'Alsace, Université de Strasbourg, 67000, Strasbourg, France
| | | | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC, 3015, Rotterdam, The Netherlands
| | - Yaumara Perdomo
- Centre de Référence Pour Les Affections Rares en Génétique Ophtalmologique (CARGO), FSMR SENSGENE, ERN-EYE, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France.,Laboratoire de Génétique Médicale, Inserm, UMR1112, Institut de Génétique Médicale D'Alsace, Université de Strasbourg, 67000, Strasbourg, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France.,CHNO Des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 75012, Paris, France
| | - Eléonore Lizé
- Inserm, UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Bâtiment B3, 15 Boulevard du Maréchal de Lattre de Tassigny, 21079, Dijon Cedex, France
| | - Vincent Lhussiez
- Inserm, UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Bâtiment B3, 15 Boulevard du Maréchal de Lattre de Tassigny, 21079, Dijon Cedex, France
| | - Emeline F Nandrot
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France
| | - Niyazi Acar
- Centre Des Sciences du Goût Et de L'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, 21000, Dijon, France
| | - Catherine Creuzot-Garcher
- Department of Ophthalmology, University Hospital, 14 rue Paul Gaffarel, 21079, Dijon, France.,Centre Des Sciences du Goût Et de L'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, 21000, Dijon, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de La Vision, 17 rue Moreau, 75012, Paris, France.,CHNO Des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, 75012, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Muhammad Ansar
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland.,Department of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, 1004, Lausanne, Switzerland
| | - Christel Thauvin-Robinet
- Inserm, UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Bâtiment B3, 15 Boulevard du Maréchal de Lattre de Tassigny, 21079, Dijon Cedex, France.,FHU TRANSLAD, CHU Dijon, 21000, Dijon, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon, 21000, Dijon, France
| | - Laurence Duplomb
- Inserm, UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Bâtiment B3, 15 Boulevard du Maréchal de Lattre de Tassigny, 21079, Dijon Cedex, France.,FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
| | - Romain Da Costa
- Inserm, UMR1231, Equipe GAD, Université de Bourgogne Franche Comté, Bâtiment B3, 15 Boulevard du Maréchal de Lattre de Tassigny, 21079, Dijon Cedex, France. .,FHU TRANSLAD, CHU Dijon, 21000, Dijon, France.
| |
Collapse
|
33
|
Noda NN. Atg2 and Atg9: Intermembrane and interleaflet lipid transporters driving autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158956. [PMID: 33932584 DOI: 10.1016/j.bbalip.2021.158956] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Autophagy, an intracellular degradation mechanism, involves de novo generation of autophagosomes that sequester and deliver cytoplasmic components to the lysosome for degradation. The mechanism behind autophagosomal membrane expansion has been a longstanding enigma in this field. Recent structural and biochemical analyses have revealed that two mysterious autophagy-related (Atg) proteins, Atg2 and Atg9, are novel types of intermembrane and interleaflet lipid transporters, respectively. This review summarizes recent discoveries surrounding Atg2 and Atg9 as a lipid transporter and discusses the molecular mechanism of autophagosomal membrane expansion driven by collaboration between these two lipid transporters.
Collapse
Affiliation(s)
- Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.
| |
Collapse
|
34
|
Borgese N, Iacomino N, Colombo SF, Navone F. The Link between VAPB Loss of Function and Amyotrophic Lateral Sclerosis. Cells 2021; 10:1865. [PMID: 34440634 PMCID: PMC8392409 DOI: 10.3390/cells10081865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) membrane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the VAPs mediate a large number of processes, notably the generation of membrane contact sites between the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation (p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable, and its expression from a single allele appears to be insufficient to support toxic gain-of-function effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several basic cell physiological processes are affected by downregulation or complete depletion of VAPB, impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8 patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| | | | | | - Francesca Navone
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| |
Collapse
|
35
|
Zhang S, Hama Y, Mizushima N. The evolution of autophagy proteins - diversification in eukaryotes and potential ancestors in prokaryotes. J Cell Sci 2021; 134:270774. [PMID: 34228793 DOI: 10.1242/jcs.233742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a degradative pathway for cytoplasmic constituents, and is conserved across eukaryotes. Autophagy-related (ATG) genes have undergone extensive multiplications and losses in different eukaryotic lineages, resulting in functional diversification and specialization. Notably, even though bacteria and archaea do not possess an autophagy pathway, they do harbor some remote homologs of Atg proteins, suggesting that preexisting proteins were recruited when the autophagy pathway developed during eukaryogenesis. In this Review, we summarize our current knowledge on the distribution of Atg proteins within eukaryotes and outline the major multiplication and loss events within the eukaryotic tree. We also discuss the potential prokaryotic homologs of Atg proteins identified to date, emphasizing the evolutionary relationships and functional differences between prokaryotic and eukaryotic proteins.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Genetic Dissection of Vps13 Regulation in Yeast Using Disease Mutations from Human Orthologs. Int J Mol Sci 2021; 22:ijms22126200. [PMID: 34201352 PMCID: PMC8229349 DOI: 10.3390/ijms22126200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/03/2023] Open
Abstract
The VPS13 family of proteins have emerged as key players in intracellular lipid transport and human health. Humans have four different VPS13 orthologs, the dysfunction of which leads to different diseases. Yeast has a single VPS13 gene, which encodes a protein that localizes to multiple different membrane contact sites. The yeast vps13Δ mutant is pleiotropic, exhibiting defects in sporulation, protein trafficking, endoplasmic reticulum (ER)-phagy and mitochondrial function. Non-null alleles resulting from missense mutations can be useful reagents for understanding the multiple functions of a gene. The exceptionally large size of Vps13 makes the identification of key residues challenging. As a means to identify critical residues in yeast Vps13, amino acid substitution mutations from VPS13A, B, C and D, associated with human disease, were introduced at the cognate positions of yeast VPS13, some of which created separation-of-function alleles. Phenotypic analyses of these mutants have revealed that the promotion of ER-phagy is a fourth, genetically separable role of VPS13 and provide evidence that co-adaptors at the endosome mediate the activity of VPS13 in vacuolar sorting.
Collapse
|
37
|
Barz S, Kriegenburg F, Sánchez-Martín P, Kraft C. Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119064. [PMID: 34048862 PMCID: PMC8261831 DOI: 10.1016/j.bbamcr.2021.119064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.
Collapse
Affiliation(s)
- Saskia Barz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
38
|
Guillén-Samander A, Leonzino M, Hanna MG, Tang N, Shen H, De Camilli P. VPS13D bridges the ER to mitochondria and peroxisomes via Miro. J Cell Biol 2021; 220:e202010004. [PMID: 33891013 PMCID: PMC8077184 DOI: 10.1083/jcb.202010004] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/08/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria, which are excluded from the secretory pathway, depend on lipid transport proteins for their lipid supply from the ER, where most lipids are synthesized. In yeast, the outer mitochondrial membrane GTPase Gem1 is an accessory factor of ERMES, an ER-mitochondria tethering complex that contains lipid transport domains and that functions, partially redundantly with Vps13, in lipid transfer between the two organelles. In metazoa, where VPS13, but not ERMES, is present, the Gem1 orthologue Miro was linked to mitochondrial dynamics but not to lipid transport. Here we show that Miro, including its peroxisome-enriched splice variant, recruits the lipid transport protein VPS13D, which in turn binds the ER in a VAP-dependent way and thus could provide a lipid conduit between the ER and mitochondria. These findings reveal a so far missing link between function(s) of Gem1/Miro in yeast and higher eukaryotes, where Miro is a Parkin substrate, with potential implications for Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
- Andrés Guillén-Samander
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Marianna Leonzino
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Michael G. Hanna
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Ni Tang
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Hongying Shen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
- Systems Biology Institute, Yale West Campus, West Haven, CT
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
39
|
Gao Y, Xiong J, Chu QZ, Ji WK. PDZD8-mediated lipid transfer at contacts between the ER and late endosomes/lysosomes is required for neurite outgrowth. J Cell Sci 2021; 135:256568. [PMID: 33912962 DOI: 10.1242/jcs.255026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and late endosomes/lysosomes (LE/lys) are emerging as critical hubs for diverse cellular events, and changes in their extents are linked to severe neurological diseases. While recent studies show that the synaptotagmin-like mitochondrial-lipid-binding (SMP) domain-containing protein PDZD8 may mediate the formation of ER-LE/lys MCSs, the cellular functions of PDZD8 remain largely elusive. Here, we attempt to investigate the lipid transfer activities of PDZD8 and the extent to which its cellular functions depend on its lipid transfer activities. In accordance with recent studies, we demonstrate that PDZD8 is a protrudin (ZFYVE27)-interacting protein and that PDZD8 acts as a tether at ER-LE/lys MCSs. Furthermore, we discover that the SMP domain of PDZD8 binds glycerophospholipids and ceramides both in vivo and in vitro, and that the SMP domain can transport lipids between membranes in vitro. Functionally, PDZD8 is required for LE/lys positioning and neurite outgrowth, which is dependent on the lipid transfer activity of the SMP domain.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Juan Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qing-Zhu Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
40
|
Abstract
Our cells are comprised of billions of proteins, lipids, and other small molecules packed into their respective subcellular organelles, with the daunting task of maintaining cellular homeostasis over a lifetime. However, it is becoming increasingly evident that organelles do not act as autonomous discrete units but rather as interconnected hubs that engage in extensive communication through membrane contacts. In the last few years, our understanding of how these contacts coordinate organelle function has redefined our view of the cell. This review aims to present novel findings on the cellular interorganelle communication network and how its dysfunction may contribute to aging and neurodegeneration. The consequences of disturbed interorganellar communication are intimately linked with age-related pathologies. Given that both aging and neurodegenerative diseases are characterized by the concomitant failure of multiple cellular pathways, coordination of organelle communication and function could represent an emerging regulatory mechanism critical for long-term cellular homeostasis. We anticipate that defining the relationships between interorganelle communication, aging, and neurodegeneration will open new avenues for therapeutics.
Collapse
Affiliation(s)
- Maja Petkovic
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
| | - Caitlin E O'Brien
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Department of Physiology, University of California at San Francisco, San Francisco, California 94158, USA
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94158, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
41
|
Wang R, Ren Y, Yan H, Teng X, Zhu X, Wang Y, Zhang X, Guo X, Lin Q, Cheng Z, Lei C, Wang J, Jiang L, Wang Y, Wan J. ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110831. [PMID: 33691965 DOI: 10.1016/j.plantsci.2021.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Cereal crops accumulate large amounts of starch which is synthesized and stored in amyloplasts in the form of starch grains (SGs). Despite significant progress in deciphering starch biosynthesis, our understanding of amyloplast development in rice (Oryza sativa) endosperm remains largely unknown. Here, we report a novel rice floury mutant named enlarged starch grain1 (esg1). The mutant has decreased starch content, altered starch physicochemical properties, slower grain-filling rate and reduced 1000-grain weight. A distinctive feature in esg1 endosperm is that SGs are much larger, mainly due to an increased number of starch granules per SG. Spherical and loosely assembled granules, together with those weakly stained SGs may account for decreased starch content in esg1. Map-based cloning revealed that ESG1 encodes a putative permease subunit of a bacterial-type ABC (ATP-binding cassette) lipid transporter. ESG1 is constitutively expressed in various tissues. It encodes a protein localized to the chloroplast and amyloplast membranes. Mutation of ESG1 causes defective galactolipid synthesis. The overall study indicates that ESG1 is a newly identified protein affecting SG development and subsequent starch biosynthesis, which provides novel insights into amyloplast development in rice.
Collapse
Affiliation(s)
- Rongqi Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yupeng Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
42
|
Ercan B, Naito T, Koh DHZ, Dharmawan D, Saheki Y. Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b. EMBO J 2021; 40:e106524. [PMID: 33604931 PMCID: PMC7957428 DOI: 10.15252/embj.2020106524] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/25/2022] Open
Abstract
Cholesterol is essential for cell physiology. Transport of the "accessible" pool of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) by ER-localized GRAMD1 proteins (GRAMD1a/1b/1c) contributes to cholesterol homeostasis. However, how cells detect accessible cholesterol within the PM remains unclear. We show that the GRAM domain of GRAMD1b, a coincidence detector for anionic lipids, including phosphatidylserine (PS), and cholesterol, possesses distinct but synergistic sites for sensing accessible cholesterol and anionic lipids. We find that a mutation within the GRAM domain of GRAMD1b that is associated with intellectual disability in humans specifically impairs cholesterol sensing. In addition, we identified another point mutation within this domain that enhances cholesterol sensitivity without altering its PS sensitivity. Cell-free reconstitution and cell-based assays revealed that the ability of the GRAM domain to sense accessible cholesterol regulates membrane tethering and determines the rate of cholesterol transport by GRAMD1b. Thus, cells detect the codistribution of accessible cholesterol and anionic lipids in the PM and fine-tune the non-vesicular transport of PM cholesterol to the ER via GRAMD1s.
Collapse
Affiliation(s)
- Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Dennis Dharmawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
43
|
Hewlett B, Singh NP, Vannier C, Galli T. ER-PM Contact Sites - SNARING Actors in Emerging Functions. Front Cell Dev Biol 2021; 9:635518. [PMID: 33681218 PMCID: PMC7928305 DOI: 10.3389/fcell.2021.635518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The compartmentalisation achieved by confining cytoplasm into membrane-enclosed organelles in eukaryotic cells is essential for maintaining vital functions including ATP production, synthetic and degradative pathways. While intracellular organelles are highly specialised in these functions, the restricting membranes also impede exchange of molecules responsible for the synchronised and responsive cellular activities. The initial identification of contact sites between the ER and plasma membrane (PM) provided a potential candidate structure for communication between organelles without mixing by fusion. Over the past decades, research has revealed a far broader picture of the events. Membrane contact sites (MCSs) have been recognized as increasingly important actors in cell differentiation, plasticity and maintenance, and, upon dysfunction, responsible for pathological conditions such as cancer and neurodegenerative diseases. Present in multiple organelles and cell types, MCSs promote transport of lipids and Ca2+ homoeostasis, with a range of associated protein families. Interestingly, each MCS displays a unique molecular signature, adapted to organelle functions. This review will explore the literature describing the molecular components and interactions taking place at ER-PM contact sites, their functions, and implications in eukaryotic cells, particularly neurons, with emphasis on lipid transfer proteins and emerging function of SNAREs.
Collapse
Affiliation(s)
- Bailey Hewlett
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Neha Pratap Singh
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Christian Vannier
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Thierry Galli
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,GHU PARIS Psychiatrie and Neurosciences, Paris, France
| |
Collapse
|
44
|
Ugur B, Hancock-Cerutti W, Leonzino M, De Camilli P. Role of VPS13, a protein with similarity to ATG2, in physiology and disease. Curr Opin Genet Dev 2020; 65:61-68. [PMID: 32563856 PMCID: PMC7746581 DOI: 10.1016/j.gde.2020.05.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
The evolutionarily conserved VPS13 family proteins have been implicated in several cellular processes. Mutations in each of the four human VPS13s cause neurodevelopmental or neurodegenerative disorders. Until recently, the molecular function of VPS13 remained elusive. Genetic, functional and structural studies have now revealed that VPS13 acts at contact sites between intracellular organelles to transport lipids by a novel mechanism: direct transfer between bilayers via a hydrophobic channel that spans its entire rod-like N-terminal half. Predicted similarities to the autophagy protein ATG2 suggested a similar role for ATG2 that has now been confirmed by structural and functional studies. Here, after a brief review of this evidence, we discuss what is known of human VPS13 proteins in physiology and disease.
Collapse
Affiliation(s)
- Berrak Ugur
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William Hancock-Cerutti
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Marianna Leonzino
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
45
|
Kimura AK, Kimura T. Phosphatidylserine biosynthesis pathways in lipid homeostasis: Toward resolution of the pending central issue for decades. FASEB J 2020; 35:e21177. [PMID: 33205488 DOI: 10.1096/fj.202001802r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Enzymatic control of lipid homeostasis in the cell is a vital element in the complex organization of life. Phosphatidylserine (PS) is an essential anionic phospholipid of cell membranes, and conducts numerous roles for their structural and functional integrity. In mammalian cells, two distinct enzymes phosphatidylserine synthases-1 (PSS1) and -2 (PSS2) in the mitochondria-associated membrane (MAM) in the ER perform de novo synthesis of PS. It is based on base-exchange reactions of the preexisting dominant phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). While PSS2 specifically catalyzes the reaction "PE → PS," whether or not PSS1 is responsible for the same reaction along with the reaction "PC → PS" remains unsettled despite its fundamental impact on the major stoichiometry. We propose here that a key but the only report that appeared to have put scientists on hold for decades in answering to this issue may be viewed consistently with other available research reports; PSS1 utilizes the two dominant phospholipid classes at a similar intrinsic rate. In this review, we discuss the issue in view of the current information for the enzyme machineries, membrane structure and dynamics, intracellular network of lipid transport, and PS synthesis in health and disease. Resolution of the pending issue is thus critical in advancing our understanding of roles of the essential anionic lipid in biology, health, and disease.
Collapse
Affiliation(s)
- Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Tomohiro Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
46
|
Editorial overview: Membrane traffic in the time of COVID-19. Curr Opin Cell Biol 2020; 65:iii-v. [PMID: 33077165 PMCID: PMC7566815 DOI: 10.1016/j.ceb.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
The inner membrane protein YhdP modulates the rate of anterograde phospholipid flow in Escherichia coli. Proc Natl Acad Sci U S A 2020; 117:26907-26914. [PMID: 33046656 DOI: 10.1073/pnas.2015556117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier that allows uptake of nutrients while simultaneously protecting the cell from harmful compounds. The basic pathways and molecular machinery responsible for transporting lipopolysaccharides (LPS), lipoproteins, and β-barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes capable of affecting PL transport, we screened for genetic interactions with mlaA*, a mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of mlaA*-mediated lysis suggested that PL transport can occur via a high-flux diffusive flow mechanism. We found that YhdP, an IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during mlaA*-mediated lysis. Deletion of yhdP from mlaA* reduced the rate of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of ∆yhdP cells was further compromised and ruptured before the IM during mlaA*-mediated death. These findings demonstrate the existence of a high-flux diffusive pathway for PL flow in Escherichia coli that is modulated by YhdP.
Collapse
|