1
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2025; 41:461-485. [PMID: 39023844 PMCID: PMC11876516 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Caporale N, Leonardi O, Villa CE, Vitriolo A, Boeckx C, Testa G. Tile by tile: capturing the evolutionary mosaic of human conditions. Curr Opin Genet Dev 2025; 90:102297. [PMID: 39705881 DOI: 10.1016/j.gde.2024.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
The collection of Homo sapiens anatomical hallmarks hypothesized to support the 'human condition' did not appear at one specific time and place, but gradually, creating a reticulate evolutionary trajectory. The recent reconstruction of migration patterns and gene flows across different hominin species and populations draws a mosaic that we contend can be illuminated by genomic comparisons and specific experiments. Here, we first review key discoveries that could allow this experimental endeavor by describing recent advances in a variety of fields, stressing the importance of charting the current human neurodiversity as an interpretive substrate for evolutionary changes. Then, we identify key cellular and molecular observables. Finally, given the vast amount of possible variants, we focus the discussion on technologies that could allow their interrogation in a way that is compatible with the staggering amount of contemporary genomic and phenotypic characterization.
Collapse
Affiliation(s)
- Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@NicoloCaporale
| | - Oliviero Leonardi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@OlivieroLeonar2
| | - Carlo Emanuele Villa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@CarloEmanueleV1
| | - Alessandro Vitriolo
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@AVitriolScience
| | - Cedric Boeckx
- University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain; University of Barcelona Institute of Neurosciences, 08007 Barcelona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), 08007 Barcelona, Spain.
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
3
|
Barão S, Xu Y, Llongueras JP, Vistein R, Goff L, Nielsen KJ, Bae BI, Smith RS, Walsh CA, Stein-O'Brien G, Müller U. Conserved transcriptional regulation by BRN1 and BRN2 in neocortical progenitors drives mammalian neural specification and neocortical expansion. Nat Commun 2024; 15:8043. [PMID: 39271675 PMCID: PMC11399407 DOI: 10.1038/s41467-024-52443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.
Collapse
Affiliation(s)
- Soraia Barão
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Yijun Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - José P Llongueras
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Vistein
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristina J Nielsen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Richard S Smith
- Northwestern University, Feinberg School of Medicine, Department of Pharmacology, Chicago, IL, 60611, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Genevieve Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Moriano J, Leonardi O, Vitriolo A, Testa G, Boeckx C. A multi-layered integrative analysis reveals a cholesterol metabolic program in outer radial glia with implications for human brain evolution. Development 2024; 151:dev202390. [PMID: 39114968 PMCID: PMC11385646 DOI: 10.1242/dev.202390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
The definition of molecular and cellular mechanisms contributing to brain ontogenetic trajectories is essential to investigate the evolution of our species. Yet their functional dissection at an appropriate level of granularity remains challenging. Capitalizing on recent efforts that have extensively profiled neural stem cells from the developing human cortex, we develop an integrative computational framework to perform trajectory inference and gene regulatory network reconstruction, (pseudo)time-informed non-negative matrix factorization for learning the dynamics of gene expression programs, and paleogenomic analysis for a higher-resolution mapping of derived regulatory variants in our species in comparison with our closest relatives. We provide evidence for cell type-specific regulation of gene expression programs during indirect neurogenesis. In particular, our analysis uncovers a key role for a cholesterol program in outer radial glia, regulated by zinc-finger transcription factor KLF6. A cartography of the regulatory landscape impacted by Homo sapiens-derived variants reveals signals of selection clustering around regulatory regions associated with GLI3, a well-known regulator of radial glial cell cycle, and impacting KLF6 regulation. Our study contributes to the evidence of significant changes in metabolic pathways in recent human brain evolution.
Collapse
Affiliation(s)
- Juan Moriano
- Department of General Linguistics, University of Barcelona, 08007 Barcelona, Spain
- University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain
| | | | - Alessandro Vitriolo
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Giuseppe Testa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Cedric Boeckx
- Department of General Linguistics, University of Barcelona, 08007 Barcelona, Spain
- University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain
- University of Barcelona Institute of Neurosciences, 08007 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), 08007 Barcelona, Spain
| |
Collapse
|
5
|
Liuzzi G, Artimagnella O, Frisari S, Mallamaci A. Foxg1 bimodally tunes L1-mRNA and -DNA dynamics in the developing murine neocortex. Development 2024; 151:dev202292. [PMID: 38655654 PMCID: PMC11190451 DOI: 10.1242/dev.202292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Foxg1 masters telencephalic development via a pleiotropic control over its progression. Expressed within the central nervous system (CNS), L1 retrotransposons are implicated in progression of its histogenesis and tuning of its genomic plasticity. Foxg1 represses gene transcription, and L1 elements share putative Foxg1-binding motifs, suggesting the former might limit telencephalic expression (and activity) of the latter. We tested such a prediction, in vivo as well as in engineered primary neural cultures, using loss- and gain-of-function approaches. We found that Foxg1-dependent, transcriptional L1 repression specifically occurs in neopallial neuronogenic progenitors and post-mitotic neurons, where it is supported by specific changes in the L1 epigenetic landscape. Unexpectedly, we discovered that Foxg1 physically interacts with L1-mRNA and positively regulates neonatal neopallium L1-DNA content, antagonizing the retrotranscription-suppressing activity exerted by Mov10 and Ddx39a helicases. To the best of our knowledge, Foxg1 represents the first CNS patterning gene acting as a bimodal retrotransposon modulator, limiting transcription of L1 elements and promoting their amplification, within a specific domain of the developing mouse brain.
Collapse
Affiliation(s)
- Gabriele Liuzzi
- Laboratory of Cerebral Cortex Development, SISSA, Trieste 34136, Italy
| | | | - Simone Frisari
- Laboratory of Cerebral Cortex Development, SISSA, Trieste 34136, Italy
| | | |
Collapse
|
6
|
Barão S, Xu Y, Llongueras JP, Vistein R, Goff L, Nielsen K, Bae BI, Smith RS, Walsh CA, Stein-O'Brien G, Müller U. BRN1/2 Function in Neocortical Size Determination and Microcephaly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565322. [PMID: 37961182 PMCID: PMC10635068 DOI: 10.1101/2023.11.02.565322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian neocortex differs vastly in size and complexity between mammalian species, yet the mechanisms that lead to an increase in brain size during evolution are not known. We show here that two transcription factors coordinate gene expression programs in progenitor cells of the neocortex to regulate their proliferative capacity and neuronal output in order to determine brain size. Comparative studies in mice, ferrets and macaques demonstrate an evolutionary conserved function for these transcription factors to regulate progenitor behaviors across the mammalian clade. Strikingly, the two transcriptional regulators control the expression of large numbers of genes linked to microcephaly suggesting that transcriptional deregulation as an important determinant of the molecular pathogenesis of microcephaly, which is consistent with the finding that genetic manipulation of the two transcription factors leads to severe microcephaly.
Collapse
|
7
|
Hendriks D, Pagliaro A, Andreatta F, Ma Z, van Giessen J, Massalini S, López-Iglesias C, van Son GJF, DeMartino J, Damen JMA, Zoutendijk I, Staliarova N, Bredenoord AL, Holstege FCP, Peters PJ, Margaritis T, Chuva de Sousa Lopes S, Wu W, Clevers H, Artegiani B. Human fetal brain self-organizes into long-term expanding organoids. Cell 2024; 187:712-732.e38. [PMID: 38194967 DOI: 10.1016/j.cell.2023.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024]
Abstract
Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.
Collapse
Affiliation(s)
- Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | - Anna Pagliaro
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Ziliang Ma
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Immunos, Singapore 138648, Singapore; Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Joey van Giessen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Simone Massalini
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Gijs J F van Son
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jeff DeMartino
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Iris Zoutendijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Nadzeya Staliarova
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Annelien L Bredenoord
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | | | | | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Immunos, Singapore 138648, Singapore; Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| | | |
Collapse
|
8
|
Barresi M, Hickmott RA, Bosakhar A, Quezada S, Quigley A, Kawasaki H, Walker D, Tolcos M. Toward a better understanding of how a gyrified brain develops. Cereb Cortex 2024; 34:bhae055. [PMID: 38425213 DOI: 10.1093/cercor/bhae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024] Open
Abstract
The size and shape of the cerebral cortex have changed dramatically across evolution. For some species, the cortex remains smooth (lissencephalic) throughout their lifetime, while for other species, including humans and other primates, the cortex increases substantially in size and becomes folded (gyrencephalic). A folded cortex boasts substantially increased surface area, cortical thickness, and neuronal density, and it is therefore associated with higher-order cognitive abilities. The mechanisms that drive gyrification in some species, while others remain lissencephalic despite many shared neurodevelopmental features, have been a topic of investigation for many decades, giving rise to multiple perspectives of how the gyrified cerebral cortex acquires its unique shape. Recently, a structurally unique germinal layer, known as the outer subventricular zone, and the specialized cell type that populates it, called basal radial glial cells, were identified, and these have been shown to be indispensable for cortical expansion and folding. Transcriptional analyses and gene manipulation models have provided an invaluable insight into many of the key cellular and genetic drivers of gyrification. However, the degree to which certain biomechanical, genetic, and cellular processes drive gyrification remains under investigation. This review considers the key aspects of cerebral expansion and folding that have been identified to date and how theories of gyrification have evolved to incorporate this new knowledge.
Collapse
Affiliation(s)
- Mikaela Barresi
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Ryan Alexander Hickmott
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
| | - Abdulhameed Bosakhar
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Sebastian Quezada
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Anita Quigley
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
- ACMD, St Vincent's Hospital Melbourne, Regent Street, Fitzroy, VIC 3065, Australia
- School of Engineering, RMIT University, La Trobe Street, Melbourne, VIC 3000, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Regent Street, Fitzroy, VIC 3065, Australia
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa 920-8640, Japan
| | - David Walker
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Plenty Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
9
|
Sokpor G, Kerimoglu C, Ulmke PA, Pham L, Nguyen HD, Brand-Saberi B, Staiger JF, Fischer A, Nguyen HP, Tuoc T. H3 Acetylation-Induced Basal Progenitor Generation and Neocortex Expansion Depends on the Transcription Factor Pax6. BIOLOGY 2024; 13:68. [PMID: 38392287 PMCID: PMC10886678 DOI: 10.3390/biology13020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Enrichment of basal progenitors (BPs) in the developing neocortex is a central driver of cortical enlargement. The transcription factor Pax6 is known as an essential regulator in generation of BPs. H3 lysine 9 acetylation (H3K9ac) has emerged as a crucial epigenetic mechanism that activates the gene expression program required for BP pool amplification. In this current work, we applied immunohistochemistry, RNA sequencing, chromatin immunoprecipitation and sequencing, and the yeast two-hybrid assay to reveal that the BP-genic effect of H3 acetylation is dependent on Pax6 functionality in the developing mouse cortex. In the presence of Pax6, increased H3 acetylation caused BP pool expansion, leading to enhanced neurogenesis, which evoked expansion and quasi-convolution of the mouse neocortex. Interestingly, H3 acetylation activation exacerbates the BP depletion and corticogenesis reduction effect of Pax6 ablation in cortex-specific Pax6 mutants. Furthermore, we found that H3K9 acetyltransferase KAT2A/GCN5 interacts with Pax6 and potentiates Pax6-dependent transcriptional activity. This explains a genome-wide lack of H3K9ac, especially in the promoter regions of BP-genic genes, in the Pax6 mutant cortex. Together, these findings reveal a mechanistic coupling of H3 acetylation and Pax6 in orchestrating BP production and cortical expansion through the promotion of a BP gene expression program during cortical development.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
- Lincoln Medical School, University of Lincoln, Lincoln LN6 7TS, UK
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
| | | | - Linh Pham
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Hoang Duy Nguyen
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075 Goettingen, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, 37077 Goettingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| |
Collapse
|
10
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
11
|
Akula SK, Exposito-Alonso D, Walsh CA. Shaping the brain: The emergence of cortical structure and folding. Dev Cell 2023; 58:2836-2849. [PMID: 38113850 PMCID: PMC10793202 DOI: 10.1016/j.devcel.2023.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/08/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The cerebral cortex-the brain's covering and largest region-has increased in size and complexity in humans and supports higher cognitive functions such as language and abstract thinking. There is a growing understanding of the human cerebral cortex, including the diversity and number of cell types that it contains, as well as of the developmental mechanisms that shape cortical structure and organization. In this review, we discuss recent progress in our understanding of molecular and cellular processes, as well as mechanical forces, that regulate the folding of the cerebral cortex. Advances in human genetics, coupled with experimental modeling in gyrencephalic species, have provided insights into the central role of cortical progenitors in the gyrification and evolutionary expansion of the cerebral cortex. These studies are essential for understanding the emergence of structural and functional organization during cortical development and the pathogenesis of neurodevelopmental disorders associated with cortical malformations.
Collapse
Affiliation(s)
- Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
12
|
Royall LN, Machado D, Jessberger S, Denoth-Lippuner A. Asymmetric inheritance of centrosomes maintains stem cell properties in human neural progenitor cells. eLife 2023; 12:e83157. [PMID: 37882444 PMCID: PMC10629821 DOI: 10.7554/elife.83157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/25/2023] [Indexed: 10/27/2023] Open
Abstract
During human forebrain development, neural progenitor cells (NPCs) in the ventricular zone (VZ) undergo asymmetric cell divisions to produce a self-renewed progenitor cell, maintaining the potential to go through additional rounds of cell divisions, and differentiating daughter cells, populating the developing cortex. Previous work in the embryonic rodent brain suggested that the preferential inheritance of the pre-existing (older) centrosome to the self-renewed progenitor cell is required to maintain stem cell properties, ensuring proper neurogenesis. If asymmetric segregation of centrosomes occurs in NPCs of the developing human brain, which depends on unique molecular regulators and species-specific cellular composition, remains unknown. Using a novel, recombination-induced tag exchange-based genetic tool to birthdate and track the segregation of centrosomes over multiple cell divisions in human embryonic stem cell-derived regionalised forebrain organoids, we show the preferential inheritance of the older mother centrosome towards self-renewed NPCs. Aberration of asymmetric segregation of centrosomes by genetic manipulation of the centrosomal, microtubule-associated protein Ninein alters fate decisions of NPCs and their maintenance in the VZ of human cortical organoids. Thus, the data described here use a novel genetic approach to birthdate centrosomes in human cells and identify asymmetric inheritance of centrosomes as a mechanism to maintain self-renewal properties and to ensure proper neurogenesis in human NPCs.
Collapse
Affiliation(s)
- Lars N Royall
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of ZurichZurichSwitzerland
| | - Diana Machado
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of ZurichZurichSwitzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of ZurichZurichSwitzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of ZurichZurichSwitzerland
| | - Annina Denoth-Lippuner
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of ZurichZurichSwitzerland
| |
Collapse
|
13
|
Pigoni M, Uzquiano A, Paulsen B, Kedaigle AJ, Yang SM, Symvoulidis P, Adiconis X, Velasco S, Sartore R, Kim K, Tucewicz A, Tropp SY, Tsafou K, Jin X, Barrett L, Chen F, Boyden ES, Regev A, Levin JZ, Arlotta P. Cell-type specific defects in PTEN-mutant cortical organoids converge on abnormal circuit activity. Hum Mol Genet 2023; 32:2773-2786. [PMID: 37384417 PMCID: PMC10481103 DOI: 10.1093/hmg/ddad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
De novo heterozygous loss-of-function mutations in phosphatase and tensin homolog (PTEN) are strongly associated with autism spectrum disorders; however, it is unclear how heterozygous mutations in this gene affect different cell types during human brain development and how these effects vary across individuals. Here, we used human cortical organoids from different donors to identify cell-type specific developmental events that are affected by heterozygous mutations in PTEN. We profiled individual organoids by single-cell RNA-seq, proteomics and spatial transcriptomics and revealed abnormalities in developmental timing in human outer radial glia progenitors and deep-layer cortical projection neurons, which varied with the donor genetic background. Calcium imaging in intact organoids showed that both accelerated and delayed neuronal development phenotypes resulted in similar abnormal activity of local circuits, irrespective of genetic background. The work reveals donor-dependent, cell-type specific developmental phenotypes of PTEN heterozygosity that later converge on disrupted neuronal activity.
Collapse
Affiliation(s)
- Martina Pigoni
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana Uzquiano
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bruna Paulsen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda J Kedaigle
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sung Min Yang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Panagiotis Symvoulidis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Silvia Velasco
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rafaela Sartore
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kwanho Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashley Tucewicz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Yoshimi Tropp
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kalliopi Tsafou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xin Jin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Lindy Barrett
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fei Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences & Technology Program (HST), Harvard Medical School, Boston, MA 02115, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA 02138, USA
- Department of Brain of Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Huilgol D, Levine JM, Galbavy W, Wang BS, He M, Suryanarayana SM, Huang ZJ. Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex. Neuron 2023; 111:2557-2569.e4. [PMID: 37348506 PMCID: PMC10527425 DOI: 10.1016/j.neuron.2023.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) that are mediated by radial glia and intermediate progenitors (IPs), respectively. How dNG and iNG differentially contribute to neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse M Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - William Galbavy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
15
|
Klingler E. Temporal controls over cortical projection neuron fate diversity. Curr Opin Neurobiol 2023; 79:102677. [PMID: 36736108 DOI: 10.1016/j.conb.2023.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
During neocortex development, cortical projection neurons (PN) are sequentially produced and assemble into circuits underlying our interactions with the environment. Cortical PN are heterogeneous in terms of birthdate, layer position, molecular identity, connectivity, and function. This diversity increases in evolutionarily most recent species, but when and how it emerges during corticogenesis is still debated. While time-locked expression of determinant genes and early stochasticity allow the production of different types of PN, temporal differences in unfolding similar transcriptional programs, rather than fundamental differences in these programs, further account for anatomical variability between PN subtypes and across species. Altogether, these mechanisms, which will be discussed here, participate in increasing cortical PN diversity.
Collapse
Affiliation(s)
- Esther Klingler
- Department of Basic Neurosciences, University of Geneva, 1 Rue Michel Servet, 1211, Geneva, Switzerland.
| |
Collapse
|
16
|
Kliesmete Z, Wange LE, Vieth B, Esgleas M, Radmer J, Hülsmann M, Geuder J, Richter D, Ohnuki M, Götz M, Hellmann I, Enard W. Regulatory and coding sequences of TRNP1 co-evolve with brain size and cortical folding in mammals. eLife 2023; 12:e83593. [PMID: 36947129 PMCID: PMC10032658 DOI: 10.7554/elife.83593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Brain size and cortical folding have increased and decreased recurrently during mammalian evolution. Identifying genetic elements whose sequence or functional properties co-evolve with these traits can provide unique information on evolutionary and developmental mechanisms. A good candidate for such a comparative approach is TRNP1, as it controls proliferation of neural progenitors in mice and ferrets. Here, we investigate the contribution of both regulatory and coding sequences of TRNP1 to brain size and cortical folding in over 30 mammals. We find that the rate of TRNP1 protein evolution (ω) significantly correlates with brain size, slightly less with cortical folding and much less with body size. This brain correlation is stronger than for >95% of random control proteins. This co-evolution is likely affecting TRNP1 activity, as we find that TRNP1 from species with larger brains and more cortical folding induce higher proliferation rates in neural stem cells. Furthermore, we compare the activity of putative cis-regulatory elements (CREs) of TRNP1 in a massively parallel reporter assay and identify one CRE that likely co-evolves with cortical folding in Old World monkeys and apes. Our analyses indicate that coding and regulatory changes that increased TRNP1 activity were positively selected either as a cause or a consequence of increases in brain size and cortical folding. They also provide an example how phylogenetic approaches can inform biological mechanisms, especially when combined with molecular phenotypes across several species.
Collapse
Affiliation(s)
- Zane Kliesmete
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Lucas Esteban Wange
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Beate Vieth
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Miriam Esgleas
- Physiological Genomics, BioMedical Center - BMC, Ludwig-Maximilians-UniversitätMunichGermany
- Institute for Stem Cell Research, Helmholtz Zentrum München, Germany Research Center for Environmental HealthMunichGermany
| | - Jessica Radmer
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Matthias Hülsmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
- Department of Environmental Microbiology, EawagDübendorfSwitzerland
- Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Daniel Richter
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Mari Ohnuki
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Magdelena Götz
- Physiological Genomics, BioMedical Center - BMC, Ludwig-Maximilians-UniversitätMunichGermany
- Institute for Stem Cell Research, Helmholtz Zentrum München, Germany Research Center for Environmental HealthMunichGermany
- SYNERGY, Excellence Cluster of Systems Neurology, BioMedical Center (BMC), Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Ines Hellmann
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-UniversitätMunichGermany
| |
Collapse
|
17
|
Abstract
Non-human animal chimeras, containing human neurological cells, have been created in the laboratory. Despite a great deal of debate, the status of such beings has not been resolved. Under normal definitions, such a being could either be unconventionally human or abnormally animal. Practical investigations in animal sentience, artificial intelligence, and now chimera research, suggest that such beings may be assumed to have no legal rights, so philosophy could provide a different answer. In this vein, therefore, we can ask: What would a chimera, if it could think, think about? Thinking is used to capture the phenomena of a novel, chimeric being perceiving its terrible predicament as no more than a laboratory experiment. The creation of a thinking chimera therefore forces us to reconsider our assumptions about what makes human beings (potentially) unique (and other sentient animals different), because, as such, a chimera's existence bridges our social and legal expectations about definitions of human and animal. Society has often evolved new social norms based on different kinds of (ir)rational contrivances; the imperative of non-contradiction, which is defended here, therefore requires a specific philosophical response to the rights of a thinking chimeric being.
Collapse
Affiliation(s)
- Benjamin Capps
- Department of Bioethics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
18
|
Duński E, Pękowska A. Keeping the balance: Trade-offs between human brain evolution, autism, and schizophrenia. Front Genet 2022; 13:1009390. [DOI: 10.3389/fgene.2022.1009390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique qualities of the human brain are a product of a complex evolutionary process. Evolution, famously described by François Jacob as a “tinkerer,” builds upon existing genetic elements by modifying and repurposing them for new functions. Genetic changes in DNA may lead to the emergence of new genes or cause altered gene expression patterns. Both gene and regulatory element mutations may lead to new functions. Yet, this process may lead to side-effects. An evolutionary trade-off occurs when an otherwise beneficial change, which is important for evolutionary success and is under strong positive selection, concurrently results in a detrimental change in another trait. Pleiotropy occurs when a gene affects multiple traits. Antagonistic pleiotropy is a phenomenon whereby a genetic variant leads to an increase in fitness at one life-stage or in a specific environment, but simultaneously decreases fitness in another respect. Therefore, it is conceivable that the molecular underpinnings of evolution of highly complex traits, including brain size or cognitive ability, under certain conditions could result in deleterious effects, which would increase the susceptibility to psychiatric or neurodevelopmental diseases. Here, we discuss possible trade-offs and antagonistic pleiotropies between evolutionary change in a gene sequence, dosage or activity and the susceptibility of individuals to autism spectrum disorders and schizophrenia. We present current knowledge about genes and alterations in gene regulatory landscapes, which have likely played a role in establishing human-specific traits and have been implicated in those diseases.
Collapse
|
19
|
Samara A, Spildrejorde M, Sharma A, Falck M, Leithaug M, Modafferi S, Bjørnstad PM, Acharya G, Gervin K, Lyle R, Eskeland R. A multi-omics approach to visualize early neuronal differentiation from hESCs in 4D. iScience 2022; 25:105279. [PMID: 36304110 PMCID: PMC9593815 DOI: 10.1016/j.isci.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.
Collapse
Affiliation(s)
- Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| | - Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Wagner NR, Sinha A, Siththanandan V, Kowalchuk AM, MacDonald JL, Tharin S. miR-409-3p represses Cited2 to refine neocortical layer V projection neuron identity. Front Neurosci 2022; 16:931333. [PMID: 36248641 PMCID: PMC9558290 DOI: 10.3389/fnins.2022.931333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary emergence of the corticospinal tract and corpus callosum are thought to underpin the expansion of complex motor and cognitive abilities in mammals. Molecular mechanisms regulating development of the neurons whose axons comprise these tracts, the corticospinal and callosal projection neurons, remain incompletely understood. Our previous work identified a genomic cluster of microRNAs (miRNAs), Mirg/12qF1, that is unique to placental mammals and specifically expressed by corticospinal neurons, and excluded from callosal projection neurons, during development. We found that one of these, miR-409-3p, can convert layer V callosal into corticospinal projection neurons, acting in part through repression of the transcriptional regulator Lmo4. Here we show that miR-409-3p also directly represses the transcriptional co-regulator Cited2, which is highly expressed by callosal projection neurons from the earliest stages of neurogenesis. Cited2 is highly expressed by intermediate progenitor cells (IPCs) in the embryonic neocortex while Mirg, which encodes miR-409-3p, is excluded from these progenitors. miR-409-3p gain-of-function (GOF) in IPCs results in a phenocopy of established Cited2 loss-of-function (LOF). At later developmental stages, both miR-409-3p GOF and Cited2 LOF promote the expression of corticospinal at the expense of callosal projection neuron markers in layer V. Taken together, this work identifies previously undescribed roles for miR-409-3p in controlling IPC numbers and for Cited2 in controlling callosal fate. Thus, miR-409-3p, possibly in cooperation with other Mirg/12qF1 miRNAs, represses Cited2 as part of the multifaceted regulation of the refinement of neuronal cell fate within layer V, combining molecular regulation at multiple levels in both progenitors and post-mitotic neurons.
Collapse
Affiliation(s)
- Nikolaus R. Wagner
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Ashis Sinha
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Verl Siththanandan
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States
| | - Angelica M. Kowalchuk
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Jessica L. MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States,*Correspondence: Jessica L. MacDonald,
| | - Suzanne Tharin
- Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States,Division of Neurosurgery, Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, United States,Suzanne Tharin,
| |
Collapse
|
21
|
Pinson A, Xing L, Namba T, Kalebic N, Peters J, Oegema CE, Traikov S, Reppe K, Riesenberg S, Maricic T, Derihaci R, Wimberger P, Pääbo S, Huttner WB. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science 2022; 377:eabl6422. [PMID: 36074851 DOI: 10.1126/science.abl6422] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neanderthal brains were similar in size to those of modern humans. We sought to investigate potential differences in neurogenesis during neocortex development. Modern human transketolase-like 1 (TKTL1) differs from Neanderthal TKTL1 by a lysine-to-arginine amino acid substitution. Using overexpression in developing mouse and ferret neocortex, knockout in fetal human neocortical tissue, and genome-edited cerebral organoids, we found that the modern human variant, hTKTL1, but not the Neanderthal variant, increases the abundance of basal radial glia (bRG) but not that of intermediate progenitors (bIPs). bRG generate more neocortical neurons than bIPs. The hTKTL1 effect requires the pentose phosphate pathway and fatty acid synthesis. Inhibition of these metabolic pathways reduces bRG abundance in fetal human neocortical tissue. Our data suggest that neocortical neurogenesis in modern humans differs from that in Neanderthals.
Collapse
Affiliation(s)
- Anneline Pinson
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jula Peters
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Sofia Traikov
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Katrin Reppe
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stephan Riesenberg
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Tomislav Maricic
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Razvan Derihaci
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, 01307 Dresden, Germany
| | - Pauline Wimberger
- Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, 01307 Dresden, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
22
|
Jaylet T, Quintens R, Benotmane MA, Luukkonen J, Tanaka IB, Ibanez C, Durand C, Sachana M, Azimzadeh O, Adam-Guillermin C, Tollefsen KE, Laurent O, Audouze K, Armant O. Development of an Adverse Outcome Pathway for radiation-induced microcephaly via expert consultation and machine learning. Int J Radiat Biol 2022; 98:1752-1762. [PMID: 35947014 DOI: 10.1080/09553002.2022.2110312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Brain development during embryogenesis and in early postnatal life is particularly complex and involves the interplay of many cellular processes and molecular mechanisms, making it extremely vulnerable to exogenous insults, including ionizing radiation (IR). Microcephaly is one of the most frequent neurodevelopmental abnormalities that is characterized by small brain size, and is often associated with intellectual deficiency. Decades of research span from epidemiological data on in utero exposure of the A-bomb survivors, to studies on animal and cellular models that allowed deciphering the most prominent molecular mechanisms leading to microcephaly. The Adverse Outcome Pathway (AOP) framework is used to organize, evaluate and portray the scientific knowledge of toxicological effects spanning different biological levels of organizations, from the initial interaction with molecular targets to the occurrence of a disease or adversity. In the present study, the framework was used in an attempt to organize the current scientific knowledge on microcephaly progression in the context of ionizing radiation (IR) exposure. This work was performed by a group of experts formed during a recent workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. Here we report on the development of a putative AOP for congenital microcephaly resulting from IR exposure based on discussions of the working group and we emphasize the use of a novel machine-learning approach to assist in the screening of the available literature to develop AOPs. CONCLUSION The expert consultation led to the identification of crucial biological events for the progression of microcephaly upon exposure to IR, and highlighted current knowledge gaps. The machine learning approach was successfully used to screen the existing knowledge and helped to rapidly screen the body of evidence and in particular the epidemiological data. This systematic review approach also ensured that the analysis was sufficiently comprehensive to identify the most relevant data and facilitate rapid and consistent AOP development. We anticipate that as machine learning approaches become more user-friendly through easy-to-use web interface, this would allow AOP development to become more efficient and less time consuming.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
| | | | - Jukka Luukkonen
- University of Eastern Finland, Kuopio Campus, Department of Environmental and Biological Sciences, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 lenomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Chrystelle Ibanez
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Christelle Durand
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, 75775 CEDEX 16 Paris, France
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (Bfs), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Olivier Laurent
- PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Olivier Armant
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| |
Collapse
|
23
|
Kaluthantrige Don F, Kalebic N. Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Front Cell Dev Biol 2022; 10:917166. [PMID: 35774229 PMCID: PMC9237216 DOI: 10.3389/fcell.2022.917166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
The acquisition of higher intellectual abilities that distinguish humans from their closest relatives correlates greatly with the expansion of the cerebral cortex. This expansion is a consequence of an increase in neuronal cell production driven by the higher proliferative capacity of neural progenitor cells, in particular basal radial glia (bRG). Furthermore, when the proliferation of neural progenitor cells is impaired and the final neuronal output is altered, severe neurodevelopmental disorders can arise. To effectively study the cell biology of human bRG, genetically accessible human experimental models are needed. With the pioneering success to isolate and culture pluripotent stem cells in vitro, we can now routinely investigate the developing human cerebral cortex in a dish using three-dimensional multicellular structures called organoids. Here, we will review the molecular and cell biological features of bRG that have recently been elucidated using brain organoids. We will further focus on the application of this simple model system to study in a mechanistically actionable way the molecular and cellular events in bRG that can lead to the onset of various neurodevelopmental diseases.
Collapse
|
24
|
Yang L, Li Z, Liu G, Li X, Yang Z. Developmental Origins of Human Cortical Oligodendrocytes and Astrocytes. Neurosci Bull 2021; 38:47-68. [PMID: 34374948 PMCID: PMC8783027 DOI: 10.1007/s12264-021-00759-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human cortical radial glial cells are primary neural stem cells that give rise to cortical glutaminergic projection pyramidal neurons, glial cells (oligodendrocytes and astrocytes) and olfactory bulb GABAergic interneurons. One of prominent features of the human cortex is enriched with glial cells, but there are major gaps in understanding how these glial cells are generated. Herein, by integrating analysis of published human cortical single-cell RNA-Seq datasets with our immunohistochemistical analyses, we show that around gestational week 18, EGFR-expressing human cortical truncated radial glial cells (tRGs) give rise to basal multipotent intermediate progenitors (bMIPCs) that express EGFR, ASCL1, OLIG2 and OLIG1. These bMIPCs undergo several rounds of mitosis and generate cortical oligodendrocytes, astrocytes and olfactory bulb interneurons. We also characterized molecular features of the cortical tRG. Integration of our findings suggests a general picture of the lineage progression of cortical radial glial cells, a fundamental process of the developing human cerebral cortex.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Translational Brain Research, and Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|