1
|
Kumari P, Garg S, Bhadada SK, Pal R, Mukherjee S, Lohani S, Basoya R, Dahiya D, Singla V, Sood A. Prevalence, risk factors and effect of curative parathyroidectomy on nephrocalcinosis in Asian-Indian patients with symptomatic primary hyperparathyroidism. J Endocrinol Invest 2025; 48:381-392. [PMID: 39395116 DOI: 10.1007/s40618-024-02464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/03/2024] [Indexed: 10/14/2024]
Abstract
Primary hyperparathyroidism (PHPT) is characterized by inappropriate secretion of parathyroid hormone, causing hypercalcemia and hypercalciuria, leading to renal stone diseases and nephrocalcinosis. The frequency, risk factors, and curative effect on nephrocalcinosis in post-parathyroidectomy have not been identified yet. Therefore, the present study evaluated the clinico-biochemical, radiological parameters and curative effect on nephrocalcinosis. A total of 583 PHPT patients were analysed in four groups viz. Group 1 (PHPT with nephrocalcinosis-98; 16.8%); Group 2 (PHPT with nephrolithiasis-227; 38.9%); Group 3 (PHPT with both nephrolithiasis and nephrocalcinosis-59; 10.1%); and Group 4 (PHPT without renal diseases-199, 34.1%). In the sub-group analysis, younger age (p ≤ 0.05), male gender (p ≤ 0.05), and hematuria (p ≤ 0.005) were significant in Group 1 vs. Group 4. Dysuria and low eGFR were significant in Group 1 vs. Group 2 (p ≤ 0.0005; p ≤ 0.05) and Group 1 vs. Group 4 (p ≤ 0.0005; p ≤ 0.0005). Polyuria (p ≤ 0.05; p ≤ 0.05, p ≤ 0.005), and gravluria (p ≤ 0.05; p ≤ 0.0005, p ≤ 0.005) were frequent in Group 1 vs. other groups. A significant difference was observed in S.Ca and, 24-hrs U.Ca in Group 1 vs. Group 2 {(12.2 (10.8-13.4) vs. 11.2 (10.7-12.4), p ≤ 0.05; 301 (189.5-465) vs. 180 (92.5-323.1), p ≤ 0.05} and Group 1 vs. Group 4 {(12.2 (10.8-13.4) vs. 11.4 (10.7-12.5), p ≤ 0.05 ; 301 (189.5-465) vs. 213 (110-360), p ≤ 0.0005}. Multivariate logistic regression showed gravluria [aOR = 9.2, p = 0.0001], S.Ca (aOR = 1.30, p = 0.003) and, 24-hrs U.Ca (aOR = 1.02, p = 0.042) to be independent predictors of nephrocalcinosis. Pre and post-operative assessment revealed decreased S. Ca levels [(11.9 ± 1.9) vs. (10.5 ± 1.0) mg/dL; p = 0.04] and complete radiological resolution (10.4%) in PHPT with nephrocalcinosis. Therefore, serum calcium, 24-hrs Urinary calcium, and gravluria were independent predictors of nephrocalcinosis with 10.4% showing complete radiological resolution post-operatively.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sheenam Garg
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Rimesh Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Soham Mukherjee
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Shivangani Lohani
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rinki Basoya
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Divya Dahiya
- Department of General Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Veenu Singla
- Department of Radiodiagnosis& Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
2
|
Mukhtar N, Alghamdi B, Alswailem M, Alsagheir A, Alzahrani AS. Case report: Familial hypoparathyroidism with elevated parathyroid hormone due to an inactivating PTH mutation. Front Endocrinol (Lausanne) 2024; 15:1415639. [PMID: 39435356 PMCID: PMC11491329 DOI: 10.3389/fendo.2024.1415639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction So far, only 11 PTH mutations have been described as causes of familial isolated hypoparathyroidism (FIH). In this report, we describe a family with FIH but with significant elevation of functionally inactive PTH due to a PTH mutation. We also show a positive therapeutic outcome of recombinant human PTH (teriparatide) therapy in one of the siblings who was not well controlled on large doses of calcitriol and calcium replacement therapy. Case description The proband is a 34-year-old woman who has a history of chronic severe hypocalcemia (HypoCa) since birth. She and her three brothers (33-year-old male twins, and a 21-year-old male) were diagnosed with pseudohypoparathyroidism type 1b (PHPT 1b) based on the presence of chronic HypoCa (serum Ca 1.6-1.85 mmol/l) since birth associated with significantly elevated plasma PTH levels in the range of 310-564 pg/dl (normal range 10-65) and absence of signs of Albright hereditary osteodystrophy. Molecular studies WES showed no pathogenic, likely pathogenic or variants of unknown significance in any known calcium-associated genetic disorder but a bi-allelic variant in the PTH itself ((NM_000315.4:c.128G>A, p.Gly43Glu). This was confirmed by Sanger sequencing in the patient and her affected brothers. Management Because the patient's HypoCa was not controlled on large doses of calcitriol and calcium carbonate, a trial of teriparatide 20 mcg SC daily was started and resulted in normalization of calcium, decline in PTH levels and significant improvement in her general wellbeing. Conclusion High PTH in the presence of congenital hypocalcemia is not always due to receptor or post-receptor defect and can be due to a biologically inactive mutated PTH. In such cases, treatment with teriparatide may result in stabilization of biochemical profile and improvement in quality of life.
Collapse
Affiliation(s)
- Noha Mukhtar
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Balgees Alghamdi
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Afaf Alsagheir
- Department of Paediatrics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ali S. Alzahrani
- Department of Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Cheng P, Meng K, Shi X, Jiao M, Han Y, Li X, Liu P, Xiao C. Solid-phase extraction with the functionalization of calcium-sensing receptors onto magnetic microspheres as an affinity probe can capture ligands selectively from herbal extract. Mikrochim Acta 2023; 191:34. [PMID: 38108923 DOI: 10.1007/s00604-023-06092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Magnetic solid phase extraction with the functionalization of protein onto micro- or nano-particles as a probe is favorable for the discovery of new drugs from complicated natural products. Herein, we aimed to develop a rapid method by immobilizing halogenated alkane dehalogenase (Halo)-tagged calcium-sensing receptor (CaSR) directly out of crude cell lysates onto the surface of magnetic microspheres (MM) with no need to purify protein. Thereby we achieved CaSR-functionalized MM for revealing adsorption characteristics of agonist neomycin and screening ligands from herbal medicine Radix Astragali (RA). About 43.87 mg CaSR could be immobilized per 1 g MM within 30 min, and the acquired CaSR-functionalized MM showed good stability and activity for 4 weeks. The maximum adsorption capacity of neomycin on CaSR-functionalized MM was determined as 4.70 × 10-4 ~ 3.96 × 10-4 mol/g within 277 ~ 310 K, and its adsorption isotherm characteristics described best by the Temkin model were further validated using isothermal titration calorimetry. It was inferred that CaSR's affinity for neomycin was driven by electrostatic forces in a spontaneous process when the system reached an equilibrium state. Moreover, the ligands from the RA extract were screened, three of which were assigned as astragaloside IV, ononin, and calycosin based on HPLC-MS. Our findings demonstrated that the functionalization of a receptor onto magnetic materials designed as an affinity probe has the capability to recognize its agonist and capture the ligands selectively from complex matrices like herbs.
Collapse
Affiliation(s)
- Peixuan Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Kaili Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Xiangang Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Meizhi Jiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Yaokun Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China
| | - Xia Li
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, People's Republic of China
| | - Pei Liu
- Shaanxi Institute for Food and Drug Control, Xi'an, 710065, People's Republic of China
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
4
|
Meng KL, Jiao MZ, Shi XG, Xu R, Cheng PX, Lv HT, Zheng XH, Xiao CN. A rapid approach to capture the potential bioactive compounds from Rhizoma Drynariae, utilizing disease-associated mutation in calcium sensing receptor to alter the binding affinity for agonists. J Pharm Biomed Anal 2023; 226:115253. [PMID: 36657349 DOI: 10.1016/j.jpba.2023.115253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Rhizoma Drynariae (RD) was used clinically to treat osteoporosis in China due to stimulating bone formation and inhibiting bone resorption, however, the bioactive constituents with the dual effect on bone are still unknown exactly. Disease-causing mutations in calcium sensing receptor (CaSR) can alter parathyroid hormone secretion and affect Ca2+ release from bone and Ca2+ reabsorption from kidney, which gives an indication that CaSR is a potential target for developing therapeutics to manage osteoporosis. Herein, a chromatographic approach was established, by immobilizing the mutant CaSR onto the surface of silica gels as stationary phase in a one-step procedure and then adding the different amino acids into mobile phase as competitors, for exploring the binding features of the known agonists and further screening ligands from RD. The mutant CaSR-coated column was prepared rapidly without the complicated purification and separation of the receptor, which had the large capacity of 13.1 mg CaSR /g silica gels and kept a good stability and specificity for at least 35 days. The CaSR mutation can weaken the binding affinities for three agonists, and the largest decreases occurred on the mutational site Thr151Met for neomycin, on the two sites of Asn118Lys and Glu191Lys for gentamicin-C, and on the site Phe612Ser for kanamycin, which gained new insights into their structure-function relationship. The potential bioactive compounds from RD were screened using the mutant CaSR-coated column and were recognized as coumaric acid 4-O-β-D-glucopyranoside, caffeic acid, and naringin using UPLC-MS. Among them, naringin targeting CaSR gives a possible explanation that RD could manage osteoporosis. These results indicated that, such a rapid and simple method, utilizing disease-associated mutation in CaSR to alter the binding affinity for agonists, can be applied in capturing the potential bioactive compounds efficiently from complex matrices like herb medicines.
Collapse
Affiliation(s)
- Kai-Li Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Mei-Zhi Jiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xian-Gang Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Ru Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Pei-Xuan Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hui-Ting Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Xiao-Hui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Chao-Ni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; Shaanxi Provincial Key Laboratory of Biotechnology; College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
5
|
SALEPÇIOĞLU KAYA H, GÖNCÜ B, DÜZENLİ ÖF, YIĞMAN S, ERSOY YE, AKÇAKAYA A. Evaluation of Parathyroid allo-transplantation with the Presence of Auto-CASR Antibody. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2021.6401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
6
|
Xu R, Cheng P, Meng K, Li L, Jiao M, Zhao X, Jia P, Zheng X, Xiao C. Extracellular domain of human calcium sensing receptor immobilized to silica beads as biomaterial: a rapid chromatographic method for recognizing ligands from complex matrix ‘Shuangdan’. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123409. [DOI: 10.1016/j.jchromb.2022.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
7
|
Hawkes CP, Al Jubeh JM, Li D, Tucker SE, Rajiyah T, Levine MA. Novel PTH Gene Mutations Causing Isolated Hypoparathyroidism. J Clin Endocrinol Metab 2022; 107:e2449-e2458. [PMID: 35165722 PMCID: PMC9113798 DOI: 10.1210/clinem/dgac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Parathyroid hormone (PTH) gene mutations represent a rare cause of familial isolated hypoparathyroidism (FIH). These defects can cause hypoparathyroidism with increased or decreased serum levels of PTH through 1) impaired PTH synthesis; 2) induction of parathyroid cell apoptosis; or 3) secretion of bioinactive PTH molecules. Eight pathogenic mutations of this gene have been described previously. OBJECTIVE Through describing 2 novel mutations of the PTH gene, we aim to extend the molecular basis for FIH and further refine the proposed mechanisms by which PTH mutations cause hypoparathyroidism. METHODS Proband case reports were compiled with extended family analysis. The probands in both kindreds presented before age 10 days with hypocalcemia and elevated phosphate levels. Proband A had low PTH levels, whereas these levels were elevated in Proband B. Proband B was initially diagnosed with pseudohypoparathyroidism. Methylation analysis was performed of CpG dinucleotides within 3 GNAS differentially methylated regions; whole-genome sequencing; and PTH infusion with analysis of nephrogenous 3',5'-cyclic adenosine 5'-monophosphate. RESULTS Proband A had a novel heterozygous sequence change in exon 2 of the PTH gene, c.46_47delinsAA (p.Ala16Lys), and proband B had a novel homozygous nucleotide transition in PTH exon 3 (c.128G > A; p.G43E) that led to replacement of glycine by glutamic acid at position 12 of PTH 1-84. PTH 1-34 infusion demonstrated that renal responsiveness to PTH was intact and not antagonized by circulating bioinactive PTH. CONCLUSION PTH gene mutations are uncommon causes of hypoparathyroidism, but can be misdiagnosed as disorders of gland development or receptor function if PTH levels are decreased or elevated, respectively. Genetic testing should be considered early in the diagnostic approach to these presentations.
Collapse
Affiliation(s)
- Colin P Hawkes
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Jamal M Al Jubeh
- Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Dong Li
- Center for Applied Genomics, CHOP, Philadelphia, Pennsylvania, USA
| | - Susan E Tucker
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois, USA
| | - Tara Rajiyah
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago, Chicago, Illinois, USA
| | - Michael A Levine
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Correspondence: Michael A. Levine, MD, Division of Pediatric Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, ARC510A, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Actkins KV, Beasley HK, Faucon AB, Davis LK, Sakwe AM. Calcium-Sensing Receptor Polymorphisms at rs1801725 Are Associated with Increased Risk of Secondary Malignancies. J Pers Med 2021; 11:642. [PMID: 34357109 PMCID: PMC8304025 DOI: 10.3390/jpm11070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of systemic calcium homeostasis during malignancy is common in most patients with high-grade tumors. However, it remains unclear whether single nucleotide polymorphisms (SNPs) that alter the sensitivity of the calcium-sensing receptor (CaSR) to circulating calcium are associated with primary and/or secondary neoplasms at specific pathological sites in patients of European and African ancestry. Multivariable logistic regression models were used to analyze the association of CASR SNPs with circulating calcium, parathyroid hormone, vitamin D, and primary and secondary neoplasms. Circulating calcium is associated with an increased risk for breast, prostate, and skin cancers. In patients of European descent, the rs1801725 CASR SNP is associated with bone-related cancer phenotypes, deficiency of humoral immunity, and a higher risk of secondary neoplasms in the lungs and bone. Interestingly, circulating calcium levels are higher in homozygous patients for the inactivating CASR variant at rs1801725 (TT genotype), and this is associated with a higher risk of secondary malignancies. Our data suggest that expression of CaSR variants at rs1801725 is associated with a higher risk of developing secondary neoplastic lesions in the lungs and bone, due in part to cancer-induced hypercalcemia and/or tumor immune suppression. Screening of patients for CASR variants at this locus may lead to improved management of high calcium associated tumor progression.
Collapse
Affiliation(s)
- Ky’Era V. Actkins
- Department of Microbiology, Immunology and Physiology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA;
| | - Heather K. Beasley
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (H.K.B.); (L.K.D.)
| | - Annika B. Faucon
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN 37232, USA;
| | - Lea K. Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (H.K.B.); (L.K.D.)
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (H.K.B.); (L.K.D.)
| |
Collapse
|
9
|
Ji Y, Kang C, Chen J, Zhang L. Identification of p.Arg205Cys in CASR in an autosomal dominant hypocalcaemia type 1 pedigree: A case report. Medicine (Baltimore) 2021; 100:e26443. [PMID: 34160437 PMCID: PMC8238359 DOI: 10.1097/md.0000000000026443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Autosomal dominant hypocalcaemia type 1 (ADH1) is a genetic disease characterized by benign hypocalcemia, inappropriately low parathyroid hormone levels and mostly hypercalciuria. It is caused by the activating mutations of the calcium-sensing receptor gene (CASR), which produces a left-shift in the set point for extracellular calcium. PATIENT CONCERNS A 50-year-old man presenting with muscle spasms was admitted into the hospital. He has a positive familial history for hypocalcemia. Auxiliary examinations demonstrated hypocalcemia, hyperphosphatemia, normal parathyroid hormone level and nephrolithiasis. A missense heterozygous variant in CASR, c 613C > T (p. Arg205Cys) which has been reported in a familial hypocalciuric hypercalcemia type 1 patient was found in the patient's genotype. It is the first time that this variant is found associating with ADH1. The variant is predicted vicious by softwares and cosegregates with ADH1 in this pedigree. CASR Arg205Cys was deduced to be the genetic cause of ADH1 in the family. DIAGNOSIS The patient was diagnosed with ADH1 clinically and genetically. INTERVENTIONS Oral calcitriol, calcium and hydrochlorothiazide were prescribed to the patient. OUTCOMES After the treatments for 1 week, the patient's symptom was improved and the re-examination revealed serum calcium in the normal range. A 3-month follow-up showed his symptom was mostly relieved. LESSONS The variant of CASR Arg205Cys, responsible for ADH1 in this family, broadened the genetic spectrum of ADH1. Further and more studies are required to evaluate the correlation between genotype and phenotype in ADH1 patients.
Collapse
|
10
|
Moon JE, Yang HY, Wee G, ParK SH, Ko CW. A cell function study on calcium regulation of a novel calcium-sensing receptor mutation (p.Tyr825Phe). Ann Pediatr Endocrinol Metab 2021; 26:24-30. [PMID: 32871647 PMCID: PMC8026336 DOI: 10.6065/apem.2040022.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Autosomal dominant hypocalcemia with hypercalciuria is a genetic disease characterized by hypoparathyroidism with hypercalciuria. We discovered a novel variant (p.Tyr825Phe[Y825F]) of the CASR gene in a neonate with congenital hypoparathyroidism and hypercalciuria and conducted a cell function study to determine whether the CASR-Y825F variant was pathogenic. METHODS To perform a functional study on CaSR-Y825F, we constructed expression vectors expressing wild-type (WT) CASR and CASR-Y825F. After transfection of each expression vector into HEK293 cells, we examined alterations in intracellular signaling. Mitogen-activated protein kinase (MAPK) signaling activity of HEK293 cells expressing CASR-WT or CASR-Y825F was determined. Changes in intracellular calcium ions ([Ca2+]i) by extracellular calcium ion ([Ca2+]e) stimulation were quantitatively compared and analyzed. RESULTS Cells expressing CASR-Y825F showed elevated of MAPK signaling (phospho-ERK [pERK], phospho-JNK [pJNK], phospho-p38 [pp38]) and increased [Ca2+]i levels at low [Ca2+]e stimulation compared with cells expressing CASR-WT. Additionally, [Ca2+]i levels in HEK293 cells expression CASR-WT and CASR-Y825F were determined at 340 nm/380 nm wavelength ratios using Fura-2 AM. At [Ca2+]e concentrations of 2.5 mM and 3 mM, the ratios of CASR-Y825F cells were higher (2.6 and 3.5, respectively) than those of CASR-WT cells (1.04 and 1.40, respectively). CONCLUSION This cell function study proved that the CASR-Y825F expressed in HEK293 cells elevated MAPK signaling (pERK, pJNK, pp38) and increased [Ca2+]i to induce hypocalcemia.
Collapse
Affiliation(s)
- Jung Eun Moon
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Young Yang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea
| | - Gabbine Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea
| | - Suk-Hyun ParK
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Cheol Woo Ko
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea,Address for correspondence: Cheol Woo Ko Department of Pediatric Endocrinology, Kyungpook National University Children's Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea
| |
Collapse
|
11
|
Mukhtar NN, Abouzied MEDM, Alqahtani MH, Hammami MM. Misleading localization by 18F-fluorocholine PET/CT in familial hypocalciuric hypercalcemia type-3: a case report. BMC Endocr Disord 2021; 21:20. [PMID: 33499837 PMCID: PMC7836468 DOI: 10.1186/s12902-021-00683-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Familial hypocalciuric hypercalcemia (FHH) is a heterogeneous autosomal-dominant disorder of calcium hemostasis that may be difficult to distinguish clinically from mild primary hyperparathyroidism. Loss-of-function mutations mainly involving Arg15 residue of the adaptor-related protein complex 2, sigma subunit 1 (AP2S1) cause a rarer, more recently recognized form of FHH, FFH type-3. Recently, 18F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT) showed superior sensitivity to conventional imaging in localizing parathyroid adenomas. We report a new FFH type-3 patient who underwent unnecessary parathyroidectomy in association with misleading FCH-PET/CT imaging. CASE PRESENTATION A 29-year old woman was initially evaluated for parathyroid hormone (PTH)-dependent hypercalcemia in 2013. Medical history was positive only for chronic constipation and malaise with no personal or family history of hypercalcemia, kidney stones, or neck surgery. Over seven years, serum calcium level was 2.51-2.89 mmol/L with concomitant PTH level of 58.7-94.8 mmol/L. Serum phosphate levels were in the low/low normal range. Serum creatinine and magnesium levels were normal. 25-hydroxy vitamin D level was 13 nmol/L. 24-hour urine calcium level was 1.92 mmol/day but increased to 6.99 mmol/day after treatment with cholecalciferol 1000 IU daily. Bone mineral density and renal ultrasound were normal. Parathyroid ultrasound showed two hypoechoic nodules inferior to the left and right thyroid lobes; however, 99mtechnitium-sestamibi scans (2013, 2016, 2018) were negative. FCH-PET/CT (2019) showed focal uptake co-localizing with the nodule inferior to the left thyroid lobe. The patient underwent left inferior parathyroidectomy and pathology was consistent with parathyroid hyperplasia. However, postoperatively, serum calcium and PTH levels remained elevated and FCH-PET/CT and ultrasound showed persistence of the uptake/nodule. Whole exome sequencing showed Arg15Cys mutation in the AP2S1 gene characteristic of FHH type-3. CONCLUSIONS In this new case of FHH type-3, FCH-PET/CT failed to localize to the hyperplastic parathyroid glands and localized instead to apparently a lymph node. This, together with increased urinary calcium after vitamin D supplementation, led to unnecessary parathyroidectomy. Given the increasingly lower cost of genetic testing and the cost of follow up and unnecessary surgery, it may prudent to include genetic testing for FHH early on in patients with mild PTH-dependent hypercalcemia.
Collapse
Affiliation(s)
- Noha N Mukhtar
- Department of Medicine , King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Mohammed H Alqahtani
- Department of Cyclotron and Radiopharmaceuticals, Alfaisal University, Riyadh, Saudi Arabia
| | - Muhammad M Hammami
- Department of Medicine , King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Clinical Studies and Empirical Ethics, King Faisal Specialist Hospital and Research Centre, P O Box # 3354 (MBC 03), 11211 Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Mahajan A, Buse J, Kline G. Parathyroid hormone-dependent familial hypercalcemia with low measured PTH levels and a presumptive novel pathogenic mutation in CaSR. Osteoporos Int 2020; 31:203-207. [PMID: 31641801 DOI: 10.1007/s00198-019-05170-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/13/2019] [Indexed: 10/25/2022]
Abstract
Familial hypocalciuric hypercalcemia (FHH) is a benign autosomal dominant condition characterized by lifelong asymptomatic hypercalcemia. FHH is typically caused by a heterozygous inactivating mutation of the calcium-sensing receptor (CaSR) and characterized by moderate hypercalcemia, inappropriately normal or elevated serum parathyroid hormone (PTH), and relative hypocalciuria (FeCa < 2%) with histologically normal parathyroid glands. FHH should be distinguished from primary hyperparathyroidism so that unnecessary parathyroid surgery is avoided. We report a case that presented with asymptomatic, familial hypercalcemia but low PTH and normal (non-low) urinary calcium excretion found to be secondary to a novel pathogenic inactivating mutation of the CaSR gene. We present an asymptomatic 54-year-old Malaysian woman with incidentally discovered hypercalcemia, intermittent hypophosphatemia, and FeCa > 2%. PTH levels were repeatedly below the mean of the reference range (on two separate assays) and sometimes even below the lower reference limit. Two siblings, one niece, and her son had hypercalcemia without nephrolithiasis. Cinacalcet, used as a PTH-suppression test, normalized serum total and ionized calcium after 7 days of cinacalcet 30 mg BID, confirming her hypercalcemia was PTH-mediated. Given her family history, genetic testing was pursued and discovered a novel pathogenic mutation of the CaSR gene confirming the diagnosis of FHH type 1. Our case represents an atypical presentation of FHH1 with low PTH and FeCa > 2%. This contributes to the expanding clinical and biochemical spectrum of CaSR inactivating mutations and presents an innovative approach to evaluating biochemically uncertain familial hypercalcemia with cinacalcet before pursuing expensive genetic analysis.
Collapse
Affiliation(s)
- A Mahajan
- Division of Endocrinology, Department of Medicine, University of Calgary, 1820 Richmond Rd SW, Calgary, AB, T2T5C7, Canada.
| | - J Buse
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Clinical Biochemistry Section, Calgary Laboratory Services, 9-3535 Research Road NW, Calgary, AB, T2L 2K8, Canada
| | - G Kline
- Division of Endocrinology, Department of Medicine, University of Calgary, 1820 Richmond Rd SW, Calgary, AB, T2T5C7, Canada
| |
Collapse
|
13
|
Kosiba AA, Wang Y, Chen D, Wong CKC, Gu J, Shi H. The roles of calcium-sensing receptor (CaSR) in heavy metals-induced nephrotoxicity. Life Sci 2019; 242:117183. [PMID: 31874167 DOI: 10.1016/j.lfs.2019.117183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
The kidney is a vital organ responsible for regulating water, electrolyte and acid-base balance as well as eliminating toxic substances from the blood in the body. Exposure of humans to heavy metals in their natural and occupational environments, foods, water, and drugs has serious implications on the kidney's health. The accumulation of heavy metals in the kidney has been linked to acute or chronic renal injury, kidney stones or even renal cancer, at the expense of expensive treatment options. Therefore, unearthing novel biomarkers and potential therapeutic agents or targets against kidney injury for efficient treatment are imperative. The calcium-sensing receptor (CaSR), a G-protein-coupled receptor (GPCR) is typically expressed in the parathyroid glands and renal tubules. It modulates parathyroid hormone secretion according to the serum calcium (Ca2+) concentration. In the kidney, it modulates electrolyte and water excretion by regulating the function of diverse tubular segments. Notably, CaSR lowers passive and active Ca2+ reabsorption in distal tubules, which facilitates phosphate reabsorption in proximal tubules and stimulates proton and water excretion in collecting ducts. Moreover, at the cellular level, modulation of the CaSR regulates cytosolic Ca2+ levels, reactive oxygen species (ROS) generation and the mitogen-activated protein kinase (MAPK) signaling cascades as well as autophagy and the suppression of apoptosis, an effect predominantly triggered by heavy metals. In this regard, we present a review on the CaSR at the cellular level and its potential as a therapeutic target for the development of new and efficient drugs against heavy metals-induced nephrotoxicity.
Collapse
Affiliation(s)
- Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanwei Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dongfeng Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
14
|
Wong FCK, Wong WS, Kwok JSS, Tsui TKC, Lau KP, Chan MHM, Yuen YP. A Hong Kong Chinese kindred with familial hypocalciuric hypercalcaemia caused by AP2S1 mutation. F1000Res 2019; 8:1612. [PMID: 31723423 PMCID: PMC6826774 DOI: 10.12688/f1000research.20344.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 01/27/2023] Open
Abstract
Familial hypocalciuric hypercalcaemia (FHH) is a genetic disorder of altered calcium homeostasis. Mutations in the
CASR,
GNA11 and
AP2S1 genes have been reported to cause FHH. We report a Hong Kong Chinese kindred with FHH type 3 (FHH3) caused by mutations in
AP2S1. The proband, a 51-year-old woman with hypercalcaemia, was initially diagnosed to have primary hyperparathyroidism but repeated parathyroidectomy failed to normalize her plasma calcium concentrations. Later, FHH was suspected and yet no mutations were identified in the
CASR gene which causes FHH type 1 (FHH1), the most common form of FHH. Genetic testing of
AP2S1 revealed a heterozygous c.43C>T (p.Arg15Cys) mutation, confirming the diagnosis of FHH3. The elder brother and niece of the proband, who both have hypercalcaemia, were found to harbour the same mutation. To our knowledge, this is the first Chinese kindred of FHH3 reported in the English literature.
Collapse
Affiliation(s)
- Felix Chi Kin Wong
- Department of Chemical Pathology, Prince of Wales Hospital, Shatin, Hong Kong
| | - Wai Sheung Wong
- Department of Medicine, North District Hospital, Sheung Shui, Hong Kong
| | | | - Teresa Kam Chi Tsui
- Department of Chemical Pathology, Prince of Wales Hospital, Shatin, Hong Kong
| | - Kam Piu Lau
- Department of Medicine, North District Hospital, Sheung Shui, Hong Kong
| | | | - Yuet Ping Yuen
- Department of Chemical Pathology, Prince of Wales Hospital, Shatin, Hong Kong
| |
Collapse
|
15
|
Moore EC, Berber E, Jin J, Krishnamurthy V, Shin J, Siperstein A. CALCIUM CREATININE CLEARANCE RATIO IS NOT HELPFUL IN DIFFERENTIATING PRIMARY HYPERPARATHYROIDISM FROM FAMILIAL HERPERCALCEMIC HYPOCALCIURIA: A STUDY OF 1000 PATIENTS. Endocr Pract 2018; 24:S1530-891X(20)35470-7. [PMID: 30289313 DOI: 10.4158/ep-2018-0350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
OBJECTIVE With increasing recognition of more subtle presentations of primary hyperparathyroidism (pHPT), laboratory values are frequently seen in a range that would be expected for patients who have familial hypercalcemic hypocalciuria (FHH). Calcium creatinine clearance ratio (CCCR) has been advocated as a diagnostic tool to differentiate between these two disorders. However, it is limited by an indeterminate range (0.01-0.02). The aim of this study is to assess the relevance of CCCR in a modern series of patients with surgically managed pHPT. METHODS We performed a retrospective cohort study of 1000 patients who underwent parathyroid surgery for pHPT over eleven years. CCCR was evaluated by degree of biochemical derangement, single versus multiple gland disease and interfering medications. RESULTS Patient demographics and resected histopathology were typical for a current series of patients with pHPT. In retrospect, none of the patients were suspected to have FHH post operatively. CCCR was less than 0.01 for 19.0%, between 0.01-0.02 for 43.7% and greater than 0.02 in 37.3%. Distribution of CCCR for patients free from interfering medications and different histological subtypes were the same. One third of the cohort had mild calcium elevations, more typical for FHH. Of these, almost two thirds had a CCCR in a range suspect for FHH (<0.02). CONCLUSION To our knowledge this is the largest series to evaluate the validity of CCCR for patients with surgically confirmed pPHT. The utility of CCCR in screening for FHH is limited, as 63% of modern patients with confirmed pHPT have low values.
Collapse
|
16
|
Abstract
Familial hypocalciuric hypercalcemia (FHH) causes hypercalcemia by three genetic mechanisms: inactivating mutations in the calcium-sensing receptor, the G-protein subunit α11, or adaptor-related protein complex 2, sigma 1 subunit. While hypercalcemia in other conditions causes significant morbidity and mortality, FHH generally follows a benign course. Failure to diagnose FHH can result in unwarranted treatment or surgery for the mistaken diagnosis of primary hyperparathyroidism (PHPT), given the significant overlap of biochemical features. Determinations of urinary calcium excretion greatly aid in distinguishing PHPT from FHH, but overlap still exists in certain cases. It is important that 24-h urine calcium and creatinine be included in the initial workup of hypercalcemia. FHH should be considered if low or even low normal urinary calcium levels are found in what is typically an asymptomatic hypercalcemic patient. The calcimimetic cinacalcet has been used to treat hypercalcemia in certain symptomatic causes of FHH.
Collapse
Affiliation(s)
- Janet Y Lee
- Divisions of Endocrinology and Metabolism and Pediatric Endocrinology, Departments of Medicine and Pediatrics, University of California, San Francisco, United States.
| | - Dolores M Shoback
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, Department of Medicine, University of California, San Francisco, United States.
| |
Collapse
|
17
|
Moon JE, Lee SJ, Park SH, Kim J, Jin DK, Ko CW. De novo a novel variant of CaSR gene in a neonate with congenital hypoparathyroidism. Ann Pediatr Endocrinol Metab 2018; 23:107-111. [PMID: 29969884 PMCID: PMC6057017 DOI: 10.6065/apem.2018.23.2.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/28/2017] [Indexed: 11/26/2022] Open
Abstract
Autosomal-dominant hypocalcemia with hypercalciuria (ADHH) is a genetic disease characterized by hypoparathyroidism with hypercalciuria. Most patients with ADHH have calcium-sensing receptor (CaSR) gene mutations. The CaSR gene controls parathyroid secretions, and mutations in this gene can be detected via changes in serum calcium level. The activating mutation of the CaSR gene results in familial or sporadic ADHH. Most activating mutations of the CaSR gene are reportedly de novo missense mutations. This is the first case report of a novel activating variant of the CaSR gene in a neonate with congenital hypoparathyroidism with hypomagnesemia and hypercalciuria. We also report the 3-month follow-up management of the patient.
Collapse
Affiliation(s)
- Jung-Eun Moon
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Su-Jeong Lee
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Suk-Hyun Park
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jinsup Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong-Kyu Jin
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol Woo Ko
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea,Address for correspondence: Cheol Woo Ko, MD, PhD Division of Pediatric Endocrinology, Kyungpook National University Children’s Hospital, 130 Dongdeokro, Jung-gu, Daegu 41944, Korea Tel: +82-53-420-5715 Fax: +82-53-425-6683 E-mail:
| |
Collapse
|
18
|
Cardoso L, Stevenson M, Thakker RV. Molecular genetics of syndromic and non-syndromic forms of parathyroid carcinoma. Hum Mutat 2017; 38:1621-1648. [PMID: 28881068 PMCID: PMC5698716 DOI: 10.1002/humu.23337] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 12/23/2022]
Abstract
Parathyroid carcinoma (PC) may occur as part of a complex hereditary syndrome or an isolated (i.e., non-syndromic) non-hereditary (i.e., sporadic) endocrinopathy. Studies of hereditary and syndromic forms of PC, which include the hyperparathyroidism-jaw tumor syndrome (HPT-JT), multiple endocrine neoplasia types 1 and 2 (MEN1 and MEN2), and familial isolated primary hyperparathyroidism (FIHP), have revealed some genetic mechanisms underlying PC. Thus, cell division cycle 73 (CDC73) germline mutations cause HPT-JT, and CDC73 mutations occur in 70% of sporadic PC, but in only ∼2% of parathyroid adenomas. Moreover, CDC73 germline mutations occur in 20%-40% of patients with sporadic PC and may reveal unrecognized HPT-JT. This indicates that CDC73 mutations are major driver mutations in the etiology of PCs. However, there is no genotype-phenotype correlation and some CDC73 mutations (e.g., c.679_680insAG) have been reported in patients with sporadic PC, HPT-JT, or FIHP. Other genes involved in sporadic PC include germline MEN1 and rearranged during transfection (RET) mutations and somatic alterations of the retinoblastoma 1 (RB1) and tumor protein P53 (TP53) genes, as well as epigenetic modifications including DNA methylation and histone modifications, and microRNA misregulation. This review summarizes the genetics and epigenetics of the familial syndromic and non-syndromic (sporadic) forms of PC.
Collapse
Affiliation(s)
- Luís Cardoso
- Department of EndocrinologyDiabetes and MetabolismCentro Hospitalar e Universitário de CoimbraPraceta Prof Mota PintoCoimbraPortugal
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Mark Stevenson
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Rajesh V. Thakker
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
19
|
Gorvin CM, Rogers A, Stewart M, Paudyal A, Hough TA, Teboul L, Wells S, Brown SD, Cox RD, Thakker RV. N-ethyl-N-nitrosourea-Induced Adaptor Protein 2 Sigma Subunit 1 ( Ap2s1) Mutations Establish Ap2s1 Loss-of-Function Mice. JBMR Plus 2017; 1:3-15. [PMID: 29479578 PMCID: PMC5824975 DOI: 10.1002/jbm4.10001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The adaptor protein‐2 sigma subunit (AP2σ), encoded by AP2S1, forms a heterotetrameric complex, with AP2α, AP2β, and AP2μ subunits, that is pivotal for clathrin‐mediated endocytosis, and AP2σ loss‐of‐function mutations impair internalization of the calcium‐sensing receptor (CaSR), a G‐protein–coupled receptor, and cause familial hypocalciuric hypercalcemia type‐3 (FHH3). Mice with AP2σ mutations that would facilitate investigations of the in vivo role of AP2σ, are not available, and we therefore embarked on establishing such mice. We screened >10,000 mice treated with the mutagen N‐ethyl‐N‐nitrosourea (ENU) for Ap2s1 mutations and identified 5 Ap2s1 variants, comprising 2 missense (Tyr20Asn and Ile123Asn) and 3 intronic base substitutions, one of which altered the invariant donor splice site dinucleotide gt to gc. Three‐dimensional modeling and cellular expression of the missense Ap2s1 variants did not reveal them to alter AP2σ structure or CaSR‐mediated signaling, but investigation of the donor splice site variant revealed it to result in an in‐frame deletion of 17 evolutionarily conserved amino acids (del17) that formed part of the AP2σ α1‐helix, α1‐β3 loop, and β3 strand. Heterozygous mutant mice (Ap2s1+/del17) were therefore established, and these had AP2σ haplosufficiency but were viable with normal appearance and growth. Ap2s1+/del17 mice, when compared with Ap2s1+/+ mice, also had normal plasma concentrations of calcium, phosphate, magnesium, creatinine, urea, sodium, potassium, and alkaline phosphatase activity; normal urinary fractional excretion of calcium, phosphate, sodium, and potassium; and normal plasma parathyroid hormone (PTH) and 1,25‐dihydroxyvitamin D (1,25(OH)2) concentrations. However, homozygous Ap2s1del17/del17 mice were non‐viable and died between embryonic days 3.5 and 9.5 (E3.5–9.5), thereby indicating that AP2σ likely has important roles at the embryonic patterning stages and organogenesis of the heart, thyroid, liver, gut, lungs, pancreas, and neural systems. Thus, our studies have established a mutant mouse model that is haplosufficient for AP2σ. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| | - Angela Rogers
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| | - Michelle Stewart
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Anju Paudyal
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Tertius A Hough
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Lydia Teboul
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Steve Dm Brown
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Roger D Cox
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Oxford, UK
| |
Collapse
|
20
|
Maruca K, Brambilla I, Mingione A, Bassi L, Capelli S, Brasacchio C, Soldati L, Cisternino M, Mora S. Autosomal dominant hypocalcemia due to a truncation in the C-tail of the calcium-sensing receptor. Mol Cell Endocrinol 2017; 439:187-193. [PMID: 27561204 DOI: 10.1016/j.mce.2016.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/01/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
Abstract
Autosomal Dominant Hypocalcemia (ADH) is an endocrine disorder due to activating mutations of the calcium-sensing receptor (CASR) gene. We report on a young boy who presented low serum calcium with hypercalciuria, hyperphosphatemia and low serum concentration of parathyroid hormone, not accompanied by classic clinical signs of hypocalcemia. Treatment with calcitriol and calcium did not normalize serum calcium and renal calcium excretion. The use of thiazide diuretics slightly reduced calciuria. Despite high calcium excretion, no signs of nephrocalcinosis were detected. The patient had a prolonged Q-T interval at ECG, which did not normalize during treatment. PCR amplification of CASR coding sequence and direct sequencing of PCR products. showed a novel heterozygous deletion of a cytosine (c.2682delC), responsible for a frameshift (p.S895Pfs*44) and a premature stop codon resulting in a truncation of the CaSR's C-tail. Functional studies indicated increased activity of mutant receptor compared to the wild-type.
Collapse
Affiliation(s)
- Katia Maruca
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Ilaria Brambilla
- Department of Pediatrics, IRCCS Policlinico San Matteo, University of Pavia, viale C. Golgi 19, 27100, Pavia, Italy
| | - Alessandra Mingione
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20124, Milan, Italy
| | - Lorenzo Bassi
- Department of Pediatrics, IRCCS Policlinico San Matteo, University of Pavia, viale C. Golgi 19, 27100, Pavia, Italy
| | - Silvia Capelli
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Caterina Brasacchio
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20124, Milan, Italy
| | - Laura Soldati
- Department of Health Sciences, Università degli Studi di Milano, via A. di Rudinì 8, 20124, Milan, Italy
| | - Mariangela Cisternino
- Department of Pediatrics, IRCCS Policlinico San Matteo, University of Pavia, viale C. Golgi 19, 27100, Pavia, Italy
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
21
|
Conigrave AD. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front Physiol 2016; 7:563. [PMID: 28018229 PMCID: PMC5156698 DOI: 10.3389/fphys.2016.00563] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Parathyroid hormone (PTH) defends the extracellular fluid from hypocalcemia and has powerful and well-documented actions on the skeleton and renal tubular system. To achieve a satisfactory stable plasma calcium level, the secretion of PTH, and the resulting serum PTH level, is titrated carefully to the prevailing plasma ionized Ca2+ concentration via a Ca2+ sensing mechanism that mediates feedback inhibition of PTH secretion. Herein, I consider the properties of the parathyroid Ca2+ sensing mechanism, the identity of the Ca2+ sensor, the intracellular biochemical mechanisms that it controls, the manner of its integration with other components of the PTH secretion control mechanism, and its modulation by other nutrients. Together the well-established, recently elucidated, and yet-to-be discovered elements of the story constitute the past, present, and future of the parathyroid and its calcium-sensing receptor (CaSR).
Collapse
Affiliation(s)
- Arthur D Conigrave
- Faculties of Science and Medicine, School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
22
|
Glaudo M, Letz S, Quinkler M, Bogner U, Elbelt U, Strasburger CJ, Schnabel D, Lankes E, Scheel S, Feldkamp J, Haag C, Schulze E, Frank-Raue K, Raue F, Mayr B, Schöfl C. Heterozygous inactivating CaSR mutations causing neonatal hyperparathyroidism: function, inheritance and phenotype. Eur J Endocrinol 2016; 175:421-31. [PMID: 27666534 DOI: 10.1530/eje-16-0223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Homozygous inactivating mutations of the calcium-sensing receptor (CaSR) lead to neonatal severe hyperparathyroidism (NSHPT), whereas heterozygous inactivating mutations result in familial hypocalciuric hypercalcemia (FHH). It is unknown why in some cases heterozygous CaSR mutations cause neonatal hyperparathyroidism (NHPT) clinically similar to NSHPT but with only moderately elevated serum calcium. METHODS A literature survey was conducted to identify patients with heterozygous CaSR mutations and NHPT. The common NHPT CaSR mutants R185Q and R227L were compared with 15 mutants causing only FHH in the heterozygous state. We studied in vitro calcium signaling including the functional consequences of co-expression of mutant and wild-type (wt) CaSR, patients' phenotype, age of disease manifestation and mode of inheritance. RESULTS All inactivating CaSR mutants impaired calcium signaling of wt-CaSR regardless of the patients' clinical phenotype. The absolute intracellular calcium signaling response to physiologic extracellular calcium concentrations in vitro showed a high correlation with patients' serum calcium concentrations in vivo, which is similar in NHPT and FHH patients with the same genotype. Pedigrees of FHH families revealed that paternal inheritance per se does not necessarily lead to NHPT but may only cause FHH. CONCLUSIONS There is a significant correlation between in vitro functional impairment of the CaSR at physiologic calcium concentrations and the severity of alterations in calcium homeostasis in patients. Whether a particular genotype leads to NHPT or FHH appears to depend on additional predisposing genetic or environmental factors. An individual therapeutic approach appears to be warranted for NHPT patients.
Collapse
Affiliation(s)
- Markus Glaudo
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Saskia Letz
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | | - Ulf Elbelt
- Department of EndocrinologyDiabetes and Nutrition
| | | | - Dirk Schnabel
- Center for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Erwin Lankes
- Center for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Scheel
- Endocrinology and DiabetologyKlinikum Bielefeld, Bielefeld, Germany
| | - Joachim Feldkamp
- Endocrinology and DiabetologyKlinikum Bielefeld, Bielefeld, Germany
| | | | | | | | | | - Bernhard Mayr
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christof Schöfl
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Zhang C, Miller CL, Gorkhali R, Zou J, Huang K, Brown EM, Yang JJ. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor. Front Physiol 2016; 7:441. [PMID: 27746744 PMCID: PMC5043022 DOI: 10.3389/fphys.2016.00441] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Ca2+-sensing receptors (CaSRs) play a central role in regulating extracellular calcium concentration ([Ca2+]o) homeostasis and many (patho)physiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids, and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT) domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR's cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs) in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | | | - Rakshya Gorkhali
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Juan Zou
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Kenneth Huang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| | - Edward M Brown
- Center for Diagnostics and Therapeutics, Georgia State UniversityAtlanta, GA, USA; Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's HospitalBoston, MA, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University Atlanta, GA, USA
| |
Collapse
|
24
|
Tenhola S, Voutilainen R, Reyes M, Toiviainen-Salo S, Jüppner H, Mäkitie O. Impaired growth and intracranial calcifications in autosomal dominant hypocalcemia caused by a GNA11 mutation. Eur J Endocrinol 2016; 175:211-8. [PMID: 27334330 PMCID: PMC5149394 DOI: 10.1530/eje-16-0109] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/17/2016] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Autosomal dominant hypocalcemia (ADH) is characterized by hypocalcemia and inappropriately low PTH concentrations. ADH type 1 is caused by activating mutations in the calcium-sensing receptor (CASR), a G-protein-coupled receptor signaling through α11 (Gα11) and αq (Gαq) subunits. Heterozygous activating mutations in GNA11, the gene encoding Gα11, underlie ADH type 2. This study describes disease characteristics in a family with ADH caused by a gain-of-function mutation in GNA11. DESIGN A three-generation family with seven members (3 adults, 4 children) presenting with ADH. METHODS Biochemical parameters of calcium metabolism, clinical, genetic and brain imaging findings were analyzed. RESULTS Sanger sequencing revealed a heterozygous GNA11 missense mutation (c.1018G>A, p.V340M) in all seven hypocalcemic subjects, but not in the healthy family members (n=4). The adult patients showed clinical symptoms of hypocalcemia, while the children were asymptomatic. Plasma ionized calcium ranged from 0.95 to 1.14mmol/L, yet plasma PTH was inappropriately low for the degree of hypocalcemia. Serum 25OHD was normal. Despite hypocalcemia 1,25(OH)2D and urinary calcium excretion were inappropriately in the reference range. None of the patients had nephrocalcinosis. Two adults and one child (of the two MRI scanned children) had distinct intracranial calcifications. All affected subjects had short stature (height s.d. scores ranging from -3.4 to -2.3 vs -0.5 in the unaffected children). CONCLUSIONS The identified GNA11 mutation results in biochemical abnormalities typical for ADH. Additional features, including short stature and early intracranial calcifications, cosegregated with the mutation. These findings may indicate a wider role for Gα11 signaling besides calcium regulation.
Collapse
Affiliation(s)
- Sirpa Tenhola
- Department of PediatricsKymenlaakso Central Hospital, Kotka, Finland Department of PediatricsKuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Raimo Voutilainen
- Department of PediatricsKuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Monica Reyes
- Endocrine UnitMassachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sanna Toiviainen-Salo
- Department of RadiologyHUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harald Jüppner
- Endocrine UnitMassachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Outi Mäkitie
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland Folkhälsan Institute of GeneticsHelsinki, Finland Department of Molecular Medicine and SurgeryKarolinska Institutet and Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
The calcium-sensing receptor and the hallmarks of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1398-407. [DOI: 10.1016/j.bbamcr.2015.11.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
|
26
|
Li D, Tian L, Hou C, Kim CE, Hakonarson H, Levine MA. Association of Mutations in SLC12A1 Encoding the NKCC2 Cotransporter With Neonatal Primary Hyperparathyroidism. J Clin Endocrinol Metab 2016; 101:2196-200. [PMID: 26963954 PMCID: PMC4870850 DOI: 10.1210/jc.2016-1211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary hyperparathyroidism with hypercalciuria has not been described in the newborn period. OBJECTIVE Our objectives are to identify the genetic basis for neonatal primary hyperparathyroidism in a family with 2 affected children. SUBJECTS An African American boy presenting with mild neonatal primary hyperparathyroidism and hypercalciuria was evaluated at The Children's Hospital of Philadelphia. His older brother with neonatal primary hyperparathyroidism had died in infancy of multiple organ failure. METHODS We collected clinical and biochemical data and performed exome sequencing analysis on DNA from the patient and his unaffected mother after negative genetic testing for known causes of primary hyperparathyroidism. RESULTS Exome sequencing followed by Sanger sequencing disclosed 2 heterozygous mutations, c.1883C>A, p.(A628D) and c.2786_2787insC, p.(T931fsX10), in the SLC12A1 gene, which was previously implicated in antenatal type 1 Bartter syndrome. Sanger sequencing confirmed the 2 mutations in the proband and his deceased brother; both parents were heterozygous for different mutations and an unaffected sister was homozygous for wild-type alleles. CONCLUSIONS These results demonstrate a previously unrecognized association between neonatal primary hyperparathyroidism and mutation of SLC12A1, the cause of antenatal Bartter syndrome type 1, and suggest that the loss of sodium-potassium-chloride cotransporter-2 cotransporter activity influences parathyroid gland function.
Collapse
Affiliation(s)
- Dong Li
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Lifeng Tian
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Cuiping Hou
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Cecilia E Kim
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Hakon Hakonarson
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Michael A Levine
- The Center for Applied Genomics (D.L., L.T., C.H., C.E.K., H.H.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Pediatrics (H.H., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104; and Division of Endocrinology and Diabetes and the Center for Bone Health (M.A.L.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
27
|
Diagnosis and Differential Diagnosis of Primary Hyperparathyroidism. Updates Surg 2016. [DOI: 10.1007/978-88-470-5758-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Baran N, ter Braak M, Saffrich R, Woelfle J, Schmitz U. Novel activating mutation of human calcium-sensing receptor in a family with autosomal dominant hypocalcaemia. Mol Cell Endocrinol 2015; 407:18-25. [PMID: 25766501 DOI: 10.1016/j.mce.2015.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/13/2015] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Autosomal dominant hypocalcaemia (ADH) is caused by activating mutations in the calcium sensing receptor gene (CaR) and characterised by mostly asymptomatic mild to moderate hypocalcaemia with low, inappropriately serum concentration of PTH. OBJECTIVE The purpose of the present study was to biochemically and functionally characterise a novel mutation of CaR. PATIENTS A female proband presenting with hypocalcaemia was diagnosed to have "idiopathic hypoparathyroidism" at the age of 10 with a history of muscle pain and cramps. Further examinations demonstrated hypocalcaemia in nine additional family members, affecting three generations. MAIN OUTCOME MEASURE P136L CaR mutation was predicted to cause gain of function of CaR. RESULTS Affected family members showed relevant hypocalcaemia (mean ± SD; 1.9 ± 0.1 mmol/l). Patient history included mild seizures and recurrent nephrolithiasis. Genetic analysis confirmed that hypocalcaemia cosegregated with a heterozygous mutation at codon 136 (CCC → CTC/Pro → Leu) in exon 3 of CaR confirming the diagnosis of ADH. For in vitro studies P136L mutant CaR was generated by site-directed mutagenesis and examined in transiently transfected HEK293 cells. Extracellular calcium stimulation of transiently transfected HEK293 cells showed significantly increased intracellular Ca(2+) mobilisation and MAPK activity for mutant P136L CaR compared to wild type CaR. CONCLUSIONS The present study gives insight about a novel activating mutation of CaR and confirms that the novel P136L-CaR mutation is responsible for ADH in this family.
Collapse
Affiliation(s)
- Natalia Baran
- Department of Endocrinology and Diabetology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; Department of Medicine V, University of Heidelberg, INF 410, 69120 Heidelberg, Germany.
| | - Michael ter Braak
- Institut of Pharmacology, University of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Saffrich
- Department of Medicine V, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Joachim Woelfle
- Pediatric Endocrinology Division, University of Bonn, Adenauerallee 119, 53113 Bonn, Germany
| | - Udo Schmitz
- Department of Endocrinology and Diabetology, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
29
|
Thakker RV. The calcium-sensing receptor: And its involvement in parathyroid pathology. ANNALES D'ENDOCRINOLOGIE 2015; 76:81-3. [PMID: 25910996 DOI: 10.1016/j.ando.2015.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, University of Oxford, Radcliffe Department of Clinical Medicine, OCDEM, Churchill Hospital, Headington, OX3 7LJ Oxford, United Kingdom.
| |
Collapse
|
30
|
Monis EL, Mannstadt M. Hypoparathyroidism - disease update and emerging treatments. ANNALES D'ENDOCRINOLOGIE 2015; 76:84-8. [PMID: 25882889 DOI: 10.1016/j.ando.2015.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 01/21/2023]
Abstract
Parathyroid hormone (PTH) is the primary regulator of blood calcium levels and bone metabolism. Insufficient levels of PTH lead to hypoparathyroidism, characterized by low serum calcium and elevated serum phosphate levels. It is most commonly caused by the inadvertent damage to the parathyroid glands during thyroid surgery. Patients with hypoparathyroidism are currently being treated with oral calcium and active vitamin D, and to avoid worsening hypercalciuria, target serum calcium levels are within the lower end of normal. With current treatment, patients may suffer from large swings in serum calcium and are at a substantial risk of chronic renal failure, nephrocalcinosis, and kidney stones. The recent FDA approval of recombinant human (rh) PTH(1-84) for the treatment of hypoparathyroidism adds PTH replacement therapy to the endocrinologist's armamentarium to treat this chronic disease.
Collapse
Affiliation(s)
- Elizabeth L Monis
- Massachusetts General Hospital, Endocrine Unit, Thier 1051, 50 Blossom St, 02114 Boston, USA
| | - Michael Mannstadt
- Massachusetts General Hospital, Endocrine Unit, Thier 1051, 50 Blossom St, 02114 Boston, USA.
| |
Collapse
|
31
|
Hardy BT, de Brito Galvao JF, Green TA, Braudaway SR, DiBartola SP, Lord L, Chew DJ. Treatment of ionized hypercalcemia in 12 cats (2006-2008) using PO-administered alendronate. J Vet Intern Med 2015; 29:200-6. [PMID: 25619515 PMCID: PMC4858073 DOI: 10.1111/jvim.12507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/02/2014] [Accepted: 10/21/2014] [Indexed: 11/28/2022] Open
Abstract
Background Long‐term treatment of cats with ionized hypercalcemia using alendronate has not been evaluated. Hypothesis/Objectives Alendronate is well tolerated in treatment of ionized hypercalcemia in cats. Animals A total of 12 cats with ionized hypercalcemia. Methods Prospective study of 12 cats with ionized hypercalcemia of idiopathic origin was identified by telephone and email communication with a convenience sample of consulting veterinarians. Cats were treated with alendronate at a dose of 5–20 mg per feline PO q7d. Serum ionized calcium concentration (iCa) was measured before beginning treatment with alendronate, and after 1, 3, and 6 months of treatment. Alendronate dosage was adjusted according to iCa. Evaluation included physical examination, CBC, biochemistry profile, and diagnostic imaging. The owners and referring veterinarians were questioned about any observed adverse effects. The Wilcoxon matched‐pairs signed rank test was used to compare baseline iCa to iCa at different time periods. Results Alendronate treatment resulted in a decrease in iCa in all 12 cats. The median percentage change in iCa was −13.2%, −15.9%, and −18.1% (range, −29.6 to +7.6; −30.5 to −1.9; −45.8 to +1.5%) at the 1, 3, and 6 month time points, respectively. Baseline iCa was significantly different from 1 month (P = .0042), 3 months (P = .0005), and 6 months (P = .0015). No adverse effects were reported for any of the cats. Conclusions and Clinical Importance Alendronate was well tolerated and decreased iCa in most cats for the 6‐month period of observation.
Collapse
Affiliation(s)
- B T Hardy
- Santa Cruz Veterinary Hospital, Santa Cruz, CA
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang C, Miller CL, Brown EM, Yang JJ. The calcium sensing receptor: from calcium sensing to signaling. SCIENCE CHINA-LIFE SCIENCES 2015; 58:14-27. [DOI: 10.1007/s11427-014-4779-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
|
33
|
Role of Ca2+ and L-Phe in regulating functional cooperativity of disease-associated "toggle" calcium-sensing receptor mutations. PLoS One 2014; 9:e113622. [PMID: 25420019 PMCID: PMC4242666 DOI: 10.1371/journal.pone.0113622] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2014] [Indexed: 01/15/2023] Open
Abstract
The Ca2+-sensing receptor (CaSR) regulates Ca2+ homeostasis in the body by monitoring extracellular levels of Ca2+ ([Ca2+]o) and amino acids. Mutations at the hinge region of the N-terminal Venus flytrap domain (VFTD) produce either receptor inactivation (L173P, P221Q) or activation (L173F, P221L) related to hypercalcemic or hypocalcemic disorders. In this paper, we report that both L173P and P221Q markedly impair the functional positive cooperativity of the CaSR as reflected by [Ca2+]o–induced [Ca2+]i oscillations, inositol-1-phosphate (IP1) accumulation and extracellular signal-regulated kinases (ERK1/2) activity. In contrast, L173F and P221L show enhanced responsiveness of these three functional readouts to [Ca2+]o. Further analysis of the dynamics of the VFTD mutants using computational simulation studies supports disruption in the correlated motions in the loss-of-function CaSR mutants, while these motions are enhanced in the gain-of-function mutants. Wild type (WT) CaSR was modulated by L-Phe in a heterotropic positive cooperative way, achieving an EC50 similar to those of the two activating mutations. The response of the inactivating P221Q mutant to [Ca2+]o was partially rescued by L-Phe, illustrating the capacity of the L-Phe binding site to enhance the positive homotropic cooperativity of CaSR. L-Phe had no effect on the other inactivating mutant. Moreover, our results carried out both in silico and in intact cells indicate that residue Leu173, which is close to residues that are part of the L-Phe-binding pocket, exhibited impaired heterotropic cooperativity in the presence of L-Phe. Thus, Pro221 and Leu173 are important for the positive homo- and heterotropic cooperative regulation elicited by agonist binding.
Collapse
|
34
|
Thim SB, Birkebaek NH, Nissen PH, Høst C. Activating calcium-sensing receptor gene variants in children: a case study of infant hypocalcaemia and literature review. Acta Paediatr 2014; 103:1117-25. [PMID: 25039540 DOI: 10.1111/apa.12743] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/02/2014] [Accepted: 07/08/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Autosomal dominant hypocalcaemia (ADH) is caused by activating variants in the calcium-sensing receptor (CASR) gene, but detailed information on the paediatric phenotype is limited. The current paper presents a case of severe ADH and systematically reviews the literature on ADH in children. CONCLUSION We found that the severity of clinical neurological symptoms was inversely related to serum calcium levels and a high prevalence of renal calcifications and/or basal ganglia calcifications in children with ADH.
Collapse
Affiliation(s)
- Signe B Thim
- Department of Paediatrics; Aarhus University Hospital; Aarhus Denmark
| | - Niels H Birkebaek
- Department of Paediatrics; Aarhus University Hospital; Aarhus Denmark
| | - Peter H Nissen
- Department of Clinical Biochemistry; Aarhus University Hospital; Aarhus Denmark
| | - Christian Høst
- Department of Paediatrics; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
35
|
Abstract
Recent studies of inherited disorders of phosphate metabolism have shed new light on the understanding of phosphate metabolism. Phosphate has important functions in the body and several mechanisms have evolved to regulate phosphate balance including vitamin D, parathyroid hormone and phosphatonins such as fibroblast growth factor-23 (FGF23). Disorders of phosphate homeostasis leading to hypo- and hyperphosphataemia are common and have clinical and biochemical consequences. Notably, recent studies have linked hyperphosphataemia with an increased risk of cardiovascular disease. This review outlines the recent advances in the understanding of phosphate homeostasis and describes the causes, investigation and management of hypo- and hyperphosphataemia.
Collapse
Affiliation(s)
- P Manghat
- Department of Chemical Pathology, Darent Valley Hospital, Dartford, UK
| | - R Sodi
- Department of Biochemistry, NHS Lanarkshire, East Kilbride, UK
| | - R Swaminathan
- Department of Chemical Pathology, St. Thomas Hospital, London, UK
| |
Collapse
|
36
|
Szczawinska D, Schnabel D, Letz S, Schöfl C. A homozygous CaSR mutation causing a FHH phenotype completely masked by vitamin D deficiency presenting as rickets. J Clin Endocrinol Metab 2014; 99:E1146-53. [PMID: 24517148 DOI: 10.1210/jc.2013-3593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Heterozygous inactivating calcium-sensing receptor (CaSR) mutations lead to familial hypocalciuric hypercalcemia (FHH), whereas homozygous mutations usually cause neonatal severe hyperparathyroidism. OBJECTIVE The objective of the study was to investigate the pathophysiological mechanisms of a homozygous inactivating CaSR mutation identified in a 16-year-old female. DESIGN Clinical, biochemical, and genetic analyses of the index patient and her family were performed. Functional capacity of CaSRQ459R and CaSR mutants causing FHH (Q27R, P39A, S417C) or neonatal severe hyperparathyroidism (W718X) was assessed. Activation of the cytosolic calcium pathway and inhibition of PTH-induced cAMP signaling were measured. RESULTS A 16-year-old girl presented with adolescent rickets, vitamin D deficiency, and secondary hyperparathyroidism. Vitamin D treatment unmasked features resembling FHH, and genetic testing revealed a homozygous CaSRQ459R mutation. Two apparently healthy siblings were homozygous for CaSRQ459R and had asymptomatic hypercalcemia and hypocalciuria. The CaSRQ459R mutation leads to mild functional inactivation in vitro, which explains the FHH-like phenotype in homozygous family members and the grossly exaggerated PTH response to vitamin D deficiency in the index case. The patient's parents and two other siblings were heterozygous, had normal serum calcium and PTH, but had marked hypocalciuria, which appeared to be associated with impaired in vitro activation of the calcium signaling pathway by CaSRQ459R. The Q459R mutation responded well to calcimimetic treatment in vitro. CONCLUSION CaSR mutations causing mild functional impairment can lead to FHH, even in homozygous patients. The skeletal deformities in the index case were mainly due to severe vitamin D deficiency, and the CaSR mutation did not appear to have played a major independent role in the skeletal phenotype.
Collapse
Affiliation(s)
- Dorothea Szczawinska
- Division of Endocrinology and Diabetes (D.Sz., S.L., C.S.), Department of Medicine I, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany; and Department of Pediatric Endocrinology and Diabetes (D.Sc.), Children's Hospital, Charité-Univerity Medicine Berlin, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Zhang C, Huang Y, Jiang Y, Mulpuri N, Wei L, Hamelberg D, Brown EM, Yang JJ. Identification of an L-phenylalanine binding site enhancing the cooperative responses of the calcium-sensing receptor to calcium. J Biol Chem 2014; 289:5296-309. [PMID: 24394414 DOI: 10.1074/jbc.m113.537357] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Functional positive cooperative activation of the extracellular calcium ([Ca(2+)]o)-sensing receptor (CaSR), a member of the family C G protein-coupled receptors, by [Ca(2+)]o or amino acids elicits intracellular Ca(2+) ([Ca(2+)]i) oscillations. Here, we report the central role of predicted Ca(2+)-binding site 1 within the hinge region of the extracellular domain (ECD) of CaSR and its interaction with other Ca(2+)-binding sites within the ECD in tuning functional positive homotropic cooperativity caused by changes in [Ca(2+)]o. Next, we identify an adjacent L-Phe-binding pocket that is responsible for positive heterotropic cooperativity between [Ca(2+)]o and L-Phe in eliciting CaSR-mediated [Ca(2+)]i oscillations. The heterocommunication between Ca(2+) and an amino acid globally enhances functional positive homotropic cooperative activation of CaSR in response to [Ca(2+)]o signaling by positively impacting multiple [Ca(2+)]o-binding sites within the ECD. Elucidation of the underlying mechanism provides important insights into the longstanding question of how the receptor transduces signals initiated by [Ca(2+)]o and amino acids into intracellular signaling events.
Collapse
Affiliation(s)
- Chen Zhang
- From the Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303 and
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Gannon AW, Monk HM, Levine MA. Cinacalcet monotherapy in neonatal severe hyperparathyroidism: a case study and review. J Clin Endocrinol Metab 2014; 99:7-11. [PMID: 24203066 PMCID: PMC3879678 DOI: 10.1210/jc.2013-2834] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Neonatal severe hyperparathyroidism (NSHPT) is a severe form of familial hypocalciuric hypercalcemia characterized by severe hypercalcemia and skeletal demineralization. In most cases, NSHPT is due to biallelic loss-of-function mutations in the CASR gene encoding the calcium-sensing receptor (CaSR), but some patients have heterozygous mutations. Conventional treatment consists of iv saline, bisphosphonates, and parathyroidectomy. OBJECTIVE The aim of this project was to characterize the molecular basis for NSHPT in an affected newborn and to describe the response to monotherapy with cinacalcet. METHODS Clinical and biochemical features were monitored as cinacalcet therapy was initiated and maintained. Genomic DNA was obtained from the proband and parents. The CASR gene was amplified by PCR and sequenced directly. RESULTS The patient was a full-term male who developed hypotonia and respiratory failure soon after birth. He was found to have multiple fractures and diffuse bone demineralization, with a marked elevation in serum ionized calcium (1.99 mmol/L) and elevated serum levels of intact PTH (1154 pg/mL); serum 25-hydroxyvitamin D was low, and fractional excretion of calcium was reduced. The serum calcium level was not reduced by iv saline infusion. Based on an extensive family history of autosomal dominant hypercalcemia, a diagnosis of NSHPT was made, and cinacalcet therapy was initiated with a robust and durable effect. Molecular studies revealed a heterozygous R185Q missense mutation in the CASR in the patient and his father, whereas normal sequences for the CASR gene were present in the patient's mother. CONCLUSIONS We describe the first use of cinacalcet as monotherapy for severe hypercalcemia in a newborn with NSHPT. The rapid and durable response to cinacalcet suggests that a trial of calcimimetic therapy should be considered early in the course of NSHPT.
Collapse
Affiliation(s)
- Anthony W Gannon
- Division of Endocrinology and Diabetes (A.W.G., M.A.L.), and Department of Pharmacy Services (H.M.M.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; and Department of Pediatrics (A.W.G., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | | | |
Collapse
|
39
|
Jouret F, Wu J, Hull M, Rajendran V, Mayr B, Schöfl C, Geibel J, Caplan MJ. Activation of the Ca²+-sensing receptor induces deposition of tight junction components to the epithelial cell plasma membrane. J Cell Sci 2013; 126:5132-42. [PMID: 24013548 DOI: 10.1242/jcs.127555] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Ca(2+)-sensing receptor (CaSR) belongs to the G-protein-coupled receptor superfamily and plays essential roles in divalent ion homeostasis and cell differentiation. Because extracellular Ca(2+) is essential for the development of stable epithelial tight junctions (TJs), we hypothesized that the CaSR participates in regulating TJ assembly. We first assessed the expression of the CaSR in Madin-Darby canine kidney (MDCK) cells at steady state and following manipulations that modulate TJ assembly. Next, we examined the effects of CaSR agonists and antagonists on TJ assembly. Immunofluorescence studies indicate that endogenous CaSR is located at the basolateral pole of MDCK cells. Stable transfection of human CaSR in MDCK cells further reveals that this protein co-distributes with β-catenin on the basolateral membrane. Switching MDCK cells from low-Ca(2+) medium to medium containing a normal Ca(2+) concentration significantly increases CaSR expression at both the mRNA and protein levels. Exposure of MDCK cells maintained in low-Ca(2+) conditions to the CaSR agonists neomycin, Gd(3+) or R-568 causes the transient relocation of the tight junction components ZO-1 and occludin to sites of cell-cell contact, while inducing no significant changes in the expression of mRNAs encoding junction-associated proteins. Stimulation of CaSR also increases the interaction between ZO-1 and the F-actin-binding protein I-afadin. This effect does not involve activation of the AMP-activated protein kinase. By contrast, CaSR inhibition by NPS-2143 significantly decreases interaction of ZO-1 with I-afadin and reduces deposition of ZO-1 at the cell surface following a Ca(2+) switch from 5 µM to 200 µM [Ca(2+)]e. Pre-exposure of MDCK cells to the cell-permeant Ca(2+) chelator BAPTA-AM, similarly prevents TJ assembly caused by CaSR activation. Finally, stable transfection of MDCK cells with a cDNA encoding a human disease-associated gain-of-function mutant form of the CaSR increases the transepithelial electrical resistance of these cells in comparison to expression of the wild-type human CaSR. These observations suggest that the CaSR participates in regulating TJ assembly.
Collapse
Affiliation(s)
- François Jouret
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ward DT, Mughal MZ, Ranieri M, Dvorak-Ewell MM, Valenti G, Riccardi D. Molecular and clinical analysis of a neonatal severe hyperparathyroidism case caused by a stop mutation in the calcium-sensing receptor extracellular domain representing in effect a human 'knockout'. Eur J Endocrinol 2013; 169:K1-7. [PMID: 23612447 DOI: 10.1530/eje-13-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Loss-of-function calcium-sensing receptor (CAR) mutations cause elevated parathyroid hormone (PTH) secretion and hypercalcaemia. Although full Car deletion is possible in mice, most human CAR mutations result from a single amino acid substitution that maintains partial function. However, here, we report a case of neonatal severe hyperparathyroidism (NSHPT) in which the truncated CaR lacks any transmembrane domain (CaR(R392X)), in effect a full CAR 'knockout'. CASE REPORT The infant (daughter of distant cousins) presented with hypercalcaemia (5.5-6 mmol/l corrected calcium (2.15-2.65)) and elevated PTH concentrations (650-950 pmol/l (12-81)) together with skeletal demineralisation. NSHPT was confirmed by CAR gene sequencing (homozygous c.1174C-to-T mutation) requiring total parathyroidectomy during which only two glands were located and removed, resulting in normalisation of her serum PTH/calcium levels. DESIGN AND METHODS The R392X stop codon was inserted into human CAR and the resulting mutant (CaR(R392X)) expressed transiently in HEK-293 cells. RESULTS CaR(R392X) expressed as a 54 kDa dimeric glycoprotein that was undetectable in conditioned medium or in the patient's urine. The membrane localisation observed for wild-type CaR in parathyroid gland and transfected HEK-293 cells was absent from the proband's parathyroid gland and from CaR(R392X)-transfected cells. Expression of the mutant was localised to endoplasmic reticulum consistent with its lack of functional activity. CONCLUSIONS Intriguingly, the patient remained normocalcaemic throughout childhood (2.5 mM corrected calcium, 11 pg/ml PTH (10-71), age 8 years) but exhibited mild asymptomatic hypocalcaemia at age 10 years, now treated with 1-hydroxycholecalciferol and Ca2+ supplementation. Despite representing a virtual CAR knockout, the patient displays no obvious pathologies beyond her calcium homeostatic dysfunction.
Collapse
Affiliation(s)
- D T Ward
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Egan AM, Ryan J, Aziz MA, O'Dwyer TP, Byrne MM. Primary hyperparathyroidism in a patient with familial hypocalciuric hypercalcaemia due to a novel mutation in the calcium-sensing receptor gene. J Bone Miner Metab 2013; 31:477-80. [PMID: 23081733 DOI: 10.1007/s00774-012-0399-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
We describe the clinical and genetic findings in pedigree with a novel mutation in the calcium sensing receptor (CaSR) gene and the unusual coexistence of primary hyperparathyroidism (HPT) and familial hypocalciuric hypercalcaemia (FHH) and its clinical management. The occurrence of both FHH and primary HPT in the same patient has been described rarely. Our pedigree has a novel mutation in the CaSR gene. Parathyroidectomy led to a reduction, but not normalization of the calcium levels in the patient identified as having HPT. The coexistence of HPT and FHH was considered in this patient as her calcium and PTH levels were rising with time. Surgical resection of her parathyroid adenoma resulted in reduction of her calcium levels to above normal and significant reduction in her symptoms of fatigue and low mood.
Collapse
Affiliation(s)
- Aoife M Egan
- Department of Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
42
|
Nesbit MA, Hannan FM, Howles SA, Babinsky VN, Head RA, Cranston T, Rust N, Hobbs MR, Heath H, Thakker RV. Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med 2013; 368:2476-2486. [PMID: 23802516 PMCID: PMC3773604 DOI: 10.1056/nejmoa1300253] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide-binding protein (G-protein)-coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein structures, and assessment on the basis of in vitro expression showed that familial hypocalciuric hypercalcemia type 2-associated mutations decreased the sensitivity of cells expressing calcium-sensing receptors to changes in extracellular calcium concentrations, whereas autosomal dominant hypocalcemia type 2-associated mutations increased cell sensitivity. CONCLUSIONS Gα11 mutants with loss of function cause familial hypocalciuric hypercalcemia type 2, and Gα11 mutants with gain of function cause a clinical disorder designated as autosomal dominant hypocalcemia type 2. (Funded by the United Kingdom Medical Research Council and others.).
Collapse
Affiliation(s)
- M Andrew Nesbit
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| | - Fadil M Hannan
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| | - Sarah A Howles
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| | - Valerie N Babinsky
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| | - Rosie A Head
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| | - Treena Cranston
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| | - Nigel Rust
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| | - Maurine R Hobbs
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| | - Hunter Heath
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| | - Rajesh V Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine (M.A.N., F.M.H., S.A.H., V.N.B., R.A.H., R.V.T.), and Sir William Dunn School of Pathology (N.R.), University of Oxford, and the Oxford Molecular Genetics Laboratory, Churchill Hospital (T.C.) - all in Oxford, United Kingdom; Core Research Facilities, University of Utah, Salt Lake City (M.R.H.); and Indiana University School of Medicine, Indianapolis (H.H.)
| |
Collapse
|
43
|
Hannan FM, Thakker RV. Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract Res Clin Endocrinol Metab 2013; 27:359-71. [PMID: 23856265 DOI: 10.1016/j.beem.2013.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The extracellular calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor (GPCR) that is expressed at multiple sites, including the parathyroids and kidneys. The human CASR gene, located on chromosome 3q21.1, encodes a 1078 amino acid protein. More than 230 different disease-causing mutations of the CaSR have been reported. Loss-of-function mutations lead to three hypercalcemic disorders, which are familial hypocalciuric hypercalcemia (FHH), neonatal severe hyperparathyroidism and primary hyperparathyroidism. Gain-of-function mutations, on the other hand, result in the hypocalcemic disorders of autosomal dominant hypocalcemia and Bartter syndrome type V. Moreover, autoantibodies directed against the extracellular domain of the CaSR have been found to be associated with FHH in some patients, and also in some patients with hypoparathyroidism that may be part of autoimmune polyglandular syndrome type 1. Studies of disease-causing CASR mutations have provided insights into structure-function relationships and highlighted intra-molecular domains that are critical for ligand binding, intracellular signaling, and receptor trafficking.
Collapse
Affiliation(s)
- Fadil M Hannan
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK.
| | | |
Collapse
|
44
|
Firth AL, Won JY, Park WS. Regulation of ca(2+) signaling in pulmonary hypertension. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:1-8. [PMID: 23439762 PMCID: PMC3579099 DOI: 10.4196/kjpp.2013.17.1.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 01/08/2023]
Abstract
Understanding the cellular and molecular mechanisms involved in the development and progression of pulmonary hypertension (PH) remains imperative if we are to successfully improve the quality of life and life span of patients with the disease. A whole plethora of mechanisms are associated with the development and progression of PH. Such complexity makes it difficult to isolate one particular pathway to target clinically. Changes in intracellular free calcium concentration, the most common intracellular second messenger, can have significant impact in defining the pathogenic mechanisms leading to its development and persistence. Signaling pathways leading to the elevation of [Ca(2+)](cyt) contribute to pulmonary vasoconstriction, excessive proliferation of smooth muscle cells and ultimately pulmonary vascular remodeling. This current review serves to summarize the some of the most recent advances in the regulation of calcium during pulmonary hypertension.
Collapse
Affiliation(s)
- Amy L Firth
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, USA
| | | | | |
Collapse
|
45
|
Abstract
The calcium-sensing receptor (CaSR) is a 1,078 amino acid G protein-coupled receptor (GPCR), which is predominantly expressed in the parathyroids and kidney. The CaSR allows regulation of parathyroid hormone (PTH) secretion and renal tubular calcium re-absorption in response to alterations in extracellular calcium concentrations. Loss-of-function CaSR mutations have been reported in the hypercalcemic disorders of familial benign (hypocalciuric) hypercalcemia (FBH or FHH), neonatal severe primary hyperparathyroidism (NSHPT), and adult primary hyperparathyroidism. However, some individuals with loss-of-function CaSR mutations remain normocalcemic. Gain-of-function CaSR mutations have been shown to result in autosomal-dominant hypocalcemia with hypercalciuria (ADHH) and Bartter's syndrome type V. CaSR auto-antibodies have been found in FHH patients who did not have loss-of-function CaSR mutations and in patients with an acquired form (i.e. autoimmune) of hypoparathyroidism. Thus, abnormalities of the CaSR are associated with 4 hypercalcemic and 3 hypocalcemic disorders.
Collapse
Affiliation(s)
- R. V. Thakker
- Nuffield Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Headington, Oxford, OX3 7LJ, UK
| |
Collapse
|
46
|
Leaf DE, Wolf M. A physiologic-based approach to the evaluation of a patient with hyperphosphatemia. Am J Kidney Dis 2012; 61:330-6. [PMID: 22938849 DOI: 10.1053/j.ajkd.2012.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/11/2012] [Indexed: 01/16/2023]
Abstract
Phosphate is required for skeletal mineralization, cellular energy regulation, synthesis of cell membranes and nucleic acids, and a variety of cell signaling pathways. Extracellular serum phosphate concentration is determined by the balance of gastrointestinal phosphate absorption, skeletal turnover, distribution in intracellular compartments, and renal phosphate excretion. An integrated system of hormones, receptors, and phosphate transporters regulates phosphate homeostasis, and a variety of hereditary and acquired perturbations in these regulators can result in hyperphosphatemia. Although kidney failure is the most common cause of hyperphosphatemia encountered by nephrologists, hyperphosphatemia that presents in patients with early stages of chronic kidney disease or normal kidney function should prompt a detailed evaluation that can be diagnostically challenging. In this teaching case, we describe a case of hyperphosphatemia out of proportion to the degree of decrease in glomerular filtration rate. We present a practical parathyroid hormone-based diagnostic approach that illustrates the current understanding of phosphate regulation in clinically meaningful terms for the practicing nephrologist. Finally, we illustrate how measurement of fibroblast growth factor 23 could be integrated in the future when the test becomes more widely available.
Collapse
Affiliation(s)
- David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
47
|
Yi HS, Eom YS, Park IB, Lee S, Hong S, Jüppner H, Mannstadt M, Lee S. Identification and characterization of C106R, a novel mutation in the DNA-binding domain of GCMB, in a family with autosomal-dominant hypoparathyroidism. Clin Endocrinol (Oxf) 2012; 76:625-33. [PMID: 22066718 PMCID: PMC3701386 DOI: 10.1111/j.1365-2265.2011.04256.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OVERVIEW Glial cells missing B (GCMB) is a transcription factor that is expressed in the parathyroid hormone (PTH)-secreting cells of the parathyroid glands. Several mutations in GCMB have been reported to cause hypoparathyroidism (HP). We identified a family with two individuals in two generations (mother and son), who are affected by autosomal-dominant hypoparathyroidism (AD-HP). A novel heterozygous mutation in exon 2 of GCMB was identified in both affected individuals that changes cysteine at position 106 of the putative DNA-binding domain of GCMB to arginine (C106R). METHODS We performed mutational analysis of the genes encoding GCMB, pre-pro PTH, GATA3 and CaSR using polymerase chain reaction (PCR)-amplified genomic DNA. The identified GCMB mutant was characterized by functional studies including nuclear localization, electrophoretic mobility shift assays (EMSA) and luciferase reporter assays, and homology modelling was performed to generate a three-dimensional structural model for the DNA-binding domain of GCMB to predict the structural consequences of the identified mutation. RESULTS The C106R mutant of GCMB failed to interact with the DNA consensus recognition motif, as determined by EMSA. Furthermore, in comparison with wild-type GCMB, the C106R mutant demonstrated reduced transactivation in luciferase reporter assays; however, the mutant GCMB failed to reduce the activity of the wild-type protein. Consistent with the EMSA findings, homology modelling analysis suggested that replacement of cysteine 106 with arginine would interfere with DNA binding. CONCLUSIONS We have identified a novel GCMB mutation that may explain AD-HP in our family. However, the exact mechanism by which this heterozygous mutation leads to the disease in the described family remains to be elucidated.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon
| | - Young Sil Eom
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon
| | - Ie Byung Park
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Molecular Endocrinology, Gachon University School of Medicine, Incheon
| |
Collapse
|
48
|
The role of the calcium-sensing receptor in human disease. Clin Biochem 2012; 45:943-53. [PMID: 22503956 DOI: 10.1016/j.clinbiochem.2012.03.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 01/18/2023]
Abstract
Following the discovery of the calcium-sensing receptor (CaSR) in 1993, its pivotal role in disorders of calcium homeostasis such as Familial Hypocalciuric Hypercalcemia (FHH) was quickly demonstrated. Since then, it has become clear that the CaSR has immense functional versatility largely through its ability to activate many different signaling pathways in a ligand- and tissue-specific manner. This allows the receptor to play diverse and crucial roles in human physiology and pathophysiology, both in calcium homeostasis and in tissues and biological processes unrelated to calcium balance. This review covers current knowledge of the role of the CaSR in disorders of calcium homeostasis (FHH, neonatal severe hyperparathyroidism, autosomal dominant hypocalcemia, primary and secondary hyperparathyroidism, hypercalcemia of malignancy) as well as unrelated diseases such as breast and colorectal cancer (where the receptor appears to play a tumor suppressor role), Alzheimer's disease, pancreatitis, diabetes mellitus, hypertension and bone and gastrointestinal disorders. In addition, it examines the use or potential use of CaSR agonists or antagonists (calcimimetics and calcilytics) and other drugs mediated through the CaSR, in the management of disorders as diverse as hyperparathyroidism, osteoporosis and gastrointestinal disease.
Collapse
|
49
|
Riccardi D, Kemp PJ. The Calcium-Sensing Receptor Beyond Extracellular Calcium Homeostasis: Conception, Development, Adult Physiology, and Disease. Annu Rev Physiol 2012; 74:271-97. [DOI: 10.1146/annurev-physiol-020911-153318] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniela Riccardi
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom; ,
| | - Paul J. Kemp
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom; ,
| |
Collapse
|
50
|
Hannan FM, Nesbit MA, Zhang C, Cranston T, Curley AJ, Harding B, Fratter C, Rust N, Christie PT, Turner JJO, Lemos MC, Bowl MR, Bouillon R, Brain C, Bridges N, Burren C, Connell JM, Jung H, Marks E, McCredie D, Mughal Z, Rodda C, Tollefsen S, Brown EM, Yang JJ, Thakker RV. Identification of 70 calcium-sensing receptor mutations in hyper- and hypo-calcaemic patients: evidence for clustering of extracellular domain mutations at calcium-binding sites. Hum Mol Genet 2012; 21:2768-78. [DOI: 10.1093/hmg/dds105] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|