1
|
Kaestner L, Egée S, Connes P, Bogdanova AY, Simmonds MJ. Splenic filtration of red blood cells: Physics, chemistry, and biology need to go hand in hand. Proc Natl Acad Sci U S A 2025; 122:e2405086121. [PMID: 39746006 PMCID: PMC11745329 DOI: 10.1073/pnas.2405086121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Affiliation(s)
- Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Campus Saarland University Hospital, Homburg66421, Germany
- Dynamics of Fluids, Experimental Physics, Faculty of Natural Sciences and Technology, Saarland University, Saarbruecken66123, Germany
| | - Stephane Egée
- Biological Station Roscoff, Sorbonne University, CNRS, UMR8227, Laboratory of Integrative Biology and Marine Models, Roscoff29680, France
- Laboratory of Excellence Globule rouge: Biogenèse et pathologies du globule rouge, Paris75000, France
| | - Philippe Connes
- Laboratory of Excellence Globule rouge: Biogenèse et pathologies du globule rouge, Paris75000, France
- Laboratory Interuniversitaire de Biologie de la Motricité, UR7424, Vascular Biology and Red Blood Cell team, Laennec Medical School, University of Lyon 1, Lyon69372, France
| | - Anna Yu. Bogdanova
- Red Blood Cell Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zürich8057, Switzerland
| | - Michael J. Simmonds
- Biorheology Research Laboratory, Faculty of Health, Griffith University, Gold Coast, QLD4222, Australia
| |
Collapse
|
2
|
Kuck L, McNamee AP, Bordukova M, Sadafi A, Marr C, Peart JN, Simmonds MJ. Lysis of human erythrocytes due to Piezo1-dependent cytosolic calcium overload as a mechanism of circulatory removal. Proc Natl Acad Sci U S A 2024; 121:e2407765121. [PMID: 39207733 PMCID: PMC11388408 DOI: 10.1073/pnas.2407765121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Hematopoietic stem cells surrender organelles during differentiation, leaving mature red blood cells (RBC) devoid of transcriptional machinery and mitochondria. The resultant absence of cellular repair capacity limits RBC circulatory longevity, and old cells are removed from circulation. The specific age-dependent alterations required for this apparently targeted removal of RBC, however, remain elusive. Here, we assessed the function of Piezo1, a stretch-activated transmembrane cation channel, within subpopulations of RBC isolated based on physical properties associated with aging. We subsequently investigated the potential role of Piezo1 in RBC removal, using pharmacological and mechanobiological approaches. Dense (old) RBC were separated from whole blood using differential density centrifugation. Tolerance of RBC to mechanical forces within the physiological range was assessed on single-cell and cell population levels. Expression and function of Piezo1 were investigated in separated RBC populations by monitoring accumulation of cytosolic Ca2+ and changes in cell morphology in response to pharmacological Piezo1 stimulation and in response to physical forces. Despite decreased Piezo1 activity with increasing cell age, tolerance to prolonged Piezo1 stimulation declined sharply in older RBC, precipitating lysis. Cell lysis was immediately preceded by an acute reversal of density. We propose a Piezo1-dependent mechanism by which RBC may be removed from circulation: Upon adherence of these RBC to other tissues, they are uniquely exposed to prolonged mechanical forces. The resultant sustained activation of Piezo1 leads to a net influx of Ca2+, overpowering the Ca2+-removal capacity of specifically old RBC, which leads to reversal of ion gradients, dysregulated cell hydration, and ultimately osmotic lysis.
Collapse
Affiliation(s)
- Lennart Kuck
- Biorheology Research Laboratory, Griffith University, QLD4215, Australia
| | - Antony P. McNamee
- Biorheology Research Laboratory, Griffith University, QLD4215, Australia
| | - Maria Bordukova
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Munich85764, Germany
- Department of Biology, Ludwig-Maximilians University Munich, Munich80539, Germany
- Data and Analytics, Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg82377, Germany
| | - Ario Sadafi
- Institute of AI for Health, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg85764, Germany
- Computer Aided Medical Procedures, Technical University of Munich 85748, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg85764, Germany
| | - Jason N. Peart
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast, QLD4215, Australia
| | | |
Collapse
|
3
|
Sadafi A, Bordukova M, Makhro A, Navab N, Bogdanova A, Marr C. RedTell: an AI tool for interpretable analysis of red blood cell morphology. Front Physiol 2023; 14:1058720. [PMID: 37304818 PMCID: PMC10250619 DOI: 10.3389/fphys.2023.1058720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/13/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Hematologists analyze microscopic images of red blood cells to study their morphology and functionality, detect disorders and search for drugs. However, accurate analysis of a large number of red blood cells needs automated computational approaches that rely on annotated datasets, expensive computational resources, and computer science expertise. We introduce RedTell, an AI tool for the interpretable analysis of red blood cell morphology comprising four single-cell modules: segmentation, feature extraction, assistance in data annotation, and classification. Methods: Cell segmentation is performed by a trained Mask R-CNN working robustly on a wide range of datasets requiring no or minimum fine-tuning. Over 130 features that are regularly used in research are extracted for every detected red blood cell. If required, users can train task-specific, highly accurate decision tree-based classifiers to categorize cells, requiring a minimal number of annotations and providing interpretable feature importance. Results: We demonstrate RedTell's applicability and power in three case studies. In the first case study we analyze the difference of the extracted features between the cells coming from patients suffering from different diseases, in the second study we use RedTell to analyze the control samples and use the extracted features to classify cells into echinocytes, discocytes and stomatocytes and finally in the last use case we distinguish sickle cells in sickle cell disease patients. Discussion: We believe that RedTell can accelerate and standardize red blood cell research and help gain new insights into mechanisms, diagnosis, and treatment of red blood cell associated disorders.
Collapse
Affiliation(s)
- Ario Sadafi
- Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Computer Aided Medical Procedures & Augmented Reality, Technical University of Munich, Garching, Germany
| | - Maria Bordukova
- Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Nassir Navab
- Chair for Computer Aided Medical Procedures & Augmented Reality, Technical University of Munich, Garching, Germany
- Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, MD, United States
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
4
|
Hertz L, Flormann D, Birnbaumer L, Wagner C, Laschke MW, Kaestner L. Evidence of in vivo exogen protein uptake by red blood cells: a putative therapeutic concept. Blood Adv 2023; 7:1033-1039. [PMID: 36490356 PMCID: PMC10036505 DOI: 10.1182/bloodadvances.2022008404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
For some molecular players in red blood cells (RBCs), the functional indications and molecular evidence are discrepant. One such protein is transient receptor potential channel of canonical subfamily, member 6 (TRPC6). Transcriptome analysis of reticulocytes revealed the presence of TRPC6 in mouse RBCs and its absence in human RBCs. We transfused TRPC6 knockout RBCs into wild-type mice and performed functional tests. We observed the "rescue" of TRPC6 within 10 days; however, the "rescue" was slower in splenectomized mice. The latter finding led us to mimic the mechanical challenge with the cantilever of an atomic force microscope and simultaneously carry out imaging by confocal (3D) microscopy. We observed the strong interaction of RBCs with the opposed surface at around 200 pN and the formation of tethers. The results of both the transfusion experiments and the atomic force spectroscopy suggest mechanically stimulated protein transfer to RBCs as a protein source in the absence of the translational machinery. This protein transfer mechanism has the potential to be utilized in therapeutic contexts, especially for hereditary diseases involving RBCs, such as hereditary xerocytosis or Gárdos channelopathy.
Collapse
Affiliation(s)
- Laura Hertz
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Daniel Flormann
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Christian Wagner
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | - Matthias W. Laschke
- Medical Faculty, Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbruecken, Germany
| |
Collapse
|
5
|
Cabrera D, Eizadi Sharifabad M, Ranjbar JA, Telling ND, Harper AGS. Clot-targeted magnetic hyperthermia permeabilizes blood clots to make them more susceptible to thrombolysis. J Thromb Haemost 2022; 20:2556-2570. [PMID: 35950914 PMCID: PMC9826519 DOI: 10.1111/jth.15846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Thrombolysis is a frontline treatment for stroke, which involves the application of tissue plasminogen activator (tPA) to trigger endogenous clot-degradation pathways. However, it is only effective within 4.5 h of symptom onset because of clot contraction preventing tPA permeation into the clot. Magnetic hyperthermia (MH) mediated by tumor-targeted magnetic nanoparticles is used to treat cancer by using local heat generation to trigger apoptosis of cancer cells. OBJECTIVES To develop clot-targeting magnetic nanoparticles to deliver MH to the surface of human blood clots, and to assess whether this can improve the efficacy of thrombolysis of contracted blood clots. METHODS Clot-targeting magnetic nanoparticles were developed by functionalizing iron oxide nanoparticles with an antibody recognizing activated integrin αIIbβ3 (PAC-1). The magnetic properties of the PAC-1-tagged magnetic nanoparticles were characterized and optimized to deliver clot-targeted MH. RESULTS Clot-targeted MH increases the efficacy of tPA-mediated thrombolysis in contracted human blood clots, leading to a reduction in clot weight. MH increases the permeability of the clots to tPA, facilitating their breakdown. Scanning electron microscopy reveals that this effect is elicited through enhanced fibrin breakdown and triggering the disruption of red blood cells on the surface of the clot. Importantly, endothelial cells viability in a three-dimensional blood vessel model is unaffected by exposure to MH. CONCLUSIONS This study demonstrates that clot-targeted MH can enhance the thrombolysis of contracted human blood clots and can be safely applied to enhance the timeframe in which thrombolysis is effective.
Collapse
Affiliation(s)
- David Cabrera
- School of Pharmacy and BioengineeringGuy Hilton Research Centre, Keele UniversityStoke‐on‐TrentUK
| | - Maneea Eizadi Sharifabad
- School of Pharmacy and BioengineeringGuy Hilton Research Centre, Keele UniversityStoke‐on‐TrentUK
| | - Jacob A. Ranjbar
- School of Pharmacy and BioengineeringGuy Hilton Research Centre, Keele UniversityStoke‐on‐TrentUK
| | - Neil D. Telling
- School of Pharmacy and BioengineeringGuy Hilton Research Centre, Keele UniversityStoke‐on‐TrentUK
| | | |
Collapse
|
6
|
Kuck L, Peart JN, Simmonds MJ. Piezo1 regulates shear-dependent nitric oxide production in human erythrocytes. Am J Physiol Heart Circ Physiol 2022; 323:H24-H37. [PMID: 35559724 DOI: 10.1152/ajpheart.00185.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mature circulating red blood cells (RBC) are classically viewed as passive participants in circulatory function, given erythroblasts eject their organelles during maturation. Endogenous production of nitric oxide (NO) and its effects are of particular significance; however, the integration between RBC sensation of the local environment and subsequent activation of mechano-sensitive signaling networks that generate NO remain poorly understood. The present study investigated endogenous NO-production via the RBC-specific nitric oxide synthase-isoform (RBC-NOS), connecting membrane strain with intracellular enzymatic processes. Isolated RBC were obtained from apparently healthy humans. Intracellular NO was compared at rest and following shear (cellular deformation) using semi-quantitative fluorescent imaging. Concurrently, RBC-NOS phosphorylation at its Serine1177 (ser1177) residue was measured. The contribution of cellular deformation to shear-induced NO-production in RBC was determined by rigidifying RBC with the thiol-oxidizing agent diamide; rigid RBC exhibited significantly impaired (up to 80%) capacity to generate NO via RBC-NOS during shear. Standardizing membrane strain of rigid RBC by applying increased shear did not normalize NO-production, or RBC-NOS activation. Calcium-imaging with Fluo-4 revealed that diamide-treated RBC exhibited a 42%-impairment in Piezo1-mediated calcium-movement when compared with untreated RBC. Pharmacological inhibition of Piezo1 with GsMTx4 during shear inhibited RBC-NOS activation in untreated RBC, while Piezo1-activation with Yoda1 in the absence of shear stimulated RBC-NOS activation. Collectively, a novel, mechanically-activated signaling pathway in mature RBC is described. Opening of Piezo1 and subsequent influx of calcium appears to be required for endogenous production of NO in response to mechanical shear, which is accompanied by phosphorylation of RBC-NOS at ser1177.
Collapse
Affiliation(s)
- Lennart Kuck
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast, Southport, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Australia
| |
Collapse
|
7
|
Darras A, Breunig HG, John T, Zhao R, Koch J, Kummerow C, König K, Wagner C, Kaestner L. Imaging Erythrocyte Sedimentation in Whole Blood. Front Physiol 2022; 12:729191. [PMID: 35153805 PMCID: PMC8832033 DOI: 10.3389/fphys.2021.729191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
The erythrocyte sedimentation rate (ESR) is one of the oldest medical diagnostic tools. However, currently there is some debate on the structure formed by the cells during the sedimentation process. While the conventional view is that erythrocytes sediment as separate aggregates, others have suggested that they form a percolating gel, similar to other colloidal suspensions. However, visualization of aggregated erythrocytes, which would settle the question, has always been challenging. Direct methods usually study erythrocytes in 2D situations or low hematocrit (∼1%). Indirect methods, such as scattering or electric measurements, provide insight on the suspension evolution, but cannot directly discriminate between open or percolating structures. Here, we achieved a direct probing of the structures formed by erythrocytes in blood at stasis. We focused on blood samples at rest with controlled hematocrit of 45%, from healthy donors, and report observations from three different optical imaging techniques: direct light transmission through thin samples, two-photon microscopy and light-sheet microscopy. The three techniques, used in geometries with thickness from 150 μm to 3 mm, highlight that erythrocytes form a continuous network with characteristic cracks, i.e., a colloidal gel. The characteristic distance between the main cracks is of the order of ∼100 μm. A complete description of the structure then requires a field of view of the order of ∼1 mm, in order to obtain a statistically relevant number of structural elements. A quantitative analysis of the erythrocyte related processes and interactions during the sedimentation need a further refinement of the experimental set-ups.
Collapse
Affiliation(s)
- Alexis Darras
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Hans Georg Breunig
- Biophotonics and Laser Technology, Saarland University, Saarbrücken, Germany
| | - Thomas John
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Renping Zhao
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Johannes Koch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Carsten Kummerow
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Karsten König
- Biophotonics and Laser Technology, Saarland University, Saarbrücken, Germany
- JenLab GmbH, Berlin, Germany
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| |
Collapse
|
8
|
Chowdhury A, Singh Y, Das U, Waghmare D, Dasgupta R, Majumder SK. Effects of mobile phone emissions on human red blood cells. JOURNAL OF BIOPHOTONICS 2021; 14:e202100047. [PMID: 33871929 DOI: 10.1002/jbio.202100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Raman spectroscopy was performed on GSM 900 and 1800 MHz mobile phone signal exposed red blood cells (RBCs). The observed changes in the Raman spectra of mobile signal exposed RBCs compared to unexposed control suggest reduced hemoglobin-oxygen affinity for the exposed cells. The possible mechanism may involve activation of the voltage gated membrane Ca2+ channels by the mobile phone emissions resulting in an increase in the levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) in cells via altered metabolic activities. Further studies carried out with fluorescent Ca2+ indicator confirmed increased intracellular Ca2+ level in the exposed cells. Since intracellular ATP level influences the shape and mechanics of RBCs, exposed cells were studied using diffraction phase microscopy and optical tweezers. Detectable changes in shape and mechanical properties were observed due to mobile signal exposure.
Collapse
Affiliation(s)
- Aniket Chowdhury
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, Madhya Pradesh, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Yashveer Singh
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Uttam Das
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, Madhya Pradesh, India
| | - Deepak Waghmare
- School of Physics, Devi Ahilya University, Indore, Madhya Pradesh, India
| | - Raktim Dasgupta
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, Madhya Pradesh, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Shovan Kumar Majumder
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, Madhya Pradesh, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| |
Collapse
|
9
|
Wang J, Hertz L, Ruppenthal S, El Nemer W, Connes P, Goede JS, Bogdanova A, Birnbaumer L, Kaestner L. Lysophosphatidic Acid-Activated Calcium Signaling Is Elevated in Red Cells from Sickle Cell Disease Patients. Cells 2021; 10:456. [PMID: 33672679 PMCID: PMC7924404 DOI: 10.3390/cells10020456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
(1) Background: It is known that sickle cells contain a higher amount of Ca2+ compared to healthy red blood cells (RBCs). The increased Ca2+ is associated with the most severe symptom of sickle cell disease (SCD), the vaso-occlusive crisis (VOC). The Ca2+ entry pathway received the name of Psickle but its molecular identity remains only partly resolved. We aimed to map the involved Ca2+ signaling to provide putative pharmacological targets for treatment. (2) Methods: The main technique applied was Ca2+ imaging of RBCs from healthy donors, SCD patients and a number of transgenic mouse models in comparison to wild-type mice. Life-cell Ca2+ imaging was applied to monitor responses to pharmacological targeting of the elements of signaling cascades. Infection as a trigger of VOC was imitated by stimulation of RBCs with lysophosphatidic acid (LPA). These measurements were complemented with biochemical assays. (3) Results: Ca2+ entry into SCD RBCs in response to LPA stimulation exceeded that of healthy donors. LPA receptor 4 levels were increased in SCD RBCs. Their activation was followed by the activation of Gi protein, which in turn triggered opening of TRPC6 and CaV2.1 channels via a protein kinase Cα and a MAP kinase pathway, respectively. (4) Conclusions: We found a new Ca2+ signaling cascade that is increased in SCD patients and identified new pharmacological targets that might be promising in addressing the most severe symptom of SCD, the VOC.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| | - Sandra Ruppenthal
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
- Gynaecology, Obstetrics and Reproductive Medicine, Saarland University Hospital, 66421 Homburg, Germany
| | - Wassim El Nemer
- Etablissement Français du Sang PACA-Corse, Aix Marseille Université, EFS, CNRS, ADES, 13005 Marseille, France;
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
| | - Philippe Connes
- Laboratoire d’Excellence GR-Ex, 75015 Paris, France;
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Teal, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Jeroen S. Goede
- Division of Oncology and Hematology, Kantonsspital Winterthur, CH-8401 Winterthur, Switzerland;
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, University of Zürich, CH-8057 Zürich, Switzerland;
| | - Lutz Birnbaumer
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina;
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, 66421 Homburg, Germany;
- Experimental Physics, Dynamics of Fluids, Saarland University, 66123 Saarbrücken, Germany;
| |
Collapse
|
10
|
Pollet H, Cloos AS, Stommen A, Vanderroost J, Conrard L, Paquot A, Ghodsi M, Carquin M, Léonard C, Guthmann M, Lingurski M, Vermylen C, Killian T, Gatto L, Rider M, Pyr dit Ruys S, Vertommen D, Vikkula M, Brouillard P, Van Der Smissen P, Muccioli GG, Tyteca D. Aberrant Membrane Composition and Biophysical Properties Impair Erythrocyte Morphology and Functionality in Elliptocytosis. Biomolecules 2020; 10:biom10081120. [PMID: 32751168 PMCID: PMC7465299 DOI: 10.3390/biom10081120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Red blood cell (RBC) deformability is altered in inherited RBC disorders but the mechanism behind this is poorly understood. Here, we explored the molecular, biophysical, morphological, and functional consequences of α-spectrin mutations in a patient with hereditary elliptocytosis (pEl) almost exclusively expressing the Pro260 variant of SPTA1 and her mother (pElm), heterozygous for this mutation. At the molecular level, the pEI RBC proteome was globally preserved but spectrin density at cell edges was increased. Decreased phosphatidylserine vs. increased lysophosphatidylserine species, and enhanced lipid peroxidation, methemoglobin, and plasma acid sphingomyelinase (aSMase) activity were observed. At the biophysical level, although membrane transversal asymmetry was preserved, curvature at RBC edges and rigidity were increased. Lipid domains were altered for membrane:cytoskeleton anchorage, cholesterol content and response to Ca2+ exchange stimulation. At the morphological and functional levels, pEl RBCs exhibited reduced size and circularity, increased fragility and impaired membrane Ca2+ exchanges. The contribution of increased membrane curvature to the pEl phenotype was shown by mechanistic experiments in healthy RBCs upon lysophosphatidylserine membrane insertion. The role of lipid domain defects was proved by cholesterol depletion and aSMase inhibition in pEl. The data indicate that aberrant membrane content and biophysical properties alter pEl RBC morphology and functionality.
Collapse
Affiliation(s)
- Hélène Pollet
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Anne-Sophie Cloos
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Amaury Stommen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Juliette Vanderroost
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Louise Conrard
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (A.P.); (G.G.M.)
| | - Marine Ghodsi
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Mélanie Carquin
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Catherine Léonard
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Manuel Guthmann
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Maxime Lingurski
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Christiane Vermylen
- PEDI Unit, Institut de Recherche Expérimentale et Clinique & Saint-Luc Hospital, UCLouvain, 1200 Brussels, Belgium;
| | - Theodore Killian
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (T.K.); (L.G.)
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (T.K.); (L.G.)
| | - Mark Rider
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.R.); (S.P.d.R.); (D.V.)
| | - Sébastien Pyr dit Ruys
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.R.); (S.P.d.R.); (D.V.)
| | - Didier Vertommen
- PHOS Unit & MASSPROT Proteomics Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.R.); (S.P.d.R.); (D.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.V.); (P.B.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (M.V.); (P.B.)
| | - Patrick Van Der Smissen
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, 1200 Brussels, Belgium; (A.P.); (G.G.M.)
| | - Donatienne Tyteca
- CELL Unit & PICT Imaging Platform, de Duve Institute, UCLouvain, 1200 Brussels, Belgium; (H.P.); (A.-S.C.); (A.S.); (J.V.); (L.C.); (M.G.); (M.C.); (C.L.); (M.G.); (M.L.); (P.V.D.S.)
- Correspondence:
| |
Collapse
|
11
|
Kuck L, Peart JN, Simmonds MJ. Calcium dynamically alters erythrocyte mechanical response to shear. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118802. [PMID: 32717279 DOI: 10.1016/j.bbamcr.2020.118802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Red blood cells (RBC) are constantly exposed to varying mechanical forces while traversing the cardiovascular system. Upon exposure to mechanical stimuli (e.g., shear stress), calcium enters the cell and prompts potassium-efflux. Efflux of potassium is accompanied by a loss of intracellular fluid; thus, the volume of RBC decreases proportionately (i.e., 'Gárdos effect'). The mechanical properties of the cell are subsequently impacted due to complex interactions between cytosolic viscosity (dependent on cell hydration), the surface-area-to-volume ratio, and other molecular processes. The dynamic effects of calcium on RBC mechanics are yet to be elucidated, although accumulating evidence suggests a vital role. The present study thus examined the effects of calcium on contemporary biomechanical properties of RBC in conjunction with high-precision geometrical analyses with exposure to shear. Mechanical stimulation of RBC was performed using a co-axial Couette shearing system to deform the cell membrane; intracellular signaling events were observed via fluorescent imaging. Calcium was introduced into RBC using ionophore A23187. Increased intracellular calcium significantly impaired RBC deformability; these impairments were mediated by a calcium-induced reduction of cell volume through the Gárdos channel. Extracellular calcium in the absence of the ionophore only had an effect under shear, not at stasis. Under low shear, the presence of extracellular calcium induced progressive lysis of a sub-population of RBC; all remaining RBC exhibited exceptional capacity to deform, implying preferential removal of potentially aged cells. Collectively, we provide evidence of the mechanism by which calcium acutely regulates RBC mechanical properties.
Collapse
Affiliation(s)
- Lennart Kuck
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Queensland, Australia
| | - Jason N Peart
- School of Medical Science, Griffith University Gold Coast, Queensland, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Queensland, Australia.
| |
Collapse
|
12
|
Cloos AS, Ghodsi M, Stommen A, Vanderroost J, Dauguet N, Pollet H, D'Auria L, Mignolet E, Larondelle Y, Terrasi R, Muccioli GG, Van Der Smissen P, Tyteca D. Interplay Between Plasma Membrane Lipid Alteration, Oxidative Stress and Calcium-Based Mechanism for Extracellular Vesicle Biogenesis From Erythrocytes During Blood Storage. Front Physiol 2020; 11:712. [PMID: 32719614 PMCID: PMC7350142 DOI: 10.3389/fphys.2020.00712] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
The shedding of extracellular vesicles (EVs) from the red blood cell (RBC) surface is observed during senescence in vivo and RBC storage in vitro. Two main models for EV shedding, respectively based on calcium rise and oxidative stress, have been proposed in the literature but the role of the plasma membrane lipid composition and properties is not understood. Using blood in K+/EDTA tubes stored for up to 4 weeks at 4°C as a relevant RBC vesiculation model, we showed here that the RBC plasma membrane lipid composition, organization in domains and biophysical properties were progressively modified during storage and contributed to the RBC vesiculation. First, the membrane content in cholesterol and linoleic acid decreased whereas lipid peroxidation and spectrin:membrane occupancy increased, all compatible with higher membrane rigidity. Second, phosphatidylserine surface exposure showed a first rapid rise due to membrane cholesterol decrease, followed by a second calcium-dependent increase. Third, lipid domains mainly enriched in GM1 or sphingomyelin strongly increased from the 1st week while those mainly enriched in cholesterol or ceramide decreased during the 1st and 4th week, respectively. Fourth, the plasmatic acid sphingomyelinase activity considerably increased upon storage following the sphingomyelin-enriched domain rise and potentially inducing the loss of ceramide-enriched domains. Fifth, in support of the shedding of cholesterol- and ceramide-enriched domains from the RBC surface, the number of cholesterol-enriched domains lost and the abundance of EVs released during the 1st week perfectly matched. Moreover, RBC-derived EVs were enriched in ceramide at the 4th week but depleted in sphingomyelin. Then, using K+/EDTA tubes supplemented with glucose to longer preserve the ATP content, we better defined the sequence of events. Altogether, we showed that EV shedding from lipid domains only represents part of the global vesiculation mechanistics, for which we propose four successive events (cholesterol domain decrease, oxidative stress, sphingomyelin/sphingomyelinase/ceramide/calcium alteration and phosphatidylserine exposure).
Collapse
Affiliation(s)
- Anne-Sophie Cloos
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Marine Ghodsi
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amaury Stommen
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Juliette Vanderroost
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- GECE Unit and CYTF Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Hélène Pollet
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ludovic D'Auria
- NCHM Unit, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Eric Mignolet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Romano Terrasi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Patrick Van Der Smissen
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Platform, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
Bogdanova A, Kaestner L, Simionato G, Wickrema A, Makhro A. Heterogeneity of Red Blood Cells: Causes and Consequences. Front Physiol 2020; 11:392. [PMID: 32457644 PMCID: PMC7221019 DOI: 10.3389/fphys.2020.00392] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Mean values of hematological parameters are currently used in the clinical laboratory settings to characterize red blood cell properties. Those include red blood cell indices, osmotic fragility test, eosin 5-maleimide (EMA) test, and deformability assessment using ektacytometry to name a few. Diagnosis of hereditary red blood cell disorders is complemented by identification of mutations in distinct genes that are recognized "molecular causes of disease." The power of these measurements is clinically well-established. However, the evidence is growing that the available information is not enough to understand the determinants of severity of diseases and heterogeneity in manifestation of pathologies such as hereditary hemolytic anemias. This review focuses on an alternative approach to assess red blood cell properties based on heterogeneity of red blood cells and characterization of fractions of cells with similar properties such as density, hydration, membrane loss, redox state, Ca2+ levels, and morphology. Methodological approaches to detect variance of red blood cell properties will be presented. Causes of red blood cell heterogeneity include cell age, environmental stress as well as shear and metabolic stress, and multiple other factors. Heterogeneity of red blood cell properties is also promoted by pathological conditions that are not limited to the red blood cells disorders, but inflammatory state, metabolic diseases and cancer. Therapeutic interventions such as splenectomy and transfusion as well as drug administration also impact the variance in red blood cell properties. Based on the overview of the studies in this area, the possible applications of heterogeneity in red blood cell properties as prognostic and diagnostic marker commenting on the power and selectivity of such markers are discussed.
Collapse
Affiliation(s)
- Anna Bogdanova
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Lars Kaestner
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| | - Greta Simionato
- Experimental Physics, Dynamics of Fluids, Faculty of Natural Sciences and Technology, Saarland University, Saarbrücken, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Amittha Wickrema
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Asya Makhro
- Red Blood Cell Research Group, Vetsuisse Faculty, The Zurich Center for Integrative Human Physiology (ZHIP), Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Bernhardt I, Nguyen DB, Wesseling MC, Kaestner L. Intracellular Ca 2+ Concentration and Phosphatidylserine Exposure in Healthy Human Erythrocytes in Dependence on in vivo Cell Age. Front Physiol 2020; 10:1629. [PMID: 31998145 PMCID: PMC6965055 DOI: 10.3389/fphys.2019.01629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022] Open
Abstract
After about 120 days of circulation in the blood stream, erythrocytes are cleared by macrophages in the spleen and the liver. The “eat me” signal of this event is thought to be the translocation of phosphatidylserine from the inner to the outer membrane leaflet due to activation of the scramblase, while the flippase is inactivated. Both processes are triggered by an increased intracellular Ca2+ concentration. Although this is not the only mechanism involved in erythrocyte clearance, in this minireview, we focus on the following questions: Is the intracellular-free Ca2+ concentration and hence phosphatidylserine exposure dependent on the erythrocyte age, i.e. is the Ca2+ concentration, progressively raising during the erythrocyte aging in vivo? Can putative differences in intracellular Ca2+ and exposure of phosphatidylserine to the outer membrane leaflet be measured in age separated cell populations? Literature research revealed less than dozen of such publications with vastly contradicting results for the Ca2+ concentrations but consistency for a lack of change for the phosphatidylserine exposure. Additionally, we performed reanalysis of published data resulting in an ostensive illustration of the situation described above. Relating these results to erythrocyte physiology and biochemistry, we can conclude that the variation of the intracellular free Ca2+ concentration is limited with 10 μM as the upper level of the concentration. Furthermore, we propose the hypothesis that variations in measured Ca2+ concentrations may to a large extent depend on the experimental conditions applied but reflect a putatively changed Ca2+ susceptibility of erythrocytes in dependence of in vivo cell age.
Collapse
Affiliation(s)
- Ingolf Bernhardt
- Laboratory of Biophysics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Duc Bach Nguyen
- Laboratory of Biophysics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Mauro C Wesseling
- Laboratory of Biophysics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany
| | - Lars Kaestner
- Experimental Physics, Faculty of Natural Science and Technology, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
15
|
Kaestner L, Bogdanova A, Egee S. Calcium Channels and Calcium-Regulated Channels in Human Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:625-648. [PMID: 31646528 DOI: 10.1007/978-3-030-12457-1_25] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Free Calcium (Ca2+) is an important and universal signalling entity in all cells, red blood cells included. Although mature mammalian red blood cells are believed to not contain organelles as Ca2+ stores such as the endoplasmic reticulum or mitochondria, a 20,000-fold gradient based on a intracellular Ca2+ concentration of approximately 60 nM vs. an extracellular concentration of 1.2 mM makes Ca2+-permeable channels a major signalling tool of red blood cells. However, the internal Ca2+ concentration is tightly controlled, regulated and maintained primarily by the Ca2+ pumps PMCA1 and PMCA4. Within the last two decades it became evident that an increased intracellular Ca2+ is associated with red blood cell clearance in the spleen and promotes red blood cell aggregability and clot formation. In contrast to this rather uncontrolled deadly Ca2+ signals only recently it became evident, that a temporal increase in intracellular Ca2+ can also have positive effects such as the modulation of the red blood cells O2 binding properties or even be vital for brief transient cellular volume adaptation when passing constrictions like small capillaries or slits in the spleen. Here we give an overview of Ca2+ channels and Ca2+-regulated channels in red blood cells, namely the Gárdos channel, the non-selective voltage dependent cation channel, Piezo1, the NMDA receptor, VDAC, TRPC channels, CaV2.1, a Ca2+-inhibited channel novel to red blood cells and i.a. relate these channels to the molecular unknown sickle cell disease conductance Psickle. Particular attention is given to correlation of functional measurements with molecular entities as well as the physiological and pathophysiological function of these channels. This view is in constant progress and in particular the understanding of the interaction of several ion channels in a physiological context just started. This includes on the one hand channelopathies, where a mutation of the ion channel is the direct cause of the disease, like Hereditary Xerocytosis and the Gárdos Channelopathy. On the other hand it applies to red blood cell related diseases where an altered channel activity is a secondary effect like in sickle cell disease or thalassemia. Also these secondary effects should receive medical and pharmacologic attention because they can be crucial when it comes to the life-threatening symptoms of the disease.
Collapse
Affiliation(s)
- Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany. .,Experimental Physics, Saarland University, Saarbrücken, Germany.
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - Stephane Egee
- CNRS, UMR8227 LBI2M, Sorbonne Université, Roscoff, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
16
|
Hertz L, Ruppenthal S, Simionato G, Quint S, Kihm A, Abay A, Petkova-Kirova P, Boehm U, Weissgerber P, Wagner C, Laschke MW, Kaestner L. The Evolution of Erythrocytes Becoming Red in Respect to Fluorescence. Front Physiol 2019; 10:753. [PMID: 31275166 PMCID: PMC6593091 DOI: 10.3389/fphys.2019.00753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/31/2019] [Indexed: 11/13/2022] Open
Abstract
Very young red blood cells, namely reticulocytes, can be quite easily recognized and labeled by cluster of differentiation antibodies (CD71, transferrin receptor) or by staining remnant RNA with thiazol orange. In contrast, age specific erythrocyte labeling is more difficult in later periods of their life time. While erythrocytes contain band 4.1 protein, a molecular clock, so far it has not been possible to read this clock on individual cells. One concept to track erythrocytes during their life time is to mark them when they are young, either directly in vivo or ex vivo followed by a transfusion. Several methods like biotinylation, use of isotopes or fluorescent labeling have proved to be useful experimental approaches but also have several inherent disadvantages. Genetic engineering of mice provides additional options to express fluorescent proteins in erythrocytes. To allow co-staining with popular green fluorescent dyes like Fluo-4 or other fluorescein-based dyes, we bred a mouse line expressing a tandem red fluorescent protein (tdRFP). Within this Brief Research Report, we provide the initial characterisation of this mouse line and show application examples ranging from transfusion experiments and intravital microscopy to multicolour flow cytometry and confocal imaging. We provide a versatile new tool for erythrocyte research and discuss a range of experimental opportunities to study membrane processes and other aspects of erythrocyte development and aging with help of these animals.
Collapse
Affiliation(s)
- Laura Hertz
- Institute for Molecular and Cell Biology, Saarland University, Homburg, Germany
| | - Sandra Ruppenthal
- Institute for Molecular and Cell Biology, Saarland University, Homburg, Germany
| | - Greta Simionato
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Stephan Quint
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Alexander Kihm
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Asena Abay
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | | | - Ulrich Boehm
- Center for Molecular Signaling (PZMS), Institute for Pharmacology, Saarland University, Homburg, Germany
| | - Petra Weissgerber
- Center for Molecular Signaling (PZMS), Institute for Pharmacology, Saarland University, Homburg, Germany
| | - Christian Wagner
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
17
|
Abay A, Simionato G, Chachanidze R, Bogdanova A, Hertz L, Bianchi P, van den Akker E, von Lindern M, Leonetti M, Minetti G, Wagner C, Kaestner L. Glutaraldehyde - A Subtle Tool in the Investigation of Healthy and Pathologic Red Blood Cells. Front Physiol 2019; 10:514. [PMID: 31139090 PMCID: PMC6527840 DOI: 10.3389/fphys.2019.00514] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023] Open
Abstract
Glutaraldehyde is a well-known substance used in biomedical research to fix cells. Since hemolytic anemias are often associated with red blood cell shape changes deviating from the biconcave disk shape, conservation of these shapes for imaging in general and 3D-imaging in particular, like confocal microscopy, scanning electron microscopy or scanning probe microscopy is a common desire. Along with the fixation comes an increase in the stiffness of the cells. In the context of red blood cells this increased rigidity is often used to mimic malaria infected red blood cells because they are also stiffer than healthy red blood cells. However, the use of glutaraldehyde is associated with numerous pitfalls: (i) while the increase in rigidity by an application of increasing concentrations of glutaraldehyde is an analog process, the fixation is a rather digital event (all or none); (ii) addition of glutaraldehyde massively changes osmolality in a concentration dependent manner and hence cell shapes can be distorted; (iii) glutaraldehyde batches differ in their properties especially in the ratio of monomers and polymers; (iv) handling pitfalls, like inducing shear artifacts of red blood cell shapes or cell density changes that needs to be considered, e.g., when working with cells in flow; (v) staining glutaraldehyde treated red blood cells need different approaches compared to living cells, for instance, because glutaraldehyde itself induces a strong fluorescence. Within this paper we provide documentation about the subtle use of glutaraldehyde on healthy and pathologic red blood cells and how to deal with or circumvent pitfalls.
Collapse
Affiliation(s)
- Asena Abay
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Landsteiner Laboratory, Sanquin, Amsterdam, Netherlands
| | - Greta Simionato
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Revaz Chachanidze
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Université Grenoble Alpes, CNRS, Grenoble INP, LRP, Grenoble, France
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Laura Hertz
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Paola Bianchi
- UOC Ematologia, UOS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | - Marc Leonetti
- Université Grenoble Alpes, CNRS, Grenoble INP, LRP, Grenoble, France
| | - Giampaolo Minetti
- Laboratory of Biochemistry, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | - Lars Kaestner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| |
Collapse
|
18
|
Danielczok JG, Terriac E, Hertz L, Petkova-Kirova P, Lautenschläger F, Laschke MW, Kaestner L. Red Blood Cell Passage of Small Capillaries Is Associated with Transient Ca 2+-mediated Adaptations. Front Physiol 2017; 8:979. [PMID: 29259557 PMCID: PMC5723316 DOI: 10.3389/fphys.2017.00979] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
When red blood cells (RBCs) pass constrictions or small capillaries they need to pass apertures falling well below their own cross section size. We used different means of mechanical stimulations (hypoosmotic swelling, local mechanical stimulation, passing through microfluidic constrictions) to observe cellular responses of human RBCs in terms of intracellular Ca2+-signaling by confocal microscopy of Fluo-4 loaded RBCs. We were able to confirm our in vitro results in a mouse dorsal skinfold chamber model showing a transiently increased intracellular Ca2+ when RBCs were passing through small capillaries in vivo. Furthermore, we performed the above-mentioned in vitro experiments as well as measurements of RBCs filterability under various pharmacological manipulations (GsMTx-4, TRAM-34) to explore the molecular mechanism of the Ca2+-signaling. Based on these experiments we conclude that mechanical stimulation of RBCs activates mechano-sensitive channels most likely Piezo1. This channel activity allows Ca2+ to enter the cell, leading to a transient activation of the Gardos-channel associated with K+, Cl-, and water loss, i.e., with a transient volume adaptation facilitating the passage of the RBCs through the constriction.
Collapse
Affiliation(s)
- Jens G Danielczok
- Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | - Emmanuel Terriac
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Laura Hertz
- Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | | | - Franziska Lautenschläger
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Lars Kaestner
- Experimental Physics, Saarland University, Saarbrücken, Germany.,Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Agalakova NI, Ivanova TI, Gusev GP, Nazarenkova AV, Sufiyeva DA. Apoptotic death in erythrocytes of lamprey Lampetra fluviatilis induced by ionomycin and tert-butyl hydroperoxide. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:48-60. [PMID: 28163253 DOI: 10.1016/j.cbpc.2017.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 11/30/2022]
Abstract
The work examined the effects of Ca2+ overload and oxidative damage on erythrocytes of river lamprey Lampetra fluvialtilis. The cells were incubated for 3h with 0.1-5μM Ca2+ ionophore ionomycin in combination with 2.5mM Ca2+ and 10-100μM pro-oxidant agent tert-butyl hydroperoxide (tBHP). The sensitivity of lamprey RBCs to studied compounds was evaluated by the kinetics of their death. Both toxicants induced dose- and time dependent phosphatidylserine (PS) externalization (annexin V-FITC labeling) and loss of membrane integrity (propidium iodide uptake). Highest doses of ionomycin (1-2μM) increased the number of PS-exposed erythrocytes to 7-9% within 3h, while 100μM tBHP produced up to 50% of annexin V-FITC-positive cells. Caspase inhibitor Boc-D-FMK (50μM), calpain inhibitor PD150606 (10μM) and broad protease inhibitor leupeptin (200μM) did not prevent ionomycin-induced PS externalization, whereas tBHP-triggered apoptosis was blunted by Boc-D-FMK. tBHP-dependent death of lamprey erythrocytes was accompanied by the decrease in relative cell size, loss of cell viability, activation of caspases 9 and 3/7, and loss of mitochondrial membrane potential, but all these processes were partially attenuated by Boc-D-FMK. None of examined death-associated events were observed in ionomycin-treated erythrocytes except activation of caspase-9. Incubation with ionomycin did not alter intracellular K+ and Na+ content, while exposure to tBHP resulted in 80% loss of K+ and 2.8-fold accumulation of Na+. Thus, lamprey erythrocytes appear to be more susceptible to oxidative damage. Ca2+ overload does not activate the cytosolic death pathways in these cells.
Collapse
Affiliation(s)
- Natalia I Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia.
| | - Tatiana I Ivanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia
| | - Gennadii P Gusev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia
| | - Anna V Nazarenkova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia
| | - Dina A Sufiyeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, M. Thorez av. 44, Sankt-Petersburg, 194223, Russia
| |
Collapse
|
20
|
Cengiz M, Ülker P, Üyüklü M, Yaraş N, Özen N, Aslan M, Özyurt D, Basralı F. Effect of magnesium supplementation on blood rheology in NOS inhibition-induced hypertension model. Clin Hemorheol Microcirc 2017; 63:57-67. [PMID: 26890104 DOI: 10.3233/ch-152032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated the effects of magnesium on blood rheological properties and blood pressure in nitric oxide synthase (NOS) inhibition-induced hypertension model. Hypertension was induced by oral administration of the nonselective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME, 25 mg/kg/day) for 6 weeks and systolic blood pressure was measured by the tail-cuff method. The groups receiving magnesium supplementation were fed with rat chow containing 0.8% magnesium oxide during the experiment. At the end of experiment, blood samples were obtained from abdominal aorta, using ether anesthesia. Plasma and erythrocyte magnesium levels were determined by the atomic absorption spectrometer. RBC deformability and aggregation were determined by rotational ektacytometry. Plasma fibrinogen concentration was evaluated by ELISA. Whole blood and plasma viscosities were determined by viscometer and intracellular free Ca++ level was measured by using spectroflurometric method. Blood pressure was elevated in hypertensive groups and suppressed by magnesium therapy. Plasma viscosity and RBC aggregation were found to be higher in hypertensive rats than control animals and these parameters significantly decreased in magnesium supplemented hypertensive animals. Other measurements were not different between experimental groups. These results confirm that blood pressure, plasma viscosity and RBC aggregation increased in NOS inhibition-induced hypertension model and oral magnesium supplementation improved these parameters.
Collapse
Affiliation(s)
- Melike Cengiz
- Akdeniz University, Faculty of Medicine, Department of Anaesthesiology and Reanimation, Antalya, Turkey
| | - Pinar Ülker
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Mehmet Üyüklü
- Bezmialem Vakif University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey
| | - Nazmi Yaraş
- Akdeniz University, Faculty of Medicine, Department of Biophysics, Antalya, Turkey
| | - Nur Özen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Mutay Aslan
- Akdeniz University, Faculty of Medicine, Department of Medical Biochemistry, Antalya, Turkey
| | - Dilek Özyurt
- Istanbul Technical University, Department of Chemistry, Faculty of Sciences and Letters, Istanbul, Turkey
| | - Filiz Basralı
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| |
Collapse
|
21
|
Makhro A, Kaestner L, Bogdanova A. NMDA Receptor Activity in Circulating Red Blood Cells: Methods of Detection. Methods Mol Biol 2017; 1677:265-282. [PMID: 28986879 DOI: 10.1007/978-1-4939-7321-7_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abundance and activity of N-methyl-D-aspartate (NMDA) in circulating red blood cells contributes to the maintenance of intracellular Ca2+ in these cells and, by doing that, controls red cell volume, membrane stability, and O2 carrying capacity. Detection of the NMDA receptor activity in red blood cells is challenging as the number of its copies is low and shows substantial cell-to-cell heterogeneity. Receptor abundance is reliably assessed using the radiolabeled antagonist ([3H]MK-801) binding technique. Uptake of Ca2+ following the NMDA receptor activation is detected in cells loaded with Ca2+-sensitive fluorescent dye Fluo-4 AM. Both microfluorescence live-cell imaging and flow cytometry may be used for fluorescence intensity detection. Automated patch clamp is currently used for recording of electric currents triggered by the stimulation of the NMDA receptor. These currents are mediated by the Ca2+-sensitive K+ (Gardos) channels that open upon Ca2+ uptake via the active NMDA receptor. Furthermore, K+ flux through the Gardos channels induced by the NMDA receptor stimulation in red blood cells may be detected using unidirectional K+(86Rb+) influx.
Collapse
Affiliation(s)
- Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Dynamics of Fluids, Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
- The Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Makhro A, Huisjes R, Verhagen LP, Mañú-Pereira MDM, Llaudet-Planas E, Petkova-Kirova P, Wang J, Eichler H, Bogdanova A, van Wijk R, Vives-Corrons JL, Kaestner L. Red Cell Properties after Different Modes of Blood Transportation. Front Physiol 2016; 7:288. [PMID: 27471472 PMCID: PMC4945647 DOI: 10.3389/fphys.2016.00288] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022] Open
Abstract
Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca(2+) handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na(+), K(+), Ca(2+)) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca(2+) cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca(2+)-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to the specialized laboratories may be the only option for some groups of patients with highly unstable RBCs.
Collapse
Affiliation(s)
- Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich Zurich, Switzerland
| | - Rick Huisjes
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht Utrecht, Netherlands
| | - Liesbeth P Verhagen
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht Utrecht, Netherlands
| | | | | | - Polina Petkova-Kirova
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland University Homburg/Saar, Germany
| | - Jue Wang
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland University Homburg/Saar, Germany
| | - Hermann Eichler
- Saarland University Hospital, Institute for Clinical Hemostaseology and Transfusion-Medicine Homburg/Saar, Germany
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich Zurich, Switzerland
| | - Richard van Wijk
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht Utrecht, Netherlands
| | | | - Lars Kaestner
- Research Centre for Molecular Imaging and Screening, Medical School, Saarland UniversityHomburg/Saar, Germany; Dynamics of Fluids, Experimental Physics, Saarland UniversitySaarbruecken, Germany
| |
Collapse
|
23
|
Makhro A, Haider T, Wang J, Bogdanov N, Steffen P, Wagner C, Meyer T, Gassmann M, Hecksteden A, Kaestner L, Bogdanova A. Comparing the impact of an acute exercise bout on plasma amino acid composition, intraerythrocytic Ca(2+) handling, and red cell function in athletes and untrained subjects. Cell Calcium 2016; 60:235-44. [PMID: 27292137 DOI: 10.1016/j.ceca.2016.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/20/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
Abstract
The N-methyl d-aspartate receptors (NMDARs) mediating Ca(2+) uptake upon stimulation with glutamate and glycine were recently discovered in red blood cells (RBC) of healthy humans. Activation of these receptors with agonists triggered transient Ca(2+)-dependent decrease in hemoglobin oxygen affinity in RBC suspension. The aim of this study was to assess the potential physiological relevance of this phenomenon. Two groups formed by either healthy untrained volunteers or endurance athletes were subjected to a stepwise incremental cycling test to exhaustion. Plasma glutamate levels, activity of the NMDARs, and hemoglobin O2 affinity were measured in blood samples obtained before and after the exercise in both groups. Increase in plasma glutamate levels following exercise was observed in both groups. Transient Ca(2+) accumulation in response to the NMDAR stimulation with NMDA and glycine was followed by facilitated Ca(2+) extrusion from the RBC and compensatory decrease in cytosolic Ca(2+) levels. Short-term activation of the receptors triggered a transient decrease in O2 affinity of hemoglobin in both groups. These exercise-induced responses were more pronounced in athletes compared to the untrained subjects. Athletes were initially presented with lower basal intracellular Ca(2+) levels and hemoglobin oxygen affinity compared to non-trained controls. High basal plasma glutamate levels were associated with induction of hemolysis and formation of echinocytes upon stimulation with the receptor agonists. These findings suggest that glutamate release occurring during exhaustive exercise bouts may acutely facilitate O2 liberation from hemoglobin and improve oxygen delivery to the exercising muscle.
Collapse
Affiliation(s)
- Asya Makhro
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Thomas Haider
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Jue Wang
- Institute for Molecular Cell Biology and Research Center for molecular Imaging and Screening, School of Medicine, Saarland University, Homburg, Germany
| | - Nikolay Bogdanov
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Patrick Steffen
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | | | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Max Gassmann
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Anne Hecksteden
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Center for molecular Imaging and Screening, School of Medicine, Saarland University, Homburg, Germany; Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Anna Bogdanova
- Institute of Veterinary Physiology and the Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland.
| |
Collapse
|
24
|
Genetically Encoded Voltage Indicators in Circulation Research. Int J Mol Sci 2015; 16:21626-42. [PMID: 26370981 PMCID: PMC4613271 DOI: 10.3390/ijms160921626] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/18/2023] Open
Abstract
Membrane potentials display the cellular status of non-excitable cells and mediate communication between excitable cells via action potentials. The use of genetically encoded biosensors employing fluorescent proteins allows a non-invasive biocompatible way to read out the membrane potential in cardiac myocytes and other cells of the circulation system. Although the approaches to design such biosensors date back to the time when the first fluorescent-protein based Förster Resonance Energy Transfer (FRET) sensors were constructed, it took 15 years before reliable sensors became readily available. Here, we review different developments of genetically encoded membrane potential sensors. Furthermore, it is shown how such sensors can be used in pharmacological screening applications as well as in circulation related basic biomedical research. Potentials and limitations will be discussed and perspectives of possible future developments will be provided.
Collapse
|
25
|
Salvianolic acid A attenuates TNF-α- and d-GalN-induced ER stress-mediated and mitochondrial-dependent apoptosis by modulating Bax/Bcl-2 ratio and calcium release in hepatocyte LO2 cells. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:817-30. [DOI: 10.1007/s00210-015-1116-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
|
26
|
Confocal FLIM of genetically encoded FRET sensors for quantitative Ca2+ imaging. Cold Spring Harb Protoc 2014; 2014:1328-32. [PMID: 25447281 DOI: 10.1101/pdb.prot077040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluorescence lifetime imaging (FLIM) is a powerful imaging mode that can be combined with confocal imaging. Changes in the fluorescence decay time of a donor in an intramolecular Förster resonance energy transfer (FRET)-based biosensor provide intrinsic quantitative data. Here, we describe a protocol using both the Ca(2+) sensor TN-XL, which uses troponin C, as the Ca(2+)-sensing unit, and the FLIM technology based on time-correlated single-photon counting.
Collapse
|
27
|
Kaestner L, Scholz A, Tian Q, Ruppenthal S, Tabellion W, Wiesen K, Katus HA, Müller OJ, Kotlikoff MI, Lipp P. Genetically encoded Ca2+ indicators in cardiac myocytes. Circ Res 2014; 114:1623-39. [PMID: 24812351 DOI: 10.1161/circresaha.114.303475] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetically encoded Ca(2+) indicators constitute a powerful set of tools to investigate functional aspects of Ca(2+) signaling in isolated cardiomyocytes, cardiac tissue, and whole hearts. Here, we provide an overview of the concepts, experiences, state of the art, and ongoing developments in the use of genetically encoded Ca(2+) indicators for cardiac cells and heart tissue. This review is supplemented with in vivo viral gene transfer experiments and comparisons of available genetically encoded Ca(2+) indicators with each other and with the small molecule dye Fura-2. In the context of cardiac myocytes, we provide guidelines for selecting a genetically encoded Ca(2+) indicator. For future developments, we discuss improvements of a broad range of properties, including photophysical properties such as spectral spread and biocompatibility, as well as cellular and in vivo applications.
Collapse
Affiliation(s)
- Lars Kaestner
- From the Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg-Saar, Germany (L.K., A.S., Q.T., S.R., W.T., K.W., P.L.); Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany (H.A.K., O.J.M.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.); and Biomedical Sciences Department, College of Veterinary Medicine, Cornell University, Ithaca, NY (M.I.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Khvedelidze M, Mdzinarashvili T, Shekiladze E, Schneider M, Moersdorf D, Bernhardt I. Structure of drug delivery DPPA and DPPC liposomes with ligands and their permeability through cells. J Liposome Res 2014; 25:20-31. [PMID: 24766638 DOI: 10.3109/08982104.2014.911316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dipalmitoylphosphatidylcholine (DPPC) and 1,2-palmitoyl-phosphatidic acid (DPPA) liposomes, prepared by conventional rotary evaporation method, have similar structural organization, though they have significant differences. The similarity is that both types of lipids create standard bilayer liposomes with strong hydrophobic forces between lipids tails and with homogeneous bonds of hydrogen and electrostatic nature between hydrophilic lipids heads. By the calorimetric method, it has been shown that hydrophobic bonds break but liposomes' destruction does not occur by heating till 150 °C. As for bonds between lipid heads in liposomes, their cooperative destruction takes place at 41 °C for DPPC and 66 °C for DPPA liposomes. In the case of thermal distraction of DPPC liposomes, two so-called pre transitions peaks were observed before the main transition peak, which indicates that DPPC liposomes' structure is multilamellar. DPPA liposomes have one cooperative heat absorption peak, which points to a unilamellar structure of such liposomes. Substances of hydrophobic/hydrophilic nature, incorporated into the liposomes, are placed in hydrophobic or hydrophilic parts of liposomes, which lead to a change in calorimetric peak shapes and thermodynamic parameters. It has been shown that gold nanoparticles, incorporated into the DPPC liposomes, are able to enter Caco-2 cells. In contrast, these nanoparticles do not enter red blood cells.
Collapse
Affiliation(s)
- Mariam Khvedelidze
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University , Tbilisi , Georgia
| | | | | | | | | | | |
Collapse
|
29
|
Du P, Viswanathan UM, Xu Z, Ebrahimnejad H, Hanf B, Burkholz T, Schneider M, Bernhardt I, Kirsch G, Jacob C. Synthesis of amphiphilic seleninic acid derivatives with considerable activity against cellular membranes and certain pathogenic microbes. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:74-82. [PMID: 24491370 DOI: 10.1016/j.jhazmat.2014.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/13/2013] [Accepted: 01/09/2014] [Indexed: 06/03/2023]
Abstract
Selenium compounds play a major role in Biology, where they are often associated with pronounced antioxidant activity or toxicity. Whilst most selenium compounds are not necessarily hazardous, their often selective cytotoxicity is interesting from a biochemical and pharmaceutical perspective. We have synthesized a series of amphiphilic molecules which combine a hydrophilic seleninic acid head group - which at the same time serves as thiol-specific warhead - with a hydrophobic tail. These molecules possess a surface activity similar to the one of SDS, yet their biological activity seems to exceed by far the one of a simple surfactant (e.g. SDS) or seleninic acid (e.g. phenyl seleninic acid). Such compounds effectively haemolyse Red Blood Cells and exhibit pronounced activity against Saccharomyces cerevisiae. From a chemical perspective, the seleninic warheads are likely to attack crucial cysteine proteins of the cellular thiolstat.
Collapse
Affiliation(s)
- Peng Du
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
| | - Uma M Viswanathan
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
| | - Zhanjie Xu
- Laboratoire d'Ingénierie Moléculaire et Biochimie Pharmacologique, SRSMC UMR 7565, Université de Lorraine, 1 Boulevard Arago, 57070 Metz, France
| | - Hadi Ebrahimnejad
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany; Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Bahonar University, Kerman, Iran
| | - Benjamin Hanf
- Division of Biophysics, Department of Biology, Saarland University, D-66123 Saarbruecken, Germany
| | - Torsten Burkholz
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany
| | - Marc Schneider
- Division of Pharmaceutics and Biopharmacy, Philipps University, D-35037 Marburg, Germany
| | - Ingolf Bernhardt
- Division of Biophysics, Department of Biology, Saarland University, D-66123 Saarbruecken, Germany
| | - Gilbert Kirsch
- Laboratoire d'Ingénierie Moléculaire et Biochimie Pharmacologique, SRSMC UMR 7565, Université de Lorraine, 1 Boulevard Arago, 57070 Metz, France
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|
30
|
Wang J, van Bentum K, Sester U, Kaestner L. Calcium homeostasis in red blood cells of dialysis patients in dependence of erythropoietin treatment. Front Physiol 2014; 5:16. [PMID: 24478727 PMCID: PMC3902209 DOI: 10.3389/fphys.2014.00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/09/2014] [Indexed: 01/14/2023] Open
Affiliation(s)
- Jue Wang
- Research Centre for Molecular Imaging and Screening, School of Medicine, Institute for Molecular Cell Biology, Saarland University Homburg/Saar, Germany
| | - Kai van Bentum
- Ambulatory Health Care Center Saarpfalz Homburg/Saar, Germany
| | - Urban Sester
- Internal Medicine IV, School of Medicine, Saarland University Homburg/Saar, Germany
| | - Lars Kaestner
- Research Centre for Molecular Imaging and Screening, School of Medicine, Institute for Molecular Cell Biology, Saarland University Homburg/Saar, Germany
| |
Collapse
|
31
|
Makhro A, Hänggi P, Goede JS, Wang J, Brüggemann A, Gassmann M, Schmugge M, Kaestner L, Speer O, Bogdanova A. N-methyl-D-aspartate receptors in human erythroid precursor cells and in circulating red blood cells contribute to the intracellular calcium regulation. Am J Physiol Cell Physiol 2013; 305:C1123-38. [PMID: 24048732 DOI: 10.1152/ajpcell.00031.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of N-methyl-d-aspartate receptor (NMDAR) was previously shown in rat red blood cells (RBCs) and in a UT-7/Epo human myeloid cell line differentiating into erythroid lineage. Here we have characterized the subunit composition of the NMDAR and monitored its function during human erythropoiesis and in circulating RBCs. Expression of the NMDARs subunits was assessed in erythroid progenitors during ex vivo erythropoiesis and in circulating human RBCs using quantitative PCR and flow cytometry. Receptor activity was monitored using a radiolabeled antagonist binding assay, live imaging of Ca(2+) uptake, patch clamp, and monitoring of cell volume changes. The receptor tetramers in erythroid precursor cells are composed of the NR1, NR2A, 2C, 2D, NR3A, and 3B subunits of which the glycine-binding NR3A and 3B and glutamate-binding NR2C and 2D subunits prevailed. Functional receptor is required for survival of erythroid precursors. Circulating RBCs retain a low number of the receptor copies that is higher in young cells compared with mature and senescent RBC populations. In circulating RBCs the receptor activity is controlled by plasma glutamate and glycine. Modulation of the NMDAR activity in RBCs by agonists or antagonists is associated with the alterations in whole cell ion currents. Activation of the receptor results in the transient Ca(2+) accumulation, cell shrinkage, and alteration in the intracellular pH, which is associated with the change in hemoglobin oxygen affinity. Thus functional NMDARs are present in erythroid precursor cells and in circulating RBCs. These receptors contribute to intracellular Ca(2+) homeostasis and modulate oxygen delivery to peripheral tissues.
Collapse
Affiliation(s)
- Asya Makhro
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang J, Wagner-Britz L, Bogdanova A, Ruppenthal S, Wiesen K, Kaiser E, Tian Q, Krause E, Bernhardt I, Lipp P, Philipp SE, Kaestner L. Morphologically homogeneous red blood cells present a heterogeneous response to hormonal stimulation. PLoS One 2013; 8:e67697. [PMID: 23840765 PMCID: PMC3695909 DOI: 10.1371/journal.pone.0067697] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Red blood cells (RBCs) are among the most intensively studied cells in natural history, elucidating numerous principles and ground-breaking knowledge in cell biology. Morphologically, RBCs are largely homogeneous, and most of the functional studies have been performed on large populations of cells, masking putative cellular variations. We studied human and mouse RBCs by live-cell video imaging, which allowed single cells to be followed over time. In particular we analysed functional responses to hormonal stimulation with lysophosphatidic acid (LPA), a signalling molecule occurring in blood plasma, with the Ca2+ sensor Fluo-4. Additionally, we developed an approach for analysing the Ca2+ responses of RBCs that allowed the quantitative characterization of single-cell signals. In RBCs, the LPA-induced Ca2+ influx showed substantial diversity in both kinetics and amplitude. Also the age-classification was determined for each particular RBC and consecutively analysed. While reticulocytes lack a Ca2+ response to LPA stimulation, old RBCs approaching clearance generated robust LPA-induced signals, which still displayed broad heterogeneity. Observing phospatidylserine exposure as an effector mechanism of intracellular Ca2+ revealed an even increased heterogeneity of RBC responses. The functional diversity of RBCs needs to be taken into account in future studies, which will increasingly require single-cell analysis approaches. The identified heterogeneity in RBC responses is important for the basic understanding of RBC signalling and their contribution to numerous diseases, especially with respect to Ca2+ influx and the associated pro-thrombotic activity.
Collapse
Affiliation(s)
- Jue Wang
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | | | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Sandra Ruppenthal
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Kathrina Wiesen
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Elisabeth Kaiser
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Qinghai Tian
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Elmar Krause
- Physiology, Saarland University, Homburg/Saar, Germany
| | - Ingolf Bernhardt
- Biophysics Laboratory, Saarland University, Saarbrücken, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
| | - Stephan E. Philipp
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg/Saar, Germany
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar, Germany
- * E-mail:
| |
Collapse
|
33
|
Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant phospholipase-D from Loxosceles intermedia (brown spider) venom. Toxicon 2013; 67:17-30. [DOI: 10.1016/j.toxicon.2013.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
|
34
|
Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells-a perilous balance. Int J Mol Sci 2013; 14:9848-72. [PMID: 23698771 PMCID: PMC3676817 DOI: 10.3390/ijms14059848] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/19/2022] Open
Abstract
Ca2+ is a universal signalling molecule involved in regulating cell cycle and fate, metabolism and structural integrity, motility and volume. Like other cells, red blood cells (RBCs) rely on Ca2+ dependent signalling during differentiation from precursor cells. Intracellular Ca2+ levels in the circulating human RBCs take part not only in controlling biophysical properties such as membrane composition, volume and rheological properties, but also physiological parameters such as metabolic activity, redox state and cell clearance. Extremely low basal permeability of the human RBC membrane to Ca2+ and a powerful Ca2+ pump maintains intracellular free Ca2+ levels between 30 and 60 nM, whereas blood plasma Ca2+ is approximately 1.8 mM. Thus, activation of Ca2+ uptake has an impressive impact on multiple processes in the cells rendering Ca2+ a master regulator in RBCs. Malfunction of Ca2+ transporters in human RBCs leads to excessive accumulation of Ca2+ within the cells. This is associated with a number of pathological states including sickle cell disease, thalassemia, phosphofructokinase deficiency and other forms of hereditary anaemia. Continuous progress in unravelling the molecular nature of Ca2+ transport pathways allows harnessing Ca2+ uptake, avoiding premature RBC clearance and thrombotic complications. This review summarizes our current knowledge of Ca2+ signalling in RBCs emphasizing the importance of this inorganic cation in RBC function and survival.
Collapse
Affiliation(s)
- Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Asya Makhro
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich, Center for Integrative Human Physiology, University of Zürich, Zürich 8057, Switzerland; E-Mails: (A.B.); (A.M.)
| | - Jue Wang
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, Homburg/Saar 66421, Germany; E-Mails: (J.W.); (P.L.)
| |
Collapse
|
35
|
Minetti G, Egée S, Mörsdorf D, Steffen P, Makhro A, Achilli C, Ciana A, Wang J, Bouyer G, Bernhardt I, Wagner C, Thomas S, Bogdanova A, Kaestner L. Red cell investigations: Art and artefacts. Blood Rev 2013; 27:91-101. [DOI: 10.1016/j.blre.2013.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Pan L, Wang X, Yang S, Wu X, Lee I, Zhang X, Rupp RA, Xu J. Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species. PLoS One 2012; 7:e44142. [PMID: 22952902 PMCID: PMC3431334 DOI: 10.1371/journal.pone.0044142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/01/2012] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet (UV) light has a potent effect on biological organisms. Hemoglobin, an oxygen-transport protein, plays an irreplaceable role in sustaining life of all vertebrates. In this study we scrutinize the effects of ultraviolet irradiation (UVI) as well as visible irradiation on the fluorescence characteristics of bovine hemoglobin (BHb) in vitro. Data show that UVI results in fluorescence enhancement of BHb in a dose-dependant manner. Furthermore, UVI-induced fluorescence enhancement is significantly increased when BHb is pretreated with hydrogen peroxide (H2O2), a type of reactive oxygen species (ROS). Meanwhile, The water-soluble antioxidant vitamin C suppresses this UVI-induced fluorescence enhancement. In contrast, green light irradiation does not lead to fluorescence enhancement of BHb no matter whether H2O2 is acting on the BHb solution or not. Taken together, these results indicate that catalysis of ROS and UVI-dependent irradiation play two key roles in the process of UVI-induced fluorescence enhancement of BHb.
Collapse
Affiliation(s)
- Leiting Pan
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
- * E-mail: (LP); (JX)
| | - Xiaoxu Wang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
| | - Shuying Yang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
| | - Xian Wu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
| | - Imshik Lee
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
| | - Xinzheng Zhang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
| | - Romano A. Rupp
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
- Faculty of Physics, Vienna University, Vienna, Austria
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin, China
- * E-mail: (LP); (JX)
| |
Collapse
|
37
|
Nguyen DB, Wagner-Britz L, Maia S, Steffen P, Wagner C, Kaestner L, Bernhardt I. Regulation of phosphatidylserine exposure in red blood cells. Cell Physiol Biochem 2011; 28:847-56. [PMID: 22178937 DOI: 10.1159/000335798] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2011] [Indexed: 02/04/2023] Open
Abstract
The exposure of phosphatidylserine (PS) on the outer membrane leaflet of red blood cells (RBCs) serves as a signal for eryptosis, a mechanism for the RBC clearance from blood circulation. The process of PS exposure was investigated as function of the intracellular Ca(2+) content and the activation of PKCα in human and sheep RBCs. Cells were treated with lysophosphatidic acid (LPA), 4-bromo-A23187, or phorbol-12 myristate-13 acetate (PMA) and analysed by flow cytometry, single cell fluorescence video imaging, or confocal microscopy. For human RBCs, no clear correlation existed between the number of cells with an elevated Ca(2+) content and PS exposure. Results are explained by three different mechanisms responsible for the PS exposure in human RBCs: (i) Ca(2+)-stimulated scramblase activation (and flippase inhibition) by LPA, 4-bromo-A23187, and PMA; (ii) PKC activation by LPA and PMA; and (iii) enhanced lipid flop caused by LPA. In sheep RBCs, only the latter mechanism occurs suggesting absence of scramblase activity.
Collapse
Affiliation(s)
- Duc Bach Nguyen
- Faculty of Natural and Technical Sciences III, Saarland University, Saarbruecken, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Chaves-Moreira D, Souza FN, Fogaça RTH, Mangili OC, Gremski W, Senff-Ribeiro A, Chaim OM, Veiga SS. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin. J Cell Biochem 2011; 112:2529-40. [PMID: 21590705 DOI: 10.1002/jcb.23177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brown spider venom phospholipase-D belongs to a family of toxins characterized as potent bioactive agents. These toxins have been involved in numerous aspects of cell pathophysiology including inflammatory response, platelet aggregation, endothelial cell hyperactivation, renal disorders, and hemolysis. The molecular mechanism by which these toxins cause hemolysis is under investigation; literature data have suggested that enzyme catalysis is necessary for the biological activities triggered by the toxin. However, the way by which phospholipase-D activity is directly related with human hemolysis has not been determined. To evaluate how brown spider venom phospholipase-D activity causes hemolysis, we examined the impact of recombinant phospholipase-D on human red blood cells. Using six different purified recombinant phospholipase-D molecules obtained from a cDNA venom gland library, we demonstrated that there is a correlation of hemolytic effect and phospholipase-D activity. Studying recombinant phospholipase-D, a potent hemolytic and phospholipase-D recombinant toxin (LiRecDT1), we determined that the toxin degrades synthetic sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-platelet-activating factor. Additionally, we determined that the toxin degrades phospholipids in a detergent extract of human erythrocytes, as well as phospholipids from ghosts of human red blood cells. The products of the degradation of synthetic SM and LPC following recombinant phospholipase-D treatments caused hemolysis of human erythrocytes. This hemolysis, dependent on products of metabolism of phospholipids, is also dependent on calcium ion concentration because the percentage of hemolysis increased with an increase in the dose of calcium in the medium. Recombinant phospholipase-D treatment of human erythrocytes stimulated an influx of calcium into the cells that was detected by a calcium-sensitive fluorescent probe (Fluo-4). This calcium influx was shown to be channel-mediated rather than leak-promoted because the influx was inhibited by L-type calcium channel inhibitors but not by a T-type calcium channel blocker, sodium channel inhibitor or a specific inhibitor of calcium activated potassium channels. Finally, this inhibition of hemolysis following recombinant phospholipase-D treatment occurred in a concentration-dependent manner in the presence of L-type calcium channel blockers such as nifedipine and verapamil. The data provided herein, suggest that the brown spider venom phospholipase-D-induced hemolysis of human erythrocytes is dependent on the metabolism of membrane phospholipids, such as SM and LPC, generating bioactive products that stimulate a calcium influx into red blood cells mediated by the L-type channel.
Collapse
|
39
|
Lysophosphatidic acid induced red blood cell aggregation in vitro. Bioelectrochemistry 2011; 87:89-95. [PMID: 21890432 DOI: 10.1016/j.bioelechem.2011.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 11/23/2022]
Abstract
Under physiological conditions healthy RBCs do not adhere to each other. There are indications that RBCs display an intercellular adhesion under certain (pathophysiological) conditions. Therefore we investigated signaling steps starting with transmembrane calcium transport by means of calcium imaging. We found a lysophosphatidic acid (LPA) concentration dependent calcium influx with an EC(50) of 5 μM LPA. Downstream signaling was investigated by flow cytometry as well as by video-imaging comparing LPA induced with "pure" calcium mediated phosphatidylserine exposure and concluded the coexistence of two branches of the signaling pathway. Finally we performed force measurements with holographic optical tweezers (HOT): The intercellular adhesion of RBCs (aggregation) exceeds a force of 25 pN. These results support (i) earlier data of a RBC associated component in thrombotic events under certain pathophysiological conditions and (ii) the concept to use RBCs in studies of cellular adhesion behavior, especially in combination with HOT. The latter paves the way to use RBCs as model cells to investigate molecular regulation of cellular adhesion processes.
Collapse
|
40
|
Curtis MD, Sheard GJ, Fouras A. Feedback control system simulator for the control of biological cells in microfluidic cross slots and integrated microfluidic systems. LAB ON A CHIP 2011; 11:2343-2351. [PMID: 21611664 DOI: 10.1039/c1lc20191c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Control systems for lab on chip devices require careful characterisation and design for optimal performance. Traditionally, this involves either extremely computationally expensive simulations or lengthy iteration of laboratory experiments, prototype design, and manufacture. In this paper, an efficient control simulation technique, valid for typical microchannels, Computed Interpolated Flow Hydrodynamics (CIFH), is described that is over 500 times faster than conventional time integration techniques. CIFH is a hybrid approach, utilising a combination of pre-computed flows and hydrodynamic equations and allows the efficient simulation of dynamic control systems for the transport of cells through micro-fluidic devices. The speed-ups achieved by using pre-computed CFD solutions mapped to an n-dimensional control parameter space, significantly accelerate the evaluation and improvement of control strategies and chip design. Here, control strategies for a naturally unstable device geometry, the microfluidic cross-slot, have been simulated and optimal parameters have been found for proposed devices capable of trapping and sorting cells.
Collapse
Affiliation(s)
- Michael D Curtis
- Division of Biological Engineering, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
41
|
Sanchez S, Bakás L, Gratton E, Herlax V. Alpha hemolysin induces an increase of erythrocytes calcium: a FLIM 2-photon phasor analysis approach. PLoS One 2011; 6:e21127. [PMID: 21698153 PMCID: PMC3116868 DOI: 10.1371/journal.pone.0021127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/19/2011] [Indexed: 12/26/2022] Open
Abstract
α-Hemolysin (HlyA) from Escherichia coli is considered as the prototype of a family of toxins called RTX (repeat in toxin), a group of proteins that share genetic and structural features. HlyA is an important virulence factor in E. coli extraintestinal infections, such as meningitis, septicemia and urinary infections. High concentrations of the toxin cause the lysis of several cells such as erythrocytes, granulocytes, monocytes, endothelial and renal epithelial cells of different species. At low concentrations it induces the production of cytokines and apoptosis. Since many of the subcytolytic effects in other cells have been reported to be triggered by the increase of intracellular calcium, we followed the calcium concentration inside the erythrocytes while incubating with sublytic concentrations of HlyA. Calcium concentration was monitored using the calcium indicator Green 1, 2-photon excitation, and fluorescence lifetime imaging microscopy (FLIM). Data were analyzed using the phasor representation. In this report, we present evidence that, at sublytic concentrations, HlyA induces an increase of calcium concentration in rabbit erythrocytes in the first 10 s. Results are discussed in relation to the difficulties of measuring calcium concentrations in erythrocytes where hemoglobin is present, the contribution of the background and the heterogeneity of the response observed in individual cells.
Collapse
Affiliation(s)
- Susana Sanchez
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, California, United States of America
- Microscopy Unit, Fundación CNIC-Carlos III, Centro Nacional de Investigaciones Cardiovasculares, Madrid, España
| | - Laura Bakás
- Instituto de Investigaciones Bioquímicas La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, California, United States of America
| | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
42
|
Steffen P, Jung A, Nguyen DB, Müller T, Bernhardt I, Kaestner L, Wagner C. Stimulation of human red blood cells leads to Ca2+-mediated intercellular adhesion. Cell Calcium 2011; 50:54-61. [PMID: 21616535 DOI: 10.1016/j.ceca.2011.05.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 10/24/2022]
Abstract
Red blood cells (RBCs) are a major component of blood clots, which form physiologically as a response to injury or pathologically in thrombosis. The active participation of RBCs in thrombus solidification has been previously proposed but not yet experimentally proven. Holographic optical tweezers and single-cell force spectroscopy were used to study potential cell-cell adhesion between RBCs. Irreversible intercellular adhesion of RBCs could be induced by stimulation with lysophosphatidic acid (LPA), a compound known to be released by activated platelets. We identified Ca(2+) as an essential player in the signaling cascade by directly inducing Ca(2+) influx using A23187. Elevation of the internal Ca(2+) concentration leads to an intercellular adhesion of RBCs similar to that induced by LPA stimulation. Using single-cell force spectroscopy, the adhesion of the RBCs was identified to be approximately 100 pN, a value large enough to be of significance inside a blood clot or in pathological situations like the vasco-occlusive crisis in sickle cell disease patients.
Collapse
Affiliation(s)
- Patrick Steffen
- Experimental Physics Department, Saarland University, 66123 Saarbruecken, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Asha Devi S, Shiva Shankar Reddy CS, Subramanyam MVV. Peroxyl-induced oxidative stress in aging erythrocytes of rat. Biogerontology 2011; 12:283-92. [PMID: 21359656 DOI: 10.1007/s10522-011-9323-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/13/2011] [Indexed: 11/30/2022]
Abstract
This study aims at determining the possible changes in intracellular calcium (Ca (i) (2+) ), plasma membrane calcium ATPase (PMCA) activity and phosphatidylserine (PS) along with glutathione (GSH) level in response to an oxidant challenge in vitro. Erythrocytes were isolated on Percoll and incubated with 2, 2'azobis (2-aminopropane) hydrochloride (AAPH) as well as with vitamin C preceding AAPH incubation. Membrane integrity in terms of hemolysis was negatively related to acetylcholine esterase (AChE) activity with the extent of reduction under OS being higher in the old erythrocyte than in the young. A divergent pattern was seen towards lower PMCA and higher (Ca (i) (2+) ) in the young and old cells. However, the PMCA activity in the stressed young cell was high when pre-treated with vitamin C. PS externalization in the young under OS is perhaps analogous to normal aging, with vitamin C preventing premature death. These findings suggest that young erythrocytes may benefit from vitamin C in therapies addressed towards the mechanisms underlying the reduced effects of OS.
Collapse
Affiliation(s)
- S Asha Devi
- Department of Zoology, Laboratory of Gerontology, Bangalore University, Bangalore, 560 056, India.
| | | | | |
Collapse
|
44
|
Swietach P, Tiffert T, Mauritz JMA, Seear R, Esposito A, Kaminski CF, Lew VL, Vaughan-Jones RD. Hydrogen ion dynamics in human red blood cells. J Physiol 2010; 588:4995-5014. [PMID: 20962000 DOI: 10.1113/jphysiol.2010.197392] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our understanding of pH regulation within red blood cells (RBCs) has been inferred mainly from indirect experiments rather than from in situ measurements of intracellular pH (pH(i)). The present work shows that carboxy-SNARF-1, a pH fluorophore, when used with confocal imaging or flow cytometry, reliably reports pH(i) in individual, human RBCs, provided intracellular fluorescence is calibrated using a 'null-point' procedure. Mean pH(i) was 7.25 in CO(2)/HCO(3)(-)-buffered medium and 7.15 in Hepes-buffered medium, and varied linearly with extracellular pH (slope of 0.77). Intrinsic (non-CO(2)/HCO(3)(-)-dependent) buffering power, estimated in the intact cell (85 mmol (l cell)(-1) (pH unit)(-1) at resting pH(i)), was somewhat higher than previous estimates from cell lysates (50-70 mmol (l cell)(-1) (pH unit)(-1)). Acute displacement of pH(i) (superfusion of weak acids/bases) triggered rapid pH(i) recovery. This was mediated via membrane Cl(-)/HCO(3)(-) exchange (the AE1 gene product), irrespective of whether recovery was from an intracellular acid or base load, and with no evident contribution from other transporters such as Na(+)/H(+) exchange. H(+)-equivalent flux through AE1 was a linear function of [H(+)](i) and reversed at resting pH(i), indicating that its activity is not allosterically regulated by pH(i), in contrast to other AE isoforms. By simultaneously monitoring pH(i) and markers of cell volume, a functional link between membrane ion transport, volume and pH(i) was demonstrated. RBC pH(i) is therefore tightly regulated via AE1 activity, but modulated during changes of cell volume. A comparable volume-pH(i) link may also be important in other cell types expressing anion exchangers. Direct measurement of pH(i) should be useful in future investigations of RBC physiology and pathology.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Burdon Sanderson Cardiac Science Centre, Parks Road, Oxford OX1 3PT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wu X, Pan L, Wang Z, Liu X, Zhao D, Zhang X, Rupp RA, Xu J. Ultraviolet irradiation induces autofluorescence enhancement via production of reactive oxygen species and photodecomposition in erythrocytes. Biochem Biophys Res Commun 2010; 396:999-1005. [DOI: 10.1016/j.bbrc.2010.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/10/2010] [Indexed: 12/01/2022]
|
46
|
Müller O, Tian Q, Zantl R, Kahl V, Lipp P, Kaestner L. A system for optical high resolution screening of electrical excitable cells. Cell Calcium 2010; 47:224-33. [DOI: 10.1016/j.ceca.2009.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 10/15/2009] [Accepted: 11/27/2009] [Indexed: 11/28/2022]
|
47
|
Esposito A, Tiffert T, Mauritz JMA, Schlachter S, Bannister LH, Kaminski CF, Lew VL. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells. PLoS One 2008; 3:e3780. [PMID: 19023444 PMCID: PMC2582953 DOI: 10.1371/journal.pone.0003780] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 10/28/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards. METHODOLOGY/PRINCIPAL FINDINGS The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45). In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites. CONCLUSIONS/SIGNIFICANCE The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access to hemoglobin molecules indicating the concentration of substantial amounts of parasite-exported material.
Collapse
Affiliation(s)
- Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
48
|
De Franceschi L, Biondani A, Carta F, Turrini F, Laudanna C, Deana R, Brunati AM, Turretta L, Iolascon A, Perrotta S, Elson A, Bulato C, Brugnara C. PTPepsilon has a critical role in signaling transduction pathways and phosphoprotein network topology in red cells. Proteomics 2008; 8:4695-708. [PMID: 18924107 PMCID: PMC3008556 DOI: 10.1002/pmic.200700596] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Indexed: 12/31/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are crucial components of cellular signal transduction pathways. Here, we report that red blood cells (RBCs) from mice lacking PTPepsilon (Ptpre(-/-)) exhibit (i) abnormal morphology; (ii) increased Ca(2+)-activated-K(+) channel activity, which was partially blocked by the Src family kinases (SFKs) inhibitor PP1; and (iii) market perturbation of the RBC membrane tyrosine (Tyr-) phosphoproteome, indicating an alteration of RBC signal transduction pathways. Using the signaling network computational analysis of the Tyr-phosphoproteomic data, we identified seven topological clusters. We studied cluster 1 containing Fyn, SFK, and Syk another tyrosine kinase. In Ptpre(-/-)mouse RBCs, the activity of Fyn was increased while Syk kinase activity was decreased compared to wild-type RBCs, validating the network computational analysis, and indicating a novel signaling pathway, which involves Fyn and Syk in regulation of red cell morphology.
Collapse
Affiliation(s)
- Lucia De Franceschi
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Changes in the intracellular Ca2+ content in human red blood cells in the presence of glycerol. Bioelectrochemistry 2008; 73:151-4. [DOI: 10.1016/j.bioelechem.2008.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/21/2008] [Accepted: 04/24/2008] [Indexed: 11/27/2022]
|
50
|
Li F, Zhou X, Zhu J, Xia W, Ma J, Wong STC. Workflow and methods of high-content time-lapse analysis for quantifying intracellular calcium signals. Neuroinformatics 2008; 6:97-108. [PMID: 18506641 DOI: 10.1007/s12021-008-9016-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 03/05/2008] [Indexed: 01/21/2023]
Abstract
Calcium ions (Ca2+) play a fundamental role in a variety of physiological functions in many cell types by acting as a secondary messenger. Variation of intracellular Ca2+ concentration ([Ca2+]i) is often observed when the cell is stimulated. However, it is a challenging task to automatically quantify intracellular [Ca2+]i in a population of cells. In this study, we present a workflow including specific algorithms for the automated intracellular calcium signal analysis using high-content, time-lapse cellular images. The experimental validations indicate the effectiveness of the proposed workflow and algorithms. We applied the workflow to analyze the intracellular calcium signals induced by different concentrations of H2O2 in the cell lines transfected by presenilin-1 (PS-1) that is known to be closely related to the familial Alzheimer's disease (FAD). The analysis results imply an important role of mutant PS-1, but not normal human PS-1 and mutant human amyloid precursor protein (APP), in enhancing intracellular calcium signaling induced by H2O2.
Collapse
Affiliation(s)
- Fuhai Li
- Department of Information Science, School of Mathematical Sciences, and LMAM, Peking University, Beijing, 100871, China
| | | | | | | | | | | |
Collapse
|