1
|
Mocciaro E, Kidd M, Johnson K, Bishop E, Johnson K, Zeng YP, Perrotta C, Micci MA. Mechanosensitive ion channel Piezo1 modulates the response of rat hippocampus neural stem cells to rapid stretch injury. PLoS One 2025; 20:e0323191. [PMID: 40359437 DOI: 10.1371/journal.pone.0323191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Traumatic brain injury (TBI) is one of the primary causes of long-term brain disabilities among military personnel and civilians, regardless of gender. A plethora of secondary events are triggered by a primary brain insult, increasing the complexity of TBI. One of the most affected brain regions is the hippocampus, where neurogenesis occurs throughout life due to the presence of neural stem cells (NSC). Preclinical models have been extensively used to better understand TBI and develop effective treatments. Among these, rapid stretch injury has been used to mimic the effect of mechanical stress produced by a TBI on neurons and glia in vitro. In this study, we aimed to determine the impact of rapid stretch on the viability, proliferation, and differentiation of NSC isolated from rat hippocampus (Hipp-NSC) and to determine the role of the stretch-activated ion channel Piezo-1 in modulating their response to mechanical stress. We found that while rapid stretch (30 and 50 PSI) reduced Hipp-NSC viability (measured as a function of LDH release), it did not change their proliferation and differentiation potentials. Interestingly, rapid stretch in the presence of a selective Piezo-1 inhibitor, GsMTx4, or Piezo1 targeting siRNA, directed Hipp-NSC differentiation toward a neurogenic lineage. Additionally, we found that inhibiting Piezo1 with the addition of a rapid stretch injury increased the expression of miRNAs known to regulate neurogenesis. This work uses a novel approach for studying the effect of mechanical stress on NSC in vitro and points to the critical role the stretch-activated ion channel Piezo-1 has in modulating the impact of TBI on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Emanuele Mocciaro
- Gene Expression Regulation Unit, San Raffaele Scientific Institute, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Madison Kidd
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kevin Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Elizabeth Bishop
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathia Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ya Ping Zeng
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cristiana Perrotta
- Gene Expression Regulation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
2
|
Miyake Y, Okubo H, Sasaki S, Tanaka K. Maternal calcium intake during pregnancy and adolescent depressive symptoms: The Kyushu Okinawa Maternal and Child Health Study. J Psychiatr Res 2025; 187:80-84. [PMID: 40347629 DOI: 10.1016/j.jpsychires.2025.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/10/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
To date, no studies have examined the relationship between maternal dietary intake during pregnancy and the risk of depressive symptoms during adolescence in their children. The current prebirth cohort study investigated the association between maternal calcium intake during pregnancy and the risk of depressive symptoms in adolescent children. Study subjects were 873 mother-child pairs. Maternal calcium intake during pregnancy was assessed using a self-administered diet history questionnaire. Adolescent depressive symptoms were defined as a 20-item Center for Epidemiologic Studies Depression Scale score of ≥16. The risk of depressive symptoms was 23.3 % among the 873 adolescents at 13 years of age. Compared with maternal calcium intake during pregnancy in the first quartile, intake in the fourth quartile was independently associated with a reduced risk of depressive symptoms in adolescents; however, the inverse exposure-response relationship was not statistically significant: the adjusted odd ratios (95 % confidence intervals) for depressive symptoms in adolescents in the first, second, third, and fourth quartiles of maternal calcium intake during pregnancy were 1 (reference), 0.63 (0.39-0.99), 0.91 (0.58-1.41), and 0.58 (0.36-0.93), respectively (P for trend = 0.10). The present study found that higher maternal calcium intake during pregnancy was inversely related to depressive symptoms in the adolescents at 13 years. This finding highlights the potential benefits of increasing maternal calcium intake during pregnancy as a means of preventing childhood depressive symptoms.
Collapse
Affiliation(s)
- Yoshihiro Miyake
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan; Integrated Medical and Agricultural School of Public Health, Ehime University, Ehime, Japan; Research Promotion Unit, Translation Research Center, Ehime University Hospital, Ehime, Japan; Center for Data Science, Ehime University, Ehime, Japan; Department of Healthcare Data Science, Ehime University Graduate School of Medicine, Ehime, Japan.
| | - Hitomi Okubo
- Department of Nutritional Epidemiology and Behavioural Nutrition, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Keiko Tanaka
- Department of Epidemiology and Public Health, Ehime University Graduate School of Medicine, Ehime, Japan; Integrated Medical and Agricultural School of Public Health, Ehime University, Ehime, Japan; Research Promotion Unit, Translation Research Center, Ehime University Hospital, Ehime, Japan; Center for Data Science, Ehime University, Ehime, Japan; Food & Health Function Research Center, Ehime University, Ehime, Japan
| |
Collapse
|
3
|
Yang C, Du Z, Mei L, Chen X, Liao Y, Ge L, Kang J, Gu Z, Fan X, Xu H. Influences of lead-based perovskite nanoparticles exposure on early development of human retina. J Nanobiotechnology 2025; 23:144. [PMID: 40001141 PMCID: PMC11863764 DOI: 10.1186/s12951-025-03245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Lead-based perovskite nanoparticles (Pb-PNPs) are widely utilized in the photovoltaic industry. However, due to their poor stability and high water solubility, lead often gets released into the environment, which can negatively impact the development of the central nervous system (CNS). As an extension of the CNS, the effects and mechanisms of Pb-PNPs on human retinal development have remained elusive. OBJECTIVES We aimed to investigate the effects of Pb-PNPs on human retinal development. METHODS Human embryonic stem cell-derived three-dimensional floating retinal organoids (hEROs) were established to simulate early retinal development. Using immunofluorescence staining, biological-transmission electron microscopy analysis, inductively coupled plasma-mass spectrometry, two-dimensional element distribution detection, and RNA sequencing, we evaluated and compared the toxicity of CsPbBr3 nanoparticles (a representative substance of Pb-PNPs) and Pb(AC)2 and investigated the toxicity-reducing effects of SiO2 encapsulation. RESULTS Our findings revealed that CsPbBr3 nanoparticles exposure resulted in a concentration-dependent decrease in the area and thickness of the neural retina in hEROs. Additionally, CsPbBr3 nanoparticles exposure hindered cell proliferation and promoted cell apoptosis while suppressing the retinal ganglion cell differentiation, an alteration that further led to the disruption of retinal structure. By contrast, CsPbBr3 nanoparticles exposure to hEROs was slightly less toxic than Pb(AC)2. Mechanistically, CsPbBr3 nanoparticles exposure activated endoplasmic reticulum stress, which promoted apoptosis by up-regulating Caspase-3 and inhibited retinal ganglion cell development by down-regulating Pax6. Interestingly, after coating CsPbBr3 nanoparticles with silica, it exhibited lower toxicities to hEROs by alleviating endoplasmic reticulum stress. CONCLUSION Overall, our study provides evidence of Pb-PNPs-induced developmental toxicity in the human retina, explores the potential mechanisms of CsPbBr3 nanoparticles' developmental toxicity, and suggests a feasible strategy to reduce toxicity.
Collapse
Affiliation(s)
- Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhulin Du
- Key Laboratory of Extreme Environmental Medicine Ministry of Education, Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Linqiang Mei
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - You Liao
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Jiahui Kang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhanjun Gu
- Institute of High Energy Physics and National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences, Beijing, 100049, China.
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaotang Fan
- Key Laboratory of Extreme Environmental Medicine Ministry of Education, Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| |
Collapse
|
4
|
Chida A, Hasegawa Y, Segawa T, Yamabe D, Yan H, Chiba Y, Chiba H, Kinno H, Oda T, Takahashi Y, Nata K, Ishigaki Y. Successful Treatment With Evocalcet Against Familial Hypocalciuric Hypercalcemia Type 3 (FHH3) Identified by AP2S1 Gene Mutation (p.Arg15Leu). Case Rep Endocrinol 2025; 2025:9514578. [PMID: 39949382 PMCID: PMC11824715 DOI: 10.1155/crie/9514578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Familial hypocalciuric hypercalcemia type 3 (FHH3) is a rare hereditary disorder caused by a heterozygous AP2S1 gene mutation, characterized by hypocalciuria and hypercalcemia due to impaired intracellular signal transduction of calcium (Ca)-sensing receptors (CaSRs). All affected patients harbored a heterozygous missense mutation at the Arg15 residue of the encoded AP2σ1. Case Presentation: A 21-year-old female was referred to our hospital with hypercalcemia and reduced bone mineral density (BMD) detected during a preoperative examination for scoliosis surgery. She had a developmental disorder and exhibited hypocalciuria on urinalysis. Genetic testing revealed a heterozygous AP2S1 gene mutation (p.Arg15Leu), and the patient was diagnosed with FHH3. In the present case, we investigated the effects of evocalcet, a newly approved CaSR agonist. Treatment with evocalcet gradually decreased and normalized the serum Ca level, and promoted improvements in bone metabolism, without serious adverse events. Conclusion: Evocalcet may be a promising therapeutic candidate for symptomatic FHH3.
Collapse
Affiliation(s)
- Ai Chida
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University 028-3695, Yahaba, Japan
| | - Yutaka Hasegawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University 028-3695, Yahaba, Japan
| | - Toshie Segawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University 028-3695, Yahaba, Japan
| | - Daisuke Yamabe
- Department of Orthopaedic Surgery, Iwate Medical University 028-3695, Yahaba, Japan
| | - Hirotaka Yan
- Department of Orthopaedic Surgery, Iwate Medical University 028-3695, Yahaba, Japan
| | - Yusuke Chiba
- Department of Orthopaedic Surgery, Iwate Medical University 028-3695, Yahaba, Japan
| | - Hiraku Chiba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University 028-3695, Yahaba, Japan
| | - Hirofumi Kinno
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University 028-3695, Yahaba, Japan
| | - Tomoyasu Oda
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University 028-3695, Yahaba, Japan
| | - Yoshihiko Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University 028-3695, Yahaba, Japan
| | - Koji Nata
- Division of Medical Biochemistry, School of Pharmacy, Iwate Medical University 028-3694, Yahaba, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University 028-3695, Yahaba, Japan
| |
Collapse
|
5
|
Innamorati G, Sanchez-Petidier M, Bergafora G, Codazzi C, Palma V, Camera F, Merla C, André FM, Pedraza M, Moreno Manzano V, Caramazza L, Colella M, Marracino P, Balucani M, Apollonio F, Liberti M, Consales C. Characterization of Mesenchymal and Neural Stem Cells Response to Bipolar Microsecond Electric Pulses Stimulation. Int J Mol Sci 2024; 26:147. [PMID: 39796006 PMCID: PMC11720446 DOI: 10.3390/ijms26010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation. This study aims to characterize the effect of a specific microsecond electric pulse stimulation (bipolar pulses of 100 µs + 100 µs, delivered for 30 min at an intensity of 250 V/cm) to induce an increase in cell proliferation on mesenchymal stem cells (MSCs) and induced neural stem cells (iNSCs). The effect was evaluated in terms of (i) cell counting, (ii) cell cycle, (iii) gene expression, and (iv) apoptosis. The results show that 24 h after the stimulation, cell proliferation, cell cycle, and apoptosis are not affected, but variation in the expression of specific genes involved in these processes is observed. These results led us to investigate cell proliferation until 72 h from the stimulation, observing an increase in the iNSCs number at this time point. The main outcome of this study is that the microsecond electric pulses can modulate stem cell proliferation.
Collapse
Affiliation(s)
- Giorgia Innamorati
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Marina Sanchez-Petidier
- Neural Circuits and Behaviour Laboratory, Fundación Hospital Nacional de Parapléjicos, 45004 Toledo, Spain;
- Metabolic and Systemic Aspects of the Oncogenesis (METSY), CNRS, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France;
| | - Giulia Bergafora
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Camilla Codazzi
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Valentina Palma
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Francesca Camera
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Caterina Merla
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| | - Franck M. André
- Metabolic and Systemic Aspects of the Oncogenesis (METSY), CNRS, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France;
| | - Maria Pedraza
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (M.P.); (V.M.M.)
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (M.P.); (V.M.M.)
| | - Laura Caramazza
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | - Micol Colella
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | | | | | - Francesca Apollonio
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | - Micaela Liberti
- BioEMLab Group, DIET, Department of Information Engineering, Electronics and Telecommunications Sapienza, University of Rome, 00184 Rome, Italy; (L.C.); (M.C.); (F.A.); (M.L.)
| | - Claudia Consales
- Division of Biotechnologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (G.B.); (C.C.); (V.P.); (F.C.); (C.M.)
| |
Collapse
|
6
|
Liu D, Guo P, Wang Y, Li W. Regulation of adult neurogenesis: the crucial role of astrocytic mitochondria. Front Mol Neurosci 2024; 17:1516119. [PMID: 39649104 PMCID: PMC11621070 DOI: 10.3389/fnmol.2024.1516119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024] Open
Abstract
Neurogenesis has emerged as a promising therapeutic approach for central nervous system disorders. The role of neuronal mitochondria in neurogenesis is well-studied, however, recent evidence underscores the critical role of astrocytic mitochondrial function in regulating neurogenesis and the underlying mechanisms remain incompletely understood. This review highlights the regulatory effects of astrocyte mitochondria on neurogenesis, focusing on metabolic support, calcium homeostasis, and the secretion of neurotrophic factors. The effect of astrocytic mitochondrial dysfunction in the pathophysiology and treatment strategies of Alzheimer's disease and depression is discussed. Greater attention is needed to investigate the mitochondrial autophagy, dynamics, biogenesis, and energy metabolism in neurogenesis. Targeting astrocyte mitochondria presents a potential therapeutic strategy for enhancing neural regeneration.
Collapse
Affiliation(s)
| | | | | | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Li G, Sun C, Zhu L, Zeng Y, Li J, Mei Y. High cadmium exposure impairs adult hippocampal neurogenesis via disruption of store-operated calcium entry. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117162. [PMID: 39383818 DOI: 10.1016/j.ecoenv.2024.117162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Cadmium (Cd) is a neurotoxicant that gradually accumulates in the human body with age. High Cd burden is correlated with adult hippocampal neurogenesis (AHN) and memory deficits in mammals. However, little knowledge is known about the mechanism by which Cd exposure impairs neurogenesis and cognition. Here, we investigated the roles of store-operated calcium entry (SOCE)-mediated calcium dyshomeostasis in Cd-induced AHN and memory deficits as well as therapeutic potential for the prevention of Cd-induced neurotoxicity. To achieve this goal, 8 weeks-old C57BL/6 J mice were subjected to different concentrations of cadmium chloride (0, 5, 10, 20 ppm) in drinking water for 8 weeks, we then examined the AHN, calcium homeostasis, SOCE channel and memory in Cd-exposed mice by using immunohistochemistry, calcium imaging, Y-maze and fear conditioning test. Our results indicated that chronic Cd exposure markedly increased Cd levels in serum and cerebrospinal fluid by almost 10-fold, and inhibited the proliferation and differentiation of hippocampal adult neural stem cells in a dose-dependent manner. Additionally, Cd exposure impaired the maturation of hippocampal neural stem cells without inducing gliosis. Transcriptome analysis revealed that Cd exposure inhibited the proliferation of neuroblastoma via alteration of calcium signaling pathway, and attenuated SOCE channels played a pivotal role in mediating Cd-induced cytoplasmic calcium overload and depletion of endoplasmic reticulum calcium stores. Activation of SOCE by hyperforin, a natural derivative from medicinal plant, restored intracellular calcium homeostasis and improved AHN and memory in Cd-exposed mice. Together, this study provided novel insights into the mechanism that Cd exposure impaired AHN and memory by prompting neuronal SOCE-mediated calcium dyshomeostasis, and offered a new therapeutic approach for prevention of Cd-induced neurotoxicity.
Collapse
Affiliation(s)
- Guoqing Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Caiyun Sun
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Le Zhu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
8
|
Kathanadan Chackochan B, Johnson S, Thameemul Ansari HJ, Vengellur A, Sivan U, Koyyappurath S, P S BC. Transcriptomic analysis of CNTF-treated mouse subventricular zone-derived neurosphere culture reveals key transcription factor genes related to adult neurogenesis. Heliyon 2024; 10:e38496. [PMID: 39430537 PMCID: PMC11490819 DOI: 10.1016/j.heliyon.2024.e38496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Neural Stem Progenitor Cells (NSPCs) maintenance and neuronal cell differentiation are the two key aspects of sustained neurogenesis in the adult mammalian brain. Transcription factors (TFs) are known to regulate these biological processes under the influence of various neurotrophic factors. Understanding the role of key TF genes in regulating adult neurogenesis is essential for determining the functional complexity and neuronal diversity seen in the adult mammalian brain. Although several molecular mechanisms leading to adult neurogenesis have been reported, details on its transcriptional regulation are still limited. Our initial results showed that Ciliary Neurotrophic Factor (CNTF) induced neuronal differentiation in SVZ-derived NSPC cultures. To investigate further the role of CNTF in inducing the expression of TF genes related to adult neurogenesis and the potential pathways involved, whole transcriptome RNA-sequencing (RNA-seq) analysis was done in CNTF-treated Sub-ventricular Zone derived neurosphere cultures from the mouse brain. The study revealed 483 differentially expressed genes (DEGs), among which 33 DEGs were identified as coding for transcription factors (TFs). Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis revealed MAPK, PI3K-Akt, and FoxO as the significantly enriched signaling pathways. Gene co-expression network analysis identified five upregulated TF genes related to adult neurogenesis (Runx1, Hmga2, Fos, ID2, and Prrx1) in a single cluster, interacting with each other, and was also validated by quantitative PCR. Our data suggest several potential TFs that may act as critical regulators in the intrinsic transcriptional networks driving the adult neurogenesis process. Further investigation into these molecular regulators may yield a homogeneous population of neuronal progenitors for translational stem cell studies in the future.
Collapse
Affiliation(s)
- Bins Kathanadan Chackochan
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | - Sinoy Johnson
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | - Hilmi Jaufer Thameemul Ansari
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ajith Vengellur
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | - Unnikrishnan Sivan
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Kerala University of Fisheries and Ocean Studies, Cochin -682506, Kerala, India
| | - Sayuj Koyyappurath
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
| | - Baby Chakrapani P S
- Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin-682022, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kerala, India
| |
Collapse
|
9
|
Sun W, Jiang N, Li Q, Liu Y, Zhang Y, Chen R, Feng Y, Sang X, Long S, Chen Q. Calcium-binding protein TgpCaBP regulates calcium storage of the zoonotic parasite Toxoplasma gondii. Microbiol Spectr 2024; 12:e0066124. [PMID: 39162521 PMCID: PMC11448132 DOI: 10.1128/spectrum.00661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 08/21/2024] Open
Abstract
Toxoplasma gondii, the causative parasite of toxoplasmosis, is an apicomplexan parasite that infects warm-blooded mammals. The ability of the calcium-binding proteins (CBPs) to transport large amounts of Ca2+ appears to be critical for the biological activity of T. gondii. However, the functions of some members of the CBP family have not yet been deciphered. Here, we characterized a putative CBP of T. gondii, TgpCaBP (TGME49_229480), which is composed of four EF-hand motifs with Ca2+-binding capability. TgpCaBP was localized in the cytosol and ER of T. gondii, and parasites lacking the TgpCaBP gene exhibited diminished abilities in cell invasion, intracellular growth, egress, and motility. These phenomena were due to the abnormalities in intracellular Ca2+ efflux and ER Ca2+ storage, and the reduction in motility was associated with a decrease in the discharge of secretory proteins. Therefore, we propose that TgpCaBP is a Ca2+ transporter and signaling molecule involved in Ca2+ regulation and parasitization in the hosts.IMPORTANCECa2+ signaling is essential in the development of T. gondii. In this study, we identified a calcium-binding protein in T. gondii, named TgpCaBP, which actively regulates intracellular Ca2+ levels in the parasite. Deletion of the gene coding for TgpCaBP caused serious deficits in the parasite's ability to maintain a stable intracellular calcium environment, which also impaired the secretory protein discharged from the parasite, and its capacity of gliding motility, cell invasion, intracellular growth, and egress from host cells. In summary, we have identified a novel calcium-binding protein, TgpCaBP, in the zoonotic parasite T. gondii, which is a potential therapeutic target for toxoplasmosis.
Collapse
Affiliation(s)
- Weisong Sun
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yize Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Security and College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
10
|
Zhang C, Kwon SH, Dong L. Piezoelectric Hydrogels: Hybrid Material Design, Properties, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310110. [PMID: 38329191 DOI: 10.1002/smll.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Hydrogels show great potential in biomedical applications due to their inherent biocompatibility, high water content, and resemblance to the extracellular matrix. However, they lack self-powering capabilities and often necessitate external stimulation to initiate cell regenerative processes. In contrast, piezoelectric materials offer self-powering potential but tend to compromise flexibility. To address this, creating a novel hybrid biomaterial of piezoelectric hydrogels (PHs), which combines the advantageous properties of both materials, offers a systematic solution to the challenges faced by these materials when employed separately. Such innovative material system is expected to broaden the horizons of biomedical applications, such as piezocatalytic medicinal and health monitoring applications, showcasing its adaptability by endowing hydrogels with piezoelectric properties. Unique functionalities, like enabling self-powered capabilities and inducing electrical stimulation that mimics endogenous bioelectricity, can be achieved while retaining hydrogel matrix advantages. Given the limited reported literature on PHs, here recent strategies concerning material design and fabrication, essential properties, and distinctive applications are systematically discussed. The review is concluded by providing perspectives on the remaining challenges and the future outlook for PHs in the biomedical field. As PHs emerge as a rising star, a comprehensive exploration of their potential offers insights into the new hybrid biomaterials.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Sun Hwa Kwon
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Lin Dong
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| |
Collapse
|
11
|
Gutierrez-Castañeda NE, Martínez-Rojas VA, Ochoa-de la Paz LD, Galván EJ. The bidirectional role of GABAA and GABAB receptors during the differentiation process of neural precursor cells of the subventricular zone. PLoS One 2024; 19:e0305853. [PMID: 38913632 PMCID: PMC11195948 DOI: 10.1371/journal.pone.0305853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
The intricate process of neuronal differentiation integrates multiple signals to induce transcriptional, morphological, and electrophysiological changes that reshape the properties of neural precursor cells during their maturation and migration process. An increasing number of neurotransmitters and biomolecules have been identified as molecular signals that trigger and guide this process. In this sense, taurine, a sulfur-containing, non-essential amino acid widely expressed in the mammal brain, modulates the neuronal differentiation process. In this study, we describe the effect of taurine acting via the ionotropic GABAA receptor and the metabotropic GABAB receptor on the neuronal differentiation and electrophysiological properties of precursor cells derived from the subventricular zone of the mouse brain. Taurine stimulates the number of neurites and favors the dendritic complexity of the neural precursor cells, accompanied by changes in the somatic input resistance and the strength of inward and outward membranal currents. At the pharmacological level, the blockade of GABAA receptors inhibits these effects, whereas the stimulation of GABAB receptors has no positive effects on the taurine-mediated differentiation process. Strikingly, the blockade of the GABAB receptor with CGP533737 stimulates neurite outgrowth, dendritic complexity, and membranal current kinetics of neural precursor cells. The effects of taurine on the differentiation process involve Ca2+ mobilization and the activation of intracellular signaling cascades since chelation of intracellular calcium with BAPTA-AM, and inhibition of the CaMKII, ERK1/2, and Src kinase inhibits the neurite outgrowth of neural precursor cells of the subventricular zone.
Collapse
Affiliation(s)
- Nadia Estefanía Gutierrez-Castañeda
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Vladimir Allex Martínez-Rojas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Lenin David Ochoa-de la Paz
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Unidad de Investigación UNAM-APEC, México City, México
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
- Centro de Investigación sobre el Envejecimiento, Ciudad de México, México
| |
Collapse
|
12
|
Salloum-Asfar S, Shin KC, Taha RZ, Khattak S, Park Y, Abdulla SA. The Potential Role of Thyroid Hormone Therapy in Neural Progenitor Cell Differentiation and Its Impact on Neurodevelopmental Disorders. Mol Neurobiol 2024; 61:3330-3342. [PMID: 37991699 PMCID: PMC11087352 DOI: 10.1007/s12035-023-03751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Thyroid hormone (T3) plays a vital role in brain development and its dysregulation can impact behavior, nervous system function, and cognitive development. Large case-cohort studies have associated abnormal maternal T3 during early pregnancy to epilepsy, autism, and attention deficit hyperactivity disorder (ADHD) in children. Recent experimental findings have also shown T3's influence on the fate of neural precursor cells and raise the question of its convergence with embryonic neural progenitors. Our objective was to investigate how T3 treatment affects neuronal development and functionality at the cellular level. In vitro experiments using neural precursor cells (NPCs) measured cell growth and numbers after exposure to varying T3 concentrations. Time points included week 0 (W0) representing NPCs treated with 100 nM T3 for 5 days, and differentiated cortical neurons assessed at weeks 3 (W3), 6 (W6), and 8 (W8). Techniques such as single-cell calcium imaging and whole-cell patch clamp were utilized to evaluate neuronal activity and function. IHC staining detected mature neuron markers, and RNA sequencing enabled molecular profiling. W6 and W8 neurons exhibited higher action potential frequencies, with W6 showing increased peak amplitudes and shortened inter-spike intervals by 50%, indicating enhanced activity. Transcriptomic analysis revealed that W6 T3-treated neurons formed a distinct cluster, suggesting accelerated maturation. Comparison with the whole transcriptome further unveiled a correlation between W6 neurons treated with T3 and neuronal regulatory elements associated with autism and ADHD. These findings provide insights into T3's impact on neuronal development and potential mechanisms of T3 dysregulation and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Rowaida Z Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Shahryar Khattak
- BESE and KAUST Smart-Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sara A Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
13
|
Sekerková G, Kilic S, Cheng YH, Fredrick N, Osmani A, Kim H, Opal P, Martina M. Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia. Neurobiol Dis 2024; 195:106492. [PMID: 38575093 PMCID: PMC11089908 DOI: 10.1016/j.nbd.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| | - Sumeyra Kilic
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Yen-Hsin Cheng
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Natalie Fredrick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Anne Osmani
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Haram Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Maheshwari M, Singla A, Rawat A, Banerjee T, Pati S, Shah S, Maiti S, Vaidya VA. Chronic chemogenetic activation of hippocampal progenitors enhances adult neurogenesis and modulates anxiety-like behavior and fear extinction learning. IBRO Neurosci Rep 2024; 16:168-181. [PMID: 39007086 PMCID: PMC11240292 DOI: 10.1016/j.ibneur.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/18/2024] [Indexed: 07/16/2024] Open
Abstract
Adult hippocampal neurogenesis is a lifelong process that involves the integration of newborn neurons into the hippocampal network, and plays a role in cognitive function and the modulation of mood-related behavior. Here, we sought to address the impact of chemogenetic activation of adult hippocampal progenitors on distinct stages of progenitor development, including quiescent stem cell activation, progenitor turnover, differentiation and morphological maturation. We find that hM3Dq-DREADD-mediated activation of nestin-positive adult hippocampal progenitors recruits quiescent stem cells, enhances progenitor proliferation, increases doublecortin-positive newborn neuron number, accompanied by an acceleration of differentiation and morphological maturation, associated with increased dendritic complexity. Behavioral analysis indicated anxiolytic behavioral responses in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors at timepoints when newborn neurons are predicted to integrate into the mature hippocampal network. Furthermore, we noted an enhanced fear memory extinction on a contextual fear memory learning task in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors. Our findings indicate that hM3Dq-DREAD-mediated chemogenetic activation of adult hippocampal progenitors impacts distinct aspects of hippocampal neurogenesis, associated with the regulation of anxiety-like behavior and fear memory extinction.
Collapse
Affiliation(s)
| | | | - Anoop Rawat
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Toshali Banerjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Sthitapranjya Pati
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Sneha Shah
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Sudipta Maiti
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Vidita A. Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
16
|
Courjaret R, Prakriya M, Machaca K. SOCE as a regulator of neuronal activity. J Physiol 2024; 602:1449-1462. [PMID: 37029630 PMCID: PMC11963908 DOI: 10.1113/jp283826] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Store operated Ca2+ entry (SOCE) is a ubiquitous signalling module with established roles in the immune system, secretion and muscle development. Recent evidence supports a complex role for SOCE in the nervous system. In this review we present an update of the current knowledge on SOCE function in the brain with a focus on its role as a regulator of brain activity and excitability.
Collapse
Affiliation(s)
- Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
17
|
Kim SH, Kim CH. Neuronal IGF-1 overexpression restores hippocampal newborn cell survival and recent CFC memory consolidation in Ca v1.3 knock-out mice. Brain Res 2024; 1825:148712. [PMID: 38097125 DOI: 10.1016/j.brainres.2023.148712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) exogenously supplied in the brain was shown to enhance the survival of hippocampal dentate gyrus (DG) newborn cells and some cognitive functions of mice. This study aims to test whether IGF-1 requires Cav1.3 activity critically while enhancing newborn cell survival and cognitive functions. We used Cav1.3 KO mice, where both DG newborn cell survival and the recent (1 day) single-trial contextual fear conditioning (CFC) memory consolidation were impaired. To supply IGF-1, we overexpressed (OX) IGF-1 in DG mature neurons by injecting an adeno-associated virus (AAV-IGF-1-mCherry) into the hippocampal areas of Cav1.3 KO mice. Our results, first, confirmed the enhanced expression of IGF-1 in the DG granule cell layer by immunohistochemistry. Next, we found this IGF-1 OX resulted in fully restoring both the survival rate of DCX (+) newborn cells and the recent single-trial CFC memory formation in Cav1.3 KO mice. Our results show that IGF-1 can enhance the survival of DG immature newborn cells and the recent CFC memory formation in a Cav1.3 channel-independent manner in vivo, suggesting activation of complementary pathways including the Cav1.2 channel. The result will help the application of adult newborn cell-based therapy improve the cognitive functions of neurological disorders.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, Neuroscience Program, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
18
|
Gong Y, Ge L, Li Q, Gong J, Chen M, Gao H, Kang J, Yu T, Li J, Xu H. Ethanol Causes Cell Death and Neuronal Differentiation Defect During Initial Neurogenesis of the Neural Retina by Disrupting Calcium Signaling in Human Retinal Organoids. Stem Cell Rev Rep 2023; 19:2790-2806. [PMID: 37603136 DOI: 10.1007/s12015-023-10604-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Fetal Alcohol Syndrome (FAS) affects a significant proportion, exceeding 90%, of afflicted children, leading to severe ocular aberrations such as microphthalmia and optic nerve hypoplasia. During the early stages of pregnancy, the commencement of neural retina neurogenesis represents a critical period for human eye development, concurrently exposing the developing retinal structures to the highest risk of prenatal ethanol exposure due to a lack of awareness. Despite the paramount importance of this period, the precise influence and underlying mechanisms of short-term ethanol exposure on the developmental process of the human neural retina have remained largely elusive. In this study, we utilize the human embryonic stem cells derived retinal organoids (hROs) to recapitulate the initial retinal neurogenesis and find that 1% (v/v) ethanol slows the growth of hROs by inducing robust cell death and retinal ganglion cell differentiation defect. Bulk RNA-seq analysis and two-photon microscope live calcium imaging reveal altered calcium signaling dynamics derived from ethanol-induced down-regulation of RYR1 and CACNA1S. Moreover, the calcium-binding protein RET, one of the downstream effector genes of the calcium signaling pathway, synergistically integrates ethanol and calcium signals to abort neuron differentiation and cause cell death. To sum up, our study illustrates the effect and molecular mechanism of ethanol on the initial neurogenesis of the human embryonic neural retina, providing a novel interpretation of the ocular phenotype of FAS and potentially informing preventative measures for susceptible populations.
Collapse
Affiliation(s)
- Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Lingling Ge
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Qiyou Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Jing Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Min Chen
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Hui Gao
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Jiahui Kang
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China
| | - Ting Yu
- Department of Clinical Laboratory, The 89th Hospital of The People's Liberation Army, Weifang, People's Republic of China
| | - Jiawen Li
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, People's Republic of China.
| |
Collapse
|
19
|
Collender P, Bozack AK, Veazie S, Nwanaji-Enwerem JC, Van Der Laan L, Kogut K, Riddell C, Eskenazi B, Holland N, Deardorff J, Cardenas A. Maternal adverse childhood experiences (ACEs) and DNA methylation of newborns in cord blood. Clin Epigenetics 2023; 15:162. [PMID: 37845746 PMCID: PMC10577922 DOI: 10.1186/s13148-023-01581-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Adverse childhood experiences (ACEs) increase the risk of poor health outcomes later in life. Psychosocial stressors may also have intergenerational health effects by which parental ACEs are associated with mental and physical health of children. Epigenetic programming may be one mechanism linking parental ACEs to child health. This study aimed to investigate epigenome-wide associations of maternal preconception ACEs with DNA methylation patterns of children. In the Center for the Health Assessment of Mothers and Children of Salinas study, cord blood DNA methylation was measured using the Illumina HumanMethylation450 BeadChip. Preconception ACEs, which occurred during the mothers' childhoods, were collected using a standard ACE questionnaire including 10 ACE indicators. Maternal ACE exposures were defined in this study as (1) the total number of ACEs; (2) the total number of ACEs categorized as 0, 1-3, and > 4; and (3) individual ACEs. Associations of ACE exposures with differential methylated positions, regions, and CpG modules determined using weighted gene co-expression network analysis were evaluated adjusting for covariates. RESULTS Data on maternal ACEs and cord blood DNA methylation were available for 196 mother/newborn pairs. One differential methylated position was associated with maternal experience of emotional abuse (cg05486260/FAM135B gene; q value < 0.05). Five differential methylated regions were significantly associated with the total number of ACEs, and 36 unique differential methylated regions were associated with individual ACEs (Šidák p value < 0.05). Fifteen CpG modules were significantly correlated with the total number of ACEs or individual ACEs, of which 8 remained significant in fully adjusted models (p value < 0.05). Significant modules were enriched for pathways related to neurological and immune development and function. CONCLUSIONS Maternal ACEs prior to conception were associated with cord blood DNA methylation of offspring at birth. Although there was limited overlap between differential methylated regions and CpGs in modules associated with ACE exposures, statistically significant regions and networks were related to genes involved in neurological and immune function. Findings may provide insights to pathways linking psychosocial stressors to health. Further research is needed to understand the relationship between changes in DNA methylation and child health.
Collapse
Affiliation(s)
- Phillip Collender
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
| | - Anne K Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA
| | - Stephanie Veazie
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
| | - Jamaji C Nwanaji-Enwerem
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lars Van Der Laan
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Katherine Kogut
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Corinne Riddell
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Division of Environmental Health Sciences, University of California, Berkeley, CA, USA
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
| | - Julianna Deardorff
- Center for Environmental Research of Community Health, CERCH, School of Public Health, University of California, Berkeley, CA, USA
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Research Park, 1701 Page Mill Road, Stanford, CA, 94304, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Gao X, Di X, Li J, Kang Y, Xie W, Sun L, Zhang J. Extracellular ATP-induced calcium oscillations regulating the differentiation of osteoblasts through aerobic oxidation metabolism pathways. J Bone Miner Metab 2023; 41:606-620. [PMID: 37418073 DOI: 10.1007/s00774-023-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION The increase of ATP concentration in the extracellular space represents one of the effective signals that stimulate the physiological activities of cells when the bone is exposed to external mechanical stimulation such as stretching and shear stress force throughout life. However, the effects of ATP on osteoblast differentiation and related mechanisms are not well understood. MATERIALS AND METHODS In this study, the roles of extracellular ATP on osteoblast differentiation, intracellular calcium ([Ca2+]i) levels, metabolomics, and the expression of proteins related to energy metabolism were investigated. RESULTS Our results showed that 100 μM extracellular ATP initiated intracellular calcium ([Ca2+]i) oscillations via the calcium-sensing receptor (P2R) and promoted the differentiation of MC3T3-E1 cells. Metabolomics analysis showed that the differentiation of MC3T3-E1 cells depended on aerobic oxidation, but little glycolysis. Moreover, the differentiation of MC3T3-E1 cells and aerobic oxidation were suppressed with the inhibition of AMP-activated protein kinase (AMPK). CONCLUSION These results indicate that calcium oscillations triggered by extracellular ATP can activate aerobic oxidation through AMPK-related signaling pathways and thus promote osteoblast differentiation.
Collapse
Affiliation(s)
- Xiaohang Gao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Jingjing Li
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Wenjun Xie
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, 710119, China.
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 711049, China.
| |
Collapse
|
21
|
Pandit M, Akhtar MN, Sundaram S, Sahoo S, Manjunath LE, Eswarappa SM. Termination codon readthrough of NNAT mRNA regulates calcium-mediated neuronal differentiation. J Biol Chem 2023; 299:105184. [PMID: 37611826 PMCID: PMC10506107 DOI: 10.1016/j.jbc.2023.105184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Termination codon readthrough (TCR) is a process in which ribosomes continue to translate an mRNA beyond a stop codon generating a C-terminally extended protein isoform. Here, we demonstrate TCR in mammalian NNAT mRNA, which encodes NNAT, a proteolipid important for neuronal differentiation. This is a programmed event driven by cis-acting RNA sequences present immediately upstream and downstream of the canonical stop codon and is negatively regulated by NONO, an RNA-binding protein known to promote neuronal differentiation. Unlike the canonical isoform NNAT, we determined that the TCR product (NNATx) does not show detectable interaction with the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, cannot increase cytoplasmic Ca2+ levels, and therefore does not enhance neuronal differentiation in Neuro-2a cells. Additionally, an antisense oligonucleotide that targets a region downstream of the canonical stop codon reduced TCR of NNAT and enhanced the differentiation of Neuro-2a cells to cholinergic neurons. Furthermore, NNATx-deficient Neuro-2a cells, generated using CRISPR-Cas9, showed increased cytoplasmic Ca2+ levels and enhanced neuronal differentiation. Overall, these results demonstrate regulation of neuronal differentiation by TCR of NNAT. Importantly, this process can be modulated using a synthetic antisense oligonucleotide.
Collapse
Affiliation(s)
- Madhuparna Pandit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Md Noor Akhtar
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Susinder Sundaram
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
22
|
Lapmanee S, Bhubhanil S, Sriwong S, Yuajit C, Wongchitrat P, Teerapornpuntakit J, Suntornsaratoon P, Charoenphandhu J, Charoenphandhu N. Oral calcium and vitamin D supplements differentially alter exploratory, anxiety-like behaviors and memory in male rats. PLoS One 2023; 18:e0290106. [PMID: 37566598 PMCID: PMC10420380 DOI: 10.1371/journal.pone.0290106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Oral calcium and calcium plus vitamin D supplements are commonly prescribed to several groups of patients, e.g., osteoporosis, fracture, and calcium deficiency. Adequate and steady extracellular calcium levels are essential for neuronal activity, whereas certain forms of calcium supplement (e.g., CaCO3) probably interfere with memory function. However, it was unclear whether a long-term use of ionized calcium (calcium chloride in drinking water ad libitum), vitamin D supplement (oral gavage) or the combination of both affected anxiety and memory, the latter of which was probably dependent on the hippocampal neurogenesis. Here, we aimed to determine the effects of calcium and/or vitamin D supplement on the anxiety- and memory-related behaviors and the expression of doublecortin (DCX), an indirect proxy indicator of hippocampal neurogenesis. Eight-week-old male Wistar rats were divided into 4 groups, i.e., control, calcium chloride-, 400 UI/kg vitamin D3-, and calcium chloride plus vitamin D-treated groups. After 4 weeks of treatment, anxiety-, exploration- and recognition memory-related behaviors were evaluated by elevated pulse-maze (EPM), open field test (OFT), and novel object recognition (NOR), respectively. The hippocampi were investigated for the expression of DCX protein by Western blot analysis. We found that oral calcium supplement increased exploratory behavior as evaluated by OFT and the recognition index in NOR test without any effect on anxiety behavior in EPM. On the other hand, vitamin D supplement was found to reduce anxiety-like behaviors. Significant upregulation of DCX protein expression was observed in the hippocampus of both calcium- and vitamin D-treated rats, suggesting their positive effects on neurogenesis. In conclusion, oral calcium and vitamin D supplements positively affected exploratory, anxiety-like behaviors and/or memory in male rats. Thus, they potentially benefit on mood and memory in osteoporotic patients beyond bone metabolism.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Sakkarin Bhubhanil
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Siriwan Sriwong
- Laboratory Animal Center, Thammasat University, Pathum Thani, Thailand
| | - Chaowalit Yuajit
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Prapimpun Wongchitrat
- Faculty of Medical Technology, Center for Research and Innovation, Mahidol University, Nakon Pathom, Thailand
| | - Jarinthorn Teerapornpuntakit
- Faculty of Medical Science, Department of Physiology, Naresuan University, Phitsanulok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jantarima Charoenphandhu
- Physiology Division, Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
23
|
Guillamón-Vivancos T, Vandael D, Torres D, López-Bendito G, Martini FJ. Mesoscale calcium imaging in vivo: evolution and contribution to developmental neuroscience. Front Neurosci 2023; 17:1210199. [PMID: 37592948 PMCID: PMC10427507 DOI: 10.3389/fnins.2023.1210199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Calcium imaging is commonly used to visualize neural activity in vivo. In particular, mesoscale calcium imaging provides large fields of view, allowing for the simultaneous interrogation of neuron ensembles across the neuraxis. In the field of Developmental Neuroscience, mesoscopic imaging has recently yielded intriguing results that have shed new light on the ontogenesis of neural circuits from the first stages of life. We summarize here the technical approaches, basic notions for data analysis and the main findings provided by this technique in the last few years, with a focus on brain development in mouse models. As new tools develop to optimize calcium imaging in vivo, basic principles of neural development should be revised from a mesoscale perspective, that is, taking into account widespread activation of neuronal ensembles across the brain. In the future, combining mesoscale imaging of the dorsal surface of the brain with imaging of deep structures would ensure a more complete understanding of the construction of circuits. Moreover, the combination of mesoscale calcium imaging with other tools, like electrophysiology or high-resolution microscopy, will make up for the spatial and temporal limitations of this technique.
Collapse
Affiliation(s)
- Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | | | | - Francisco J. Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| |
Collapse
|
24
|
Masoumi N, Ghollasi M, Raheleh Halabian, Eftekhari E, Ghiasi M. Carbachol, along with calcium, indicates new strategy in neural differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Regen Ther 2023; 23:60-66. [PMID: 37122359 PMCID: PMC10130343 DOI: 10.1016/j.reth.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/25/2023] [Accepted: 04/06/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Over the past few years, stem cells have represented a promising treatment in neurological disorders due to the well-defined characteristics of their capability to proliferate and differentiate into any cell type, both in vitro and in vivo. Additionally, previous studies have shown that calcium signaling modulates the proliferation and differentiation of neural progenitor cells. The present study investigated the effect of carbachol (CCh), a cholinergic agonist activating acetylcholine receptors, with and without calcium, on the neural differentiation of human adipose tissue-derived mesenchymal stem cells (hADSCs) in neural media, including forskolin and 3-isobutyl-1-methyl-xanthine and retinoic acid. METHODS For this purpose, first, the MTT assay and acridine orange staining were studied to obtain the optimal concentration of CCh. Next, the differentiation tests, such as cellular calcium assay as well as evaluation of qualitative and quantitative expression of neuronal index markers through immunofluorescence staining and gene expression analysis, respectively, were performed on days 7 and 14 of the differentiation period. RESULTS According to the results, CCh at 1 μM concentration had no cytotoxicity on hADSCs and also induced cell proliferation. Furthermore, CCh with and without calcium increased the expression of neural-specific genes (NSE, MAP2, β-III-tubulin, and MAPK3) and proteins (γ-enolase, MAP2, and β-III-tubulin) as well as the amount of calcium in differentiated hADSCs at 7 and 14 days after induction. CONCLUSIONS In conclusion, the findings suggest that CCh acts as an influential therapeutic factor in the field of neural regenerative medicine and research.
Collapse
Affiliation(s)
- Niloofar Masoumi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Baracaldo-Santamaría D, Avendaño-Lopez SS, Ariza-Salamanca DF, Rodriguez-Giraldo M, Calderon-Ospina CA, González-Reyes RE, Nava-Mesa MO. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24109067. [PMID: 37240413 DOI: 10.3390/ijms24109067] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most frequent cause of progressive dementia in senior adults. It is characterized by memory loss and cognitive impairment secondary to cholinergic dysfunction and N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. Intracellular neurofibrillary tangles, extracellular plaques composed of amyloid-β (Aβ), and selective neurodegeneration are the anatomopathological hallmarks of this disease. The dysregulation of calcium may be present in all the stages of AD, and it is associated with other pathophysiological mechanisms, such as mitochondrial failure, oxidative stress, and chronic neuroinflammation. Although the cytosolic calcium alterations in AD are not completely elucidated, some calcium-permeable channels, transporters, pumps, and receptors have been shown to be involved at the neuronal and glial levels. In particular, the relationship between glutamatergic NMDA receptor (NMDAR) activity and amyloidosis has been widely documented. Other pathophysiological mechanisms involved in calcium dyshomeostasis include the activation of L-type voltage-dependent calcium channels, transient receptor potential channels, and ryanodine receptors, among many others. This review aims to update the calcium-dysregulation mechanisms in AD and discuss targets and molecules with therapeutic potential based on their modulation.
Collapse
Affiliation(s)
- Daniela Baracaldo-Santamaría
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Sara Sofia Avendaño-Lopez
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mateo Rodriguez-Giraldo
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Carlos A Calderon-Ospina
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
- Grupo de Investigación en Ciencias Biomédicas Aplicadas (UR Biomed), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| |
Collapse
|
26
|
Chen X, Ren L, Zhang H, Hu Y, Liao M, Shen Y, Wang K, Cai J, Cheng H, Guo J, Qi Y, Wei H, Li X, Shang L, Xiao J, Sun J, Chai R. Basic fibroblast growth factor-loaded methacrylate gelatin hydrogel microspheres for spinal nerve regeneration. SMART MEDICINE 2023; 2:e20220038. [PMID: 39188281 PMCID: PMC11235853 DOI: 10.1002/smmd.20220038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 08/28/2024]
Abstract
Spinal cord injury is a severe central nervous system injury, and developing appropriate drug delivery platforms for spinal nerve regeneration is highly anticipated. Here, we propose a basic fibroblast growth factor (bFGF)-loaded methacrylate gelatin (GelMA) hydrogel microsphere with ideal performances for spinal cord injury repair. Benefitting from the precise droplet manipulation capability of the microfluidic technology, the GelMA microspheres possess uniform and satisfactory size and good stability. More importantly, by taking advantage of the porous structures and facile chemical modification of the GelMA microspheres, bFGF could be easily loaded and gradually released. By co-culturing with neural stem cells, it is validated that the bFGF-loaded GelMA microspheres could effectively promote the proliferation and differentiation of neural stem cells. We also confirm the effective role of the bFGF-loaded GelMA microspheres in nerve repair of spinal cord injury in rats. Our results demonstrate the potential value of the microspheres for applications in repairing central nervous system injuries.
Collapse
Affiliation(s)
- Xiaoyan Chen
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Lei Ren
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hui Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yangnan Hu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Menghui Liao
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yingbo Shen
- Chien‐Shiung Wu CollegeSoutheast UniversityNanjingChina
| | - Kaichen Wang
- Chien‐Shiung Wu CollegeSoutheast UniversityNanjingChina
| | - Jiaying Cai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hong Cheng
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Jiamin Guo
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yanru Qi
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hao Wei
- Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Xiaokun Li
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui HospitalThe Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jian Xiao
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiangChina
| | - Jingwu Sun
- Department of Otolaryngology‐Head and Neck SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Renjie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Chien‐Shiung Wu CollegeSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
27
|
Su X, Xie L, Li J, Tian X, Lin B, Chen M. Exploring molecular signatures related to the mechanism of aging in different brain regions by integrated bioinformatics. Front Mol Neurosci 2023; 16:1133106. [PMID: 37033380 PMCID: PMC10076559 DOI: 10.3389/fnmol.2023.1133106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
The mechanism of brain aging is not fully understood. Few studies have attempted to identify molecular changes using bioinformatics at the subregional level in the aging brain. This study aimed to identify the molecular signatures and key genes involved in aging, depending on the brain region. Differentially expressed genes (DEGs) associated with aging of the cerebral cortex (CX), hippocampus (HC), and cerebellum (CB) were identified based on five datasets from the Gene Expression Omnibus (GEO). The molecular signatures of aging were explored using functional and pathway analyses. Hub genes of each brain region were determined by protein-protein interaction network analysis, and commonly expressed DEGs (co-DEGs) were also found. Gene-microRNAs (miRNAs) and gene-disease interactions were constructed using online databases. The expression levels and regional specificity of the hub genes and co-DEGs were validated using animal experiments. In total, 32, 293, and 141 DEGs were identified in aging CX, HC, and CB, respectively. Enrichment analysis indicated molecular changes related to leukocyte invasion, abnormal neurotransmission, and impaired neurogenesis due to inflammation as the major signatures of the CX, HC, and CB. Itgax is a hub gene of cortical aging. Zfp51 and Zfp62 were identified as hub genes involved in hippocampal aging. Itgax and Cxcl10 were identified as hub genes involved in cerebellar aging. S100a8 was the only co-DEG in all three regions. In addition, a series of molecular changes associated with inflammation was observed in all three brain regions. Several miRNAs interact with hub genes and S100a8. The change in gene levels was further validated in an animal experiment. Only the upregulation of Zfp51 and Zfp62 was restricted to the HC. The molecular signatures of aging exhibit regional differences in the brain and seem to be closely related to neuroinflammation. Itgax, Zfp51, Zfp62, Cxcl10, and S100a8 may be key genes and potential targets for the prevention of brain aging.
Collapse
Affiliation(s)
- Xie Su
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Xie
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Jing Li
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Xinyue Tian
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bing Lin
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Menghua Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Menghua Chen,
| |
Collapse
|
28
|
Geng J, Tang Y, Yu Z, Gao Y, Li W, Lu Y, Wang B, Zhou H, Li P, Liu N, Wang P, Fan Y, Yang Y, Guo ZV, Liu X. Chronic Ca 2+ imaging of cortical neurons with long-term expression of GCaMP-X. eLife 2022; 11:e76691. [PMID: 36196992 PMCID: PMC9699699 DOI: 10.7554/elife.76691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Dynamic Ca2+ signals reflect acute changes in membrane excitability, and also mediate signaling cascades in chronic processes. In both cases, chronic Ca2+ imaging is often desired, but challenged by the cytotoxicity intrinsic to calmodulin (CaM)-based GCaMP, a series of genetically-encoded Ca2+ indicators that have been widely applied. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging of cortical neurons, where GCaMP-X by design is to eliminate the unwanted interactions between the conventional GCaMP and endogenous (apo)CaM-binding proteins. By expressing in adult mice at high levels over an extended time frame, GCaMP-X showed less damage and improved performance in two-photon imaging of sensory (whisker-deflection) responses or spontaneous Ca2+ fluctuations, in comparison with GCaMP. Chronic Ca2+ imaging of one month or longer was conducted for cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients progressively developed into autonomous/global Ca2+ oscillations. Along with the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined. Dysregulations of both neuritogenesis and Ca2+ oscillations became discernible around 2-3 weeks after virus injection or drug induction to express GCaMP in newborn or mature neurons, which were exacerbated by stronger or prolonged expression of GCaMP. In contrast, neurons expressing GCaMP-X were significantly less damaged or perturbed, altogether highlighting the unique importance of oscillatory Ca2+ to neural development and neuronal health. In summary, GCaMP-X provides a viable solution for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.
Collapse
Affiliation(s)
- Jinli Geng
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
- X-Laboratory for Ion-Channel Engineering, Beihang UniversityBeijingChina
| | - Yingjun Tang
- Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua UniversityBeijingChina
| | - Zhen Yu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
- X-Laboratory for Ion-Channel Engineering, Beihang UniversityBeijingChina
| | - Yunming Gao
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
- X-Laboratory for Ion-Channel Engineering, Beihang UniversityBeijingChina
| | - Wenxiang Li
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
- X-Laboratory for Ion-Channel Engineering, Beihang UniversityBeijingChina
| | - Yitong Lu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
- X-Laboratory for Ion-Channel Engineering, Beihang UniversityBeijingChina
| | - Bo Wang
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
- X-Laboratory for Ion-Channel Engineering, Beihang UniversityBeijingChina
| | - Huiming Zhou
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
- X-Laboratory for Ion-Channel Engineering, Beihang UniversityBeijingChina
- Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua UniversityBeijingChina
| | - Ping Li
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
| | - Nan Liu
- Center for Life Sciences, School of Life Sciences, Yunnan UniversityKunmingChina
| | - Ping Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang UniversityHangzhouChina
| | - Yubo Fan
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
| | - Yaxiong Yang
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
| | - Zengcai V Guo
- Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xiaodong Liu
- Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beihang UniversityBeijingChina
- X-Laboratory for Ion-Channel Engineering, Beihang UniversityBeijingChina
| |
Collapse
|
29
|
Zeng S, Zhu R, Wang Y, Yang Y, Li N, Fu N, Sun M, Zhang J. Role of GABA A receptor depolarization-mediated VGCC activation in sevoflurane-induced cognitive impairment in neonatal mice. Front Cell Neurosci 2022; 16:964227. [PMID: 36176629 PMCID: PMC9514857 DOI: 10.3389/fncel.2022.964227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background In neonatal mice, anesthesia with sevoflurane depolarizes the GABA Type A receptor (GABAAR), which leads to cognitive impairment. Calcium accumulation in neurons can lead to neurotoxicity. Voltage-gated calcium channels (VGCCs) can increase intracellular calcium concentration under isoflurane and hypoxic conditions. The underlying mechanisms remain largely unknown. Methods Six-day-old mice were anesthetized with 3% sevoflurane for 2 h/day for 3 days. The Y-Maze, new object recognition (NOR) test, the Barnes maze test, immunoassay, immunoblotting, the TUNEL test, and Golgi-Cox staining were used to assess cognition, calcium concentration, inflammatory response, GABAAR activation, VGCC expression, apoptosis, and proliferation of hippocampal nerve cells in mice and HT22 cells. Results Compared with the control group, mice in the sevoflurane group had impaired cognitive function. In the sevoflurane group, the expression of Gabrb3 and Cav1.2 in the hippocampal neurons increased (p < 0.01), the concentration of calcium ions increased (p < 0.01), inflammatory reaction and apoptosis of neurons increased (p < 0.01), the proliferation of neurons in the DG area decreased (p < 0.01), and dendritic spine density decreased (p < 0.05). However, the inhibition of Gabrb3 and Cav1.2 alleviated cognitive impairment and reduced neurotoxicity. Conclusions Sevoflurane activates VGCCs by inducing GABAAR depolarization, resulting in cognitive impairment. Activated VGCCs cause an increase in intracellular calcium concentration and an inflammatory response, resulting in neurotoxicity and cognitive impairment.
Collapse
Affiliation(s)
- Shuang Zeng
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ruilou Zhu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yitian Yang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ningning Li
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Ningning Fu
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Mingyang Sun
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Arjun McKinney A, Petrova R, Panagiotakos G. Calcium and activity-dependent signaling in the developing cerebral cortex. Development 2022; 149:dev198853. [PMID: 36102617 PMCID: PMC9578689 DOI: 10.1242/dev.198853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calcium influx can be stimulated by various intra- and extracellular signals to set coordinated gene expression programs into motion. As such, the precise regulation of intracellular calcium represents a nexus between environmental cues and intrinsic genetic programs. Mounting genetic evidence points to a role for the deregulation of intracellular calcium signaling in neuropsychiatric disorders of developmental origin. These findings have prompted renewed enthusiasm for understanding the roles of calcium during normal and dysfunctional prenatal development. In this Review, we describe the fundamental mechanisms through which calcium is spatiotemporally regulated and directs early neurodevelopmental events. We also discuss unanswered questions about intracellular calcium regulation during the emergence of neurodevelopmental disease, and provide evidence that disruption of cell-specific calcium homeostasis and/or redeployment of developmental calcium signaling mechanisms may contribute to adult neurological disorders. We propose that understanding the normal developmental events that build the nervous system will rely on gaining insights into cell type-specific calcium signaling mechanisms. Such an understanding will enable therapeutic strategies targeting calcium-dependent mechanisms to mitigate disease.
Collapse
Affiliation(s)
- Arpana Arjun McKinney
- Graduate Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Ralitsa Petrova
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Georgia Panagiotakos
- Graduate Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Everlien I, Yen TY, Liu YC, Di Marco B, Vázquez-Marín J, Centanin L, Alfonso J, Monyer H. Diazepam binding inhibitor governs neurogenesis of excitatory and inhibitory neurons during embryonic development via GABA signaling. Neuron 2022; 110:3139-3153.e6. [PMID: 35998632 DOI: 10.1016/j.neuron.2022.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
Abstract
Of the neurotransmitters that influence neurogenesis, gamma-aminobutyric acid (GABA) plays an outstanding role, and GABA receptors support non-synaptic signaling in progenitors and migrating neurons. Here, we report that expression levels of diazepam binding inhibitor (DBI), an endozepine that modulates GABA signaling, regulate embryonic neurogenesis, affecting the long-term outcome regarding the number of neurons in the postnatal mouse brain. We demonstrate that DBI is highly expressed in radial glia and intermediate progenitor cells in the germinal zones of the embryonic mouse brain that give rise to excitatory and inhibitory cells. The mechanism by which DBI controls neurogenesis involves its action as a negative allosteric modulator of GABA-induced currents on progenitor cells that express GABAA receptors containing γ2 subunits. DBI's modulatory effect parallels that of GABAA-receptor-mediating signaling in these cells in the proliferative areas, reflecting the tight control that DBI exerts on embryonic neurogenesis.
Collapse
Affiliation(s)
- Isabelle Everlien
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ting-Yun Yen
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chao Liu
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Barbara Di Marco
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Javier Vázquez-Marín
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Lázaro Centanin
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
32
|
Mi S, Chen H, Lin P, Kang P, Qiao D, Zhang B, Wang Z, Zhang J, Hu X, Wang C, Cui H, Li S. CaMKII is a modulator in neurodegenerative diseases and mediates the effect of androgen on synaptic protein PSD95. Front Genet 2022; 13:959360. [PMID: 35991539 PMCID: PMC9386121 DOI: 10.3389/fgene.2022.959360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Androgens rapidly regulate synaptic plasticity in hippocampal neurones, but the underlying mechanisms remain unclear. In this study, we carried out a comprehensive bioinformatics analysis of functional similarities between androgen receptor (AR) and the synaptic protein postsynaptic density 95 (PSD95) to evaluate the effect. Using different measurements and thresholds, we obtained consistent results illustrating that the two proteins were significantly involved in similar pathways. We further identified CaMKII plays a critical role in mediating the rapid effect of androgen and promoting the expression of PSD95. We used mouse hippocampal neurone HT22 cells as a cell model to investigate the effect of testosterone (T) on intracellular Ca2+ levels and the mechanism. Calcium imaging experiments showed that intracellular Ca2+ increased to a peak due to calcium influx in the extracellular fluid through L-type and N-type voltage-gated calcium channels when HT22 cells were treated with 100 nM T for 20 min. Subsequently, we investigated whether the Ca2+/CaMKII signaling pathway mediates the rapid effect of T, promoting the expression of the synaptic protein PSD95. Immunofluorescence cytochemical staining and western blotting results showed that T promoted CaMKII phosphorylation by rapidly increasing extracellular Ca2+ influx, thus increasing PSD95 expression. This study demonstrated that CaMKII acts as a mediator assisting androgen which regulates the synaptic protein PSD95Also, it provides evidence for the neuroprotective mechanisms of androgens in synaptic plasticity and reveals the gated and pharmacological mechanisms of the voltage-gated Ca2+ channel family for androgen replacement therapy.
Collapse
Affiliation(s)
- Shixiong Mi
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huan Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Peijing Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Peiyuan Kang
- Clinical Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dan Qiao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Bohan Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Zhao Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Jingbao Zhang
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiangting Hu
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- *Correspondence: Sha Li, ; Huixian Cui,
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Sha Li, ; Huixian Cui,
| |
Collapse
|
33
|
Joshi P, Patel R, Kang SY, Serbinowski E, Lee MY. Establishment of ion channel and ABC transporter assays in 3D-cultured ReNcell VM on a 384-pillar plate for neurotoxicity potential. Toxicol In Vitro 2022; 82:105375. [PMID: 35550413 DOI: 10.1016/j.tiv.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Bioprinting Laboratories Inc, Denton, TX, USA
| | - Rushabh Patel
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Emily Serbinowski
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
34
|
Brancaccio P, Anzilotti S, Cuomo O, Vinciguerra A, Campanile M, Herchuelz A, Amoroso S, Annunziato L, Pignataro G. Preconditioning in hypoxic-ischemic neonate mice triggers Na +-Ca 2+ exchanger-dependent neurogenesis. Cell Death Dis 2022; 8:318. [PMID: 35831286 PMCID: PMC9279453 DOI: 10.1038/s41420-022-01089-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
To identify alternative interventions in neonatal hypoxic-ischemic encephalopathy, researchers’ attention has been focused to the study of endogenous neuroprotective strategies. Based on the preconditioning concept that a subthreshold insult may protect from a subsequent harmful event, we aimed at identifying a new preconditioning protocol able to enhance Ca2+-dependent neurogenesis in a mouse model of neonatal hypoxia ischemia (HI). To this purpose, we also investigated the role of the preconditioning-linked protein controlling ionic homeostasis, Na+/Ca2+ exchanger (NCX). Hypoxic Preconditioning (HPC) was reproduced by exposing P7 mice to 20’ hypoxia. HI was induced by isolating and cutting the right common carotid artery. A significant reduction in ischemic damage was observed in mice subjected to 20’ hypoxia followed,3 days later, by 60’ HI, thus suggesting that 20’ hypoxia functions as preconditioning stimulus. HPC promoted neuroblasts proliferation in the dentate gyrus mirrored by an increase of NCX1 and NCX3-positive cells and an improvement of behavioral motor performances in HI mice. An attenuation of HPC neuroprotection as well as a reduction in the expression of neurogenesis markers, including p57 and NeuroD1, was observed in preconditioned mice lacking NCX1 or NCX3. In summary, PC in neonatal mice triggers a neurogenic process linked to ionic homeostasis maintenance, regulated by NCX1 and NCX3.
Collapse
Affiliation(s)
- P Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - S Anzilotti
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - O Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - A Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", 60126, Ancona, Italy
| | - M Campanile
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy
| | - A Herchuelz
- Laboratoire de Pharmacodynamie et de Therapeutique-Faculté de Médecine Université Libre de Bruxelles, Bruxelles, Belgium
| | - S Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", 60126, Ancona, Italy
| | - L Annunziato
- IRCCS Synlab SDN S.p.A, via Gianturco 113, 80143, Naples, Italy
| | - G Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
35
|
Ratnayake C, Narayanan S, Gaesser J, Subramanian S. Brain and spine MRI findings in children presenting with TMCO1 mutation. BJR|CASE REPORTS 2022; 8:20210253. [DOI: 10.1259/bjrcr.20210253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Cerebro-facio-thoracic dysplasia (CFTD) is a developmental disorder characterized by distinctive craniofacial dysmorphism, global developmental delay, and skeletal anomalies. CTFD is the result of biallelic autosomal recessive loss of function mutations in the transmembrane and coiled-coil domains one protein (TMCO1) gene. Based on a population of 27 molecularly confirmed cases, classic brain morphologies associated with CFTD have been described in the literature. Previous studies have demonstrated only mild ventriculomegaly, corpus callosum abnormalities, frontotemporal atrophy, and three cases of associated epilepsy. We present previously undescribed brain MRI findings in two children presenting with seizures due to TMCO1 mutation. MR Imaging demonstrated hippocampal malrotation, olfactory bulb agenesis and olfactory sulcus hypoplasia in both children, pontine hypoplasia, and cochlear nerve agenesis in one child. We demonstrate that TMCO1 may play a more extensive and previously undescribed role in neurodevelopment thereby expanding the phenotype associated with CFTD.
Collapse
Affiliation(s)
- Charith Ratnayake
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Srikala Narayanan
- Division of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jenna Gaesser
- Department of Pediatrics, Child Neurology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Subramanian Subramanian
- Division of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Lisek M, Mackiewicz J, Sobolczyk M, Ferenc B, Guo F, Zylinska L, Boczek T. Early Developmental PMCA2b Expression Protects From Ketamine-Induced Apoptosis and GABA Impairments in Differentiating Hippocampal Progenitor Cells. Front Cell Neurosci 2022; 16:890827. [PMID: 35677757 PMCID: PMC9167922 DOI: 10.3389/fncel.2022.890827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
PMCA2 is not expressed until the late embryonic state when the control of subtle Ca2+ fluxes becomes important for neuronal specialization. During this period, immature neurons are especially vulnerable to degenerative insults induced by the N-methyl-D-aspartate (NMDA) receptor blocker, ketamine. As H19-7 hippocampal progenitor cells isolated from E17 do not express the PMCA2 isoform, they constitute a valuable model for studying its role in neuronal development. In this study, we demonstrated that heterologous expression of PMCA2b enhanced the differentiation of H19-7 cells and protected from ketamine-induced death. PMCA2b did not affect resting [Ca2+]c in the presence or absence of ketamine and had no effect on the rate of Ca2+ clearance following membrane depolarization in the presence of the drug. The upregulation of endogenous PMCA1 demonstrated in response to PMCA2b expression as well as ketamine-induced PMCA4 depletion were indifferent to the rate of Ca2+ clearance in the presence of ketamine. Yet, co-expression of PMCA4b and PMCA2b was able to partially restore Ca2+ extrusion diminished by ketamine. The profiling of NMDA receptor expression showed upregulation of the NMDAR1 subunit in PMCA2b-expressing cells and increased co-immunoprecipitation of both proteins following ketamine treatment. Further microarray screening demonstrated a significant influence of PMCA2b on GABA signaling in differentiating progenitor cells, manifested by the unique regulation of several genes key to the GABAergic transmission. The overall activity of glutamate decarboxylase remained unchanged, but Ca2+-induced GABA release was inhibited in the presence of ketamine. Interestingly, PMCA2b expression was able to reverse this effect. The mechanism of GABA secretion normalization in the presence of ketamine may involve PMCA2b-mediated inhibition of GABA transaminase, thus shifting GABA utilization from energetic purposes to neurosecretion. In this study, we show for the first time that developmentally controlled PMCA expression may dictate the pattern of differentiation of hippocampal progenitor cells. Moreover, the appearance of PMCA2 early in development has long-standing consequences for GABA metabolism with yet an unpredictable influence on GABAergic neurotransmission during later stages of brain maturation. In contrast, the presence of PMCA2b seems to be protective for differentiating progenitor cells from ketamine-induced apoptotic death.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, China
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
- *Correspondence: Tomasz Boczek
| |
Collapse
|
37
|
Nieto-Ruiz A, García-Santos JA, Verdejo-Román J, Diéguez E, Sepúlveda-Valbuena N, Herrmann F, Cerdó T, De-Castellar R, Jiménez J, Bermúdez MG, Pérez-García M, Miranda MT, López-Sabater MC, Catena A, Campoy C. Infant Formula Supplemented With Milk Fat Globule Membrane, Long-Chain Polyunsaturated Fatty Acids, and Synbiotics Is Associated With Neurocognitive Function and Brain Structure of Healthy Children Aged 6 Years: The COGNIS Study. Front Nutr 2022; 9:820224. [PMID: 35356726 PMCID: PMC8959863 DOI: 10.3389/fnut.2022.820224] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/01/2022] [Indexed: 12/25/2022] Open
Abstract
Background Adequate nutrient intake during the first few months of life plays a critical role on brain structure and function development. Objectives To analyze the long-term effects of an experimental infant formula (EF) on neurocognitive function and brain structure in healthy children aged 6 years compared to those fed with a standard infant formula or breastfed. Methods The current study involved 108 healthy children aged 6 years and participating in the COGNIS Study. At 0-2 months, infants were randomized to receive up to 18 months of life a standard infant formula (SF) or EF enriched with milk fat globule membrane (MFGM), long-chain polyunsaturated fatty acids (LC-PUFAs) and synbiotics. Furthermore, a reference group of breastfed (BF) infants were also recruited. Children were assessed using neurocognitive tests and structural Magnetic Resonance Imaging (MRI) at 6 years old. Results Experimental infant formula (EF) children showed greater volumes in the left orbital cortex, higher vocabulary scores and IQ, and better performance in an attention task than BF children. EF children also presented greater volumes in parietal regions than SF kids. Additionally, greater cortical thickness in the insular, parietal, and temporal areas were found in children from the EF group than those fed with SF or BF groups. Further correlation analyses suggest that higher volumes and cortical thickness of different parietal and frontal regions are associated with better cognitive development in terms of language (verbal comprehension) and executive function (working memory). Finally, arachidonic acid (ARA), adrenic acid (AdA), docosahexaenoic acid (DHA) levels in cheek cell glycerophospholipids, ARA/DHA ratio, and protein, fatty acid, and mineral intake during the first 18 months of life seem to be associated with changes in the brain structures at 6 years old. Conclusions Supplemented infant formula with MFGM components, LC-PUFAs, and synbiotics seems to be associated to long-term effects on neurocognitive development and brain structure in children at 6 years old. Clinical Trial Registration https://www.clinicaltrials.gov/, identifier: NCT02094547.
Collapse
Affiliation(s)
- Ana Nieto-Ruiz
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - José A. García-Santos
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Juan Verdejo-Román
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
| | - Estefanía Diéguez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Natalia Sepúlveda-Valbuena
- Nutrition and Biochemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Florian Herrmann
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Tomás Cerdó
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- Carlos III Health Institute, Madrid, Spain
| | | | | | - Mercedes G. Bermúdez
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Miguel Pérez-García
- Department of Personality, Assessment & Psychological Treatment, School of Psychology, University of Granada, Granada, Spain
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
| | - M. Teresa Miranda
- Department of Biostatistics, School of Medicine, University of Granada, Granada, Spain
| | - M. Carmen López-Sabater
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca en Nutrició i Seguretat Alimentària de la UB (INSA-UB), Barcelona, Spain
- National Network of Research in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III (Barcelona's Node), Madrid, Spain
| | - Andrés Catena
- Mind, Brain and Behavior Research Centre—CIMCYC, University of Granada, Granada, Spain
- Department of Experimental Psychology, School of Psychology, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Health Sciences Technological Park, Granada, Spain
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, Granada, Spain
- National Network of Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III (Granada's Node), Madrid, Spain
| |
Collapse
|
38
|
WEI HF, ANCHIPOLOVSKY S, VERA R, LIANG G, CHUANG DM. Potential mechanisms underlying lithium treatment for Alzheimer's disease and COVID-19. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2022; 26:2201-2214. [PMID: 35363371 PMCID: PMC9173589 DOI: 10.26355/eurrev_202203_28369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Disruption of intracellular Ca2+ homeostasis plays an important role as an upstream pathology in Alzheimer's disease (AD), and correction of Ca2+ dysregulation has been increasingly proposed as a target of future effective disease-modified drugs for treating AD. Calcium dysregulation is also an upstream pathology for the COVID-19 virus SARS-CoV-2 infection and replication, leading to host cell damage. Clinically available drugs that can inhibit the disturbed intracellular Ca2+ homeostasis have been repurposed to treat COVID-19 patients. This narrative review aims at exploring the underlying mechanism by which lithium, a first line drug for the treatment of bipolar disorder, inhibits Ca2+ dysregulation and associated downstream pathology in both AD and COVID-19. It is suggested that lithium can be repurposed to treat AD patients, especially those afflicted with COVID-19.
Collapse
Affiliation(s)
- H.-F. WEI
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - S. ANCHIPOLOVSKY
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - R. VERA
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - G. LIANG
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - D.-M. CHUANG
- Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
39
|
The evolutionary history of the polyQ tract in huntingtin sheds light on its functional pro-neural activities. Cell Death Differ 2022; 29:293-305. [PMID: 34974533 PMCID: PMC8817008 DOI: 10.1038/s41418-021-00914-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene. We show that the poly-glutamine (polyQ) tract encoded by CAGs in the huntingtin protein (HTT) is under purifying selection and subjected to stronger selective pressures than CAG-encoded polyQ tracts in other proteins. For natural selection to operate, the polyQ must perform a function. By combining genome-edited mouse embryonic stem cells and cell assays, we show that small variations in HTT polyQ lengths significantly correlate with cells' neurogenic potential and with changes in the gene transcription network governing neuronal function. We conclude that during evolution natural selection promotes the conservation and purity of the CAG-encoded polyQ tract and that small increases in its physiological length influence neural functions of HTT. We propose that these changes in HTT polyQ length contribute to evolutionary fitness including potentially to the development of a more complex nervous system.
Collapse
|
40
|
|
41
|
Markovinovic A, Greig J, Martín-Guerrero SM, Salam S, Paillusson S. Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases. J Cell Sci 2022; 135:274270. [PMID: 35129196 DOI: 10.1242/jcs.248534] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.
Collapse
Affiliation(s)
- Andrea Markovinovic
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Jenny Greig
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093, Nantes, France
| | - Sandra María Martín-Guerrero
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Shaakir Salam
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK.,Université de Nantes, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, 1 rue Gaston Veil, 44035, Nantes, France
| |
Collapse
|
42
|
Zhang X, Xie Y, Tang J, Qin W, Liu F, Ding H, Ji Y, Yang B, Zhang P, Li W, Ye Z, Yu C. Dissect Relationships Between Gene Co-expression and Functional Connectivity in Human Brain. Front Neurosci 2021; 15:797849. [PMID: 34955741 PMCID: PMC8696273 DOI: 10.3389/fnins.2021.797849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022] Open
Abstract
Although recent evidence indicates an association between gene co-expression and functional connectivity in human brain, specific association patterns remain largely unknown. Here, using neuroimaging-based functional connectivity data of living brains and brain-wide gene expression data of postmortem brains, we performed comprehensive analyses to dissect relationships between gene co-expression and functional connectivity. We identified 125 connectivity-related genes (20 novel genes) enriched for dendrite extension, signaling pathway and schizophrenia, and 179 gene-related functional connections mainly connecting intra-network regions, especially homologous cortical regions. In addition, 51 genes were associated with connectivity in all brain functional networks and enriched for action potential and schizophrenia; in contrast, 51 genes showed network-specific modulatory effects and enriched for ion transportation. These results indicate that functional connectivity is unequally affected by gene expression, and connectivity-related genes with different biological functions are involved in connectivity modulation of different networks.
Collapse
Affiliation(s)
- Xue Zhang
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Xie
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Tang
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen Qin
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Ding
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Ji
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingbing Yang
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wei Li
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaoxiang Ye
- Key Laboratory of Cancer Prevention and Therapy, Department of Radiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chunshui Yu
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
43
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
44
|
Miyata Y, Fuse H, Tokumoto S, Hiki Y, Deviatiiarov R, Yoshida Y, Yamada TG, Cornette R, Gusev O, Shagimardanova E, Funahashi A, Kikawada T. Cas9-mediated genome editing reveals a significant contribution of calcium signaling pathways to anhydrobiosis in Pv11 cells. Sci Rep 2021; 11:19698. [PMID: 34611198 PMCID: PMC8492635 DOI: 10.1038/s41598-021-98905-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023] Open
Abstract
Pv11 is an insect cell line established from the midge Polypedilum vanderplanki, whose larval form exhibits an extreme desiccation tolerance known as anhydrobiosis. Pv11 itself is also capable of anhydrobiosis, which is induced by trehalose treatment. Here we report the successful construction of a genome editing system for Pv11 cells and its application to the identification of signaling pathways involved in anhydrobiosis. Using the Cas9-mediated gene knock-in system, we established Pv11 cells that stably expressed GCaMP3 to monitor intracellular Ca2+ mobilization. Intriguingly, trehalose treatment evoked a transient increase in cytosolic Ca2+ concentration, and further experiments revealed that the calmodulin-calcineurin-NFAT pathway contributes to tolerance of trehalose treatment as well as desiccation tolerance, while the calmodulin-calmodulin kinase-CREB pathway conferred only desiccation tolerance on Pv11 cells. Thus, our results show a critical contribution of the trehalose-induced Ca2+ surge to anhydrobiosis and demonstrate temporally different roles for each signaling pathway.
Collapse
Affiliation(s)
- Yugo Miyata
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroto Fuse
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoko Tokumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yusuke Hiki
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Ruslan Deviatiiarov
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yuki Yoshida
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan
| | - Takahiro G Yamada
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Richard Cornette
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Oleg Gusev
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan
| | - Elena Shagimardanova
- Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Akira Funahashi
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Takahiro Kikawada
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
45
|
Fischer TT, Nguyen LD, Ehrlich BE. Neuronal calcium sensor 1 (NCS1) dependent modulation of neuronal morphology and development. FASEB J 2021; 35:e21873. [PMID: 34499766 DOI: 10.1096/fj.202100731r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) signaling is critical for neuronal functioning and requires the concerted interplay of numerous Ca2+ -binding proteins, including neuronal calcium sensor 1 (NCS1). Although an important role of NCS1 in neuronal processes and in neurodevelopmental and neurodegenerative diseases has been established, the underlying mechanisms remain enigmatic. Here, we systematically investigated the functions of NCS1 in the brain. Using Golgi-Cox staining, we observed a reduction in dendritic complexity and spine density in the prefrontal cortex and the dorsal hippocampus of Ncs1-/- mice, which may underlie concomitantly observed deficits in memory acquisition. Subsequent RNA sequencing of Ncs1-/- and Ncs1+/+ mouse brain tissues revealed that NCS1 modulates gene expression related to neuronal morphology and development. Investigation of developmental databases further supported a molecular role of NCS1 during brain development by identifying temporal gene expression patterns. Collectively, this study provides insights into NCS1-dependent signaling and lays the foundation for a better understanding of NCS1-associated diseases.
Collapse
Affiliation(s)
- Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA.,Department of Celluar and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Dynes JL, Yeromin AV, Cahalan MD. Cell-wide mapping of Orai1 channel activity reveals functional heterogeneity in STIM1-Orai1 puncta. J Gen Physiol 2021; 152:151900. [PMID: 32589186 PMCID: PMC7478869 DOI: 10.1085/jgp.201812239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2019] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
Upon Ca2+ store depletion, Orai1 channels cluster and open at endoplasmic reticulum–plasma membrane (ER–PM) junctions in signaling complexes called puncta. Little is known about whether and how Orai1 channel activity may vary between individual puncta. Previously, we developed and validated optical recording of Orai channel activity, using genetically encoded Ca2+ indicators fused to Orai1 or Orai3 N or C termini. We have now combined total internal reflection fluorescence microscopy with whole-cell recording to map functional properties of channels at individual puncta. After Ca2+ store depletion in HEK cells cotransfected with mCherry-STIM1 and Orai1-GCaMP6f, Orai1-GCaMP6f fluorescence increased progressively with increasingly negative test potentials and robust responses could be recorded from individual puncta. Cell-wide fluorescence half-rise and -fall times during steps to −100 mV test potential indicated probe response times of <50 ms. The in situ Orai1-GCaMP6f affinity for Ca2+ was 620 nM, assessed by monitoring fluorescence using buffered Ca2+ solutions in “unroofed” cells. Channel activity and temporal activation profile were tracked in individual puncta using image maps and automated puncta identification and recording. Simultaneous measurement of mCherry-STIM1 fluorescence uncovered an unexpected gradient in STIM1/Orai1 ratio that extends across the cell surface. Orai1-GCaMP6f channel activity was found to vary across the cell, with inactive channels occurring in the corners of cells where the STIM1/Orai1 ratio was lowest; low-activity channels typically at edges displayed a slow activation phase lasting hundreds of milliseconds. Puncta with high STIM1/Orai1 ratios exhibited a range of channel activity that appeared unrelated to the stoichiometric requirements for gating. These findings demonstrate functional heterogeneity of Orai1 channel activity between individual puncta and establish a new experimental platform that facilitates systematic comparisons between puncta composition and activity.
Collapse
Affiliation(s)
- Joseph L Dynes
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California at Irvine School of Medicine, Irvine, CA.,Institute for Immunology, University of California, Irvine, Irvine, CA
| |
Collapse
|
47
|
Developmental HCN channelopathy results in decreased neural progenitor proliferation and microcephaly in mice. Proc Natl Acad Sci U S A 2021; 118:2009393118. [PMID: 34429357 DOI: 10.1073/pnas.2009393118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and -intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a role for HCN channel subunits as a part of a general mechanism influencing cortical development in mammals.
Collapse
|
48
|
Zhang Y, Chen S, Xiao Z, Liu X, Wu C, Wu K, Liu A, Wei D, Sun J, Zhou L, Fan H. Magnetoelectric Nanoparticles Incorporated Biomimetic Matrix for Wireless Electrical Stimulation and Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100695. [PMID: 34176235 DOI: 10.1002/adhm.202100695] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Electrical stimulation is regarded pivotal to promote repair of nerve injuries, however, failed to get extensive application in vivo due to the challenges in noninvasive electrical loading accompanying with construction of biomimetic cell niche. Herein, a new concept of magneto responsive electric 3D matrix for remote and wireless electrical stimulation is demonstrated. By the preparation of magnetoelectric core/shell structured Fe3 O4 @BaTiO3 NPs-loaded hyaluronan/collagen hydrogels, which recapitulate considerable magneto-electricity and vital features of native neural extracellular matrix, the enhancement of neurogenesis both in cellular level and spinal cord injury in vivo with external pulsed magnetic field applied is proved. The findings pave the way for a novel class of remote controlling and delivering electricity through extracellular niches-mimicked hydrogel network, arising prospects not only in neurogenesis but also in human-computer interaction with higher resolution.
Collapse
Affiliation(s)
- Yusheng Zhang
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Suping Chen
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Xiaoyin Liu
- Department of Neurosurgery West China Medical School West China Hospital Sichuan University Chengdu Sichuan 610064 China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Kai Wu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Amin Liu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Dan Wei
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Jing Sun
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Liangxue Zhou
- Department of Neurosurgery West China Medical School West China Hospital Sichuan University Chengdu Sichuan 610064 China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| |
Collapse
|
49
|
Transcriptomic Response under Heat Stress in Chickens Revealed the Regulation of Genes and Alteration of Metabolism to Maintain Homeostasis. Animals (Basel) 2021; 11:ani11082241. [PMID: 34438700 PMCID: PMC8388523 DOI: 10.3390/ani11082241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary With the increased global temperature, the threat from climate change has already affected the livestock industry. Exposure to heat stress is a major factor responsible for impacts on the overall livestock production, which ultimately results in economic losses. With no exception, poultry is among the most vulnerable livestock to environmental stress. Hence, a comprehensive study is required to understand the molecular mechanisms and to improve the breeding program to overcome economic losses. Therefore, we investigated growth related phenotypes and performed transcriptome analysis to understand the heat stress response in chickens. Animal experiments were designed with two groups, which were kept at 21 and 33 °C for 2 weeks as the control and treatment groups. The transcriptome analysis used blood samples from each chicken. In this study, we identified a total of 245 differentially expressed genes (DEGs) with important roles in various biological processes, such as cell protection, energy conversion in the mitochondria, and protein quality control. The results indicate that the heat stress environment regulates genes and alter the metabolism to adjust for the heat environment in chickens. These findings could be useful to help understand the heat stress response in poultry. Abstract Chicken is important livestock that serves as a vital food source which remain largely affected by heat stress. Therefore, we performed the transcriptome analysis to help understand the mechanisms of heat stress response in chickens. In the animal experiments, we grouped them into a normal and severe at 21 and 33 °C, with identified physiologic parameters for 2-weeks. Subsequently, RNA-seq analysis was performed to identify DEGs with a false discovery rate < 0.05 and a fold change ≥ 1.5. In the physiological parameters, we observed average daily gain was declined, rectal temperature and respiration rate was increased in severe group. Among total 245 DEGs, 230 and 15 genes were upregulated and downregulated, respectively. In upregulated DEGs, HSPs, MYLK2, and BDKRB1 genes were identified as key genes in heat stress. The KEGG pathway analysis showed involvement in the ATP metabolic process, MAPK signaling pathway and calcium signaling pathway with related protein processing and synthesis. In conclusion, with induced heat stress, such changes in physiologic parameters alter the neuroendocrine system, and we observed that the heat stress environment regulates such Heat shock protein genes to protect the cells and proteins from an altered metabolism. These findings provide a more comprehensive understanding of the heat stress response in poultry.
Collapse
|
50
|
Mollo N, Esposito M, Aurilia M, Scognamiglio R, Accarino R, Bonfiglio F, Cicatiello R, Charalambous M, Procaccini C, Micillo T, Genesio R, Calì G, Secondo A, Paladino S, Matarese G, Vita GD, Conti A, Nitsch L, Izzo A. Human Trisomic iPSCs from Down Syndrome Fibroblasts Manifest Mitochondrial Alterations Early during Neuronal Differentiation. BIOLOGY 2021; 10:biology10070609. [PMID: 34209429 PMCID: PMC8301075 DOI: 10.3390/biology10070609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The presence of mitochondrial alterations in Down syndrome suggests that it might affect neuronal differentiation. We established a model of trisomic iPSCs, differentiating into neural precursor cells (NPCs) to monitor the occurrence of differentiation defects and mitochondrial dysfunction. METHODS Isogenic trisomic and euploid iPSCs were differentiated into NPCs in monolayer cultures using the dual-SMAD inhibition protocol. Expression of pluripotency and neural differentiation genes was assessed by qRT-PCR and immunofluorescence. Meta-analysis of expression data was performed on iPSCs. Mitochondrial Ca2+, reactive oxygen species (ROS) and ATP production were investigated using fluorescent probes. Oxygen consumption rate (OCR) was determined by Seahorse Analyzer. RESULTS NPCs at day 7 of induction uniformly expressed the differentiation markers PAX6, SOX2 and NESTIN but not the stemness marker OCT4. At day 21, trisomic NPCs expressed higher levels of typical glial differentiation genes. Expression profiles indicated that mitochondrial genes were dysregulated in trisomic iPSCs. Trisomic NPCs showed altered mitochondrial Ca2+, reduced OCR and ATP synthesis, and elevated ROS production. CONCLUSIONS Human trisomic iPSCs can be rapidly and efficiently differentiated into NPC monolayers. The trisomic NPCs obtained exhibit greater glial-like differentiation potential than their euploid counterparts and manifest mitochondrial dysfunction as early as day 7 of neuronal differentiation.
Collapse
Affiliation(s)
- Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Matteo Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Miriam Aurilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Roberta Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Rossella Accarino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Ferdinando Bonfiglio
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Maria Charalambous
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Claudio Procaccini
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
- Neuroimmunology Unit, IRCCS, Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Teresa Micillo
- Neuroimmunology Unit, IRCCS, Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
- Correspondence: ; Tel.: +39-081-746-3237
| |
Collapse
|