1
|
Ding Q, Wang H, Zhou Y, Zhang Z, Luo Y, Wu Z, Yang L, Xie R, Yang BR, Tao K, Pan S, Liu F, Fu J, Huo F, Wu J. Self-Powered Switchable Gas-Humidity Difunctional Flexible Chemosensors Based on Smart Adaptable Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502369. [PMID: 40326194 DOI: 10.1002/adma.202502369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Indexed: 05/07/2025]
Abstract
The development of self-powered, flexible, and multi-function sensors is highly anticipated in wearable electronics, however, it remains a daunting challenge to identify different signals based on a single device with singular sensing material without algorithmic support. Here, a smart adaptable hydrogel is developed by co-introducing two ions with vastly different hydrophilicity for the construction of an electrochemically self-powered, flexible, and reversibly switchable difunctional chemosensor with a metal-air battery structure. The prepared hydrogel can readily switch between water-rich and water-deficient states for crosstalk-free detection of oxygen and humidity respectively, since O2 gas and water molecules can directly participate in the oxygen reduction reaction in the device and act alone as limiting reactants and catalysts to affect the reaction rate under different hydrogel states. The resulting sensor demonstrates breakthrough O2 and humidity sensing performance with sensitivities as high as 4170.5%/% and 380.2%/% RH in water-rich and water-deficient states, respectively, and ultrawide detection ranges. Thanks to these, the devices can be applied for real-time and remote monitoring of ambient oxygen, transcutaneous oxygen pressure changes, respiration, and skin moisture by combining with wireless communication technology, and therefore have important application prospects in the fields of safety, health management, and non-contact human-machine interaction.
Collapse
Affiliation(s)
- Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai, 200050, P. R. China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yubin Zhou
- Dongguan Key Laboratory of Advanced Drug Delivery and Biosensing Research and Development, School of Pharmacy and Dongguan Innovation Institute, Guangdong Medical University, Dongguan, 523808, China
| | - Zhicheng Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zixuan Wu
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, P. R. China
| | - Le Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, Guangzhou, Guangdong, 510055, P. R. China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou, Guangdong, 510080, China
| | - Ruijie Xie
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shaowu Pan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Fei Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Fengwei Huo
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, P. R. China
- The Institute of Flexible Electronics (IFE Future Technologies), Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai, 200050, P. R. China
| |
Collapse
|
2
|
Guo S, Radecka I, Eissa AM, Ivanov E, Stoeva Z, Tchuenbou-Magaia F. Recent Advances in Carbon-Based Sensors for Food and Medical Packaging Under Transit: A Focus on Humidity, Temperature, Mechanical, and Multifunctional Sensing Technologies-A Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1862. [PMID: 40333572 PMCID: PMC12028959 DOI: 10.3390/ma18081862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
All carbon-based sensors play a critical role in ensuring the sustainability of smart packaging while enabling real-time monitoring of parameters such as humidity, temperature, pressure, and strain during transit. This systematic review covers the literature between 2013 and 16 November 2024 in the Scopus, Web of Science, IEEE Xplore, and Wiley databases, focusing on carbon-based sensor materials, structural design, and fabrication technologies that contribute to maximizing the sensor performance and scalability with particular emphasis on food and pharmaceutical product packaging applications. After being subjected to the inclusion and exclusion criteria, 164 studies were included in this review. The results show that most humidity sensors are made using graphene oxide (GO), though there is some progress toward cellulose and cellulose-based materials. Graphene and carbon nanotubes (CNTs) are predominant in temperature and mechanical sensors. The application of composites with structural design (e.g., porous and 3D structures) significantly improves sensitivity, long-term stability, and multifunctionality, whereas manufacturing methods such as spray coating and 3D printing further drive production scalability. The transition from metal to carbon-based electrodes could also reduce the cost. However, the scalability, long-term stability, and real-world validation remain challenges to be addressed. Future research should further enhance the performance and scalability of carbon-based sensors through low-energy fabrication techniques and the development of sustainable advanced materials to provide solutions for practical applications in dynamic transportation environments.
Collapse
Affiliation(s)
- Siting Guo
- Centre for Engineering Innovation and Research, School of Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Iza Radecka
- Research Institute of Healthcare Sciences, School of Pharmacy & Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Ahmed M. Eissa
- Research Institute of Healthcare Sciences, School of Pharmacy & Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Evgeni Ivanov
- Open Laboratory on Experimental Micro and Nano Mechanics (OLEM), Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Block 4, 1113 Sofia, Bulgaria;
- Research and Development of Nanomaterials and Nanotechnologies—NanoTech Lab Ltd., Acad. G. Bonchev Str. Block 4, 1113 Sofia, Bulgaria
| | | | - Fideline Tchuenbou-Magaia
- Centre for Engineering Innovation and Research, School of Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| |
Collapse
|
3
|
Wang B, Wang H, Bao Y, Ahmad W, Geng W, Ying Y, Xu W. Sustainable Materials Enabled Terahertz Functional Devices. NANO-MICRO LETTERS 2025; 17:212. [PMID: 40214928 PMCID: PMC11992292 DOI: 10.1007/s40820-025-01732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
Terahertz (THz) devices, owing to their distinctive optical properties, have achieved myriad applications in diverse domains including wireless communication, medical imaging therapy, hazardous substance detection, and environmental governance. Concurrently, to mitigate the environmental impact of electronic waste generated by traditional materials, sustainable materials-based THz functional devices are being explored for further research by taking advantages of their eco-friendliness, cost-effective, enhanced safety, robust biodegradability and biocompatibility. This review focuses on the origins and distinctive biological structures of sustainable materials as well as succinctly elucidates the latest applications in THz functional device fabrication, including wireless communication devices, macromolecule detection sensors, environment monitoring sensors, and biomedical therapeutic devices. We further highlight recent applications of sustainable materials-based THz functional devices in hazardous substance detection, protein-based macromolecule detection, and environmental monitoring. Besides, this review explores the developmental prospects of integrating sustainable materials with THz functional devices, presenting their potential applications in the future.
Collapse
Affiliation(s)
- Baoning Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Haolan Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ying Bao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Wenhui Geng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
- Zhejiang Key Laboratory of Intelligent Sensing and Robotics for Agriculture, Hangzhou, 310058, People's Republic of China
- Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, People's Republic of China
| | - Wendao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Zhejiang Key Laboratory of Intelligent Sensing and Robotics for Agriculture, Hangzhou, 310058, People's Republic of China.
- Key Laboratory of On Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
4
|
Peng Y, Zhao Y, Yuan Y, Meng W, Jiang W, Wang X. High-response humidity sensing with graphene oxide/lignosulfonate and laser-induced graphene for respiratory health. RSC Adv 2025; 15:11739-11748. [PMID: 40236581 PMCID: PMC11997752 DOI: 10.1039/d5ra01765c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
Most current commercial humidity sensors rely on precious metals and chemicals. In this study, alkali lignin produced in the paper industry was utilized to form a film with hydroxyethyl cellulose to generate laser-induced graphene (LIG) as an electrode material for a sensor by the laser-induction technique. LIG exhibits excellent conductivity, and the experimental results demonstrate that its resistivity can be adjusted by laser power without the necessity for additional conductive materials. A solution comprising a blend of graphene oxide and sodium lignosulfonate was introduced to the LIG surface in a dropwise manner, thereby establishing a sensing surface. This process resulted in the introduction of hydrophilic groups, including carboxyl, phenolic hydroxyl, and sulfonic acid. The integration of these hydrophilic groups enhanced the surface's sensitivity to humidity, thereby facilitating the precise capture of alterations in ambient air humidity. The humidity sensor, which employs alkali lignin and lignin laser-induced graphene as electrodes and graphene oxide (GO) as the humidity-sensitive layer, exhibits an exceptionally high degree of sensitivity to humidity. The response reached 42.74 (R RH/R 0) at 80% relative humidity and 133.96 (R RH/R 0) at 90% humidity with a sensitivity of 147.73%/% RH. Moreover, the sensor displays an impressively brief recovery period, which remains unaltered even after multiple cycles. Additionally, the humidity sensor exhibits excellent stability for a period of up to 30 days. This study has successfully developed a simple and efficient method for preparing graphene, and has produced a flexible resistive sensor with high sensitivity, repeatability, and stability, thereby opening up new avenues for the high-value utilisation of lignin.
Collapse
Affiliation(s)
- Yanbo Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| | - Yuhong Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| | - Ying Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| | - Wei Meng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| | - Wenhe Jiang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| | - Xiluan Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 P. R. China
| |
Collapse
|
5
|
Yu Z, Luo T, Lu J, Xie M, Huang B, Lin B, Fu L, Xu C. Wireless wearable multifunctional sensor based on carboxylated cellulose nanofibers/silver nanowires for ultra-sensitive, fast humidity response and body temperature monitoring. Int J Biol Macromol 2025; 290:138934. [PMID: 39706396 DOI: 10.1016/j.ijbiomac.2024.138934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Humidity and temperature sensors are considered as hotspots for the next generation of wearable multifunctional electronics. However, it is still a notable challenge to realize multifunctional sensors with high-performance humidity response, excellent mechanical properties, and accurate temperature monitoring capability. In this work, a hydrogen-bond cross-linked hybrid network was constructed between carboxystyrene-butadiene rubber (XSBR) and hydrophilic carboxylated cellulose nanofibers (CNF) noncovalently modified silver nanowires (AgNWs). The abundant hydroxyl and carboxyl groups of CNF chains have excellent affinity for water, and the apparent distinction in thermal expansion coefficient between the XSBR matrix and AgNWs has an outstanding response to instantaneous temperature change. The material exhibits a humidity sensitivity up to 22.15 and a humidity response time as low as 390 ms, yet with excellent tensile strength of 4.10 MPa and stretchability of 342 %. In addition, the as-prepared multifunctional sensor possesses an excellent thermal response of 0.5625 %/°C. Based on the superior performance, the sensor has been applied to recognize and monitor different respiration rates in the human body, locate moist objects in close proximity, and also accurately record and respond to the changes in skin surface temperature.
Collapse
Affiliation(s)
- Zhiyu Yu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Tianwen Luo
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Junjie Lu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Man Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Bai Huang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Lihua Fu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China.
| |
Collapse
|
6
|
Sun Y, Li C, Liu D, Zhang F, Xue J, Zheng Q. Surface and Interfacial Engineering for Multifunctional Nanocarbon Materials. ACS NANO 2025; 19:1944-1980. [PMID: 39782760 DOI: 10.1021/acsnano.4c14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Multifunctional materials are accelerating the development of soft electronics with integrated capabilities including wearable physical sensing, efficient thermal management, and high-performance electromagnetic interference shielding. With outstanding mechanical, thermal, and electrical properties, nanocarbon materials offer ample opportunities for designing multifunctional devices with broad applications. Surface and interfacial engineering have emerged as an effective approach to modulate interconnected structures, which may have tunable and synergistic effects for the precise control over mechanical, transport, and electromagnetic properties. This review presents a comprehensive summary of recent advances empowering the development of multifunctional nanocarbon materials via surface and interfacial engineering in the context of surface and interfacial engineering techniques, structural evolution, multifunctional properties, and their wide applications. Special emphasis is placed on identifying the critical correlations between interfacial structures across nanoscales, microscales, and macroscales and multifunctional properties. The challenges currently faced by the multifunctional nanocarbon materials are examined, and potential opportunities for applications are also revealed. We anticipate that this comprehensive review will promote the further development of soft electronics and trigger ideas for the interfacial design of nanocarbon materials in multidisciplinary applications.
Collapse
Affiliation(s)
- Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Dan Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Jie Xue
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
7
|
Xue J, Liu D, Li D, Hong T, Li C, Zhu Z, Sun Y, Gao X, Guo L, Shen X, Ma P, Zheng Q. New Carbon Materials for Multifunctional Soft Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312596. [PMID: 38490737 DOI: 10.1002/adma.202312596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Soft electronics are garnering significant attention due to their wide-ranging applications in artificial skin, health monitoring, human-machine interaction, artificial intelligence, and the Internet of Things. Various soft physical sensors such as mechanical sensors, temperature sensors, and humidity sensors are the fundamental building blocks for soft electronics. While the fast growth and widespread utilization of electronic devices have elevated life quality, the consequential electromagnetic interference (EMI) and radiation pose potential threats to device precision and human health. Another substantial concern pertains to overheating issues that occur during prolonged operation. Therefore, the design of multifunctional soft electronics exhibiting excellent capabilities in sensing, EMI shielding, and thermal management is of paramount importance. Because of the prominent advantages in chemical stability, electrical and thermal conductivity, and easy functionalization, new carbon materials including carbon nanotubes, graphene and its derivatives, graphdiyne, and sustainable natural-biomass-derived carbon are particularly promising candidates for multifunctional soft electronics. This review summarizes the latest advancements in multifunctional soft electronics based on new carbon materials across a range of performance aspects, mainly focusing on the structure or composite design, and fabrication method on the physical signals monitoring, EMI shielding, and thermal management. Furthermore, the device integration strategies and corresponding intriguing applications are highlighted. Finally, this review presents prospects aimed at overcoming current barriers and advancing the development of state-of-the-art multifunctional soft electronics.
Collapse
Affiliation(s)
- Jie Xue
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dan Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Da Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Tianzeng Hong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zifu Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiaobo Gao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Lei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Pengcheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
8
|
Xiao Y, Pu Q, Jia X, Gu T, Liu Y, Sun P, Liu F, Lu G. Ti 3C 2T x Aerogel-Based Wearable Humidity Sensors with Low Hysteresis and High Linearity for Expiratory Comfort Management. ACS Sens 2024; 9:6709-6716. [PMID: 39591392 DOI: 10.1021/acssensors.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Wearable and flexible humidity sensors hold great promise for expiratory comfort management. However, the high hysteresis and poor detection linearity restrict the immediate and accurate detection of humidity. Herein, we have prepared Ti3C2Tx MXene/chitosan/polyvinylidene difluoride aerogels with a controllable hydrophobic/hydrophilic surface to regulate the catch/escape behavior of H2O molecules. The MXene aerogel-based humidity sensor demonstrates low hysteresis (3.2% relative humidity) and a high linear relationship (R2 = 0.99). Integrated with a control circuit, an expiratory humidity monitoring system is constructed for nasal comfort management as a humidity switch. The exhaled breath humidity can be automatically regulated during dry exhalation conditions. This wearable humidity sensor enables the real-time monitoring and intelligent control of nasal exhaled humidity. This work represents a new avenue for improving breathing comfort and preventing respiratory diseases.
Collapse
Affiliation(s)
- Yanan Xiao
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qi Pu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Tianyi Gu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yong Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
9
|
Chen L, Luo X, Wang X, Wang Y, Yang H, Zhao S, Zhang Q, Liu X, Jiang H. Nanoengineered Nonenzymatic Paper-Based Fluorescent Platform for Pre-Dilution-Free and Visual Real-Time Home Monitoring of Urea for Early Warning of Abnormal Nitrogen-Based Unhealthy Issues. Adv Healthc Mater 2024; 13:e2402009. [PMID: 39113342 DOI: 10.1002/adhm.202402009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/11/2024] [Indexed: 12/18/2024]
Abstract
Distorted urea levels indicate several liver, kidney, or metabolic diseases; however, traditional clinical urea detection relies on urease-based methods enslaved to well-known limitations of high-price, unstable properties, complicated sample pretreatment and analysis procedures, and difficult visual real-time monitoring. Herein, nonenzymatic paper-based fluorescent materials (UFP-BP) are strategically integrated with an on-demand fluorescent-sensor (UFP) self-aggregated nanoparticle on commercial filter paper for pre-dilution-free and visual real-time urea monitoring. The UFP is synthesized and self-aggregated into the fluorescent nanoparticles for selective urea recognition. Then, the nanoparticles are interstitially loaded on filter paper to nanoengineer the UFP-BP, achieving selective quantitative urea detection in the normal concentration range (10-1000 mm). UFP and UFP-BP can successfully monitor urea levels in real rat urine, artificial simulants, and milk. The proposed sensing platform, integrated with smartphones, offers accurate, quantitative, nonenzymatic, noninvasive, pre-dilution-free, on-site, rapid, low-cost, easy-to-operate, real-time visual urea detection in food samples and human body fluids. The designed sensing system can provide early warnings of abnormal nitrogen-based health issues.
Collapse
Affiliation(s)
- Lijuan Chen
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiaomin Luo
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuechuan Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yitong Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Hao Yang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Suqiu Zhao
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qian Zhang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xinhua Liu
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Huie Jiang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
10
|
Guo Y, Lin Z, He M, Wang Y, Xu C. A bio-based, self-healable, conductive rubber film with oxidized cellulose nanofiber segregated network. Int J Biol Macromol 2024; 281:136428. [PMID: 39389513 DOI: 10.1016/j.ijbiomac.2024.136428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Rubber composites are indispensable in all areas of our daily lives. However, the formation of permanent crosslinked networks in rubber materials makes it difficult to recycle, resulting in a non-negligible waste of resources. In this paper, a vulcanization-free, fully bio-sourced rubber composite was prepared by using oxidized natural rubber (oNR) and oxidized cellulose nanofibers (TOCFs). TOCFs are selectively dispersed between the latex particles to form a segregated network. Meanwhile, the formation of hydrogen-bonding between oxygenated polar groups of oNR and abundant hydroxyl and carboxyl groups of TOCFs improves their interfacial interactions. This special structure promotes strain-induced crystallization (SIC) behavior of oNR matrix, giving its tensile strength up to 14.7 MPa. Furthermore, the oNR/TOCFs film shows excellent self-healing efficiency (96 %) at 40 °C for 5 h. The hygroscopicity of the TOCFs segregated network can turn the oNR/TOCFs film to be a conductive film by regulating the absorbed water content. The film has high conductivity (0.05 S/m) at a water content of 8.99 wt%, and the resistance change (RV/R0) can be varied between 1-5.9 × 10-6 at a water content range of 0-8.99 wt%, which makes it have potential for a wide range of humidity monitoring applications.
Collapse
Affiliation(s)
- Yuanming Guo
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zihao Lin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Mingkeng He
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yueqiong Wang
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural Sciences, Guangdong 524001, China.
| | - Chuanhui Xu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural Sciences, Guangdong 524001, China.
| |
Collapse
|
11
|
Gao Q, Ma H, He C, Wang X, Ding J, Zhang W, Fan X. Humidity Sensing Properties of Different Atomic Layers of Graphene on the SiO 2/Si Substrate. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356715 DOI: 10.1021/acsami.4c11194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Graphene has great potential to be used for humidity sensing due to its ultrahigh surface area and conductivity. However, the impact of different atomic layers of graphene on the SiO2/Si substrate on humidity sensing has not been studied yet. In this paper, we fabricated three types of humidity sensors on the SiO2/Si substrate based on one to three atomic layers of graphene, in which the sensing areas of graphene are 75 μm × 72 μm and 45 μm × 72 μm, respectively. We studied the impact of both the number of atomic layers of graphene and the sensing areas of graphene on the responsivity and response/recovery time of the prepared graphene-based humidity sensors. We found that the relative resistance change of the prepared devices decreased with the increase of number of atomic layers of graphene under the same change of relative humidity. Further, devices based on tri-layer graphene showed the fastest response/recovery time, while devices based on double-layer graphene showed the slowest response/recovery time. Finally, we chose devices based on double-layer graphene that have relatively good responsivity and stability for application in respiration monitoring and contact-free finger monitoring.
Collapse
Affiliation(s)
- Qiang Gao
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing 100081, China
| | - Hongliang Ma
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Chang He
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaojing Wang
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, 100071 Beijing, China
| | - Jie Ding
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Wendong Zhang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- National Key Laboratory for Electronic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Xuge Fan
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- Center for Interdisciplinary Science of Optical Quantum and NEMS Integration, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology, Zhuhai 519088, China
| |
Collapse
|
12
|
Wang H, Chen R, He Y, Zhu X, Yu Z, Feng Z, Pan D, Yang L, Tang X, Xiong B. Controllable self-cleaning FET self-assembled RNA-cleaving DNAzyme based DNA nanotree for culture-free Staphylococcus aureus detection. J Nanobiotechnology 2024; 22:414. [PMID: 39010059 PMCID: PMC11247881 DOI: 10.1186/s12951-024-02682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Staphylococcus aureus (SA) poses a serious risk to human and animal health, necessitating a low-cost and high-performance analytical platform for point-of-care diagnostics. Cellulose paper-based field-effect transistors (FETs) with RNA-cleaving DNAzymes (RCDs) can fulfill the low-cost requirements, however, its high hydrophilicity and lipophilicity hinder biochemical modification and result in low sensitivity, poor mechanical stability and poor fouling performance. Herein, we proposed a controllable self-cleaning FET to simplify biochemical modification and improve mechanical stability and antifouling performance. Then, we constructed an RCD-based DNA nanotree to significantly enhance the sensitivity for SA detection. For controllable self-cleaning FET, 1 H,1 H,2 H,2 H-perfluorodecyltrimethoxysilane based-polymeric nanoparticles were synthesized to decorate cellulose paper and whole carbon nanofilm wires. O2 plasma was applied to regulate to reduce fluorocarbon chain density, and then control the hydrophobic-oleophobic property in sensitive areas. Because negatively charged DNA affected the sensitivity of semiconducting FETs, three Y-shaped branches with low-cost were designed and applied to synthesize an RCD-based DNA-Nanotree based on similar DNA-origami technology, which further improved the sensitivity. The trunk of DNA-Nanotree was composed of RCD, and the canopy was self-assembled using multiple Y-shaped branches. The controllable self-cleaning FET biosensor was applied for SA detection without cultivation, which had a wide linear range from 1 to 105 CFU/mL and could detect a low value of 1 CFU/mL.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Ruipeng Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Yue He
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiaoyan Zhu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Zhixue Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Zemeng Feng
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Dongxia Pan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| |
Collapse
|
13
|
Zhu J, Zhu P, Zhu Y, Ye Y, Sun X, Zhang Y, Rojas OJ, Servati P, Jiang F. Surface charge manipulation for improved humidity sensing of TEMPO-oxidized cellulose nanofibrils. Carbohydr Polym 2024; 335:122059. [PMID: 38616073 DOI: 10.1016/j.carbpol.2024.122059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Cellulose-based humidity sensors have attracted great research interest due to their hydrophilicity, biodegradability, and low cost. However, they still suffer from relatively low humidity sensitivity. Due to the presence of negatively charged carboxylate groups, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (CNF) exhibits enhanced hydrophilicity and ion conductivity, which is considered a promising candidate for humidity sensing. In this work, we developed a facile strategy to improve the humidity sensitivity of CNF films by regulating their surface charge density. With the increase in surface charge density, both water uptake and charge carrier densities of the CNF films can be improved, enabling a humidity sensitivity of up to 44.5 % (%RH)-1, higher than that of most polymer-based humidity sensors reported in the literature. Meanwhile, the sensor also showed good linearity (R2 = 0.998) over the 15-75 % RH at 1 kHz. With these features, the CNF film was further demonstrated for applications in noncontact sensing, such as human respiration, moisture on fingertips, and water leakage, indicating the great potential of CNF film in humidity monitoring.
Collapse
Affiliation(s)
- Jiaying Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada; Flexible Electronics and Energy Lab, Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Penghui Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yuhang Ye
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yifan Zhang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Departments of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Peyman Servati
- Flexible Electronics and Energy Lab, Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Bioproducts Institute, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
14
|
Luo Z, Li D, Le X, He T, Shao S, Lv Q, Liu Z, Lee C, Wu T. Ultra-compact and high-performance suspended aluminum scandium nitride Lamb wave humidity sensor with a graphene oxide layer. NANOSCALE 2024; 16:10230-10238. [PMID: 38629471 DOI: 10.1039/d3nr05684h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The utilization of Microelectromechanical Systems (MEMS) technology holds great significance for developing compact and high-performance humidity sensors in human healthcare, and the Internet of Things. However, several drawbacks of the current MEMS humidity sensors limit their applications, including their long response time, low sensitivity, relatively large sensing area, and incompatibility with a complementary metal-oxide-semiconductor (CMOS) process. To address these problems, a suspended aluminum scandium nitride (AlScN) Lamb wave humidity sensor utilizing a graphene oxide (GO) layer is firstly designed and fabricated. The theoretical and experimental results both show that the AlScN Lamb wave humidity sensor exhibits high sensing performance. The mass loading sensitivity of the sensor is one order higher than that of the normal surface acoustic wave (SAW) humidity sensor based on an aluminum nitride (AlN) film; thus the AlScN Lamb wave humidity sensor achieves high sensitivity (∼41.2 ppm per % RH) with only an 80 nm-thick GO film. In particular, the as-prepared suspended AlScN Lamb wave sensors are able to respond to the wide relative humidity (0-80% RH) change in 2 s, and the device size is ultra-compact (260 μm × 72 μm). Moreover, the sensor has an excellent linear response in the 0-80% RH range, great repeatability and long-term stability. Therefore, this work brings opportunities for the development of ultra-compact and high-performance humidity sensors.
Collapse
Affiliation(s)
- Zhifang Luo
- School of Information Science and Technology, Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, China.
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore.
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore
| | - Dongxiao Li
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore.
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore
| | - Xianhao Le
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore.
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore
| | - Tianyiyi He
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore.
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore
| | - Shuai Shao
- School of Information Science and Technology, Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, China.
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| | - Qiaoya Lv
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore.
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore
| | - Zhaojun Liu
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore.
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, Singapore.
- Center for Intelligent Sensors and MEMS, National University of Singapore, Singapore
| | - Tao Wu
- School of Information Science and Technology, Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, China.
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, China
| |
Collapse
|
15
|
Zhu X, Zhou Z, Zhang J, Wu S. Large-area, size-controlled and transferable graphene oxide-metal films for humidity sensor. NANOTECHNOLOGY 2024; 35:185501. [PMID: 38271722 DOI: 10.1088/1361-6528/ad22b2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
The lack of low-cost methods to synthesize large-area graphene-based materials is still an important factor that limits the practical application of graphene devices. Herein, we present a facile method for producing large-area graphene oxide-metal (GO-M) films, which are size controllable and transferable. The sensor constructed using the GO-M film exhibited humidity sensitivity while being unaffected by pressure. The relationship between the sensor's resistance and relative humidity followed an exponential trend. The GO-Mg sensor was the most sensitive among all the tested sensors. The facile synthesis of GO-M films will accelerate the widespread utilization of graphene-based materials.
Collapse
Affiliation(s)
- Xiaobin Zhu
- School of Mechano-Electronic Engineering, Suzhou Vocational University, Suzhou, Jiangsu 215104, People's Republic of China
| | - Zhengcun Zhou
- School of Mechanical-Electrical Engineering, Guangdong University of Science and Technology, Dongguan, Guangdong 523083, People's Republic of China
| | - Jinlei Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People's Republic of China
| | - Shuyi Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, People's Republic of China
| |
Collapse
|
16
|
Wu B, Wu W, Ma R, Chen H, Zhao Y, Li Y, Lei X, Liu F. High-Sensitivity and Wide-Range Flexible Ionic Piezocapacitive Pressure Sensors with Porous Hemisphere Array Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:366. [PMID: 38257459 PMCID: PMC10821174 DOI: 10.3390/s24020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The development of high-performance flexible pressure sensors with porous hierarchical microstructures is limited by the complex and time-consuming preparation processes of porous hierarchical microstructures. In this study, a simple modified heat curing process was first proposed to achieve one-step preparation of porous hemispherical microstructures on a polydimethylsiloxane (PDMS) substrate. In this process, a laser-prepared template was used to form surface microstructures on PDMS film. Meanwhile, the thermal decomposition of glucose monohydrate additive during heat curing of PDMS led to the formation of porous structures within PDMS film. Further, based on the obtained PDMS/CNTs electrodes with porous hemisphere array and ionic polymer dielectric layers, high-performance ionic piezocapacitive sensors were realized. Under the synergistic effect of the low-stiffness porous hemisphere microstructure and the electric double layer of the ionic polymer film, the sensor based on an ionic polymer film with a 1:0.75 ratio of P(VDF-HFP):[EMIM][TFSI] not only achieves a sensitivity of up to 106.27 kPa-1 below 3 kPa, but also has a wide measurement range of over 400 kPa, which has obvious advantages in existing flexible piezocapacitive sensors. The rapid response time of 110 s and the good stability of 2300 cycles of the sensor further elucidate its practicality. The application of the sensor in pulse monitoring, speech recognition, and detection of multiple dynamic loads verifies its excellent sensing performance. In short, the proposed heat curing process can simultaneously form porous structures and surface microstructures on PDMS films, greatly simplifying the preparation process of porous hierarchical microstructures and providing a simple and feasible way to obtain high-performance flexible pressure sensors.
Collapse
Affiliation(s)
- Bang Wu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Weiguang Wu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Rui Ma
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Haobing Chen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yilin Zhao
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yunfan Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xiao Lei
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Feng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University), Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Xia Y, Wang S, Meng F, Xu Z, Fang Q, Gu Z, Zhang C, Li P, Kong F. Eco-friendly food packaging based on paper coated with a bio-based antibacterial coating composed of carbamate starch, calcium lignosulfonate, cellulose nanofibrils, and silver nanoparticles. Int J Biol Macromol 2024; 254:127659. [PMID: 37898243 DOI: 10.1016/j.ijbiomac.2023.127659] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Traditional paper-based packaging commonly needs to be coated to achieve sufficient mechanical and barrier performances. In this research, a bio-based coating for paper was developed from carbamate starch (Sc), calcium lignosulfonate (CL), and cellulose nanofibrils (CNF). Controlling the electrostatic and hydrogen-bonding interactions among the components of the coating was conducive to tailoring the structure and performance of the coated paper. When the degree of substitution (Ds) of Sc was 0.10, the amount of CL was 1.00 g, and the amount of CNF was 0.65 % of the weight of Sc, the paper coated with the resulting 0.10Sc-1.00CL-0.65CNF coating exhibited increased hydrophobicity and excellent mechanical, air-barrier, and UV-light-barrier properties. After the addition of 0.10 % of silver nano-particles (AgNPs) to the 0.10Sc-1.00CL-0.65CNF coating, the paper coated with the resulting 0.10Sc-1.00CL-0.65CNF-0.10AgNPs coating exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. The coated paper was used as the packaging for cherry tomatoes stored under ambient conditions. Due to the synergistic preservation effects of the Sc-CL-CNF coating and AgNPs, the shelf life of the cherry tomatoes was at least 7 days. The coated paper described herein has the potential for applications in the food packaging sector.
Collapse
Affiliation(s)
- Yueyue Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fanrong Meng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Zhen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qi Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhengang Gu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chunhu Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Peng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
18
|
Niu Z, Wang Q, Lu J, Hu Y, Huang J, Zhao W, Liu Y, Long YZ, Han G. Electrospun Cellulose Nanocrystals Reinforced Flexible Sensing Paper for Triboelectric Energy Harvesting and Dynamic Self-Powered Tactile Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307810. [PMID: 38050940 DOI: 10.1002/smll.202307810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Indexed: 12/07/2023]
Abstract
The technical synergy between flexible sensing paper and triboelectric nanogenerator (TENG) in the next stage of artificial intelligence Internet of Things engineering makes the development of intelligent sensing paper with triboelectric function very attractive. Therefore, it is extremely urgent to explore functional papers that are more suitable for triboelectric sensing. Here, a cellulose nanocrystals (CNCs) reinforced PVDF hybrid paper (CPHP) is developed by electrospinning technology. Benefitting from the unique effects of CNCs, CPHP forms a solid cross-linked network among fibers and obtains a high-strength (25 MPa) paper-like state and high surface roughness. Meanwhile, CNCs also improve the triboelectrification effect of CPHP by assisting the PVDF matrix to form more electroactive phases (96% share) and a higher relative permittivity (17.9). The CPHP-based TENG with single electrode configuration demonstrates good output performance (open-circuit voltage of 116 V, short-circuit current of 2.2 µA and power density of 91 mW m-2 ) and ultrahigh pressure-sensitivity response (3.95 mV Pa-1 ), which endows CPHP with reliable power supply and sensing capability. More importantly, the CPHP-based flexible self-powered tactile sensor with TENG array exhibits multifunctional applications in imitation Morse code compilation, tactile track recognition, and game character control, showing great prospects in the intelligent inductive device and human-machine interaction.
Collapse
Affiliation(s)
- Zhaoxuan Niu
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, P. R. China
| | - Qingxiang Wang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, P. R. China
| | - Jiqing Lu
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yi Hu
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, P. R. China
| | - Jiaqi Huang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, P. R. China
| | - Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Guangping Han
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
19
|
Huang L, Hu Q, Gao S, Liu W, Wei X. Recent progress and applications of cellulose and its derivatives-based humidity sensors: A review. Carbohydr Polym 2023; 318:121139. [PMID: 37479446 DOI: 10.1016/j.carbpol.2023.121139] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Cellulose and its derivatives, which are low-cost, degradable, reproducible and highly hydrophilic, can serve as both substrate and humidity sensitive materials, making them more and more popular as ideal biomimetic materials for humidity sensors. Benefiting from these characteristics, cellulose-based humidity sensors cannot only exhibit high sensitivity, excellent mechanical performance, wide humidity response range, etc., but also can be applied to fields such as human health, medical care and agricultural product safety monitoring. Herein, cellulose-based humidity sensors are first classified according to the different conductive active materials, such as carbon nanotubes, graphene, electrolytes, metal compounds, and polymer materials, based on which the latest research progress is introduced, and the roles of different types of conductive materials in cellulose-based humidity sensors are analyzed and summarized. Besides, the similarities and differences in their working mechanisms are expounded. Finally, the application scenarios of cellulose-based humidity sensors in human movement respiration and skin surface humidity monitoring are discussed, which can make readers quickly familiarize the current preparation method, working mechanism and subsequent development trend of cellulose-based humidity sensors more effectively.
Collapse
Affiliation(s)
- Liang Huang
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qichang Hu
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Sheng Gao
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xuan Wei
- Fujian Key Laboratory of Agricultural Information Sensoring Technology, College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
20
|
Jiang Y, Ma J, Shen L, Zhang W, Yang K, Zhu B, Yang Y, Ma H, Chen X, Bai S, Zhu N. Chemresistor Smart Sensors from Silk Fibroin-Graphene Composites for Touch-free Wearables. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47196-47207. [PMID: 37768689 DOI: 10.1021/acsami.3c07913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
With the rapid development of wearable electronics, low-cost, multifunctional, ultrasensitive touch-free wearables for human-machine interaction and human/plant healthcare management have attracted great attention. The experience of fighting the COVID-19 epidemic has also confirmed the great significance of contactless sensation. Herein, a wearable smart-sensing platform using silk fibroin-reduced graphene oxide (SF-rGO) as bifunctional sensing active layers has been fabricated and integrated with a noncontact moisture/thermo sensor and Joule heater. As a result, the as-prepared smart sensor operated at 0.1 V exhibits good stability and sensitivity (sensor response of 60 for 97% RH) under a wide linear range of 6-97% RH, fast response/recover speed (real test: 21.51 s/85.62 s) toward touch-free humidity/temperature sensing for wearables, and thermal readings that can be accurately corrected by Joule heater. Impressively, it can achieve breath monitoring, mental state prediction, or elevator switching by identifying fingertip humidity variation. Prospectively, this all-in-one wearable smart sensor would set an example for improving sensing performance from structure-function relationship points of view and building a noncontact sensing system for daily life.
Collapse
Affiliation(s)
- Yu Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
- Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Junlin Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Liuxue Shen
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wenrui Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kai Yang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Boyu Zhu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yupeng Yang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongting Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xize Chen
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shubin Bai
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nan Zhu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
21
|
Guo P, Tian B, Liang J, Yang X, Tang G, Li Q, Liu Q, Zheng K, Chen X, Wu W. An All-Printed, Fast-Response Flexible Humidity Sensor Based on Hexagonal-WO 3 Nanowires for Multifunctional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304420. [PMID: 37358069 DOI: 10.1002/adma.202304420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 06/27/2023]
Abstract
The utilization of printing techniques for the development of high-performance humidity sensors holds immense significance for various applications in the fields of the Internet of Things, agriculture, human healthcare, and storage environments. However, the long response time and low sensitivity of current printed humidity sensors limit their practical applications. Herein, a series of high-sensing-performance flexible resistive-type humidity sensors is fabricated by the screen-printing method, and hexagonal tungsten oxide (h-WO3 ) is employed as the humidity-sensing material due to its low cost, strong chemical adsorption ability, and excellent humidity-sensing ability. The as-prepared printed sensors exhibit high sensitivity, good repeatability, outstanding flexibility, low hysteresis, and fast response (1.5 s) in a wide relative humidity (RH) range (11-95% RH). Furthermore, the sensitivity of humidity sensors can be easily adjusted by altering the manufacturing parameters of the sensing layer and interdigital electrode to meet the diverse requirements of specific applications. The printed flexible humidity sensors possess immense potential in various applications, including wearable devices, non-contact measurements, and packaging opening state monitoring.
Collapse
Affiliation(s)
- Panwang Guo
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Bin Tian
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiuping Yang
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Guilin Tang
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Quancai Li
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Qun Liu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Ke Zheng
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiong Chen
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, 430072, P. R. China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
22
|
Wang H, Tang C, Xu J. A highly sensitive flexible humidity sensor based on conductive tape and a carboxymethyl cellulose@graphene composite. RSC Adv 2023; 13:27746-27755. [PMID: 37727318 PMCID: PMC10506538 DOI: 10.1039/d3ra05232j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Flexible humidity sensors have found new applications in diverse fields including human healthcare, the Internet of Things, and so on. In this paper, a highly sensitive humidity sensor based on carboxymethyl cellulose@graphene and conductive adhesive tape was developed. The sensor was constructed on conductive tape which acted as both of the flexible substrate and the electrode to transmit electronic signals. A carboxymethyl cellulose@graphene composite was assembled on the substrate as the sensing layer by a simple spreading method in a 3-D printed groove mold. The sensitive material was characterized for its morphology, composition, crystalline phase, and hydrophilicity by SEM, EDS, XRD, and contact angle measurements. The effect of graphene on the sensitivity was investigated in detail by adjusting the doping concentration. Humidity sensing performance was tested in different relative humidity levels. The rapid responses under different respiratory conditions demonstrated their practical usability in continuous respiration monitoring and recognition of respiratory status. The conductive mechanism of the sensing film was studied by complex impedance spectroscopy under different relative humidity levels. A rational sensing mechanism was proposed integrating ionic conduction, electron conduction and swelling behavior of the carboxymethyl cellulose@graphene composite.
Collapse
Affiliation(s)
- Haoxiang Wang
- Faculty of Mechanical Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Chengli Tang
- College of Information Science and Engineering, Jiaxing University Jiaxing 314001 China
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Jiaxing University Jiaxing 314001 China
| | - Jun Xu
- First Affiliated Hospital of Jiaxing University Jiaxing 314000 China
| |
Collapse
|
23
|
Yang Y, Wang J, Lou J, Yao H, Zhao C. Fast response humidity sensor based on hyperbranched zwitterionic polymer for respiratory monitoring and non-contact human machine interface. CHEMICAL ENGINEERING JOURNAL 2023; 471:144582. [DOI: 10.1016/j.cej.2023.144582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
24
|
Sysoev VI, Gurova OA, Fedoseeva YV, Gusel'nikov AV, Makarova AA, Okotrub AV, Bulusheva LG. Tuning humidity sensing properties via grafting fluorine and nitrogen-containing species on single-walled carbon nanotubes. Phys Chem Chem Phys 2023; 25:19976-19985. [PMID: 37461330 DOI: 10.1039/d3cp01550e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The effect of humidity on the electrical conductivity of single-walled carbon nanotube (SWCNT) films depends on both the conductivity of individual nanotubes and the electrical contacts between them. Here, we study these factors by comparing the sensor response of nanotubes with fluorine- and nitrogen-containing groups attached to the sidewalls. Experiments carried out in a wide range of relative humidity (RH) at room and elevated temperatures showed that the conductivity of non-functionalized SWCNTs and contacts between them decreases upon the adsorption of water molecules. Covalent fluorination reduces the conductivity of SWCNTs and significantly increases the sensitivity of the film to low concentrations of water vapor. The response at high RH decreases due to the large number of water molecules adsorbed on the conductive regions of the nanotubes. As a result of substitutional reactions of fluorinated SWCNTs with dimethylformamide and ethylenediamine, nitrogen-containing groups are added, the amount of which, however, is much less than the amount of fluorine. This modification of the SWCNTs improves intertube contacts in the film and increases the surface area for water adsorption. Our results show that an increase in the number of functional groups on the SWCNT surface enhances the sensitivity of the sensor to low water concentrations and worsens the response at high RH. SWCNTs modified with ethylenediamine have the highest sensitivity over the entire range of RH.
Collapse
Affiliation(s)
- Vitalii I Sysoev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| | - Olga A Gurova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| | - Yuliya V Fedoseeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| | - Artem V Gusel'nikov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| | - Anna A Makarova
- Physical Chemistry, Institute of Chemistry and Biochemistry, Free University of Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Alexander V Okotrub
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| | - Lyubov G Bulusheva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| |
Collapse
|
25
|
Durmaz E, Sertkaya S, Yilmaz H, Olgun C, Ozcelik O, Tozluoglu A, Candan Z. Lignocellulosic Bionanomaterials for Biosensor Applications. MICROMACHINES 2023; 14:1450. [PMID: 37512761 PMCID: PMC10384395 DOI: 10.3390/mi14071450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
The rapid population growth, increasing global energy demand, climate change, and excessive use of fossil fuels have adversely affected environmental management and sustainability. Furthermore, the requirements for a safer ecology and environment have necessitated the use of renewable materials, thereby solving the problem of sustainability of resources. In this perspective, lignocellulosic biomass is an attractive natural resource because of its abundance, renewability, recyclability, and low cost. The ever-increasing developments in nanotechnology have opened up new vistas in sensor fabrication such as biosensor design for electronics, communication, automobile, optical products, packaging, textile, biomedical, and tissue engineering. Due to their outstanding properties such as biodegradability, biocompatibility, non-toxicity, improved electrical and thermal conductivity, high physical and mechanical properties, high surface area and catalytic activity, lignocellulosic bionanomaterials including nanocellulose and nanolignin emerge as very promising raw materials to be used in the development of high-impact biosensors. In this article, the use of lignocellulosic bionanomaterials in biosensor applications is reviewed and major challenges and opportunities are identified.
Collapse
Affiliation(s)
- Ekrem Durmaz
- Department of Forest Industrial Engineering, Kastamonu University, 37200 Kastamonu, Turkey
| | - Selva Sertkaya
- Department of Forest Industrial Engineering, Duzce University, 81620 Duzce, Turkey
| | - Hande Yilmaz
- Department of Forest Industrial Engineering, Duzce University, 81620 Duzce, Turkey
| | - Cagri Olgun
- Department of Forest Industrial Engineering, Kastamonu University, 37200 Kastamonu, Turkey
| | - Orhan Ozcelik
- Department of Aerospace Engineering, Ankara Yildirim Beyazit University, 06010 Ankara, Turkey
| | - Ayhan Tozluoglu
- Department of Forest Industrial Engineering, Duzce University, 81620 Duzce, Turkey
- Biomaterials and Nanotechnology Research Group & BioNanoTeam, 34473 Istanbul, Turkey
| | - Zeki Candan
- Biomaterials and Nanotechnology Research Group & BioNanoTeam, 34473 Istanbul, Turkey
- Department of Forest Industrial Engineering, Istanbul University Cerrahpasa, 34473 Istanbul, Turkey
| |
Collapse
|
26
|
Pan T, Yu Z, Huang F, Yao H, Hu G, Tang C, Gu J. Flexible Humidity Sensor with High Sensitivity and Durability for Respiratory Monitoring Using Near-Field Electrohydrodynamic Direct-Writing Method. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37262400 DOI: 10.1021/acsami.3c04283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The humidity of breath can serve as an important health indicator, providing crucial clinical information about human physiology. Significant progress had been made in the development of flexible humidity sensors. However, improving its humidity sensing performance (sensitivity and durability) is still facing many challenges. In this work, near-field electrohydrodynamic direct writing (NFEDW) was proposed to fabricate humidity sensors with high sensitivity and durability for respiration monitoring. Due to the applied electric field, dense carbon nanotube/cellulose nanofiber (CNT/CNF) networks formed during the printing process that enhance the sensitivity of the sensor. The prepared sensor showed excellent humidity responses, with a maximum response value of 61.5% (ΔR/R0) at 95% relative humidity (RH). Additionally, the sensitivity film prepared by the NFEDW method closely fits the poly(ethylene terephthalate) (PET) substrate, endowing the sensor with outstanding bending (with a maximum curvature of 4.7 cm-1) and folding durability (up to 50 times). The sensitivity of the prepared sensor under different simulated conditions, namely, nose breathing, mouth breathing, coughing, yawning, breath holding, and speaking, was excellent, demonstrating the potential of the sensor for the real-time monitoring of human breath humidity. Thus, the high-performance flexible humidity sensor is suitable for human respiration and health monitoring.
Collapse
Affiliation(s)
- Taiyao Pan
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, Jiaxing 341000, China
| | - Zhiheng Yu
- College of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314000, China
| | - Fengli Huang
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, Jiaxing 341000, China
| | - Haoyang Yao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Guohong Hu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Chengli Tang
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, Jiaxing 341000, China
| | - Jinmei Gu
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province, Engineering Research Center of Intelligent Human Health Situation Awareness of Zhejiang Province, Jiaxing University, Jiaxing 341000, China
| |
Collapse
|
27
|
Yin Z, Li M, Li Z, Deng Y, Xue M, Chen Y, Ou J, Lei S, Luo Y, Xie C. A harsh environment resistant robust Co(OH) 2@stearic acid nanocellulose-based membrane for oil-water separation and wastewater purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118127. [PMID: 37178465 DOI: 10.1016/j.jenvman.2023.118127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Traditional membranes are inefficient in treating highly toxic organic pollutants and oily wastewater in harsh environments, which is difficult to meet the growing demand for green development. Herein, the Co(OH)2@stearic acid nanocellulose-based membrane was prepared by depositing Co(OH)2 on the nanocellulose-based membrane (NBM) through chemical soaking method, which enables efficient oil/water mixtures separation and degradation of pollutants by photocatalysis in harsh environments. The Co(OH)2@stearic acid nanocellulose-based membrane (Co(OH)2@stearic acid NBM) shows good photocatalytic degradation performance for methylene blue pollutants in harsh environment, and has significant degradation rate (93.66%). At the same time, the Co(OH)2@stearic acid NBM with superhydrophobicity and superoleophilicity also exhibits respectable oil/water mixtures separation performance (n-Hexane, dimethyl carbonate, chloroform and toluene) under harsh environment (strong acid/strong alkali), which has an excellent oil-water mixtures separation flux of 87 L·m-2·h-1 (n-Hexane/water) and oil-water mixture separation efficiency of over 93% (n-Hexane/water). In addition, this robust Co(OH)2@stearic acid NBM shows good self-cleaning and recycling performance. Even though seven oil-water separation tests have been carried out under harsh environment, it can still maintain respectable oil-water mixture separation rate and flux. The multifunctional membrane has excellent resistance to harsh environments, oil-water separation and pollutant degradation can be performed even in harsh environments, which provides a convenient way to treat sewage under harsh conditions efficiently and has great potential in practical application.
Collapse
Affiliation(s)
- Zuozhu Yin
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Min Li
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Zihao Li
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Yuanting Deng
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Mingshan Xue
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Yuhua Chen
- School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, 696 Fenghe South Road, Nanchang, 330063, China
| | - Junfei Ou
- School of Materials Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Sheng Lei
- School of Materials Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yidan Luo
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Chan Xie
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| |
Collapse
|
28
|
Korotcenkov G, Simonenko NP, Simonenko EP, Sysoev VV, Brinzari V. Paper-Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081381. [PMID: 37110966 PMCID: PMC10144639 DOI: 10.3390/nano13081381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
This review article covers all types of paper-based humidity sensor, such as capacitive, resistive, impedance, fiber-optic, mass-sensitive, microwave, and RFID (radio-frequency identification) humidity sensors. The parameters of these sensors and the materials involved in their research and development, such as carbon nanotubes, graphene, semiconductors, and polymers, are comprehensively detailed, with a special focus on the advantages/disadvantages from an application perspective. Numerous technological/design approaches to the optimization of the performances of the sensors are considered, along with some non-conventional approaches. The review ends with a detailed analysis of the current problems encountered in the development of paper-based humidity sensors, supported by some solutions.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia;
| | - Vladimir Brinzari
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| |
Collapse
|
29
|
Nanocellulose-based sensors in medical/clinical applications: The state-of-the-art review. Carbohydr Polym 2023; 304:120509. [PMID: 36641173 DOI: 10.1016/j.carbpol.2022.120509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
In recent years, the considerable importance of healthcare and the indispensable appeal of curative issues, particularly the diagnosis of diseases, have propelled the invention of sensing platforms. With the development of nanotechnology, the integration of nanomaterials in such platforms has been much focused on, boosting their functionality in many fields. In this direction, there has been rapid growth in the utilisation of nanocellulose in sensors with medical applications. Indeed, this natural nanomaterial benefits from striking features, such as biocompatibility, cytocompatibility and low toxicity, as well as unprecedented physical and chemical properties. In this review, different classifications of nanocellulose-based sensors (biosensors, chemical and physical sensors), alongside some subcategories manufactured for health monitoring, stand out. Moreover, the types of nanocellulose and their roles in such sensors are discussed.
Collapse
|
30
|
Hu X, Yu X, Xiong X, Li S, Jin T, Chen Y. Enhancing anti‐thermal hysteresis ability, response stability and sensitivity of polymer humidity sensor by in‐situ crosslinking curing method. J Appl Polym Sci 2023. [DOI: 10.1002/app.53868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Xuqi Hu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
- CAS Testing Technical Services (Guangzhou) Co. Ltd. Guangzhou China
| | - Xueting Yu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
- CAS Testing Technical Services (Guangzhou) Co. Ltd. Guangzhou China
| | - Xiaoyan Xiong
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
- CAS Testing Technical Services (Guangzhou) Co. Ltd. Guangzhou China
- New Materials Research Institute of CASCHEM (Chongqing) Co., Ltd. Chongqing China
| | - Siyi Li
- CAS Testing Technical Services (Guangzhou) Co. Ltd. Guangzhou China
| | - Tao Jin
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
- CAS Testing Technical Services (Guangzhou) Co. Ltd. Guangzhou China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou China
- CAS Engineering Laboratory for Special Fine Chemicals Chinese Academy of Sciences Guangzhou China
| | - Yufang Chen
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
- CAS Testing Technical Services (Guangzhou) Co. Ltd. Guangzhou China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou China
- CAS Engineering Laboratory for Special Fine Chemicals Chinese Academy of Sciences Guangzhou China
| |
Collapse
|
31
|
Ultrasensitive and Self-Powered Multiparameter Pressure-Temperature-Humidity Sensor Based on Ultra-Flexible Conductive Silica Aerogel. Gels 2023; 9:gels9020162. [PMID: 36826333 PMCID: PMC9956380 DOI: 10.3390/gels9020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The application of silica aerogel has been limited because of its poor mechanical properties. In order to expand the application scope of silica aerogel, this study fabricated an ultra-flexible conductive silica aerogel as a multiparameter sensor. The sample is fabricated by introducing poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) on a base of ultra-flexible silica aerogel, which was prepared by a diene synthesis reaction at atmospheric pressure. The pressure, temperature, and humidity can be converted into electrical signals. The pressure sensitivity can reach up to 54.88 kPa-1, and the detection limit is as low as 5 Pa. The temperature resolution is up to 0.1 K, and the response time of humidity is within 4 s. More importantly, the developed multiparameter sensor can be self-powered to realize multiparameter sensing of pressure, temperature, and humidity. The ultra-flexible conductive silica aerogel is a promising candidate for monitoring human activities and fire-affected areas.
Collapse
|
32
|
Ding S, Yin T, Zhang S, Yang D, Zhou H, Guo S, Li Q, Wang Y, Yang Y, Peng B, Yang R, Jiang Z. Fast-speed, Highly Sensitive, Flexible Humidity Sensors Based on a Printable Composite of Carbon Nanotubes and Hydrophilic Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1474-1481. [PMID: 36641772 DOI: 10.1021/acs.langmuir.2c02827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon nanotubes (CNTs) are a promising material for humidity sensors and wearable electronics due to their solution capability, good flexibility, and high conductivity. However, the performance of CNT-based humidity sensors is limited by their low sensitivity and slow response. Herein CNTs and hydrophilic polymers were mixed to form a composite. The hydrophilicity of the polymers and the network structure of the CNTs empowered the humidity sensors with a high response of 171% and a fast response/recovery time of 23 s/10 s. Owing to the sticky and flexible polymers, the humidity sensors showed strong adhesion to the PET substrate and exhibited outstanding bending durability. Furthermore, the flexible humidity sensor was applied to monitor human breathing and detect finger movements and handshaking.
Collapse
Affiliation(s)
- Su Ding
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Tong Yin
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Shucheng Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Dingyi Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Houlin Zhou
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Shouchen Guo
- School of Electronic Engineering, Xidian University, Xi'an 710126, China
| | - Qikun Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Yong Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Guangzhou 572000, China
| | - Biaolin Peng
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Zhi Jiang
- Innovative Center for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
33
|
Liu E, Cai Z, Ye Y, Zhou M, Liao H, Yi Y. An Overview of Flexible Sensors: Development, Application, and Challenges. SENSORS (BASEL, SWITZERLAND) 2023; 23:817. [PMID: 36679612 PMCID: PMC9863693 DOI: 10.3390/s23020817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The emergence and advancement of flexible electronics have great potential to lead development trends in many fields, such as "smart electronic skin" and wearable electronics. By acting as intermediates to detect a variety of external stimuli or physiological parameters, flexible sensors are regarded as a core component of flexible electronic systems and have been extensively studied. Unlike conventional rigid sensors requiring costly instruments and complicated fabrication processes, flexible sensors can be manufactured by simple procedures with excellent production efficiency, reliable output performance, and superior adaptability to the irregular surface of the surroundings where they are applied. Here, recent studies on flexible sensors for sensing humidity and strain/pressure are outlined, emphasizing their sensory materials, working mechanisms, structures, fabrication methods, and particular applications. Furthermore, a conclusion, including future perspectives and a short overview of the market share in this field, is given for further advancing this field of research.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Yi
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
34
|
Han M, Shen W. Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing. Carbohydr Polym 2022; 298:120109. [DOI: 10.1016/j.carbpol.2022.120109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022]
|
35
|
Srikrishnarka P, Dasi RM, Jana SK, Ahuja T, Kumar JS, Nagar A, Kini AR, George B, Pradeep T. Toward Continuous Breath Monitoring on a Mobile Phone Using a Frugal Conducting Cloth-Based Smart Mask. ACS OMEGA 2022; 7:42926-42938. [PMID: 36467907 PMCID: PMC9713799 DOI: 10.1021/acsomega.2c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
A frugal humidity sensor that can detect changes in the humidity of exhaled breath of individuals has been fabricated. The sensor comprises a humidity-sensitive conducting polymer that is in situ formed on a cloth that acts as a substrate. Interdigitated silver electrodes were screen-printed on the modified cloth, and conducting threads connected the electrodes to the measurement circuit. The sensor's response to changing humidity was measured as a voltage drop across the sensor using a microcontroller. The sensor was capable of discerning between fast, normal, and slow breathing based on the response time. A response time of ∼1.3 s was observed for fast breathing. An Android-based mobile application was designed to collect sensor data via Bluetooth for analysis. A time series classification algorithm was implemented to analyze patterns in breathing. The sensor was later stitched onto a face mask, transforming it into a smart mask that can monitor changes in the breathing pattern at work, play, and sleep.
Collapse
Affiliation(s)
- Pillalamarri Srikrishnarka
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
- Department
of Chemical Engineering, Indian Institute
of Technology, Chennai 600036, India
| | - Raaga Madhuri Dasi
- Department
of Electrical Engineering, Indian Institute
of Technology, Chennai 600036, India
| | - Sourav Kanti Jana
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Tripti Ahuja
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Jenifer Shantha Kumar
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Ankit Nagar
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Amoghavarsha Ramachandra Kini
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
| | - Boby George
- Department
of Electrical Engineering, Indian Institute
of Technology, Chennai 600036, India
| | - Thalappil Pradeep
- DST
Unit of Nanoscience and Thematic Unit of Excellence, Department of
Chemistry, Indian Institute of Technology, Chennai 600036, India
- International
Centre for Clean Water, IIT Madras Research
Park, 2nd Floor, B-Block,
Kanagam Road, Taramani, Chennai 600113, India
| |
Collapse
|
36
|
Chen R, Tang H, Dai Y, Zong W, Zhang W, He G, Wang X. Robust Bioinspired MXene-Hemicellulose Composite Films with Excellent Electrical Conductivity for Multifunctional Electrode Applications. ACS NANO 2022; 16:19124-19132. [PMID: 36288612 PMCID: PMC9706662 DOI: 10.1021/acsnano.2c08163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/25/2022] [Indexed: 06/15/2023]
Abstract
MXene-based structural materials with high mechanical robustness and excellent electrical conductivity are highly desirable for multifunctional applications. The incorporation of macromolecular polymers has been verified to be beneficial to alleviate the mechanical brittleness of pristine MXene films. However, the intercalation of a large amount of insulating macromolecules inevitably compromises their electrical conductivity. Inspired by wood, short-chained hemicellulose (xylo-oligosaccharide) acts as a molecular binder to bind adjacent MXene nanosheets together; this work shows that this can significantly enhance the mechanical properties without introducing a large number of insulating phases. As a result, MXene-hemicellulose films can integrate a high electrical conductivity (64,300 S m-1) and a high mechanical strength (125 MPa) simultaneously, making them capable of being high-performance electrode materials for supercapacitors and humidity sensors. This work proposes an alternative method to manufacture robust MXene-based structural materials for multifunctional applications.
Collapse
Affiliation(s)
- Ruwei Chen
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Christopher
Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Hao Tang
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuhang Dai
- Electrochemical
Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Wei Zong
- Christopher
Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Wei Zhang
- Christopher
Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Guanjie He
- Christopher
Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Electrochemical
Innovation Lab, Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
- School
of Engineering and Materials Science, Queen
Mary University of London, London
E1 4NS, United Kingdom
| | - Xiaohui Wang
- State
Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
37
|
Zhu P, Wei Y, Kuang Y, Qian Y, Liu Y, Jiang F, Chen G. Porous and conductive cellulose nanofiber/carbon nanotube foam as a humidity sensor with high sensitivity. Carbohydr Polym 2022; 292:119684. [PMID: 35725212 DOI: 10.1016/j.carbpol.2022.119684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
In this study, we developed a humidity sensor with high sensitivity based on cellulose nanofiber/carbon nanotube (CNF/CNT) hybrid foam. The porous structure of the foam not only provides more contact interface for water molecules adsorption, but also tunes the conductivity of the CCF closed to the point where the sensor is most sensitive to the change in humidity. With this porous structural design, the obtained foam sensor shows a high humidity sensitivity of 87.3% (ΔI/I0, and the response limit is 100%), excellent linearity (R2 = 0.996) within the humidity range from 29 to 95% relative humidity (RH), and good long-time stability (more than two months). Furthermore, the water vapor adsorption behavior of the CNF/CNT foam sensor can be well described by the pseudo-first-order kinetic model. Finally, a simple humidity measuring device based on the CNF/CNT foam is presented, which can find good applications for human breath and fingertip humidity monitoring.
Collapse
Affiliation(s)
- Penghui Zhu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China; Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yuan Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yudi Kuang
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yangyang Qian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yijun Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Gang Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Engineering Technology Research and Development Center of Specialty Paper and Paper-based Functional Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
38
|
Langari MM, Antxustegi MM, Labidi J. Nanocellulose-based sensing platforms for heavy metal ions detection: A comprehensive review. CHEMOSPHERE 2022; 302:134823. [PMID: 35525457 DOI: 10.1016/j.chemosphere.2022.134823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Increase in industrial activities has been arising a severe concern about water pollution caused by heavy metal ions (HMIs), such us lead (Pb2+), cadmium (Cd2+) or mercury (Hg2+). The presence of substantial amounts of these ions in the human body is harmful and can cause serious diseases. Hence, the detection of HMIs in water is of great importance. As technological advances have developed, some conventional methods have become obsolete due to some methodological disadvantages, giving way to a second generation that uses novel sensors. Recently, nanocellulose, as a biocompatible material, has drawn a remarkable attraction for developing sensors owing to its extraordinary physical and chemical properties. This review pays a special attention to the different dimensional nanocellulose-based sensors devised for HMIs recognition. What is more, different sensing techniques (optical and electrochemical), sensing mechanisms and the roles of nanocellulose in such sensors are discussed.
Collapse
Affiliation(s)
- Mahsa Mousavi Langari
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018, Donostia, Spain
| | - M Mirari Antxustegi
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Avenida Otaola 29, 20600, Eibar, Spain
| | - Jalel Labidi
- Biorefinery Processes Research Group, Chemical and Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018, Donostia, Spain.
| |
Collapse
|
39
|
Liu L, Ni Y, Mao J, Li S, Ng KH, Chen Z, Huang J, Cai W, Lai Y. Flexible and Highly Conductive Textiles Induced by Click Chemistry for Sensitive Motion and Humidity Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37878-37886. [PMID: 35948056 DOI: 10.1021/acsami.2c06937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, multifunctional sensors have aroused widespread concerns owing to their vital roles in the healthcare area. However, there are still significant challenges in the fabrication of functionalized integrated devices. In this work, hydrophobic-hydrophilic patterns are constructed on polyester-spandex-blended knitted fabric surface by the chemical click method, enabling accurate deposition of functionalized materials for sensitive and stable motion and humidity sensing. Representatively, a conductive silver nanowire (Ag NW) network was deliberately deposited on only the designated hydrophilic fabric surface to realize accurate, repeatable, and stable motion sensing. Such a Ag NWs sensor recorded a low electrical resistance (below 60 Ω), stable resistance cycling response (over 2000 cycles), and fast response time to humidity (0.46 s) during the sensing evaluation. In addition to experimental sensing, real human motions, such as mouth-opening and joint-flexing (wrist and neck), could also be detected using the same sensor. Similar promising outputs were also obtained over the humidity sensor fabricated over the same chemical click method, except the sensing material was replaced with polydopamine-modified carboxylated carbon nanotubes. The resultant sensor exhibits excellent sensitivity to not only experimentally adjusted environment humidity but also to the moisture content of breath and skin during daily activities. On top of all these, both sensors were fabricated over highly flexible fabric that offers high wearability, promising great application potential in the field of healthcare monitoring.
Collapse
Affiliation(s)
- Lexin Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jiajun Mao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shuhui Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Kim Hoong Ng
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| |
Collapse
|
40
|
Chen X, Li Y, Wang X, Yu H. Origami Paper-Based Stretchable Humidity Sensor for Textile-Attachable Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36227-36237. [PMID: 35912486 DOI: 10.1021/acsami.2c08245] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible and stretchable humidity sensors for wearable purposes have become increasingly important in health care and physiological signal monitoring. However, to the authors' knowledge, there is no report on flexible and stretchable paper-based humidity sensors that are low-cost, easily fabricated, and environmentally friendly. In this work, for the first time, we propose a stretchable, textile-compatible paper-based origami humidity sensor (POHS). The POHS can achieve good stretchability by integrating origami folding structures with a paper substrate, in which an airlaid paper acts as both a sensing material and a sensor substrate. This sensor has high sensitivity, good response, and recovery properties with excellent stability during deformation. This sensor has proved to be capable of dynamically monitoring the breathing rate after 300 folding and unfolding cycles. The flexible and stretchable nature of our POHS ensures that it is compatible for textile attachment and its utility for wearable applications, including respiration rate monitoring and diaper wetting detection. The facile fabrication process and convenient disposal method of the POHS proposed in this study provide feasible solutions for the development of low-cost wearable humidity sensors.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
| | - Yongkai Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
| | - Xiaoyi Wang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
- The School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Hongyu Yu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR
| |
Collapse
|
41
|
Ahmed SA, Xing XL, Liao QB, Li ZQ, Li CY, Xi K, Wang K, Xia XH. Study on Ammonia Content and Distribution in the Microenvironment Based on Covalent Organic Framework Nanochannels. Anal Chem 2022; 94:11224-11229. [PMID: 35917478 DOI: 10.1021/acs.analchem.2c01692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A crack-free micrometer-sized compact structure of 1,3,5-tris(4-aminophenyl)benzene-terephthaldehyde-covalent organic frameworks (TAPB-PDA-COFs) was constructed in situ at the tip of a theta micropipette (TMP). The COF-covered theta micropipette (CTP) then created a stable liquid-gas interface inside COF nanochannels, which was utilized to electrochemically analyze the content and distribution of ammonia gas in the microenvironments. The TMP-based electrochemical ammonia sensor (TEAS) shows a high sensing response, with current increasing linearly from 0 to 50,000 ppm ammonia, owing to the absorption of ammonia gas in the solvent meniscus that connects both barrels of the TEAS. The TEAS also exhibits a short response and recovery time of 5 ± 2 s and 6 ± 2 s, respectively. This response of the ammonia sensor is remarkably stable and repeatable, with a relative standard deviation of 6% for 500 ppm ammonia gas dispensing with humidity control. Due to its fast, reproducible, and stable response to ammonia gas, the TEAS was also utilized as a scanning electrochemical microscopy (SECM) probe for imaging the distribution of ammonia gas in a microspace. This study unlocks new possibilities for using a TMP in designing microscale probes for gas sensing and imaging.
Collapse
Affiliation(s)
- Saud Asif Ahmed
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, P.R. China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiao-Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Qiao-Bo Liao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Cheng-Yong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, P.R. China.,School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, P.R. China
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
42
|
Tie L, Ke Y, Gong Y, Zhang WX, Deng Z. Nanocellulose fine-tuned poly(acrylic acid) hydrogel for enhanced diclofenac removal. Int J Biol Macromol 2022; 213:1029-1036. [PMID: 35700844 DOI: 10.1016/j.ijbiomac.2022.06.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022]
Abstract
Hydrogel was recognized as one of the most promising materials for adsorption of pharmaceuticals and personal care products (PPCPs). The highly efficient bio-based nanocelluloses fine-tuned poly(acrylic acid) hydrogel (PAA/NC) adsorbent was constructed by adjusting aspect ratio, surface charge and crystallinity of NC. The cross-linked networks were fabricated through a single-step free-radical polymerization via steric effect and hydrogen bonds. The uniform three-dimensional structures with abundant macropores and mesopores were in-situ visualized by the cryogenic-scanning electron microscopy (Cryo-SEM). The diclofenac adsorption capacity of TEMPO oxidized cellulose nanofibers (TCNF) incorporated PAA hydrogel (PAA/TCNF, 559.8 mg·g-1) was circa 2.1 times higher than pristine PAA (293.5 mg·g-1) due to the elevated specific surface area, favorable spatial structure with unimpeded channels and abundant surface-charged carboxylic groups. Moreover, PAA/NC hydrogel exhibited a wide-pH applicability and high salinity tolerance. The adsorption was predominantly determined by hydrogen bonds, validated by XPS and FT-IR analysis. It was demonstrated developed PAA/NC hydrogel with unique porous structure significantly enhanced adsorption capacity for potential application in the purification of refractory organic pollutants-containing wastewater.
Collapse
Affiliation(s)
- Luna Tie
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinuo Ke
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yuxiu Gong
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
43
|
Lu Y, Yang G, Shen Y, Yang H, Xu K. Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics. NANO-MICRO LETTERS 2022; 14:150. [PMID: 35869398 PMCID: PMC9307709 DOI: 10.1007/s40820-022-00895-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 05/14/2023]
Abstract
In the past decade, the global industry and research attentions on intelligent skin-like electronics have boosted their applications in diverse fields including human healthcare, Internet of Things, human-machine interfaces, artificial intelligence and soft robotics. Among them, flexible humidity sensors play a vital role in noncontact measurements relying on the unique property of rapid response to humidity change. This work presents an overview of recent advances in flexible humidity sensors using various active functional materials for contactless monitoring. Four categories of humidity sensors are highlighted based on resistive, capacitive, impedance-type and voltage-type working mechanisms. Furthermore, typical strategies including chemical doping, structural design and Joule heating are introduced to enhance the performance of humidity sensors. Drawing on the noncontact perception capability, human/plant healthcare management, human-machine interactions as well as integrated humidity sensor-based feedback systems are presented. The burgeoning innovations in this research field will benefit human society, especially during the COVID-19 epidemic, where cross-infection should be averted and contactless sensation is highly desired.
Collapse
Affiliation(s)
- Yuyao Lu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Geng Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
44
|
Huang L, Yang Y, Ti P, Su G, Yuan Q. Graphene oxide quantum dots attached on wood-derived nanocellulose to fabricate a highly sensitive humidity sensor. Carbohydr Polym 2022; 288:119312. [PMID: 35450617 DOI: 10.1016/j.carbpol.2022.119312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
Abstract
Herein, cellulose nanofibril (CNF) with various carboxyl amounts were prepared via regulating its oxidation degree using TEMPO oxidation. The CNF dispersion was dropped onto the interdigital electrode to be capacitive humidity sensor by the subsequent vacuum freeze-drying. Pure CNF-7 (NaClO content of 7 mmol/g) humidity sensor involves in orderly porous structure, which displays better performance than other CNFs for its moderate carboxyl content and dimension. As uniformly adding appropriate content of graphene oxide quantum dots (GOQD) with larger surface area and active sites, it can be attached on the CNF to construct a three-dimensional interconnected porous structure for their excellent aqueous dispersity as well as differences in morphology and size. Consequently, the CNF/GOQD sensor exhibits the sensitivity as high as 51,840.91 pF/% RH, short response time (30 s)/recovery time (11 s) and excellent reproducibility. The proposed method can provide effective guidance for the design of humidity sensors based on nanomaterials.
Collapse
Affiliation(s)
- Lijun Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials & Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yutong Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials & Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Pu Ti
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials & Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Guoting Su
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials & Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Quanping Yuan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials & Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
45
|
Cheng R, Wang B, Zeng J, Li J, Xu J, Gao W, Chen K. High-Performance and Rapid-Response Electrical Heaters Derived from Cellulose Nanofiber/Silver Nanowire Nanopapers for Portable Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30144-30159. [PMID: 35642419 DOI: 10.1021/acsami.2c04931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-performance electrical heaters with outstanding flexibility, superior portability, and mechanical properties are highly desirable for portable thermal management. However, it is still a huge challenge to simultaneously achieve competent electrical heating performances and excellent mechanical properties. Herein, inspired by the Janus structure, versatile electrical heaters are developed via a sequential assembly followed by a hot-pressing strategy. The elaborately designed Janus structure is composed of a nanofibrillated cellulose (NFC) layer and a partially wrapped silver nanowire (AgNW) skeleton in the NFC substrate. Owing to the perfect introduction of nano-soldered points induced by thermal welding decoration, the resultant NFC/AgNW papers (NAPs) possess great flexibility, excellent mechanical strength (176.75 MPa), extremely low sheet resistance (0.60 Ω/sq), and superior electrical stabilities against mechanical deformations. Moreover, benefitting from these fascinating attributes, the NAP-based electrical heaters exhibit a remarkable heating temperature (∼220 °C), ultrafast electro-thermal response (<10 s), and groundbreaking long-term stability (∼105 °C for >186 h) and repeatability (>20,000 cycles) with low AgNW contents and driving voltages (0.5-5.0 V), which far surpass those of the previously reported and conventional indium tin oxide-based Joule heaters. Impressively, large-area production feasibilities of NAPs are demonstrated and assembled into multifunctional applications, including personal thermal management, healthcare thermotherapy, multifunctional cups, and smart homes, indicating their promising potential for wearable devices, artificial intelligence, and specific heating systems in the fields of aerospace, military, and intelligent life.
Collapse
Affiliation(s)
- Rui Cheng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
46
|
Li X, Anwer S, Guan Q, Anjum DH, Palmisano G, Zheng L. Coupling Long-Range Facet Junction and Interfacial Heterojunction via Edge-Selective Deposition for High-Performance Z-Scheme Photocatalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200346. [PMID: 35466563 PMCID: PMC9218749 DOI: 10.1002/advs.202200346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Indexed: 05/19/2023]
Abstract
The construction of photocatalytic systems that have strong redox capability, effective charge separation, and large reactive surfaces is of great scientific and practical interest. Herein, an edge-connected 2D/2D Z-scheme system that combines the facet junction and the interfacial heterojunction to achieve effective long-range charge separation and large reactive surface exposure is designed and fabricated. The heterostructure is realized by the selective growth of 2D-layered MoS2 nanoflakes on the edge-sites of thin TiO2 nanosheets via an Au-promoted photodeposition method. Attributed to the synergetic coupling of the facet junction and the interfacial heterojunction that assures the effective charge separation, and the tremendous but physically separated reactive sites offered by layered MoS2 and highly-exposed (001) facets of TiO2 , respectively, the artificial Z-scheme exhibits excellent photocatalytic performance in photodegradation tests. Moreover, the junctional plasmonic Au nanoclusters not only act as electron traps to promote the edge-selective synthesis but also generate "hot electrons" to further boost photocatalytic performance. The Z-scheme charge-flow direction in the heterostructure and the roles of electrons and holes are comprehensively studied using in situ irradiated X-ray photoelectron spectroscopy and photodegradation tests. This work offers a new insight into designing high-performance Z-scheme photocatalytic systems.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
- Research and Innovation on CO2 and H2 (RICH) CenterKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Shoaib Anwer
- Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Qiangshun Guan
- Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Dalaver H. Anjum
- Department of PhysicsKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Giovanni Palmisano
- Research and Innovation on CO2 and H2 (RICH) CenterKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
- Department of Chemical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| | - Lianxi Zheng
- Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu Dhabi127788United Arab Emirates
| |
Collapse
|
47
|
Li C, Zhang Y, Yang S, Zhao H, Guo Y, Cong T, Huang H, Fan Z, Liang H, Pan L. A flexible tissue-carbon nanocoil-carbon nanotube-based humidity sensor with high performance and durability. NANOSCALE 2022; 14:7025-7038. [PMID: 35471502 DOI: 10.1039/d2nr00027j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A flexible humidity sensor based on a tissue-carbon nanocoil (CNC)-carbon nanotube (CNT) composite has been investigated. Taking advantage of the excellent water absorption of tissue and the electrical sensitivity of CNCs/CNTs to humidity, this humidity sensor obtains outstanding humidity sensing performance, including a wide sensing range of 10-90% RH, a maximum response value of 492% (ΔR/R0) at 90% RH, a maximum sensitivity of 6.16%/% RH, a good long-time stability of more than 7 days, a high humidity resolution accuracy of less than 1% RH and a fast response time of 275 ms. Furthermore, the sensor also exhibits robust bending (with a curvature of 0.322 cm-1) and folding (up to 500 times) durability, and after being made into a complex "thousand paper crane" shape it still provides stable humidity sensing performance. As a proof of concept, this humidity sensor demonstrates excellent responsivity to human breath monitoring, non-contact fingertip humidity detection, water boiling detection and air humidity monitoring, indicating great potential in the fields of wearable devices, weather forecasting systems and other intelligent humidity monitoring devices.
Collapse
Affiliation(s)
- Chengwei Li
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Yifeng Zhang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Shuaitao Yang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Huitong Zhao
- School of Microelectronics, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Yuan Guo
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Tianze Cong
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Hui Huang
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Zeng Fan
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| | - Hongwei Liang
- School of Microelectronics, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Lujun Pan
- School of Physics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, P. R. China.
| |
Collapse
|
48
|
Liang Q, Zhang D, Wu Y, Chen S, Han Z, Wang B, Wang H. Self-Stretchable Fiber Liquid Sensors Made with Bacterial Cellulose/Carbon Nanotubes for Smart Diapers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21319-21329. [PMID: 35471964 DOI: 10.1021/acsami.2c00960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid sensors for detecting water and body fluids are crucial in daily water usage and health monitoring, but it is challenging to combine sensing performance with high tensile deformation and multifunctional applications. Here, a substrate-free, self-stretchable bacterial cellulose (BC)/carbon nanotube (CNT) helical fiber liquid sensor was prepared by the solution spinning and coiling process using BC as the water-sensitive matrix and CNTs as the active sensing materials. The BC/CNT (BCT) fiber sensor has a high stretch ratio of more than 1000% and a rapid response for a current change rate of 104% within 1 s, which is almost unaffected under washing and various stretching or knotting deformations. By combination of the BCT fiber, we can design smart diapers or water level detectors, which rapidly monitor the status of smart diapers or water level, and the monitoring result can be transferred on time through an alarm device or smartphone. In short, the scalable and continuous preparation of the self-stretchable BCT helical fiber will provide a capacious platform for the development of a wearable sensor applied in daily life (such as smart diapers, water level detection, etc.).
Collapse
Affiliation(s)
- Qianqian Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yuchen Wu
- College of Information Sciences and Technology, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baoxiu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
49
|
Tachibana S, Wang YF, Sekine T, Takeda Y, Hong J, Yoshida A, Abe M, Miura R, Watanabe Y, Kumaki D, Tokito S. A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5721-5728. [PMID: 35067045 DOI: 10.1021/acsami.1c20918] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the emerging Internet of Things (IoT) society, there is a significant need for low-cost, high-performance flexible humidity sensors in wearable devices. However, commercially available humidity sensors lack flexibility or require expensive and complex fabrication methods, limiting their application and widespread use. We report a high-performance printed flexible humidity sensor using a cellulose nanofiber/carbon black (CNF/CB) composite. The cellulose nanofiber enables excellent dispersion of carbon black, which facilitates the ink preparation and printing process. At the same time, its hydrophilic and porous nature provides high sensitivity and fast response to humidity. Significant resistance changes of 120% were observed in the sensor at humidity ranging from 30% RH to 90% RH, with a fast response time of 10 s and a recovery time of 6 s. Furthermore, the developed sensor also exhibited high-performance uniformity, response stability, and flexibility. A simple humidity detection device was fabricated and successfully applied to monitor human respiration and noncontact fingertip moisture as a proof-of-concept.
Collapse
Affiliation(s)
- Shogo Tachibana
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yi-Fei Wang
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tomohito Sekine
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yasunori Takeda
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Jinseo Hong
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ayako Yoshida
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Mai Abe
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Reo Miura
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yushi Watanabe
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Daisuke Kumaki
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
50
|
Ma H, Li X, Lou J, Gu Y, Zhang Y, Jiang Y, Cheng H, Han W. Strong Bacterial Cellulose-Based Films with Natural Laminar Alignment for Highly Sensitive Humidity Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3165-3175. [PMID: 34994532 DOI: 10.1021/acsami.1c20163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Humidity sensors have been widely used for humidity monitoring in industry and agriculture fields. However, the rigid structure, nondegradability, and large dimension of traditional humidity sensors significantly restrict their applications in wearable fields. In this study, a flexible, strong, and eco-friendly bacterial cellulose-based humidity sensor (BPS) was fabricated using a two-step method, involving solvent evaporation-induced self-assembly and electrolyte permeation. Rapid evaporation of organic solvent induces the formation of nanopores of the bacterial cellulose (BC) surface and promotes structural densification. Furthermore, the successful embedding of potassium hydroxide into the sophisticated network of BC effectively enhanced the sensing performance of BPS. The BPS exhibits an excellent humidity sensing response of more than 103 within the relative humidity ranging from 36.4 to 93% and strong (66.4 MPa) and high flexibility properties owing to the ultrafine fiber network and abundant hydrophilic functional groups of BC. Besides being strong and thin, BPS is also highly flexible, biodegradable, and humidity-sensitive, making it a potential candidate in wearable electronics, human health monitoring, and noncontact switching.
Collapse
Affiliation(s)
- Hongliang Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xia Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiang Lou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yujie Gu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yifei Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Heli Cheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Wenjia Han
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|