1
|
Jayasinghe V, Joshi R, Joshi T, Paracha TU, Kooi C, Mostafa MM, Bauer CMT, Charlton SJ, Iartchouk O, Maillet A, Morris MK, Ruda VM, Sandham DA, Wang Y, Newton R, Giembycz MA. Genomic crosstalk between carbachol, a muscarinic receptor agonist, and the long-acting β 2-adrenoceptor agonist, indacaterol, in human airway epithelial cells. J Pharmacol Exp Ther 2025; 392:103579. [PMID: 40305997 DOI: 10.1016/j.jpet.2025.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Many patients with chronic obstructive pulmonary disease are susceptible to recurrent exacerbations. In this study, we hypothesized that endogenous acetylcholine (ACh) may act as a proinflammatory mediator because long-acting muscarinic receptor antagonists protect against exacerbations, which have an inflammatory basis. This possibility was explored by determining if carbachol (CCh), a stable ACh analog, was a genomic stimulus in BEAS-2B bronchial epithelial cells. The ability of CCh to interact with indacaterol (Ind), a long-acting β2-adrenoceptor agonist, was also assessed given that (1) sympathomimetic bronchodilators can promote adverse gene expression changes in airway structural cells, and (2) crosstalk between β2-adrenoceptor and Gq-coupled muscarinic receptor agonists is well described. Unlike Ind, which induced 624 unique genes, CCh was a relatively weak genomic stimulus, implying that ACh may not behave as a proinflammatory mediator as hypothesized. Nevertheless, checkerboard assays using BEAS-2B cells expressing a cAMP-response element luciferase reporter determined that CCh interacted with Ind in a supra-additive manner and that this interaction was replicated on 39 Ind-regulated genes. Functional annotation of the Ind-regulated transcriptomes identified "transcription" and "signalling" as the dominant themes, with gene ontology terms associated with "inflammation" and "immune processes" being highly represented. A comparable gene ontology signature was obtained when Ind and CCh were combined; however, the number, magnitude and duration of gene expression changes were significantly enhanced. If genomic interactions occur between a long-acting β2-adrenoceptor agonist and ACh in vivo, then they may enhance the expression of adverse-effect genes that could maintain, or even augment, features of lung pathology in chronic obstructive pulmonary disease. SIGNIFICANCE STATEMENT: Long-acting muscarinic receptor antagonists reduce exacerbation risk in chronic obstructive pulmonary disease, implying the etiology could have an inflammatory basis mediated by acetylcholine. However, in BEAS-2B cells, carbachol was a weak genomic stimulus, although it enhanced changes in indacaterol-regulated gene expression. Functional annotation of carbachol + indacaterol-regulated genes identified gene ontology terms associated with several themes, including inflammation. Interaction between a long-acting β2-adrenoceptor agonist and endogenous acetylcholine could, paradoxically, augment airway inflammation in patients with chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Varuna Jayasinghe
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taruna Joshi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamkeen U Paracha
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mahmoud M Mostafa
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | - Vera M Ruda
- Novartis Biomedical Research, Cambridge, Massachusetts
| | | | - Yanqun Wang
- Novartis Biomedical Research, Cambridge, Massachusetts
| | - Robert Newton
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Lung Health Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Zhang X, Vlkolinsky R, Wu C, Dolatabadi N, Scott H, Prikhodko O, Zhang A, Blanco M, Lang N, Piña-Crespo J, Nakamura T, Roberto M, Lipton SA. S-Nitrosylation of CRTC1 in Alzheimer's disease impairs CREB-dependent gene expression induced by neuronal activity. Proc Natl Acad Sci U S A 2025; 122:e2418179122. [PMID: 40014571 PMCID: PMC11892585 DOI: 10.1073/pnas.2418179122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
cAMP response element-binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) plays an important role in synaptic plasticity, learning, and long-term memory formation through the regulation of neuronal activity-dependent gene expression, and CRTC1 dysregulation is implicated in Alzheimer's disease (AD). Here, we show that increased S-nitrosylation of CRTC1 (forming SNO-CRTC1), as seen in cell-based, animal-based, and human-induced pluripotent stem cell (hiPSC)-derived cerebrocortical neuron-based AD models, disrupts its binding with CREB and diminishes the activity-dependent gene expression mediated by the CRTC1/CREB pathway. We identified Cys216 of CRTC1 as the primary target of S-nitrosylation by nitric oxide (NO)-related species. Using CRISPR/Cas9 techniques, we mutated Cys216 to Ala in hiPSC-derived cerebrocortical neurons bearing one allele of the APPSwe mutation (AD-hiPSC neurons). Introduction of this nonnitrosylatable CRTC1 mutant rescued defects in AD-hiPSC neurons, including decreased neurite length and increased neuronal cell death. Additionally, expression of nonnitrosylatable CRTC1 in vivo in the hippocampus rescued synaptic plasticity in the form of long-term potentiation in 5XFAD mice. Taken together, these results demonstrate that formation of SNO-CRTC1 contributes to the pathogenesis of AD by attenuating the neuronal activity-dependent CREB transcriptional pathway, and suggests a therapeutic target for AD.
Collapse
Affiliation(s)
- Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Roman Vlkolinsky
- Department of Translational Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Chongyang Wu
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Nima Dolatabadi
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Henry Scott
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Olga Prikhodko
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA92093
| | - Andrew Zhang
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Mayra Blanco
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Nhi Lang
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Juan Piña-Crespo
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Marisa Roberto
- Department of Translational Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, CA92037
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA92093
| |
Collapse
|
3
|
Ravenhill BJ, Oliveira M, Wood G, Di Y, Kite J, Wang X, Davies CTR, Lu Y, Antrobus R, Elliott G, Irigoyen N, Hughes DJ, Lyons PA, Chung B, Borner GHH, Weekes MP. Spatial proteomics identifies a CRTC-dependent viral signaling pathway that stimulates production of interleukin-11. Cell Rep 2025; 44:115263. [PMID: 39921859 DOI: 10.1016/j.celrep.2025.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/09/2024] [Accepted: 01/12/2025] [Indexed: 02/10/2025] Open
Abstract
Appropriate cellular recognition of viruses is essential for the generation of an effective innate and adaptive immune response. Viral sensors and their downstream signaling components thus provide a crucial first line of host defense. Many of them exhibit subcellular relocalization upon activation, resulting in the expression of interferon and antiviral genes. To comprehensively identify signaling factors, we analyzed protein relocalization on a global scale during viral infection. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivators 2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon infection with multiple viruses in diverse cell types. This movement was dependent on mitochondrial antiviral signaling protein (MAVS), cyclo-oxygenase proteins, and protein kinase A. A key effect of CRTC2/3 translocation is transcription of the fibro-inflammatory cytokine interleukin (IL)-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2. Nuclear translocation of CRTC2/3 is, therefore, identified as an important pathway in the context of viral infection.
Collapse
Affiliation(s)
- Benjamin J Ravenhill
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marisa Oliveira
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - George Wood
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ying Di
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Joanne Kite
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xinyue Wang
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Colin T R Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gill Elliott
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Nerea Irigoyen
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David J Hughes
- School of Biology, University of St. Andrews, St. Andrews, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Betty Chung
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Georg H H Borner
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Onda DA, Zhu Y, Yuan X, Loh K. Central and Peripheral Roles of Salt-inducible Kinases in Metabolic Regulation. Endocrinology 2025; 166:bqaf024. [PMID: 39919030 DOI: 10.1210/endocr/bqaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025]
Abstract
Salt-inducible kinases (SIKs), a member of the serine/threonine protein kinase family, have recently garnered considerable research interest as one of the emerging key regulators of metabolism. The 3 SIK isoforms-SIK1, SIK2, and SIK3-exhibit diverse roles both in central and peripheral physiological processes. While early studies focused on their role in inflammation, spurring the development of SIK inhibitors for chronic inflammatory diseases currently in clinical trials, emerging evidence highlights their broader functions in metabolism. In this review, we will summarize the current state of research on the central roles of SIKs in the brain, particularly in regulating energy balance and glucose homeostasis, alongside their peripheral functions in critical metabolic tissues such as the liver, adipose tissue, and pancreas. By integrating insights into their central and peripheral roles, this review underscores the importance of SIKs in maintaining metabolic homeostasis and highlights their therapeutic potential as novel targets for metabolic disease.
Collapse
Affiliation(s)
- Danise-Ann Onda
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
| | - Yifei Zhu
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
| | - XiaoZhuo Yuan
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
| | - Kim Loh
- Diabetes and Metabolic Disease, St. Vincent's Institute of Medical Research, Melbourne, VIC 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
5
|
Yang L, Zeng XT, Luo RH, Tang Y, Ren SX, Long XY, Fu XH, Zhang WJ, Ren HY, Zheng YT, Cheng W. CRTC3 restricts SARS-CoV-2 replication and is antagonized by CREB. Virol Sin 2025; 40:92-108. [PMID: 39736320 PMCID: PMC11963146 DOI: 10.1016/j.virs.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025] Open
Abstract
Virus-encoding RNA-dependent RNA polymerase (RdRp) is essential for genome replication and gene transcription of human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We previously identified the interaction between the catalytic subunit NSP12 of SARS-CoV-2 RdRp and the host protein CREB-regulated transcription coactivator 3 (CRTC3), a member of the CRTC family that regulates cyclic AMP response element-binding protein (CREB)-mediated transcriptional activation. Currently, the implication of CRTC3 in the pathogenesis of HCoVs is poorly understood. Herein, we demonstrated that CRTC3 attenuates RdRp activity and SARS-CoV-2 genome replication, therefore reducing the production of progeny viruses. The interaction of CRTC3 with NSP12 contributes to its inhibitory effect on RdRp activity. Furthermore, we expanded the suppressive effects of two other CRTC family members (CRTC1 and CRTC2) on the RdRp activities of lethal HCoVs, including SARS-CoV-2 and Middle East respiratory syndrome coronavirus (MERS-CoV), along with the CREB antagonization. Overall, our research suggests that CRTCs restrict the replication of HCoVs and are antagonized by CREB, which not only provides new insights into the replication regulation of HCoVs, but also offers important information for the development of anti-HCoV interventions.
Collapse
Affiliation(s)
- Li Yang
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiao-Tao Zeng
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; Research and Innovation Center, Pengzhou People's Hospital, Pengzhou 610000, China
| | - Rong-Hua Luo
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Tang
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Si-Xue Ren
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xin-Yan Long
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiang-Hui Fu
- Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wan-Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine, The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi 832003, China
| | - Hai-Yan Ren
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China.
| | - Wei Cheng
- Department of Pulmonary and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-related Molecular Network, and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Wang X, Wang M, Zhu TT, Zheng ZJ, Li S, Sui ZY, Guo X, Wu S, Zhang NN, Yu ZY, Hu CP, Tang YB, Wang Q, Zhang Z. The TRPM7 chanzyme in smooth muscle cells drives abdominal aortic aneurysm in mice. NATURE CARDIOVASCULAR RESEARCH 2025; 4:216-234. [PMID: 39953275 DOI: 10.1038/s44161-025-00613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Ionic signaling in smooth muscle cells (SMCs) is critical for vascular homeostasis. In this study, we untangled the role of the bifunctional TRPM7 channel kinase (chanzyme) in abdominal aortic aneurysm (AAA) pathogenesis. Comparing SMC-specific, macrophage-specific and endothelial cell-specific Trpm7 knockout, we revealed that SMC-specific Trpm7 deficiency protected mice from AAA in two distinct preclinical models of the disease. We showed that the TRPM7 channel activity increased the Ca2+ and Zn2+ influx and the Ca2+/calcineurin/CRTC2/CREB-dependent and Zn2+/MTF1-dependent Mmp2 transcription. Repurposing the clinical drug FTY720 to prevent and treat AAA resulted in improved aortic phenotypes through inhibition of TRPM7 channel activity. This study highlights the ionic mechanisms underlying AAA, identifies TRPM7 as a potential therapeutic target and suggests that blocking TRPM7 channels could be a viable strategy for treating AAA.
Collapse
MESH Headings
- Animals
- TRPM Cation Channels/metabolism
- TRPM Cation Channels/genetics
- TRPM Cation Channels/antagonists & inhibitors
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Disease Models, Animal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 2/genetics
- Fingolimod Hydrochloride/pharmacology
- Fingolimod Hydrochloride/therapeutic use
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/drug effects
- Mice
- Zinc/metabolism
- Mice, Inbred C57BL
- Male
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Calcium Signaling/drug effects
- Mice, Knockout
- Cells, Cultured
- Humans
- Phenotype
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Mi Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Hunan Key Laboratory of Cardiometabolic Medicine, Central South University, Changsha, China
| | - Tian-Tian Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zi-Jie Zheng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Shuang Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhao-Yi Sui
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xin Guo
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sha Wu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Nai-Ning Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Yi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, China
| | - Yong-Bo Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qing Wang
- Department of Interventional Radiology & Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, China.
| |
Collapse
|
7
|
Ahmad M, Wu S, Luo S, Shi W, Guo X, Cao Y, Perrimon N, He L. Dietary amino acids promote glucagon-like hormone release to generate global calcium waves in adipose tissues in Drosophila. Nat Commun 2025; 16:247. [PMID: 39747032 PMCID: PMC11696257 DOI: 10.1038/s41467-024-55371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Propagation of intercellular calcium waves through tissues has been found to coordinate different multicellular responses. Nevertheless, our understanding of how calcium waves operate remains limited. In this study, we explore the real-time dynamics of intercellular calcium waves in Drosophila adipose tissues. We identify Adipokinetic Hormone (AKH), the fly functional homolog of glucagon, as the key factor driving Ca2+ activities in adipose tissue. We find that AKH, which is released into the hemolymph from the AKH-producing neurosecretory cells, stimulates calcium waves in the larval fat by a previously unrecognized gap-junction-independent mechanism to promote lipolysis. In the adult fat body, however, gap-junction-dependent intercellular calcium waves are triggered by a presumably uniformly diffused AKH. Additionally, we discover that amino acids activate the AKH-producing neurosecretory cells, leading to increased intracellular Ca2+ and AKH secretion. Altogether, we show that dietary amino acids regulate the AKH release from the AKH-producing neurosecretory cells in the brain, which subsequently stimulates gap-junction-independent intercellular calcium waves in adipose tissue, enhancing lipid metabolism.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shang Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shengyao Luo
- Yuanpei College, Peking University, Beijing, China
| | - Wenjia Shi
- Department of Applied Physics, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yuansheng Cao
- Department of Physics, Tsinghua University, Beijing, China.
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
8
|
Paul S, Chatterjee A, Das K, Ray A, Basu A, Mukhopadhyay S, Sen P. Thrombin confers chemotherapeutic resistance by promoting transcriptional induction and post-translational stabilization of pro-survival MCL1 in TNBC. J Biol Chem 2025; 301:108025. [PMID: 39608719 PMCID: PMC11728981 DOI: 10.1016/j.jbc.2024.108025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
The association between idiopathic venous thrombosis and occult cancer is widely recognized. However, the comprehensive understanding of how thrombin, generated during the process of thrombosis, possesses the potential to augment the malignant phenotype is still not well understood. The coagulation protease thrombin mediates its effects by cleaving protease-activated receptor 1 (PAR1), a receptor abundantly expressed on the surface of triple-negative breast cancer (TNBC) cells. While emerging evidence implicates coagulation proteases in facilitating cancer progression, the precise molecular pathways underlying thrombin-mediated induction of chemoresistance remain poorly defined. Here, we demonstrate that thrombin-induced PAR1 activation in TNBC cells promotes the development of a multidrug-resistant phenotype, mechanistically linked to the upregulation of the pro-survival protein MCL1. Genetic ablation of MCL1 sensitizes TNBC cells to cytotoxic drugs despite thrombin exposure, affirming MCL1's functional importance. Chromatin immunoprecipitation analyses reveal thrombin triggers protein kinase A-dependent phosphorylation of serine 133 residues of cAMP-responsive element-binding protein (CREB), enhancing CREB's affinity for the co-activators CBP and p300. Furthermore, thrombin treatment induces the nuclear translocation of CREB-regulated transcription coactivator 2 (CRTC2) in a calcium-dependent manner, which collectively interacts with CREB/CBP-P300. The coordinated action of these transcriptional co-activators facilitates the transcriptional induction of MCL1. We further report that PAR1 activation augments MCL1 binding to the deubiquitinase USP9X, reducing MCL1 turnover. Our pre-clinical breast cancer murine model also shows that genetic deletion of PAR1 sensitizes breast cancer cells to chemotherapeutic drugs in vivo. Collectively, these findings emphasize the thrombin-PAR1 axis as a novel driver of chemoresistance. Utilizing FDA-approved oral anticoagulants for selective blocking of thrombin action may serve as a potential therapeutic adjunct for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Kaushik Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Anushka Ray
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | | | | | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
9
|
Sun Y, Zou Q, Yu H, Yi X, Dou X, Yang Y, Liu Z, Yang H, Jia J, Chen Y, Sun SK, Zhang L. Melanin-like nanoparticles slow cyst growth in ADPKD by dual inhibition of oxidative stress and CREB. EMBO Mol Med 2025; 17:169-192. [PMID: 39567834 PMCID: PMC11730739 DOI: 10.1038/s44321-024-00167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Melanin-like nanoparticles (MNPs) have recently emerged as valuable agents in antioxidant therapy due to their excellent biocompatibility and potent capacity to scavenge various reactive oxygen species (ROS). However, previous studies have mainly focused on acute ROS-related diseases, leaving a knowledge gap regarding their potential in chronic conditions. Furthermore, apart from their well-established antioxidant effects, it remains unclear whether MNPs target other intracellular molecular pathways. In this study, we synthesized ultra-small polyethylene glycol-incorporated Mn2+-chelated MNP (MMPP). We found that MMPP traversed the glomerular filtration barrier and specifically accumulated in renal tubules. Autosomal dominant polycystic kidney disease (ADPKD) is a chronic genetic disorder closely associated with increased oxidative stress and featured by the progressive enlargement of cysts originating from various segments of the renal tubules. Treatment with MMPP markedly attenuated oxidative stress levels, inhibited cyst growth, thereby improving renal function. Interestingly, we found that MMPP effectively inhibits a cyst-promoting gene program downstream of the cAMP-CREB pathway, a crucial signaling pathway implicated in ADPKD progression. Mechanistically, we observed that MMPP directly binds to the bZIP DNA-binding domain of CREB, leading to competitive inhibition of CREB's DNA binding ability and subsequent reduction in CREB target gene expression. In summary, our findings identify an intracellular target of MMPP and demonstrate its potential for treating ADPKD by simultaneously targeting oxidative stress and CREB transcriptional activity.
Collapse
Affiliation(s)
- Yongzhan Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huizheng Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoping Yi
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xudan Dou
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiheng Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hong Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junya Jia
- Department of Nephrology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yupeng Chen
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, China.
| | - Lirong Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Zhang L, Wang JM, Wang L, Zheng S, Bai Y, Fu JL, Wang Y, Zhang JP, Xiao Y, Hou M, Nie Q, Gan YW, Liang XM, Hu XB, Li DWC. The transcription factor CREB regulates epithelial-mesenchymal transition of lens epithelial cells by phosphorylation-dependent and phosphorylation-independent mechanisms. J Biol Chem 2025; 301:108064. [PMID: 39662835 PMCID: PMC11773003 DOI: 10.1016/j.jbc.2024.108064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) is one of the most important pathogenic mechanisms in lens fibrotic disorders, and the regulatory mechanisms of EMT have not been fully understood. Here, we demonstrate that the cAMP-response element binding protein (CREB) can regulate lens EMT in a phosphorylation-dependent and phosphorylation-independent manners with dual mechanisms. First, CREB-S133 phosphorylation is implicated in TGFβ-induced EMT of mouse LECs and also in injury-induced mouse anterior subcapsular cataract model. The interaction between CREB and p300 is necessary for CREB regulation of TGFβ-induced EMT, since inhibition of CREB-p300 interaction and p300 knockdown led to attenuated expression of mesenchymal genes. Second, S133A-CREB, a mutant mimicking constant dephosphorylation at S133, exhibits notable occupancy in the enhancers of mesenchymal genes and confers robust transcription activity on EMT genes. Introduction of R314A mutation in S133A-CREB, which abolishes the interaction between S133A-CREB and its co-activator, cAMP-regulated transcriptional co-activators led to substantial suppression of mesenchymal gene expression in mouse LECs. Taken together, our results showed that CREB regulates lens EMT in dual mechanisms and that the S133A-CREB acts as a novel transcription factor. Mechanistically, CREB interacts with p300 in a S133 phosphorylation-dependent manner to positively regulate lens EMT genes. In contrast, S133A-CREB interacts with cAMP-regulated transcriptional co-activators to confer a robust activation of lens EMT genes.
Collapse
Affiliation(s)
- Lan Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jing-Miao Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuyu Zheng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yueyue Bai
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Ping Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Hou
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Wen Gan
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing-Miao Liang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xue-Bin Hu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Young M, Booth DM, Smith D, Tigano M, Hajnόczky G, Joseph SK. Transcriptional regulation in the absence of inositol trisphosphate receptor calcium signaling. Front Cell Dev Biol 2024; 12:1473210. [PMID: 39712573 PMCID: PMC11659226 DOI: 10.3389/fcell.2024.1473210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The activation of IP3 receptor (IP3R) Ca2+ channels generates agonist-mediated Ca2+ signals that are critical for the regulation of a wide range of biological processes. It is therefore surprising that CRISPR induced loss of all three IP3R isoforms (TKO) in HEK293 and HeLa cell lines yields cells that can survive, grow and divide, albeit more slowly than wild-type cells. In an effort to understand the adaptive mechanisms involved, we have examined the activity of key Ca2+ dependent transcription factors (NFAT, CREB and AP-1) and signaling pathways using luciferase-reporter assays, phosphoprotein immunoblots and whole genome transcriptomic studies. In addition, the diacylglycerol arm of the signaling pathway was investigated with protein kinase C (PKC) inhibitors and siRNA knockdown. The data showed that agonist-mediated NFAT activation was lost but CREB activation was maintained in IP3R TKO cells. Under base-line conditions transcriptome analysis indicated the differential expression of 828 and 311 genes in IP3R TKO HEK293 or HeLa cells, respectively, with only 18 genes being in common. Three main adaptations in TKO cells were identified in this study: 1) increased basal activity of NFAT, CREB and AP-1; 2) an increased reliance on Ca2+- insensitive PKC isoforms; and 3) increased production of reactive oxygen species and upregulation of antioxidant defense enzymes. We suggest that whereas wild-type cells rely on a Ca2+ and DAG signal to respond to stimuli, the TKO cells utilize the adaptations to allow key signaling pathways (e.g., PKC, Ras/MAPK, CREB) to transition to the activated state using a DAG signal alone.
Collapse
Affiliation(s)
- Michael Young
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - David M. Booth
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - David Smith
- Center for Single Cell Biology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marco Tigano
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gyӧrgy Hajnόczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Suresh K. Joseph
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Miyamori H, Yokokawa T, Miyakita M, Ozaki K, Goto T, Inoue K, Matsumura S. CRTC1 in Mc4r-Expressing Cells Is Required for Peripheral Metabolism and Systemic Energy Homeostasis. Diabetes 2024; 73:1976-1989. [PMID: 39264819 DOI: 10.2337/db24-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Melanocortin-4 receptor (Mc4r) is a G protein-coupled receptor that controls systemic energy balance by regulating food intake and energy expenditure. Although the detailed molecular mechanism remains unclear, the activation of cAMP signaling in Mc4r-expressing cells reportedly suppresses food intake and increases energy expenditure. CREBP-regulated transcriptional coactivator-1 (CRTC1) is selectively expressed in neuronal cells and participates in transcriptional control, thereby contributing to neuronal plasticity and energy homeostasis. Considering the cAMP-dependent regulation of CRTC1 activity, CRTC1 in Mc4r-expressing cells may contribute to energy balance regulation through the melanocortin pathway. In this context, we examined the physiological contribution of CRTC1 in Mc4r-expressing cells to energy metabolism. In this study, mice with CRTC1 deficiency in Mc4r-expressing cells exhibited 1) modest obesity, glucose intolerance, insulin resistance, hyperinsulinemia, and hyperlipidemia; 2) decreased systemic energy expenditure and thermogenesis; 3) suppression of melanocortin agonist-induced adaptation of energy expenditure and food intake; 4) impaired thermogenic programs and oxidative pathway in brown adipose tissue and skeletal muscle; and 5) enhanced lipogenic programs in the liver and white adipose tissue. These results provide novel insights into the molecular mechanisms underlying the regulation of energy balance by the melanocortin system. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Haruka Miyamori
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takumi Yokokawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Motoki Miyakita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuki Ozaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
13
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Kuser-Abali G, Ugurlu-Bayarslan A, Yilmaz Y, Ozcan F, Karaer F, Bugra K. SIK2: A Novel Negative Feedback Regulator of FGF2 Signaling. Adv Biol (Weinh) 2024; 8:e2400032. [PMID: 39267218 DOI: 10.1002/adbi.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/20/2024] [Indexed: 09/17/2024]
Abstract
A wide range of cells respond to fibroblast growth factor 2 (FGF2) by proliferation via activation of the Ras/ERK1/2 pathway. In this study, the potential involvement of salt inducible kinase SIK2) in this cascade within retinal Müller glia is explored. It is found that SIK2 phosphorylation status and activity are modulated in an FGF2-dependent manner, possibly via ERK1/2. With SIK2 downregulation, enhanced ERK1/2 activation with delayed attenuation and increased cell proliferation is observed, while SIK2 overexpression hampers FGF2-dependent ERK1/2 activation. In vitro kinase and site-directed mutagenesis studies indicate that SIK2 targets the pathway element GRB2-associated-binding protein 1 (Gab1) on Ser266. This phosphorylation event weakens Gab1 interactions with its partners growth factor receptor-bound protein 2 (Grb2) and Src homology region 2 domain containing phosphatase 2 (Shp2). Collectively, these results suggest that during FGF2-dependent proliferation process ERK1/2-mediated activation of SIK2 targets Gab1, resulting in downregulation of the Ras/ERK1/2 cascade in a feedback loop.
Collapse
Affiliation(s)
- Gamze Kuser-Abali
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Faculty of Medicine Nursing & Health Sciences, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Asli Ugurlu-Bayarslan
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Department of Biology, Kastamonu University, Kastamonu, 37150, Turkey
| | - Yeliz Yilmaz
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Izmir Biomedicine and Genome Center, Izmir, 35340, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Funda Karaer
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Ministry of Education, Turkey
| | - Kuyas Bugra
- Department of Molecular Biology and Genetics, Bogazici University, Bebek, Istanbul, 34342, Turkey
- Life Sciences Center, Bogazici University, Bebek, Istanbul, 34342, Turkey
| |
Collapse
|
15
|
Zeng WH, Wen ZY, Wei XY, He Y, Zhou L, Hu P, Shi QC, Qin CJ, Wang J, Li R, Jing XY, Hu W, Yuan HW, Fan JD, Zhang C, Jiang W, Fu P, Shi Q. Molecular characterization, spatio-temporal expression patterns of crtc2 gene and its immune roles in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109877. [PMID: 39245185 DOI: 10.1016/j.fsi.2024.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
cAMP response element binding (CREB) protein 2 (CRTC2) is a transcriptional coactivator of CREB and plays an important role in the immune system. Thus far, the physiological roles of Crtc2 in teleost are still poorly understood. In this study, the crtc2 gene was identified and characterized from yellow catfish (Pelteobagrus fulvidraco; therefore, the gene is termed as pfcrtc2), and its evolutionary and molecular characteristics as well as potential immunity-related roles were investigated. Our results showed that the open reading frame of pfcrtc2 was 2346 bp in length, encoding a protein with 781 amino acids. Gene structure analysis revealed its existence of 14 exons and 13 introns. A phylogenetic analysis proved that the tree of crtc2 was clustered into five groups, exhibiting a similar evolutionary topology with species evolution. Multiple protein sequences alignment demonstrated high conservation of the crtc2 in various vertebrates with similar structure. Syntenic and gene structural comparisons further established that crtc2 was highly conserved, implying its similar roles in diverse vertebrates. Tissue distribution pattern detected by quantitative real-time PCR showed that the pfcrtc2 gene was almost expressed in all detected tissues except for eyes, with the highest expression levels in the gonad, indicating that Crtc2 may play important roles in various tissues. In addition, pfcrtc2 was transcribed at all developmental stages in yellow catfish, showing the highest expression levels at 12 h after fertilization. Finally, the transcriptional profiles of crtc2 were significantly increased in yellow catfishes injected with Aeromonas hydrophila or Poly I:C, which shared a consistent change pattern with four immune-related genes including IL-17A, IL-10, MAPKp38, and NF-κBp65, suggesting pfCrtc2 may play critical roles in preventing both exogenous bacteria and virus invasion. In summary, our findings lay a solid foundation for further studies on the functions of pfcrtc2, and provide novel genetic loci for developing new strategies to control disease outbreak in teleost.
Collapse
Affiliation(s)
- Wan-Hong Zeng
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083, China.
| | - Xiu-Ying Wei
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Yu He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Luo Zhou
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Peng Hu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Qing-Chao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Chuan-Jie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Rui Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Xiao-Ying Jing
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Wei Hu
- School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Han-Wen Yuan
- School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Jun-De Fan
- Chongqing Fisheries Science Research Institute, Chongqing, 400020, China
| | - Chuang Zhang
- Yueyang Yumeikang Biotechnology Co. Ltd., Yueyang, 414100, China
| | - Wei Jiang
- Yueyang Yumeikang Biotechnology Co. Ltd., Yueyang, 414100, China
| | - Peng Fu
- Yueyang Yumeikang Biotechnology Co. Ltd., Yueyang, 414100, China.
| | - Qiong Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
16
|
Caiola HO, Wu Q, Li J, Wang XF, Soni S, Monahan K, Wagner GC, Pang ZP, Zhang H. Neuronal connectivity, behavioral, and transcriptional alterations associated with the loss of MARK2. FASEB J 2024; 38:e70124. [PMID: 39436150 DOI: 10.1096/fj.202400454r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Neuronal connectivity is essential for adaptive brain responses and can be modulated by dendritic spine plasticity and the intrinsic excitability of individual neurons. Dysregulation of these processes can lead to aberrant neuronal activity, which has been associated with numerous neurological disorders including autism, epilepsy, and Alzheimer's disease. Nonetheless, the molecular mechanisms underlying abnormal neuronal connectivity remain unclear. We previously found that the serine/threonine kinase Microtubule Affinity Regulating Kinase 2 (MARK2), also known as Partitioning Defective 1b (Par1b), is important for the formation of dendritic spines in vitro. However, despite its genetic association with several neurological disorders, the in vivo impact of MARK2 on neuronal connectivity and cognitive functions remains unclear. Here, we demonstrate that the loss of MARK2 in vivo results in changes to dendritic spine morphology, which in turn leads to a decrease in excitatory synaptic transmission. Additionally, the loss of MARK2 produces substantial impairments in learning and memory, reduced anxiety, and defective social behavior. Notably, MARK2 deficiency results in heightened seizure susceptibility. Consistent with this observation, electrophysiological analysis of hippocampal slices indicates underlying neuronal hyperexcitability in MARK2-deficient neurons. Finally, RNAseq analysis reveals transcriptional changes in genes regulating synaptic transmission and ion homeostasis. These results underscore the in vivo role of MARK2 in governing synaptic connectivity, neuronal excitability, and cognitive functions.
Collapse
Affiliation(s)
- Hanna O Caiola
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Qian Wu
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Junlong Li
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Xue-Feng Wang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Shaili Soni
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Kevin Monahan
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - George C Wagner
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
17
|
Li Q, Gao L, Liu L, Wang L, Hu L, Wang L, Song L. Marine thermal fluctuation induced gluconeogenesis by the transcriptional regulation of CgCREBL2 in Pacific oysters. MARINE POLLUTION BULLETIN 2024; 207:116906. [PMID: 39217871 DOI: 10.1016/j.marpolbul.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Marine thermal fluctuation profoundly influences energy metabolism, physiology, and survival of marine life. In the present study, short-term and long-term high-temperature stresses were found to affect gluconeogenesis by inhibiting PEPCK activity in the Pacific oyster (Crassostrea gigas), which is a globally distributed species that encounters significant marine thermal fluctuations in intertidal zones worldwide. CgCREBL2, a key molecule in the regulation of gluconeogenesis, plays a critical role in the transcriptional regulation of PEPCK in gluconeogenesis against high-temperature stress. CgCREBL2 was able to increase the transcription of CgPEPCK by either binding the promoter of CgPEPCK gene or activating CgPGC-1α and CgHNF-4α after short-term (6 h) high-temperature stress, while only by binding CgPEPCK after long-term (60 h) high-temperature stress. These findings will further our understanding of the effect of marine thermal fluctuation on energy metabolism on marine organisms.
Collapse
Affiliation(s)
- Qingsong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Lu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Ling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Li Hu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
18
|
Morgan HJN, Delfino HBP, Schavinski AZ, Malone SA, Charoy C, Reis NG, Assis AP, Lautherbach N, Silveira WA, Heck LC, Guton D, Domingos AI, Kettelhut IC, Montminy M, Navegantes LCC. Hepatic noradrenergic innervation acts via CREB/CRTC2 to activate gluconeogenesis during cold. Metabolism 2024; 157:155940. [PMID: 38878857 DOI: 10.1016/j.metabol.2024.155940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND AIM Although it is well established that hormones like glucagon stimulates gluconeogenesis via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2, the role of neural signals in the regulation of gluconeogenesis remains uncertain. METHODS AND RESULTS Here, we characterize the noradrenergic bundle architecture in mouse liver; we show that the sympathoexcitation induced by acute cold exposure promotes hyperglycemia and upregulation of gluconeogenesis via triggering of the CREB/CRTC2 pathway. Following its induction by dephosphorylation, CRTC2 translocates to the nucleus and drives the transcription of key gluconeogenic genes. Rodents submitted to different models of sympathectomy or knockout of CRTC2 do not activate gluconeogenesis in response to cold. Norepinephrine directly acts in hepatocytes mainly through a Ca2+-dependent pathway that stimulates CREB/CRTC2, leading to activation of the gluconeogenic program. CONCLUSION Our data demonstrate the importance of the CREB/CRTC2 pathway in mediating effects of hepatic sympathetic inputs on glucose homeostasis, providing new insights into the role of norepinephrine in health and disease.
Collapse
Affiliation(s)
- Henrique J N Morgan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Heitor B P Delfino
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Z Schavinski
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samuel A Malone
- Department of Physiology, Genetics and Anatomy, University of Oxford, Oxford, UK
| | | | - Natany G Reis
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana P Assis
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natalia Lautherbach
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilian A Silveira
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Lilian C Heck
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dan Guton
- The Francis Crick Institute, London, UK
| | - Ana I Domingos
- Department of Physiology, Genetics and Anatomy, University of Oxford, Oxford, UK
| | - Isis C Kettelhut
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marc Montminy
- Peptide Biology Laboratories, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
19
|
Han HS, Choi BH, Jang SY, Choi S, Hwang GS, Koo SH. Regulation of hepatic lipogenesis by asymmetric arginine methylation. Metabolism 2024; 157:155938. [PMID: 38795769 DOI: 10.1016/j.metabol.2024.155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND AND AIMS Hepatic lipogenesis is elevated in nutrient abundant conditions to convert the excess carbohydrate into triacylglycerol (TAG). Fatty acyl moiety of TAG is eventually transported into adipose tissues by very low density lipoprotein, leading to the accumulation of TAG as a preferred storage form of excess energy. Disruption of the balance between TAG clearance and synthesis leads to the accumulation of lipids in the liver, leading to the progression of non-alcoholic fatty liver disease (NAFLD) including non-alcoholic steatohepatitis. Protein arginine methyltransferase (PRMT) 6 has been linked to the various metabolic processes including hepatic gluconeogenesis, muscle atrophy and lipodystrophy in mouse models. However, the role of PRMT6 in the control of hepatic lipogenesis has not been elucidated to date. METHODS We assessed the interaction between PRMT6 and LXR alpha by using co-immunoprecipitation assay. The specific arginine residue of LXR alpha that is methylated by PRMT6 was assessed by LC-MS/MS assay and the functional consequences of LXR alpha methylation was explored by mSREBP-1c luciferase assay. The effect of PRMT6 on hepatic lipogenesis was assessed by adenovirus-mediated ectopic expression of PRMT6 or knockdown of PRMT6 via shRNA in hepatocytes. Finally, the role of PRMT6 in hepatic lipid metabolism in vivo was explored by either ectopic expression of LXR alpha mutant that is defective in PRMT6-mediated arginine methylation or knockdown of PRMT6 in liver. RESULTS We found that promoter activity of sterol regulatory element binding protein (SREBP) 1c is robustly activated by PRMT6. Interestingly, we demonstrated that PRMT6 binds to LXR alpha, a transcription factor for SREBP-1c, via its LXXLL motif, leading to the asymmetric dimethylation of an arginine residue and activation of this protein. Indeed, ectopic expression of PRMT6 in hepatocytes led to the enhanced expression of LXR alpha target genes in the lipogenic pathway. Conversely, genetic or pharmacological inhibition of PRMT6 diminished expression of lipogenic genes and the lipid accumulation in primary hepatocytes. Mechanistically, we found that asymmetric dimethylation of LXR alpha led to the dissociation of small heterodimer partner (SHP), a transcriptional co-inhibitor of this factor, resulting in the activation of LXR alpha-mediated transcriptional process. Finally, we showed that disruption of asymmetric dimethylation of LXR alpha in the liver led to the diminished expression of genes in the lipogenesis, resulting in the reduced hepatic lipid accumulation in high fat diet-fed mice in vivo. CONCLUSIONS We showed that PRMT6 modulates LXR alpha activity by conferring asymmetric dimethylation of arginine 253, thus blocking SHP-mediated inhibition and promoting hepatic lipid accumulation. These results suggest that PRMT6 is critical in the control of lipid homeostasis by regulation of LXR alpha-mediated lipogenesis in the liver.
Collapse
Affiliation(s)
- Hye-Sook Han
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Hun Choi
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seo Young Jang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Seri Choi
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
20
|
Shi F. Understanding the roles of salt-inducible kinases in cardiometabolic disease. Front Physiol 2024; 15:1426244. [PMID: 39081779 PMCID: PMC11286596 DOI: 10.3389/fphys.2024.1426244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Salt-inducible kinases (SIKs) are serine/threonine kinases of the adenosine monophosphate-activated protein kinase family. Acting as mediators of a broad array of neuronal and hormonal signaling pathways, SIKs play diverse roles in many physiological and pathological processes. Phosphorylation by the upstream kinase liver kinase B1 is required for SIK activation, while phosphorylation by protein kinase A induces the binding of 14-3-3 protein and leads to SIK inhibition. SIKs are subjected to auto-phosphorylation regulation and their activity can also be modulated by Ca2+/calmodulin-dependent protein kinase in response to cellular calcium influx. SIKs regulate the physiological processes through direct phosphorylation on various substrates, which include class IIa histone deacetylases, cAMP-regulated transcriptional coactivators, phosphatase methylesterase-1, among others. Accumulative body of studies have demonstrated that SIKs are important regulators of the cardiovascular system, including early works establishing their roles in sodium sensing and vascular homeostasis and recent progress in pulmonary arterial hypertension and pathological cardiac remodeling. SIKs also regulate inflammation, fibrosis, and metabolic homeostasis, which are essential pathological underpinnings of cardiovascular disease. The development of small molecule SIK inhibitors provides the translational opportunity to explore their potential as therapeutic targets for treating cardiometabolic disease in the future.
Collapse
Affiliation(s)
- Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
21
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
22
|
He L, Ahmad M, Wu S, Luo S, Shi W, Guo X, Cao Y, Perrimon N. Dietary Amino Acids Promote Glucagon-like Hormone Release to Generate Novel Calcium Waves in Adipose Tissues. RESEARCH SQUARE 2024:rs.3.rs-4493132. [PMID: 38947048 PMCID: PMC11213180 DOI: 10.21203/rs.3.rs-4493132/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related morbidities. Among different metabolic regulatory signals, cytosolic Ca2+ plays pivotal roles in metabolic regulation, including glycolysis, gluconeogenesis, and lipolysis. Recently, intercellular calcium waves (ICWs), the propagation of Ca2+ signaling through tissues, have been found in different systems to coordinate multicellular responses. Nevertheless, our understanding of how ICWs are modulated and operate within living organisms remains limited. In this study, we explore the real-time dynamics, both in organ culture and free-behaving animals, of ICWs in Drosophila larval and adult adipose tissues. We identified Adipokinetic hormone (AKH), the fly functional homolog of mammalian glucagon, as the key factor driving Ca2+ activities in adipose tissue. Interestingly, we found that AKH, which is released in a pulsatile manner into the circulating hemolymph from the AKH-producing neurosecretory cells (APCs) in the brain, stimulates ICWs in the larval fat by a previously unrecognized gap-junction-independent mechanism to promote lipolysis. In the adult fat body, however, gap-junction-dependent random ICWs are triggered by a presumably uniformly diffused AKH. This highlights the stage-specific interplay of hormone secretion, extracellular diffusion, and intercellular communication in the regulation of Ca2+ dynamics. Additionally, we discovered that specific dietary amino acids activate the APCs, leading to increased intracellular Ca2+ and subsequent AKH secretion. Altogether, our findings identify that dietary amino acids regulate the release of AKH peptides from the APCs, which subsequently stimulates novel gap-junction-independent ICWs in adipose tissues, thereby enhancing lipid metabolism.
Collapse
Affiliation(s)
- Li He
- University of Science and Technology of China
| | | | - Shang Wu
- University of Science and Technology of China
| | | | | | | | | | | |
Collapse
|
23
|
Hayes E, Winston N, Stocco C. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function. Reprod Med Biol 2024; 23:e12575. [PMID: 38571513 PMCID: PMC10988955 DOI: 10.1002/rmb2.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024] Open
Abstract
Background The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.
Collapse
Affiliation(s)
- Emily Hayes
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Nicola Winston
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| | - Carlos Stocco
- Department of Physiology and BiophysicsUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
- Department of Obstetrics and GynecologyUniversity of Illinois Chicago College of MedicineChicagoIllinoisUSA
| |
Collapse
|
24
|
Caiola HO, Wu Q, Soni S, Wang XF, Monahan K, Pang ZP, Wagner GC, Zhang H. Neuronal connectivity, behavioral, and transcriptional alterations associated with the loss of MARK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.569759. [PMID: 38105965 PMCID: PMC10723285 DOI: 10.1101/2023.12.05.569759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Neuronal connectivity is essential for adaptive brain responses and can be modulated by dendritic spine plasticity and the intrinsic excitability of individual neurons. Dysregulation of these processes can lead to aberrant neuronal activity, which has been associated with numerous neurological disorders including autism, epilepsy, and Alzheimer's disease. Nonetheless, the molecular mechanisms underlying aberrant neuronal connectivity remains unclear. We previously found that the serine/threonine kinase Microtubule Affinity Regulating Kinase 2 (MARK2), also known as Partitioning Defective 1b (Par1b), is important for the formation of dendritic spines in vitro. However, despite its genetic association with several neurological disorders, the in vivo impact of MARK2 on neuronal connectivity and cognitive functions remains unclear. Here, we demonstrate that loss of MARK2 in vivo results in changes to dendritic spine morphology, which in turn leads to a decrease in excitatory synaptic transmission. Additionally, loss of MARK2 produces substantial impairments in learning and memory, anxiety, and social behavior. Notably, MARK2 deficiency results in heightened seizure susceptibility. Consistent with this observation, RNAseq analysis reveals transcriptional changes in genes regulating synaptic transmission and ion homeostasis. These findings underscore the in vivo role of MARK2 in governing synaptic connectivity, cognitive functions, and seizure susceptibility.
Collapse
|
25
|
Kolbe MR, Hohmann T, Hohmann U, Maronde E, Golbik R, Prell J, Illert J, Strauss C, Dehghani F. Elucidation of GPR55-Associated Signaling behind THC and LPI Reducing Effects on Ki67-Immunoreactive Nuclei in Patient-Derived Glioblastoma Cells. Cells 2023; 12:2646. [PMID: 37998380 PMCID: PMC10670585 DOI: 10.3390/cells12222646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
GPR55 is involved in many physiological and pathological processes. In cancer, GPR55 has been described to show accelerating and decelerating effects in tumor progression resulting from distinct intracellular signaling pathways. GPR55 becomes activated by LPI and various plant-derived, endogenous, and synthetic cannabinoids. Cannabinoids such as THC exerted antitumor effects by inhibiting tumor cell proliferation or inducing apoptosis. Besides its effects through CB1 and CB2 receptors, THC modulates cellular responses among others via GPR55. Previously, we reported a reduction in Ki67-immunoreactive nuclei of human glioblastoma cells after GPR55 activation in general by THC and in particular by LPI. In the present study, we investigated intracellular mechanisms leading to an altered number of Ki67+ nuclei after stimulation of GPR55 by LPI and THC. Pharmacological analyses revealed a strongly involved PLC-IP3 signaling and cell-type-specific differences in Gα-, Gβγ-, RhoA-ROCK, and calcineurin signaling. Furthermore, immunochemical visualization of the calcineurin-dependent transcription factor NFAT revealed an unchanged subcellular localization after THC or LPI treatment. The data underline the cell-type-specific diversity of GPR55-associated signaling pathways in coupling to intracellular G proteins. Furthermore, this diversity might determine the outcome and the individual responsiveness of tumor cells to GPR55 stimulation by cannabin oids.
Collapse
Affiliation(s)
- Marc Richard Kolbe
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Erik Maronde
- Department of Anatomy II, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Ralph Golbik
- Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany;
| | - Julian Prell
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Jörg Illert
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| |
Collapse
|
26
|
Silva-García CG, Láscarez-Lagunas LI, Papsdorf K, Heintz C, Prabhakar A, Morrow CS, Pajuelo Torres L, Sharma A, Liu J, Colaiácovo MP, Brunet A, Mair WB. The CRTC-1 transcriptional domain is required for COMPASS complex-mediated longevity in C. elegans. NATURE AGING 2023; 3:1358-1371. [PMID: 37946042 PMCID: PMC10645585 DOI: 10.1038/s43587-023-00517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Loss of function during aging is accompanied by transcriptional drift, altering gene expression and contributing to a variety of age-related diseases. CREB-regulated transcriptional coactivators (CRTCs) have emerged as key regulators of gene expression that might be targeted to promote longevity. Here we define the role of the Caenorhabditis elegans CRTC-1 in the epigenetic regulation of longevity. Endogenous CRTC-1 binds chromatin factors, including components of the COMPASS complex, which trimethylates lysine 4 on histone H3 (H3K4me3). CRISPR editing of endogenous CRTC-1 reveals that the CREB-binding domain in neurons is specifically required for H3K4me3-dependent longevity. However, this effect is independent of CREB but instead acts via the transcription factor AP-1. Strikingly, CRTC-1 also mediates global histone acetylation levels, and this acetylation is essential for H3K4me3-dependent longevity. Indeed, overexpression of an acetyltransferase enzyme is sufficient to promote longevity in wild-type worms. CRTCs, therefore, link energetics to longevity by critically fine-tuning histone acetylation and methylation to promote healthy aging.
Collapse
Affiliation(s)
- Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | | | | | - Caroline Heintz
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Aditi Prabhakar
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Christopher S Morrow
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Lourdes Pajuelo Torres
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Arpit Sharma
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jihe Liu
- Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
27
|
Han X, Yang F, Zhang Z, Hou Z, Sun Q, Su T, Lv W, Wang Z, Yuan C, Zhang G, Pi X, Long J, Liu H. 4EBP2-regulated protein translation has a critical role in high-fat diet-induced insulin resistance in hepatocytes. J Biol Chem 2023; 299:105315. [PMID: 37797700 PMCID: PMC10641227 DOI: 10.1016/j.jbc.2023.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
A high-fat diet (HFD) plays a critical role in hepatocyte insulin resistance. Numerous models and factors have been proposed to elucidate the mechanism of palmitic acid (PA)-induced insulin resistance. However, proteomic studies of insulin resistance by HFD stimulation are usually performed under insulin conditions, leading to an unclear understanding of how a HFD alone affects hepatocytes. Here, we mapped the phosphorylation rewiring events in PA-stimulated HepG2 cells and found PA decreased the phosphorylation level of the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2) at S65/T70. Further experiments identified 4EBP2 as a key node of insulin resistance in either HFD mice or PA-treated cells. Reduced 4EBP2 levels increased glucose uptake and insulin sensitivity, whereas the 4EBP2_S65A/T70A mutation exacerbated PA-induced insulin resistance. Additionally, the nascent proteome revealed many glycolysis-related proteins translationally regulated by 4EBP2 such as hexokinase-2, pyruvate kinase PKM, TBC1 domain family member 4, and glucose-6-phosphate 1-dehydrogenase. In summary, we report the critical role of 4EBP2 in regulating HFD-stimulated insulin resistance in hepatocytes.
Collapse
Affiliation(s)
- Xiao Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Fei Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Qiong Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Chao Yuan
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Guanfei Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Xin Pi
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi China.
| | - Huadong Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong China.
| |
Collapse
|
28
|
Kumari P, Sarovar Bhavesh N. Birth and death view of DNA, RNA, and proteins. Gene 2023; 883:147672. [PMID: 37506987 DOI: 10.1016/j.gene.2023.147672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The potential of cells to guide their genome and configure genes to express at a given time and in response to specific stimuli is pivotal to regulate cellular processes such as tissue differentiation, organogenesis, organismal development, homeostasis, and disease. In this review, we focus on the diverse mechanisms involved in DNA replication and its degradation, mRNA synthesis, and associated regulation such as RNA capping, splicing, tailing, and export. mRNA turnover including Decapping, deadenylation, RNA interference, and Nonsense mediated mRNA decay followed by protein translation, post-translational modification, and protein turnover. We highlight recent advances in understanding the complex series of molecular mechanisms responsible for the remarkable cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Pooja Kumari
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
29
|
Li L, Xing T, Chen Y, Xu W, Fan B, Ju G, Zhao J, Lin L, Yan C, Liang J, Ren X. In vitro CRISPR screening uncovers CRTC3 as a regulator of IFN-γ-induced ferroptosis of hepatocellular carcinoma. Cell Death Discov 2023; 9:331. [PMID: 37666810 PMCID: PMC10477178 DOI: 10.1038/s41420-023-01630-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Interferon-gamma (IFN-γ) exerts anti-tumor effects by inducing ferroptosis. Based on CRISPR/Cas9 knockout screening targeting genome-wide protein encoding genes in HepG2 and SK-Hep-1 cell lines, we found that cAMP response element-binding protein (CREB) regulated transcription coactivator 3 (CRTC3) protects tumor cells from drug-induced ferroptosis and significantly inhibits the efficacy of IFN-γ treatment in hepatocellular carcinoma (HCC). Mechanistically, CRTC3 knockout altered tumor cell lipid patterns and increased the abundance of polyunsaturated fatty acids (PUFAs), which enables lipid peroxidation and enhances the susceptibility of HCC cells to ferroptosis inducers. To scavenge for accumulated lipid peroxides (LPO) and maintain redox equilibrium, HCC cells up-regulate SLC7A11 and glutathione peroxidase 4 (GPx4) expressions to enhance the activities of glutamate-cystine antiporter (system xc-) and LPO clearance. As IFN-γ inhibiting system xc-, simultaneous treatment with IFN-γ disrupts the compensatory mechanism, and generates a synergistic effect with CRTC3 knockout to facilitate ferroptosis. Sensitizing effects of CRTC3 depletion were confirmed using typical ferroptosis inducers, including RSL3 and erastin. Sorafeinib, a commonly used target drug in HCC, was repeatedly reported as a ferroptosis inducer. We then conducted both in vitro and vivo experiments and demonstrated that CRTC3 depletion sensitized HCC cells to sorafenib treatment. In conclusion, CRTC3 is involved in the regulation of PUFAs metabolism and ferroptosis. Targeting CRTC3 signaling in combination with ferroptosis inducers present a viable approach for HCC treatment and overcoming drug resistance.
Collapse
Affiliation(s)
- Li Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Tao Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yiran Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Weiran Xu
- Department of Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Fan
- Beijing Chao-Yang Hospital, Beijing, China
| | - Gaoda Ju
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jing Zhao
- Department of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Li Lin
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing, China.
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
30
|
Beckham JL, van Venrooy AR, Kim S, Li G, Li B, Duret G, Arnold D, Zhao X, Li JT, Santos AL, Chaudhry G, Liu D, Robinson JT, Tour JM. Molecular machines stimulate intercellular calcium waves and cause muscle contraction. NATURE NANOTECHNOLOGY 2023; 18:1051-1059. [PMID: 37430037 DOI: 10.1038/s41565-023-01436-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/03/2023] [Indexed: 07/12/2023]
Abstract
Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)-molecules that perform mechanical work on the molecular scale-can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris. This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices.
Collapse
Affiliation(s)
| | | | - Soonyoung Kim
- Department of Electrical Engineering, Rice University, Houston, TX, USA
| | - Gang Li
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Bowen Li
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Guillaume Duret
- Department of Electrical Engineering, Rice University, Houston, TX, USA
| | - Dallin Arnold
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xuan Zhao
- Department of Electrical Engineering, Rice University, Houston, TX, USA
| | - John T Li
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Ana L Santos
- Department of Chemistry, Rice University, Houston, TX, USA
- IdISBA-Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | | | - Dongdong Liu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Jacob T Robinson
- Department of Bioengineering, Department of Electrical Engineering, Rice University, Houston, TX, USA.
| | - James M Tour
- Department of Chemistry, Smalley-Curl Institute, NanoCarbon Center and Rice Advanced Materials Institute, Department of Materials Science and Nanoengineering, Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
31
|
Zheng HY, Wang YX, Zhou K, Xie HL, Ren Z, Liu HT, Ou YS, Zhou ZX, Jiang ZS. Biological functions of CRTC2 and its role in metabolism-related diseases. J Cell Commun Signal 2023; 17:495-506. [PMID: 36856929 PMCID: PMC10409973 DOI: 10.1007/s12079-023-00730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
CREB-regulated transcription coactivator2 (CRTC2 or TORC2) is a transcriptional coactivator of CREB(cAMP response element binding protein), which affects human energy metabolism through cyclic adenosine phosphate pathway, Mammalian target of rapamycin (mTOR) pathway, Sterol regulatory element binding protein 1(SREBP1), Sterol regulatory element binding protein 2 (SREBP2) and other substances Current studies on CRTC2 mainly focus on glucose and lipid metabolism, relevant studies show that CRTC2 can participate in the occurrence and development of related diseases by affecting metabolic homeostasis. It has been found that Crtc2 acts as a signaling regulator for cAMP and Ca2 + signaling pathways in many cell types, and phosphorylation at ser171 and ser275 can regulate downstream biological functions by controlling CRTC2 shuttling between cytoplasm and nucleus.
Collapse
Affiliation(s)
- Hong-Yu Zheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yan-Xia Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hai-Lin Xie
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Yang-Shao Ou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, 421001, China.
| |
Collapse
|
32
|
Dent JR, Stocks B, Campelj DG, Philp A. Transient changes to metabolic homeostasis initiate mitochondrial adaptation to endurance exercise. Semin Cell Dev Biol 2023; 143:3-16. [PMID: 35351374 DOI: 10.1016/j.semcdb.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/26/2022] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
Endurance exercise is well established to increase mitochondrial content and function in skeletal muscle, a process termed mitochondrial biogenesis. Current understanding is that exercise initiates skeletal muscle mitochondrial remodeling via modulation of cellular nutrient, energetic and contractile stress pathways. These subtle changes in the cellular milieu are sensed by numerous transduction pathways that serve to initiate and coordinate an increase in mitochondrial gene transcription and translation. The result of these acute signaling events is the promotion of growth and assembly of mitochondria, coupled to a greater capacity for aerobic ATP provision in skeletal muscle. The aim of this review is to highlight the acute metabolic events induced by endurance exercise and the subsequent molecular pathways that sense this transient change in cellular homeostasis to drive mitochondrial adaptation and remodeling.
Collapse
Affiliation(s)
- Jessica R Dent
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ben Stocks
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Dean G Campelj
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing Laboratory, Healthy Ageing Research Theme, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Medical School, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
33
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
34
|
Bonheur M, Swartz KJ, Metcalf MG, Wen X, Zhukovskaya A, Mehta A, Connors KE, Barasch JG, Jamieson AR, Martin KC, Axel R, Hattori D. A rapid and bidirectional reporter of neural activity reveals neural correlates of social behaviors in Drosophila. Nat Neurosci 2023; 26:1295-1307. [PMID: 37308660 PMCID: PMC10866131 DOI: 10.1038/s41593-023-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Neural activity is modulated over different timescales encompassing subseconds to hours, reflecting changes in external environment, internal state and behavior. Using Drosophila as a model, we developed a rapid and bidirectional reporter that provides a cellular readout of recent neural activity. This reporter uses nuclear versus cytoplasmic distribution of CREB-regulated transcriptional co-activator (CRTC). Subcellular distribution of GFP-tagged CRTC (CRTC::GFP) bidirectionally changes on the order of minutes and reflects both increases and decreases in neural activity. We established an automated machine-learning-based routine for efficient quantification of reporter signal. Using this reporter, we demonstrate mating-evoked activation and inactivation of modulatory neurons. We further investigated the functional role of the master courtship regulator gene fruitless (fru) and show that fru is necessary to ensure activation of male arousal neurons by female cues. Together, our results establish CRTC::GFP as a bidirectional reporter of recent neural activity suitable for examining neural correlates in behavioral contexts.
Collapse
Affiliation(s)
- Moise Bonheur
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kurtis J Swartz
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Melissa G Metcalf
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Xinke Wen
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anna Zhukovskaya
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Avirut Mehta
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristin E Connors
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia G Barasch
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew R Jamieson
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Simons Foundation, New York, NY, USA
| | - Richard Axel
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Daisuke Hattori
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
35
|
Liu S, Chen M, Wang Y, Lei Y, Huang T, Zhang Y, Lam SM, Li H, Qi S, Geng J, Lu K. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Nat Commun 2023; 14:3725. [PMID: 37349354 PMCID: PMC10287731 DOI: 10.1038/s41467-023-39482-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Yichang Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Lei
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, 213022, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Rubio FJ, Olivares DE, Dunn C, Zhang S, Hilaire EM, Henry A, Mejias-Aponte C, Nogueras-Ortiz CJ, Selvam PV, Cruz FC, Madangopal R, Morales M, Hope BT. Flow Cytometry of Synaptoneurosomes (FCS) Reveals Increased Ribosomal S6 and Calcineurin Proteins in Activated Medial Prefrontal Cortex to Nucleus Accumbens Synapses. J Neurosci 2023; 43:4217-4233. [PMID: 37160369 PMCID: PMC10255002 DOI: 10.1523/jneurosci.0927-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Learning and behavior activate cue-specific patterns of sparsely distributed cells and synapses called ensembles that undergo memory-encoding engram alterations. While Fos is often used to label selectively activated cell bodies and identify neuronal ensembles, there is no comparable endogenous marker to label activated synapses and identify synaptic ensembles. For the purpose of identifying candidate synaptic activity markers, we optimized a flow cytometry of synaptoneurosome (FCS) procedure for assessing protein alterations in activated synapses from male and female rats. After injecting yellow fluorescent protein (YFP)-expressing adeno-associated virus into medial prefrontal cortex (mPFC) to label terminals in nucleus accumbens (NAc) of rats, we injected 20 mg/kg cocaine in a novel context (cocaine+novelty) to activate synapses, and prepared NAc synaptoneurosomes 0-60 min following injections. For FCS, we used commercially available antibodies to label presynaptic and postsynaptic markers synaptophysin and PSD-95 as well as candidate markers of synaptic activity [activity-regulated cytoskeleton protein (Arc), CaMKII and phospho-CaMKII, ribosomal protein S6 (S6) and phospho-S6, and calcineurin and phospho-calcineurin] in YFP-labeled synaptoneurosomes. Cocaine+novelty increased the percentage of S6-positive synaptoneurosomes at 5-60 min and calcineurin-positive synaptoneurosomes at 5-10 min. Electron microscopy verified that S6 and calcineurin levels in synaptoneurosomes were increased 10 min after cocaine+novelty. Pretreatment with the anesthetic chloral hydrate blocked cocaine+novelty-induced S6 and calcineurin increases in synaptoneurosomes, and novel context exposure alone (without cocaine) increased S6, both of which indicate that these increases were due to neural activity per se. Overall, FCS can be used to study protein alterations in activated synapses coming from specifically labeled mPFC projections to NAc.SIGNIFICANCE STATEMENT Memories are formed during learning and are stored in the brain by long-lasting molecular and cellular alterations called engrams formed within specific patterns of cue-activated neurons called neuronal ensembles. While Fos has been used to identify activated ensemble neurons and the engrams within them, we have not had a similar marker for activated synapses that can be used to identify synaptic engrams. Here we developed a procedure for high-throughput in-line analysis of flow cytometry of synaptoneurosome (FCS) and found that ribosomal S6 protein and calcineurin were increased in activated mPFC-NAc synapses. FCS can be used to study protein alterations in activated synapses within specifically labeled circuits.
Collapse
Affiliation(s)
- F Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Daniel E Olivares
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Christopher Dunn
- Flow Cytometry Unit, Intramural Research Program/National Institute on Aging/National Institutes of Health, Baltimore, Maryland 21224
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Elias M Hilaire
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Akeem Henry
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos Mejias-Aponte
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos J Nogueras-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224
| | - Pooja V Selvam
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Fabio C Cruz
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, CEP 04023-062, São Paulo, Brazil
| | - Rajtarun Madangopal
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Bruce T Hope
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
37
|
Xue Y, Cui A, Wei S, Ma F, Liu Z, Fang X, Huo S, Sun X, Li W, Hu Z, Liu Y, Cai G, Su W, Zhao J, Yan X, Gao C, Wen J, Zhang H, Li H, Liu Y, Lin X, Xu Y, Fu W, Fang J, Li Y. Proline hydroxylation of CREB-regulated transcriptional coactivator 2 controls hepatic glucose metabolism. Proc Natl Acad Sci U S A 2023; 120:e2219419120. [PMID: 37252972 PMCID: PMC10266032 DOI: 10.1073/pnas.2219419120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.
Collapse
Affiliation(s)
- Yaqian Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Shuang Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zhengshuai Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Xia Fang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | | | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200031, China
| | - Wenjing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yuxiao Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Genxiang Cai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Weitong Su
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Xi Yan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Chenlin Gao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Jian Wen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai200031, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Wenguang Fu
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan646000, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao266071, China
| | - Yu Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| |
Collapse
|
38
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
39
|
Compton SE, Kitchen-Goosen SM, DeCamp LM, Lau KH, Mabvakure B, Vos M, Williams KS, Wong KK, Shi X, Rothbart SB, Krawczyk CM, Jones RG. LKB1 controls inflammatory potential through CRTC2-dependent histone acetylation. Mol Cell 2023:S1097-2765(23)00288-5. [PMID: 37172591 DOI: 10.1016/j.molcel.2023.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.
Collapse
Affiliation(s)
- Shelby E Compton
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Susan M Kitchen-Goosen
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Lisa M DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Batsirai Mabvakure
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew Vos
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kelsey S Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Metabolism and Nutrition (MeNu) Program, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
40
|
Deng J, Peng DH, Fenyo D, Yuan H, Lopez A, Levin DS, Meynardie M, Quinteros M, Ranieri M, Sahu S, Lau SCM, Shum E, Velcheti V, Punekar SR, Rekhtman N, Dowling CM, Weerasekara V, Xue Y, Ji H, Siu Y, Jones D, Hata AN, Shimamura T, Poirier JT, Rudin CM, Hattori T, Koide S, Papagiannakopoulos T, Neel BG, Bardeesy N, Wong KK. In vivo metabolomics identifies CD38 as an emergent vulnerability in LKB1 -mutant lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537350. [PMID: 37131623 PMCID: PMC10153147 DOI: 10.1101/2023.04.18.537350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
LKB1/STK11 is a serine/threonine kinase that plays a major role in controlling cell metabolism, resulting in potential therapeutic vulnerabilities in LKB1-mutant cancers. Here, we identify the NAD + degrading ectoenzyme, CD38, as a new target in LKB1-mutant NSCLC. Metabolic profiling of genetically engineered mouse models (GEMMs) revealed that LKB1 mutant lung cancers have a striking increase in ADP-ribose, a breakdown product of the critical redox co-factor, NAD + . Surprisingly, compared with other genetic subsets, murine and human LKB1-mutant NSCLC show marked overexpression of the NAD+-catabolizing ectoenzyme, CD38 on the surface of tumor cells. Loss of LKB1 or inactivation of Salt-Inducible Kinases (SIKs)-key downstream effectors of LKB1- induces CD38 transcription induction via a CREB binding site in the CD38 promoter. Treatment with the FDA-approved anti-CD38 antibody, daratumumab, inhibited growth of LKB1-mutant NSCLC xenografts. Together, these results reveal CD38 as a promising therapeutic target in patients with LKB1 mutant lung cancer. SIGNIFICANCE Loss-of-function mutations in the LKB1 tumor suppressor of lung adenocarcinoma patients and are associated with resistance to current treatments. Our study identified CD38 as a potential therapeutic target that is highly overexpressed in this specific subtype of cancer, associated with a shift in NAD homeostasis.
Collapse
|
41
|
Santo-Domingo J, Lassueur S, Galindo AN, Alvarez-Illera P, Romero-Sanz S, Caldero-Escudero E, de la Fuente S, Dayon L, Wiederkehr A. SLC25A46 promotes mitochondrial fission and mediates resistance to lipotoxic stress in INS-1E insulin-secreting cells. J Cell Sci 2023; 136:jcs260049. [PMID: 36942724 DOI: 10.1242/jcs.260049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Glucose sensing in pancreatic β-cells depends on oxidative phosphorylation and mitochondria-derived signals that promote insulin secretion. Using mass spectrometry-based phosphoproteomics to search for downstream effectors of glucose-dependent signal transduction in INS-1E insulinoma cells, we identified the outer mitochondrial membrane protein SLC25A46. Under resting glucose concentrations, SLC25A46 was phosphorylated on a pair of threonine residues (T44/T45) and was dephosphorylated in response to glucose-induced Ca2+ signals. Overexpression of SLC25A46 in INS-1E cells caused complete mitochondrial fragmentation, resulting in a mild mitochondrial defect associated with lowered glucose-induced insulin secretion. In contrast, inactivation of the Slc25a46 gene resulted in dramatic mitochondrial hyperfusion, without affecting respiratory activity or insulin secretion. Consequently, SLC25A46 is not essential for metabolism-secretion coupling under normal nutrient conditions. Importantly, insulin-secreting cells lacking SLC25A46 had an exacerbated sensitivity to lipotoxic conditions, undergoing massive apoptosis when exposed to palmitate. Therefore, in addition to its role in mitochondrial dynamics, SLC25A46 plays a role in preventing mitochondria-induced apoptosis in INS-E cells exposed to nutrient stress. By protecting mitochondria, SLC25A46 might help to maintain β-cell mass essential for blood glucose control.
Collapse
Affiliation(s)
- Jaime Santo-Domingo
- Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Steve Lassueur
- Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Antonio Núñez Galindo
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Pilar Alvarez-Illera
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Silvia Romero-Sanz
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Elena Caldero-Escudero
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Sergio de la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andreas Wiederkehr
- Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
43
|
The TRPM7 channel reprograms cellular glycolysis to drive tumorigenesis and angiogenesis. Cell Death Dis 2023; 14:183. [PMID: 36878949 PMCID: PMC9988972 DOI: 10.1038/s41419-023-05701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Cancer or endothelial cells preferably catabolize glucose through aerobic glycolysis rather than oxidative phosphorylation. Intracellular ionic signaling has been shown to regulate glucose metabolism, but the underlying ion channel has yet to be identified. RNA-seq, metabolomics and genetic assay revealed that the TRPM7 channel regulated cellular glycolysis. Deletion of TRPM7 suppressed cancer cell glycolysis and reduced the xenograft tumor burden. Deficiency of endothelial TRPM7 inhibited postnatal retinal angiogenesis in mice. Mechanistically, TRPM7 transcriptionally regulated the solute carrier family 2 member 3 (SLC2A3, also known as GLUT3) via Ca2+ influx-induced calcineurin activation. Furthermore, CREB-regulated transcription coactivator 2 (CRTC2) and CREB act downstream of calcineurin to relay Ca2+ signal to SLC2A3 transcription. Expression of the constitutively active CRTC2 or CREB in TRPM7 knockout cell normalized glycolytic metabolism and cell growth. The TRPM7 channel represents a novel regulator of glycolytic reprogramming. Inhibition of the TRPM7-dependent glycolysis could be harnessed for cancer therapy.
Collapse
|
44
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
45
|
Zhao Y, Li S, Chen Y, Wang Y, Wei Y, Zhou T, Zhang Y, Yang Y, Chen L, Liu Y, Hu C, Zhou B, Ding Q. Histone phosphorylation integrates the hepatic glucagon-PKA-CREB gluconeogenesis program in response to fasting. Mol Cell 2023; 83:1093-1108.e8. [PMID: 36863348 DOI: 10.1016/j.molcel.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/08/2022] [Accepted: 02/04/2023] [Indexed: 03/04/2023]
Abstract
The glucagon-PKA signal is generally believed to control hepatic gluconeogenesis via the CREB transcription factor. Here we uncovered a distinct function of this signal in directly stimulating histone phosphorylation for gluconeogenic gene regulation in mice. In the fasting state, CREB recruited activated PKA to regions near gluconeogenic genes, where PKA phosphorylated histone H3 serine 28 (H3S28ph). H3S28ph, recognized by 14-3-3ζ, promoted recruitment of RNA polymerase II and transcriptional stimulation of gluconeogenic genes. In contrast, in the fed state, more PP2A was found near gluconeogenic genes, which counteracted PKA by dephosphorylating H3S28ph and repressing transcription. Importantly, ectopic expression of phosphomimic H3S28 efficiently restored gluconeogenic gene expression when liver PKA or CREB was depleted. These results together highlight a different functional scheme in regulating gluconeogenesis by the glucagon-PKA-CREB-H3S28ph cascade, in which the hormone signal is transmitted to chromatin for rapid and efficient gluconeogenic gene activation.
Collapse
Affiliation(s)
- Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuda Wei
- Department of Clinical Laboratory, Linyi People's Hospital, Xuzhou Medical University, Shandong 276000, China
| | - Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuanyuan Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
46
|
Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119366. [PMID: 36191737 PMCID: PMC9948804 DOI: 10.1016/j.bbamcr.2022.119366] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.
Collapse
Affiliation(s)
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
47
|
van Gijsel-Bonnello M, Darling NJ, Tanaka T, Di Carmine S, Marchesi F, Thomson S, Clark K, Kurowska-Stolarska M, McSorley HJ, Cohen P, Arthur JSC. Salt-inducible kinase 2 regulates fibrosis during bleomycin-induced lung injury. J Biol Chem 2022; 298:102644. [PMID: 36309093 PMCID: PMC9706632 DOI: 10.1016/j.jbc.2022.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and normally fatal disease with limited treatment options. The tyrosine kinase inhibitor nintedanib has recently been approved for the treatment of idiopathic pulmonary fibrosis, and its effectiveness has been linked to its ability to inhibit a number of receptor tyrosine kinases including the platelet-derived growth factor, vascular endothelial growth factor, and fibroblast growth factor receptors. We show here that nintedanib also inhibits salt-inducible kinase 2 (SIK2), with a similar IC50 to its reported tyrosine kinase targets. Nintedanib also inhibited the related kinases SIK1 and SIK3, although with 12-fold and 72-fold higher IC50s, respectively. To investigate if the inhibition of SIK2 may contribute to the effectiveness of nintedanib in treating lung fibrosis, mice with kinase-inactive knockin mutations were tested using a model of bleomycin-induced lung fibrosis. We found that loss of SIK2 activity protects against bleomycin-induced fibrosis, as judged by collagen deposition and histological scoring. Loss of both SIK1 and SIK2 activity had a similar effect to loss of SIK2 activity. Total SIK3 knockout mice have a developmental phenotype making them unsuitable for analysis in this model; however, we determined that conditional knockout of SIK3 in the immune system did not affect bleomycin-induced lung fibrosis. Together, these results suggest that SIK2 is a potential drug target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Manuel van Gijsel-Bonnello
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom; MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicola J Darling
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Takashi Tanaka
- Research Centre of Specialty, Ono Pharmaceutical Co Ltd, Osaka, Japan
| | - Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Thomson
- Biological Services, University of Dundee, Dundee, United Kingdom
| | - Kristopher Clark
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
48
|
Fan S, Zhou Z, Ye J, Li Y, Huang K, Ke X. Integration of Lipidomics and Transcriptomics Reveals the Efficacy and Mechanism of Qige Decoction on NAFLD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1-13. [PMID: 36452137 PMCID: PMC9705084 DOI: 10.1155/2022/9739032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing as obesity and diabetes become more common. There are no drugs approved for NAFLD yet. Qige decoction (QGD), a traditional Chinese medicine (TCM) formula, is used for NAFLD and hyperlipidemia treatment in TCM and has shown hypolipidemic and hepatoprotective effects. This study tried to interpret the pharmacology and molecular mechanisms of QGD in NAFLD rats. Firstly, the therapeutic effects of QGD on high-fat diet (HFD)-induced NAFLD rats were evaluated. Then, integration of lipidomics and transcriptomics was conducted to explore the possible pathways and targets of QGD against NAFLD. QGD at low dosage (QGL) administration reduced serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) (
). Liver histopathology indicated that QGL could alleviate hepatic steatosis. The main differential lipids (DELs) affected by QGD were glycerolipids. KEGG enrichment analysis suggested that the main pathways by which QGD improved NAFLD may be cholesterol metabolism, glycerolipid metabolism, and insulin resistance. Transcriptome sequencing identified 179 upregulated and 194 downregulated mRNAs after QGD treatment. An interaction network based on DELs and differential genes (DEGs) suggested that QGD inhibited hepatic steatosis mainly by reducing hepatic insulin resistance and triglyceride biosynthesis via the PPP1R3C/SIK1/CRTC2 and PPP1R3C/SIK1/SREBP1 signal axis, respectively. These findings indicated that QGD could protect against NAFLD induced by HFD. The improvement of hepatic insulin resistance and the reduction of triglyceride biosynthesis might be the potential mechanisms.
Collapse
Affiliation(s)
- Simin Fan
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
| | - Zunming Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Postdoctoral Research Station of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Jintong Ye
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
| | - Yanfang Li
- First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510410, Guangdong, China
| | - Keer Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Xuehong Ke
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| |
Collapse
|
49
|
Huang E, Li S. Liver Kinase B1 Functions as a Regulator for Neural Development and a Therapeutic Target for Neural Repair. Cells 2022; 11:cells11182861. [PMID: 36139438 PMCID: PMC9496952 DOI: 10.3390/cells11182861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
The liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11) and Par-4 in C. elegans, has been identified as a master kinase of AMPKs and AMPK-related kinases. LKB1 plays a crucial role in cell growth, metabolism, polarity, and tumor suppression. By interacting with the downstream signals of SAD, NUAK, MARK, and other kinases, LKB1 is critical to regulating neuronal polarization and axon branching during development. It also regulates Schwann cell function and the myelination of peripheral axons. Regulating LKB1 activity has become an attractive strategy for repairing an injured nervous system. LKB1 upregulation enhances the regenerative capacity of adult CNS neurons and the recovery of locomotor function in adult rodents with CNS axon injury. Here, we update the major cellular and molecular mechanisms of LKB1 in regulating neuronal polarization and neural development, and the implications thereof for promoting neural repair, axon regeneration, and functional recovery in adult mammals.
Collapse
|
50
|
Li J, Cao J. Case report: A novel PPP3CA truncating mutation within the regulatory domain causes severe developmental and epileptic encephalopathy in a Chinese patient. Front Neurol 2022; 13:889167. [PMID: 36158964 PMCID: PMC9491239 DOI: 10.3389/fneur.2022.889167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Developmental and epileptic encephalopathy 91 (DEE91; OMIM#617711) is a severe neurodevelopmental disorder caused by heterozygous PPP3CA variants. To the best of our knowledge, only a few DEE91 cases have been reported. Results This study reports a boy who experienced recurrent afebrile convulsions and spasms at the age of 2 months. After being given multiple antiepileptic treatments with levetiracetam, adrenocorticotropic hormone (ACTH), prednisone, topiramate, and clonazepam, his seizures were not completely relieved. At the age of 4 months, the patient exhibited delayed neuromotor development and difficulty in feeding; at the age of 6 months, he was diagnosed with developmental regression with recurrent spasms and myoclonic seizures that could respond to vigabatrin. At the age of 1 year and 4 months, the patient showed profound global developmental delay (GDD) with intermittent absence seizures. Whole-exome sequencing (WES) identified a novel loss-of-function variant c.1258_1259insAGTG (p. Val420Glufs*32) in PPP3CA. Conclusion This finding expands the genetic spectrum of the PPP3CA gene and reinforces the theory that DEE91-associated truncating variants cluster within a 26-amino acid region in the regulatory domain (RD) of PPP3CA.
Collapse
Affiliation(s)
- Jieling Li
- Department of Medical General Ward, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Cao
- Department of Medical General Ward, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jie Cao
| |
Collapse
|