1
|
Song S, Xie H, Wang Q, Sun X, Xu J, Chen R, Zhu Y, Jiang L, Ding X. Spatiotemporal deciphering of dynamic the FUS interactome during liquid-liquid phase separation in living cells. Nat Commun 2025; 16:4328. [PMID: 40346035 DOI: 10.1038/s41467-025-59457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Liquid-liquid phase separations (LLPS) are membraneless organelles driven by biomolecule assembly and are implicated in cellular physiological activities. However, spatiotemporal deciphering of the dynamic proteome in living cells during LLPS formation remains challenging. Here, we introduce the Composition of LLPS proteome Assembly by Proximity labeling-assisted Mass spectrometry (CLAPM). We demonstrate that CLAPM can instantaneously label and monitor the FUS interactome shifts within intracellular droplets undergoing spatiotemporal LLPS. We report 129, 182 and 822 proteins specifically present in the LLPS droplets of HeLa, HEK 293 T and neuronal cells respectively. CLAPM further categorizes spatiotemporal dynamic proteome in droplets for living neuronal cells and identifies 596 LLPS-aboriginal proteins, 226 LLPS-dependent proteins and 58 LLPS-sensitive proteins. For validation, we uncover 11 previously unknown LLPS proteins in vivo. CLAPM provides a versatile tool to decipher proteins involved in LLPS and enables the accurate characterization of dynamic proteome in living cells.
Collapse
Affiliation(s)
- Sunfengda Song
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Xie
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingwen Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Sun
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiasu Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuankang Zhu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
BU C, ZHU X, ZHANG Q, SHAO W. [Recent advances on the role of exosomes in neurodegenerative diseases]. Se Pu 2025; 43:487-497. [PMID: 40331612 PMCID: PMC12059994 DOI: 10.3724/sp.j.1123.2024.10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Indexed: 05/08/2025] Open
Abstract
Exosomes are nano-sized, lipid bilayer vesicles secreted by cells. They carry essential bioactive molecules, such as proteins, nucleic acids, and lipids, and are widely present in bodily fluids including blood and cerebrospinal fluid. Exosomes transfer bioactive molecules to target cells through various mechanisms, including endocytosis, ligand-receptor interactions, or direct membrane fusion, and play crucial roles in intercellular communication, including facilitating intercellular information exchange, maintaining nerve-cell function, participating in immune responses, and providing nutritional support. Exosomes significantly promote signal transmission and intercellular communication in the central nervous system and are involved in the pathogenesis and development of diseases by participating in the spread of pathological proteins, regulating neuroinflammation, and the deposition of pathological proteins. Therefore, exosomes play key roles in the occurrence and development of neurodegenerative diseases, and their contents, especially proteins and miRNAs, are specific for given pathological and physiological states and are relatively stable during extraction and analysis. Hence, exosomes are ideal tools for diagnosing diseases, staging their courses, and assisting prognosis. This article further explores exosomes derived from blood, saliva, urine, and cerebrospinal fluid as potential diagnostic biomarkers for neurodegenerative diseases. As natural drug-delivery systems, exosomes have the advantages of biocompatibility, ability to cross biological barriers, target specificity, stability, and containing natural therapeutic molecules, which can effectively improve the precision and efficacy of drug delivery and reduce side effects, making them an ideal carrier for delivering drugs to the central nervous system. Therefore, exosomes hold great potential in the diagnosis and treatment of central nervous system diseases. This article systematically reviews the latest advances in exosome research directed toward specific neurodegenerative diseases, focusing on their roles played in disease pathogenesis, progression, diagnosis, and treatment, with the aim of providing theoretical support and a reference for the early diagnosis and treatment of these diseases.
Collapse
|
3
|
Ray S, Roychowdhury S, Chakrabarty Y, Banerjee S, Hobbs A, Chattopadhyay K, Mukherjee K, Bhattacharyya SN. HuR prevents amyloid beta-induced phase separation of miRNA-bound Ago2 to RNA-processing bodies. Structure 2025; 33:753-770.e5. [PMID: 40056914 DOI: 10.1016/j.str.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 04/06/2025]
Abstract
Phase separation into membrane-less organelles regulates protein activity in eukaryotic cells. miRNA-repressed mRNAs and Ago proteins localize to RNA-processing bodies (P-bodies), which are subcellular structures formed by several RNA-binding and regulatory proteins. Ago2, the essential miRNA-binding protein, forms a complex with miRNAs to repress protein synthesis by binding to mRNAs and targeting them to P-bodies. However, factors controlling Ago2 and miRNA-repressed mRNA compartmentalization into P-bodies are not fully understood. We developed a detergent-permeabilized cell-based assay system to observe the phase separation of exogenously added Ago2 into P-bodies in vitro. We observed that miRNA binding to Ago2 is essential for its localization to P-bodies, which is also ATP dependent. Osmolarity and salt concentration also affect Ago2 compartmentalization to P-bodies. Amyloid beta oligomers enhance Ago2 targeting to P-bodies by slowing down cellular Ago2 dynamics and inhibiting mTORC1 activity. However, the RNA-binder HuR disrupts P-body targeting by "sponging" out Ago2-associated miRNAs.
Collapse
Affiliation(s)
- Sritama Ray
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sumangal Roychowdhury
- Protein Folding & Dynamics Laboratory, Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Yogaditya Chakrabarty
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Division of Biology, California Institute of Technology, California, CA 91125, USA
| | - Saikat Banerjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Alisiara Hobbs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, NE 68198, USA
| | - Krishnananda Chattopadhyay
- Protein Folding & Dynamics Laboratory, Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska , NE 68198, USA.
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, NE 68198, USA.
| |
Collapse
|
4
|
Scialò C, Zhong W, Jagannath S, Wilkins O, Caredio D, Hruska-Plochan M, Lurati F, Peter M, De Cecco E, Celauro L, Aguzzi A, Legname G, Fratta P, Polymenidou M. Seeded aggregation of TDP-43 induces its loss of function and reveals early pathological signatures. Neuron 2025:S0896-6273(25)00180-1. [PMID: 40157355 DOI: 10.1016/j.neuron.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/24/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) results from both gain of toxicity and loss of normal function of the RNA-binding protein TDP-43, but their mechanistic connection remains unclear. Increasing evidence suggests that TDP-43 aggregates act as self-templating seeds, propagating pathology through the central nervous system via a prion-like cascade. We developed a robust TDP-43-seeding platform for quantitative assessment of TDP-43 aggregate uptake, cell-to-cell spreading, and loss of function within living cells, while they progress toward pathology. We show that both patient-derived and recombinant TDP-43 pathological aggregates were abundantly internalized by human neuron-like cells, efficiently recruited endogenous TDP-43, and formed cytoplasmic inclusions reminiscent of ALS/FTD pathology. Combining a fluorescent reporter of TDP-43 function with RNA sequencing and proteomics, we demonstrated aberrant cryptic splicing and a loss-of-function profile resulting from TDP-43-templated aggregation. Our data highlight known and novel pathological signatures in the context of seed-induced TDP-43 loss of function.
Collapse
Affiliation(s)
- Carlo Scialò
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Weijia Zhong
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Somanath Jagannath
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Oscar Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK; The Francis Crick Institute, London, UK
| | - Davide Caredio
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Flavio Lurati
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Martina Peter
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK; The Francis Crick Institute, London, UK
| | | |
Collapse
|
5
|
Shang Q, Zhou J, Ye J, Chen M. Adverse events reporting of edaravone: a real-world analysis from FAERS database. Sci Rep 2025; 15:8148. [PMID: 40059194 PMCID: PMC11891309 DOI: 10.1038/s41598-025-92605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
For individuals with amyotrophic lateral sclerosis (ALS), intravenous edaravone is approved as a disease-modifying medication; yet, there have been many reports of adverse events (AEs). We examined the AEs associated with edaravone in this study using actual data from the FDA's (Food and Drug Administration) adverse event reporting system (FAERS). By extracting large-scale data from the FAERS database, this study used the signals of edaravone-associated AEs were quantified using the multiitem gamma Poisson shrinker (MGPS) method based on disproportionality, the Bayesian confidence propagation neural network (BCPNN), the reporting odds ratio (ROR), and the proportional reporting ratio (PRR). In the FAERS database, this study extracted data between April 2017 and March 2024, and edaravone was identified as the "primary suspect (PS)" in 2,986 AE reports. AEs associated with edaravone specifically targeted 27 system organ types (SOCs). Unexpectedly serious AEs that weren't mentioned in the drug insert, include abnormal hepatic function, catheter site thrombosis, pain, cerebral hemorrhage, infection, cerebral infarction, poor venous access, disseminated intravascular coagulation, vein collapse and cerebral venous sinus thrombosis. Our research found possible signals of new AEs that may offer substantial backing for clinical surveillance and edaravone risk assessment, but further research and validation are needed, especially for those AE that may occur in actual usage scenarios but are not yet explicitly described in the instruction.
Collapse
Affiliation(s)
- Qi Shang
- Department of Pharmacy, Fujian Provincial Geriatric Hospital, Fuzhou, Fujian, 350000, People's Republic of China
| | - Jie Zhou
- Department of Pharmacy, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, 363000, People's Republic of China
| | - Junchang Ye
- Department of Pharmacy, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, 363000, People's Republic of China.
| | - Maohua Chen
- Department of Pharmacy, Pingtan Comprehensive Experimental Area Hospital, Pingtan Comprehensive Experimental Area, Pingtan, 350400, People's Republic of China.
| |
Collapse
|
6
|
Thompson EG, Spead O, Akerman SC, Curcio C, Zaepfel BL, Kent ER, Philips T, Vijayakumar BG, Zacco A, Zhou W, Nagappan G, Rothstein JD. A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in an AAV-C9ORF72 (G 4C 2) 66 mouse model. Acta Neuropathol Commun 2024; 12:203. [PMID: 39722074 DOI: 10.1186/s40478-024-01911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The G4C2 hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. The model displays key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis. However, the AAV-(G4C2)66 mouse model in this study has marginal neurodegeneration with negligible neuronal loss, or clinical deficits. Human C9orf72 is typically associated with altered TAR DNA-binding protein (TDP-43) function, yet studies of this rodent model revealed no significant evidence of TDP-43 dysfunction. While our findings indicate and support that this is a highly valuable robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease- associated TDP-43 dysfunction or clinical impairment. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.
Collapse
Affiliation(s)
- Emily G Thompson
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Suleyman C Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carrie Curcio
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Benjamin L Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Erica R Kent
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas Philips
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Balaji G Vijayakumar
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anna Zacco
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Weibo Zhou
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guhan Nagappan
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Johns Hopkins University, 855 N. Wolfe St., Rangos 275, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Thompson EG, Spead O, Akerman SC, Curcio C, Zaepfel BL, Kent ER, Philips T, Vijayakumar BG, Zacco A, Zhou W, Nagappan G, Rothstein JD. A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in a AAV- C9ORF72 (G 4 C 2) 66 mouse model. RESEARCH SQUARE 2024:rs.3.rs-5221595. [PMID: 39711523 PMCID: PMC11661372 DOI: 10.21203/rs.3.rs-5221595/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The G4C2 hexanucleotide repeat expansion in C9ORF72is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. The model displays key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis. However, the AAV-(G4C2)66 mouse model in this study has marginal neurodegeneration with negligible neuronal loss, or clinical deficits. Human C9orf72 is typically associated with altered TAR DNA-binding protein (TDP-43) function, yet studies of this rodent model revealed no significant evidence of TDP-43 dysfunction. While our findings indicate and support that this is a highly valuable robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease- associated TDP-43 dysfunction or clinical impairment. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Anna Zacco
- Glaxo Smith Kline Research and Development
| | - Weibo Zhou
- Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
8
|
Wang LQ, Ma Y, Zhang MY, Yuan HY, Li XN, Xia W, Zhao K, Huang X, Chen J, Li D, Zou L, Wang Z, Le W, Liu C, Liang Y. Amyloid fibril structures and ferroptosis activation induced by ALS-causing SOD1 mutations. SCIENCE ADVANCES 2024; 10:eado8499. [PMID: 39475611 PMCID: PMC11524188 DOI: 10.1126/sciadv.ado8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
Over 200 genetic mutations in copper-zinc superoxide dismutase (SOD1) have been linked to amyotrophic lateral sclerosis (ALS). Among these, two ALS-causing mutants, histidine-46→arginine (H46R) and glycine-85→arginine (G85R), exhibit a decreased capacity to bind metal ions. Here, we report two cryo-electron microscopy structures of amyloid fibrils formed by H46R and G85R. These mutations lead to the formation of amyloid fibrils with unique structures distinct from those of the native fibril. The core of these fibrils features a serpentine arrangement with seven or eight β strands, secured by a hydrophobic cavity and a salt bridge between arginine-85 and aspartic acid-101 in the G85R fibril. We demonstrate that these mutant fibrils are notably more toxic and capable of promoting the aggregation of wild-type SOD1 more effectively, causing mitochondrial impairment and activating ferroptosis in cell cultures, compared to wild-type SOD1 fibrils. Our study provides insights into the structural mechanisms by which SOD1 mutants aggregate and induce cytotoxicity in ALS.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu-Ya Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang-Ning Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Huang
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangyu Zou
- Department of Neurology, Shenzhen People’s Hospital (the First Affiliated Hospital of Southern University of Science and Technology), the Second Clinical Medical College, Jinan University, Shenzhen 518020, China
| | - Zhengzhi Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Weidong Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
9
|
Zhang Q, Lin J, Wang Y, Chen L, Ding Y, Zheng F, Song H, Lv A, Li Y, Guo Q, Lin M, Hu W, Xu L, Zhao W, Fang L, Cui M, Fu Z, Chen W, Zhang J, Wang Z, Wang N, Fu Y. Detection of pTDP-43 via routine muscle biopsy: A promising diagnostic biomarker for amyotrophic lateral sclerosis. Brain Pathol 2024; 34:e13261. [PMID: 38602336 PMCID: PMC11483524 DOI: 10.1111/bpa.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, pathologically characterized by TDP-43 aggregates. Recent evidence has been indicated that phosphorylated TDP-43 (pTDP-43) is present not only in motor neurons but also in muscle tissues. However, it is unclear whether testing pTDP-43 aggregation in muscle tissue would assist in the diagnosis of ALS. We propose three key questions: (i) Is aggregation of pTDP-43 detectable in routine biopsied muscles? (ii) Can detection of pTDP-43 aggregation discriminate between ALS and non-ALS patients? (iii) Can pTDP-43 aggregation be observed in the early stages of ALS? We conducted a diagnostic study comprising 2 groups: an ALS group in which 18 cases underwent muscle biopsy screened from a registered ALS cohort consisting of 802 patients and a non-ALS control group, in which we randomly selected 54 muscle samples from a biospecimen bank of 684 patients. Among the 18 ALS patients, 3 patients carried pathological GGGGCC repeats in the C9ORF72 gene, 2 patients carried SOD1 mutations, and 7 patients were at an early stage with only one body region clinically affected. The pTDP-43 accumulation could be detected in routine biopsied muscles, including biceps brachii, deltoid, tibialis anterior, and quadriceps. Abnormal aggregation of pTDP-43 was present in 94.4% of ALS patients (17/18) compared to 29.6% of non-ALS controls (16/54; p < 0.001). The pTDP-43 aggregates were mainly close to the sarcolemma. Using a semi-quantified pTDP-43 aggregates score, we applied a cut-off value of 3 as a diagnostic biomarker, resulting in a sensitivity of 94.4% and a specificity of 83.3%. Moreover, we observed that accumulation of pTDP-43 occurred in muscle tissues prior to clinical symptoms and electromyographic lesions. Our study provides proof-of-concept for the detection of pTDP-43 accumulation via routine muscle biopsy which may serve as a novel biomarker for diagnosis of ALS.
Collapse
Affiliation(s)
- Qi‐Jie Zhang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Jie Lin
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - You‐Liang Wang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Long Chen
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Ying Ding
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Fu‐Ze Zheng
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Huan‐Huan Song
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Ao‐Wei Lv
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Yu‐Ying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijingChina
| | - Qi‐Fu Guo
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Min‐Ting Lin
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Wei Hu
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Liu‐Qing Xu
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Wen‐Long Zhao
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Ling Fang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Meng‐Chao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijingChina
| | - Zhi‐Fei Fu
- Public Technology Service CenterFujian Medical UniversityFuzhouChina
| | - Wan‐Jin Chen
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Jing Zhang
- Department of Pathology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- National Human Brain Bank for Health and DiseaseZhejiang UniversityHangzhouChina
| | - Zhi‐Qiang Wang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Ning Wang
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Ying Fu
- Department of Neurology, Fujian Institute of Neurology, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| |
Collapse
|
10
|
Ramachandran V, Brown W, Gayvert C, Potoyan DA. Nucleoprotein Phase-Separation Affinities Revealed via Atomistic Simulations of Short Peptide and RNA Fragments. J Phys Chem Lett 2024; 15:10811-10817. [PMID: 39432826 PMCID: PMC11972660 DOI: 10.1021/acs.jpclett.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Liquid-liquid phase separation of proteins and nucleic acids into condensate phases is a versatile mechanism for ensuring the compartmentalization of cellular biochemistry. RNA molecules play critical roles in these condensates, particularly in transcriptional regulation and stress responses, exhibiting a wide range of thermodynamic and dynamic behaviors. However, deciphering the molecular grammar that governs the stability and dynamics of protein-RNA condensates remains challenging due to the multicomponent and heterogeneous nature of condensates. In this study, we employ atomistic simulations of 20 distinct mixtures containing minimal RNA and peptide fragments which allows us to dissect the phase-separating affinities of all 20 amino acids in the presence of RNA. Our findings elucidate chemically specific interactions, hydration profiles, and ionic effects that synergistically promote or suppress protein-RNA phase separation. We map a ternary phase diagram of interactions, identifying four distinct groups of residues that promote, maintain, suppress, and disrupt protein-RNA clusters.
Collapse
Affiliation(s)
| | - William Brown
- Department of Chemistry, Iowa State University, Ames, IA 50011
| | - Christopher Gayvert
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 5011
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames IA 5011
| |
Collapse
|
11
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
12
|
Yang J, Li Y, Li H, Zhang H, Guo H, Zheng X, Yu XF, Wei W. HIV-1 Vpu induces neurotoxicity by promoting Caspase 3-dependent cleavage of TDP-43. EMBO Rep 2024; 25:4337-4357. [PMID: 39242776 PMCID: PMC11467202 DOI: 10.1038/s44319-024-00238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the efficacy of highly active antiretroviral therapy in controlling the incidence and mortality of AIDS, effective interventions for HIV-1-induced neurological damage and cognitive impairment remain elusive. In this study, we found that HIV-1 infection can induce proteolytic cleavage and aberrant aggregation of TAR DNA-binding protein 43 (TDP-43), a pathological protein associated with various severe neurological disorders. The HIV-1 accessory protein Vpu was found to be responsible for the cleavage of TDP-43, as ectopic expression of Vpu alone was sufficient to induce TDP-43 cleavage, whereas HIV-1 lacking Vpu failed to cleave TDP-43. Mechanistically, the cleavage of TDP-43 at Asp89 by HIV-1 relies on Vpu-mediated activation of Caspase 3, and pharmacological inhibition of Caspase 3 activity effectively suppressed the HIV-1-induced aggregation and neurotoxicity of TDP-43. Overall, these results suggest that TDP-43 is a conserved host target of HIV-1 Vpu and provide evidence for the involvement of TDP-43 dysregulation in the neural pathogenesis of HIV-1.
Collapse
Affiliation(s)
- Jiaxin Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, 130021, Changchun, Jilin, China
| | - Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, 130021, Changchun, Jilin, China
| | - Huili Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, 130021, Changchun, Jilin, China
| | - Haichen Zhang
- Department of Neurology and Neuroscience Center, First Hospital, Jilin University, 130021, Changchun, Jilin, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, 130021, Changchun, Jilin, China
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, First Hospital, Jilin University, 130021, Changchun, Jilin, China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, 130021, Changchun, Jilin, China.
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, 130021, Changchun, Jilin, China.
| |
Collapse
|
13
|
Ramachandran V, Brown W, Potoyan DA. Nucleoprotein phase-separation affinities revealed via atomistic simulations of short peptide and RNA fragments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614800. [PMID: 39386696 PMCID: PMC11463516 DOI: 10.1101/2024.09.24.614800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Liquid-liquid phase separation of proteins and nucleic acids into condensate phases is a versatile mechanism for ensuring compartmentalization of cellular biochemistry. RNA molecules play critical roles in these condensates, particularly in transcriptional regulation and stress responses, exhibiting a wide range of thermodynamic and dynamic behaviors. However, deciphering the molecular grammar that governs the stability and dynamics of protein-RNA condensates remains challenging due to the multicomponent and heterogeneous nature of these biomolecular mixtures. In this study, we employ atomistic simulations of twenty distinct mixtures containing minimal RNA and peptide fragments to dissect the phase-separating affinities of all twenty amino acids in the presence of RNA. Our findings elucidate chemically specific interactions, hydration profiles, and ionic effects that synergistically promote or suppress protein-RNA phase separation. We map a ternary phase diagram of interactions, identifying four distinct groups of residues that promote, maintain, suppress, or disrupt protein-RNA clusters.
Collapse
|
14
|
Thompson EG, Spead O, Akerman SC, Curcio C, Zaepfel BL, Kent ER, Philips T, Vijayakumar BG, Zacco A, Zhou W, Nagappan G, Rothstein JD. A robust evaluation of TDP-43, poly GP, cellular pathology and behavior in a AAV-C9ORF72 (G 4C 2) 66 mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.607409. [PMID: 39253499 PMCID: PMC11383318 DOI: 10.1101/2024.08.27.607409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The G4C2 hexanucleotide repeat expansion in C9ORF72 is the major genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9-ALS/FTD). Despite considerable efforts, the development of mouse models of C9-ALS/FTD useful for therapeutic development has proven challenging due to the intricate interplay of genetic and molecular factors underlying this neurodegenerative disorder, in addition to species differences. This study presents a robust investigation of the cellular pathophysiology and behavioral outcomes in a previously described AAV mouse model of C9-ALS expressing 66 G4C2 hexanucleotide repeats. Despite displaying key molecular ALS pathological markers including RNA foci, dipeptide repeat (DPR) protein aggregation, p62 positive stress granule formation as well as mild gliosis, the AAV-(G4C2)66 mouse model in this study exhibits negligible neuronal loss, no motor deficits, and functionally unimpaired TAR DNA-binding protein-43 (TDP-43). While our findings indicate and support that this is a robust and pharmacologically tractable model for investigating the molecular mechanisms and cellular consequences of (G4C2) repeat driven DPR pathology, it is not suitable for investigating the development of disease associated neurodegeneration, TDP-43 dysfunction, gliosis, and motor performance. Our findings underscore the complexity of ALS pathogenesis involving genetic mutations and protein dysregulation and highlight the need for more comprehensive model systems that reliably replicate the multifaceted cellular and behavioral aspects of C9-ALS.
Collapse
Affiliation(s)
- Emily G. Thompson
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Olivia Spead
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - S. Can Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Carrie Curcio
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Benjamin L. Zaepfel
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Erica R. Kent
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas Philips
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Balaji G. Vijayakumar
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Anna Zacco
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Weibo Zhou
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guhan Nagappan
- Glaxo Smith Kline Research and Development, 1250 S. Collegeville Road, Collegeville, PA, 19426, USA
| | - Jeffrey D. Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
15
|
Staderini T, Bigi A, Lagrève C, Marzi I, Bemporad F, Chiti F. Biophysical characterization of the phase separation of TDP-43 devoid of the C-terminal domain. Cell Mol Biol Lett 2024; 29:104. [PMID: 38997630 PMCID: PMC11245819 DOI: 10.1186/s11658-024-00615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-TDP), amyotrophic lateral sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE) are associated with deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43) in neurons. One complexity of this process lies in the ability of TDP-43 to form liquid-phase membraneless organelles in cells. Previous work has shown that the recombinant, purified, prion-like domain (PrLD) forms liquid droplets in vitro, but the behaviour of the complementary fragment is uncertain. METHODS We have purified such a construct without the PrLD (PrLD-less TDP-43) and have induced its phase separation using a solution-jump method and an array of biophysical techniques to study the morphology, state of matter and structure of the TDP-43 assemblies. RESULTS The fluorescent TMR-labelled protein construct, imaged using confocal fluorescence, formed rapidly (< 1 min) round, homogeneous and 0.5-1.0 µm wide assemblies which then coalesced into larger, yet round, species. When labelled with AlexaFluor488, they initially exhibited fluorescence recovery after photobleaching (FRAP), showing a liquid behaviour distinct from full-length TDP-43 and similar to PrLD. The protein molecules did not undergo major structural changes, as determined with circular dichroism and intrinsic fluorescence spectroscopies. This process had a pH and salt dependence distinct from those of full-length TDP-43 and its PrLD, which can be rationalized on the grounds of electrostatic forces. CONCLUSIONS Similarly to PrLD, PrLD-less TDP-43 forms liquid droplets in vitro through liquid-liquid phase separation (LLPS), unlike the full-length protein that rather undergoes liquid-solid phase separation (LSPS). These results offer a rationale of the complex electrostatic forces governing phase separation of full-length TDP-43 and its fragments. On the one hand, PrLD-less TDP-43 has a low pI and oppositively charged domains, and LLPS is inhibited by salts, which attenuate inter-domain electrostatic attractions. On the other hand, PrLD is positively charged due to a high isoionic point (pI) and LLPS is therefore promoted by salts and pH increases as they both reduce electrostatic repulsions. By contrast, full-length TDP-43 undergoes LSPS most favourably at its pI, with positive and negative salt dependences at lower and higher pH, respectively, depending on whether repulsive or attractive forces dominate, respectively.
Collapse
Affiliation(s)
- Tommaso Staderini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Florence, Italy
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Clément Lagrève
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
- Chimie ParisTech-PSL, École Nationale Supérieur de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231, Paris, France
| | - Isabella Marzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy.
| |
Collapse
|
16
|
Vazquez-Sanchez S, Tilkin B, Gasset-Rosa F, Zhang S, Piol D, McAlonis-Downes M, Artates J, Govea-Perez N, Verresen Y, Guo L, Cleveland DW, Shorter J, Da Cruz S. Frontotemporal dementia-like disease progression elicited by seeded aggregation and spread of FUS. Mol Neurodegener 2024; 19:46. [PMID: 38862967 PMCID: PMC11165889 DOI: 10.1186/s13024-024-00737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fused in sarcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic Frontotemporal lobar degeneration (FTLD). Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.
Collapse
Affiliation(s)
- Sonia Vazquez-Sanchez
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Britt Tilkin
- VIB-KU Leuven Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Fatima Gasset-Rosa
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
- Present Address: Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, 92121, USA
| | - Sitao Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Diana Piol
- VIB-KU Leuven Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Melissa McAlonis-Downes
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Jonathan Artates
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Noe Govea-Perez
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Yana Verresen
- VIB-KU Leuven Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Sandrine Da Cruz
- VIB-KU Leuven Center for Brain and Disease Research and Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
17
|
Vazquez-Sanchez S, Tilkin B, Gasset-Rosa F, Zhang S, Piol D, McAlonis-Downes M, Artates J, Govea-Perez N, Verresen Y, Guo L, Cleveland DW, Shorter J, Da Cruz S. Frontotemporal dementia-like disease progression elicited by seeded aggregation and spread of FUS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.593639. [PMID: 38895337 PMCID: PMC11185515 DOI: 10.1101/2024.06.03.593639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fu sed in s arcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic FTLD. Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.
Collapse
|
18
|
Liu D, Yang J, Cristea IM. Liquid-liquid phase separation in innate immunity. Trends Immunol 2024; 45:454-469. [PMID: 38762334 PMCID: PMC11247960 DOI: 10.1016/j.it.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Intrinsic and innate immune responses are essential lines of defense in the body's constant surveillance of pathogens. The discovery of liquid-liquid phase separation (LLPS) as a key regulator of this primal response to infection brings an updated perspective to our understanding of cellular defense mechanisms. Here, we review the emerging multifaceted role of LLPS in diverse aspects of mammalian innate immunity, including DNA and RNA sensing and inflammasome activity. We discuss the intricate regulation of LLPS by post-translational modifications (PTMs), and the subversive tactics used by viruses to antagonize LLPS. This Review, therefore, underscores the significance of LLPS as a regulatory node that offers rapid and plastic control over host immune signaling, representing a promising target for future therapeutic strategies.
Collapse
Affiliation(s)
- Dawei Liu
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Jinhang Yang
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA.
| |
Collapse
|
19
|
Khorsand FR, Uversky VN. Liquid-liquid phase separation as triggering factor of fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:143-182. [PMID: 38811080 DOI: 10.1016/bs.pmbts.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
20
|
Chen X, Luo J, Zheng W, Huang Q, Du C, Yuan H, Xiao F. Hyperhidrosis as the initial symptom in FUS mutation-associated amyotrophic lateral sclerosis: a case report and comprehensive literature review. Neurol Sci 2024; 45:1523-1527. [PMID: 37904013 DOI: 10.1007/s10072-023-07141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is now recognized to involve autonomic dysfunction. The burden of autonomic dysfunction is an important factor in the quality of life and prognosis of ALS patients. This article presents the clinical characteristics of a young female ALS patient with a fused in sarcoma (FUS) gene mutation and notable hyperhidrosis. METHOD Detailed clinical characteristics of the patients were collected, and comprehensive examinations such as electrophysiological assessment, neuro-ultrasound, genetic testing, and relevant blood tests were conducted. RESULT A 24-year-old female experienced progressive weakness in both lower limbs for over 5 months, along with excessive sweating on both palms and feet. A positive skin iodine-starch test was observed. Electromyography revealed extensive neurogenic damage and prolonged sympathetic skin response (SSR) latency in both lower limbs. Full exon gene sequencing showed a heterozygous mutation c.1574C>T (p.Pro525Leu) in the FUS gene. CONCLUSION The pathogenesis of ALS remains unclear at present. This case underscores the presence of autonomic nervous symptoms in ALS associated with FUS mutation and highlights the importance of early diagnosis and timely treatment intervention to enhance patient prognosis.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Wei Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Qinlian Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Chao Du
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Huan Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
21
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Dubowsky M, Theunissen F, Carr JM, Rogers ML. The Molecular Link Between TDP-43, Endogenous Retroviruses and Inflammatory Neurodegeneration in Amyotrophic Lateral Sclerosis: a Potential Target for Triumeq, an Antiretroviral Therapy. Mol Neurobiol 2023; 60:6330-6345. [PMID: 37450244 PMCID: PMC10533598 DOI: 10.1007/s12035-023-03472-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a progressive neurological disorder, characterised by the death of upper and lower motor neurons. The aetiology of ALS remains unknown, and treatment options are limited. Endogenous retroviruses (ERVs), specifically human endogenous retrovirus type K (HERV-K), have been proposed to be involved in the propagation of neurodegeneration in ALS. ERVs are genomic remnants of ancient viral infection events, with most being inactive and not retaining the capacity to encode a fully infectious virus. However, some ERVs retain the ability to be activated and transcribed, and ERV transcripts have been found to be elevated within the brain tissue of MND patients. A hallmark of ALS pathology is altered localisation of the transactive response (TAR) DNA binding protein 43 kDa (TDP-43), which is normally found within the nucleus of neuronal and glial cells and is involved in RNA regulation. In ALS, TDP-43 aggregates within the cytoplasm and facilitates neurodegeneration. The involvement of ERVs in ALS pathology is thought to occur through TDP-43 and neuroinflammatory mediators. In this review, the proposed involvement of TDP-43, HERV-K and immune regulators on the onset and progression of ALS will be discussed. Furthermore, the evidence supporting a therapy based on targeting ERVs in ALS will be reviewed.
Collapse
Affiliation(s)
- Megan Dubowsky
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia.
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jillian M Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Mary-Louise Rogers
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
23
|
Vo A, Tremblay C, Rahayel S, Shafiei G, Hansen JY, Yau Y, Misic B, Dagher A. Network connectivity and local transcriptomic vulnerability underpin cortical atrophy progression in Parkinson's disease. Neuroimage Clin 2023; 40:103523. [PMID: 38016407 PMCID: PMC10687705 DOI: 10.1016/j.nicl.2023.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
Parkinson's disease pathology is hypothesized to spread through the brain via axonal connections between regions and is further modulated by local vulnerabilities within those regions. The resulting changes to brain morphology have previously been demonstrated in both prodromal and de novo Parkinson's disease patients. However, it remains unclear whether the pattern of atrophy progression in Parkinson's disease over time is similarly explained by network-based spreading and local vulnerability. We address this gap by mapping the trajectory of cortical atrophy rates in a large, multi-centre cohort of Parkinson's disease patients and relate this atrophy progression pattern to network architecture and gene expression profiles. Across 4-year follow-up visits, increased atrophy rates were observed in posterior, temporal, and superior frontal cortices. We demonstrated that this progression pattern was shaped by network connectivity. Regional atrophy rates were strongly related to atrophy rates across structurally and functionally connected regions. We also found that atrophy progression was associated with specific gene expression profiles. The genes whose spatial distribution in the brain was most related to atrophy rate were those enriched for mitochondrial and metabolic function. Taken together, our findings demonstrate that both global and local brain features influence vulnerability to neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrew Vo
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Christina Tremblay
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Shady Rahayel
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Justine Y Hansen
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
24
|
Tsuboguchi S, Nakamura Y, Ishihara T, Kato T, Sato T, Koyama A, Mori H, Koike Y, Onodera O, Ueno M. TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models. Acta Neuropathol 2023; 146:611-629. [PMID: 37555859 DOI: 10.1007/s00401-023-02615-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/22/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by TDP-43 inclusions in the cortical and spinal motor neurons. It remains unknown whether and how pathogenic TDP-43 spreads across neural connections to progress degenerative processes in the cortico-spinal motor circuitry. Here we established novel mouse ALS models that initially induced mutant TDP-43 inclusions in specific neuronal or cell types in the motor circuits, and investigated whether TDP-43 and relevant pathological processes spread across neuronal or cellular connections. We first developed ALS models that primarily induced TDP-43 inclusions in the corticospinal neurons, spinal motor neurons, or forelimb skeletal muscle, by using adeno-associated virus (AAV) expressing mutant TDP-43. We found that TDP-43 induced in the corticospinal neurons was transported along the axons anterogradely and transferred to the oligodendrocytes along the corticospinal tract (CST), coinciding with mild axon degeneration. In contrast, TDP-43 introduced in the spinal motor neurons did not spread retrogradely to the cortical or spinal neurons; however, it induced an extreme loss of spinal motor neurons and subsequent degeneration of neighboring spinal neurons, suggesting a degenerative propagation in a retrograde manner in the spinal cord. The intraspinal degeneration further led to severe muscle atrophy. Finally, TDP-43 induced in the skeletal muscle did not propagate pathological events to spinal neurons retrogradely. Our data revealed that mutant TDP-43 spread across neuro-glial connections anterogradely in the corticospinal pathway, whereas it exhibited different retrograde degenerative properties in the spinal circuits. This suggests that pathogenic TDP-43 may induce distinct antero- and retrograde mechanisms of degeneration in the motor system in ALS.
Collapse
Affiliation(s)
- Shintaro Tsuboguchi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Taisuke Kato
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Koyama
- Division of Legal Medicine, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Hideki Mori
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Yuka Koike
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, 951-8585, Japan.
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
25
|
Nourelden AZ, Kamal I, Hagrass AI, Tawfik AG, Elhady MM, Fathallah AH, Eshag MME, Zaazouee MS. Safety and efficacy of edaravone in patients with amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol Sci 2023; 44:3429-3442. [PMID: 37249667 PMCID: PMC10495275 DOI: 10.1007/s10072-023-06869-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
AIM The study aims to increase understanding of edaravone's efficacy and safety as an amyotrophic lateral sclerosis (ALS) treatment and provide significant insights regarding this field's future research. METHODS We conducted a comprehensive search of the Embase, PubMed, Cochrane Library, Web of Science, and Scopus databases for randomized controlled trials and observational studies up until September 2022. We evaluated the studies' quality using the Cochrane risk of bias tool and the National Institutes of Health tool. RESULTS We included 11 studies with 2845 ALS patients. We found that edaravone improved the survival rate at 18, 24, and 30 months (risk ratio (RR) = 1.03, 95% confidence interval (CI) [1.02 to 1.24], P = 0.02), (RR = 1.22, 95% CI [1.06 to 1.41], P = 0.007), and (RR = 1.17, 95% CI [1.01 to 1.34], P = 0.03), respectively. However, the administration of edaravone did not result in any significant difference in adverse effects or efficacy outcomes between the two groups, as indicated by a P value greater than 0.05. CONCLUSION Edaravone improves survival rates of ALS patients at 18, 24, and 30 months with no adverse effects. However, edaravone does not affect functional outcomes. In order to ensure the validity of our findings and assess the results in accordance with the disease stage, it is essential to carry out additional prospective, rigorous, and high-quality clinical trials. The current study offers preliminary indications regarding the effectiveness and safety of edaravone. However, further comprehensive research is required to establish the generalizability and sustainability of the findings.
Collapse
Affiliation(s)
| | - Ibrahim Kamal
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Abdelrahman G Tawfik
- Department of Pharmacotherapy, College of Pharmacy, The University of Utah, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
26
|
Cui S, Zhang T, Xiong X, Zhao J, Cao Q, Zhou H, Xia XG. Detergent-insoluble PFN1 inoculation expedites disease onset and progression in PFN1 transgenic rats. Front Neurosci 2023; 17:1279259. [PMID: 37817804 PMCID: PMC10560758 DOI: 10.3389/fnins.2023.1279259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Accumulating evidence suggests a gain of elusive toxicity in pathogenically mutated PFN1. The prominence of PFN1 aggregates as a pivotal pathological hallmark in PFN1 transgenic rats underscores the crucial involvement of protein aggregation in the initiation and progression of neurodegeneration. Detergent-insoluble materials were extracted from the spinal cords of paralyzed rats afflicted with ALS and were intramuscularly administered to asymptomatic recipient rats expressing mutant PFN1, resulting in an accelerated development of PFN1 inclusions and ALS-like phenotypes. This effect diminished when the extracts derived from wildtype PFN1 transgenic rats were employed, as detergent-insoluble PFN1 was detected exclusively in mutant PFN1 transgenic rats. Consequently, the factor influencing the progression of ALS pathology in recipient rats is likely associated with the presence of detergent-insoluble PFN1 within the extracted materials. Noteworthy is the absence of disease course modification upon administering detergent-insoluble extracts to rats that already displayed PFN1 inclusions, suggesting a seeding rather than augmenting role of such extracts in initiating neuropathological changes. Remarkably, pathogenic PFN1 exhibited an enhanced affinity for the molecular chaperone DNAJB6, leading to the sequestration of DNAJB6 within protein inclusions, thereby depleting its availability for cellular functions. These findings shed light on a novel mechanism that underscores the prion-like characteristics of pathogenic PFN1 in driving neurodegeneration in the context of PFN1-related ALS.
Collapse
Affiliation(s)
- Shiquan Cui
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Tingting Zhang
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Xinrui Xiong
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Jihe Zhao
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Qilin Cao
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| | - Hongxia Zhou
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| | - Xu-Gang Xia
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Florida International University, Miami, FL, United States
| |
Collapse
|
27
|
Ayala YM. Uncovering Critical Roles for RNA in Neurodegeneration. MISSOURI MEDICINE 2023; 120:374-380. [PMID: 37841575 PMCID: PMC10569393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
RNA-binding proteins, in particular TDP-43, are key players in neurodegenerative disorders, mainly amyotrophic lateral sclerosis and frontotemporal dementia. We aim to elucidate how TDP-43 dysfunction alters cell metabolism and to identify mechanisms linked to aberrant behavior. We find that RNA binding plays a key role in maintaining TDP-43 homeostasis and in controlling cellular organization, two processes of essential importance to TDP-43 pathology. This research will provide insight into pathogenesis and help develop therapeutic interventions.
Collapse
Affiliation(s)
- Yuna M Ayala
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Krupp S, Hubbard I, Tam O, Hammell GM, Dubnau J. TDP-43 pathology in Drosophila induces glial-cell type specific toxicity that can be ameliorated by knock-down of SF2/SRSF1. PLoS Genet 2023; 19:e1010973. [PMID: 37747929 PMCID: PMC10553832 DOI: 10.1371/journal.pgen.1010973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/05/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Accumulation of cytoplasmic inclusions of TAR-DNA binding protein 43 (TDP-43) is seen in both neurons and glia in a range of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Alzheimer's disease (AD). Disease progression involves non-cell autonomous interactions among multiple cell types, including neurons, microglia and astrocytes. We investigated the effects in Drosophila of inducible, glial cell type-specific TDP-43 overexpression, a model that causes TDP-43 protein pathology including loss of nuclear TDP-43 and accumulation of cytoplasmic inclusions. We report that TDP-43 pathology in Drosophila is sufficient to cause progressive loss of each of the 5 glial sub-types. But the effects on organismal survival were most pronounced when TDP-43 pathology was induced in the perineural glia (PNG) or astrocytes. In the case of PNG, this effect is not attributable to loss of the glial population, because ablation of these glia by expression of pro-apoptotic reaper expression has relatively little impact on survival. To uncover underlying mechanisms, we used cell-type-specific nuclear RNA sequencing to characterize the transcriptional changes induced by pathological TDP-43 expression. We identified numerous glial cell-type specific transcriptional changes. Notably, SF2/SRSF1 levels were found to be decreased in both PNG and in astrocytes. We found that further knockdown of SF2/SRSF1 in either PNG or astrocytes lessens the detrimental effects of TDP-43 pathology on lifespan, but extends survival of the glial cells. Thus TDP-43 pathology in astrocytes or PNG causes systemic effects that shorten lifespan and SF2/SRSF1 knockdown rescues the loss of these glia, and also reduces their systemic toxicity to the organism.
Collapse
Affiliation(s)
- Sarah Krupp
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York, United States of America
| | - Isabel Hubbard
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York, United States of America
| | - Oliver Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Gale M. Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Josh Dubnau
- Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, New York, United States of America
- Department of Anesthesiology, Stony Brook School of Medicine, New York, United States of America
| |
Collapse
|
29
|
Bjorklund GR, Wong J, Brafman D, Bowser R, Stabenfeldt SE. Traumatic brain injury induces TDP-43 mislocalization and neurodegenerative effects in tissue distal to the primary injury site in a non-transgenic mouse. Acta Neuropathol Commun 2023; 11:137. [PMID: 37608352 PMCID: PMC10463884 DOI: 10.1186/s40478-023-01625-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury (TBI) initiates tissue and cellular damage to the brain that is immediately followed by secondary injury sequalae with delayed and continual damage. This secondary damage includes pathological processes that may contribute to chronic neurodegeneration and permanent functional and cognitive deficits. TBI is also associated with an increased risk of developing neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS) as indicated by shared pathological features. For example, abnormalities in the TAR DNA-binding Protein 43 (TDP-43) that includes cytoplasmic mislocalization, cytosolic aggregation, and an increase in phosphorylation and ubiquitination are seen in up to 50% of FTD cases, up to 70% of AD cases, and is considered a hallmark pathology of ALS occurring in > 97% of cases. Yet the prevalence of TDP-43 pathology post-TBI has yet to be fully characterized. Here, we employed a non-transgenic murine controlled cortical injury model of TBI and observed injury-induced hallmark TDP-43 pathologies in brain and spinal cord tissue distal to the primary injury site and did not include the focally damaged tissue within the primary cortical injury site. Analysis revealed a temporal-dependent and significant increase in neuronal TDP-43 mislocalization in the cortical forebrain rostral to and distant from the primary injury site up to 180 days post injury (DPI). TDP-43 mislocalization was also detected in neurons located in the ventral horns of the cervical spinal cord following a TBI. Moreover, a cortical layer-dependent affect was identified, increasing from superficial to deeper cortical layers over time from 7 DPI up to 180 DPI. Lastly, RNAseq analysis confirmed an injury-induced misregulation of several key biological processes implicated in neurons that increased over time. Collectively, this study demonstrates a connection between a single moderate TBI event and chronic neurodegenerative processes that are not limited to the primary injury site and broadly distributed throughout the cortex and corticospinal tract.
Collapse
Affiliation(s)
- George R Bjorklund
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jennifer Wong
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
30
|
Acosta-Galeana I, Hernández-Martínez R, Reyes-Cruz T, Chiquete E, Aceves-Buendia JDJ. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis. Front Mol Neurosci 2023; 16:1193636. [PMID: 37475885 PMCID: PMC10355071 DOI: 10.3389/fnmol.2023.1193636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
The neurodegenerative and inflammatory illnesses of amyotrophic lateral sclerosis and multiple sclerosis were once thought to be completely distinct entities that did not share any remarkable features, but new research is beginning to reveal more information about their similarities and differences. Here, we review some of the pathophysiological features of both diseases and their experimental models: RNA-binding proteins, energy balance, protein transportation, and protein degradation at the molecular level. We make a thorough analysis on TDP-43 and hnRNP A1 dysfunction, as a possible common ground in both pathologies, establishing a potential link between neurodegeneration and pathological immunity. Furthermore, we highlight the putative variations that diverge from a common ground in an atemporal course that proposes three phases for all relevant molecular events.
Collapse
Affiliation(s)
| | | | - Tania Reyes-Cruz
- Laboratorio de Biología Molecular, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Erwin Chiquete
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jose de Jesus Aceves-Buendia
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
31
|
Evangelista BA, Cahalan SR, Ragusa JV, Mordant A, Necarsulmer JC, Perna RJ, Ajit T, White K, Barker NK, Tian X, Cohen S, Meeker R, Herring LE, Cohen TJ. Tandem detergent-extraction and immunoprecipitation of proteinopathy: Scalable enrichment of ALS-associated TDP-43 aggregates. iScience 2023; 26:106645. [PMID: 37182104 PMCID: PMC10173608 DOI: 10.1016/j.isci.2023.106645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Transactive response DNA-binding protein of 43 kDa (TDP-43) is a highly conserved, ubiquitously expressed nucleic acid-binding protein that regulates DNA/RNA metabolism. Genetics and neuropathology studies have linked TDP-43 to several neuromuscular and neurological disorders including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Under pathological conditions, TDP-43 mislocalizes to the cytoplasm where it forms insoluble, hyper-phosphorylated aggregates during disease progression. Here, we optimized a scalable in vitro immuno-purification strategy referred to as tandem detergent-extraction and immunoprecipitation of proteinopathy (TDiP) to isolate TDP-43 aggregates that recapitulate those identified in postmortem ALS tissue. Moreover, we demonstrate that these purified aggregates can be utilized in biochemical, proteomics, and live-cell assays. This platform offers a rapid, accessible, and streamlined approach to study ALS disease mechanisms, while overcoming many limitations that have hampered TDP-43 disease modeling and therapeutic drug discovery efforts.
Collapse
Affiliation(s)
- Baggio A. Evangelista
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shannon R. Cahalan
- Medical Student Training in Aging Research, Center for Aging and Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joey V. Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angie Mordant
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie C. Necarsulmer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert J. Perna
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tejazaditya Ajit
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristen White
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K. Barker
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xu Tian
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rick Meeker
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura E. Herring
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Todd J. Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Rey F, Berardo C, Maghraby E, Mauri A, Messa L, Esposito L, Casili G, Ottolenghi S, Bonaventura E, Cuzzocrea S, Zuccotti G, Tonduti D, Esposito E, Paterniti I, Cereda C, Carelli S. Redox Imbalance in Neurological Disorders in Adults and Children. Antioxidants (Basel) 2023; 12:antiox12040965. [PMID: 37107340 PMCID: PMC10135575 DOI: 10.3390/antiox12040965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Oxygen is a central molecule for numerous metabolic and cytophysiological processes, and, indeed, its imbalance can lead to numerous pathological consequences. In the human body, the brain is an aerobic organ and for this reason, it is very sensitive to oxygen equilibrium. The consequences of oxygen imbalance are especially devastating when occurring in this organ. Indeed, oxygen imbalance can lead to hypoxia, hyperoxia, protein misfolding, mitochondria dysfunction, alterations in heme metabolism and neuroinflammation. Consequently, these dysfunctions can cause numerous neurological alterations, both in the pediatric life and in the adult ages. These disorders share numerous common pathways, most of which are consequent to redox imbalance. In this review, we will focus on the dysfunctions present in neurodegenerative disorders (specifically Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis) and pediatric neurological disorders (X-adrenoleukodystrophies, spinal muscular atrophy, mucopolysaccharidoses and Pelizaeus-Merzbacher Disease), highlighting their underlining dysfunction in redox and identifying potential therapeutic strategies.
Collapse
Affiliation(s)
- Federica Rey
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Clarissa Berardo
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Erika Maghraby
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessia Mauri
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milano, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sara Ottolenghi
- Department of Medicine and Surgery, University of Milano Bicocca, 20126 Milano, Italy
| | - Eleonora Bonaventura
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Davide Tonduti
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Child Neurology Unit, Buzzi Children's Hospital, 20154 Milano, Italy
- Center for Diagnosis and Treatment of Leukodystrophies and Genetic Leukoencephalopathies (COALA), Buzzi Children's Hospital, 20154 Milano, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milano, 20157 Milano, Italy
- Center of Functional Genomics and Rare diseases, Department of Pediatrics, Buzzi Children's Hospital, 20154 Milano, Italy
| |
Collapse
|
33
|
Mahapatra S, Sarbahi A, Punia N, Joshi A, Avni A, Walimbe A, Mukhopadhyay S. ATP modulates self-perpetuating conformational conversion generating structurally distinct yeast prion amyloids that limit autocatalytic amplification. J Biol Chem 2023; 299:104654. [PMID: 36990219 PMCID: PMC10149227 DOI: 10.1016/j.jbc.2023.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Prion-like self-perpetuating conformational conversion of proteins into amyloid aggregates is associated with both transmissible neurodegenerative diseases and non-Mendelian inheritance. The cellular energy currency ATP is known to indirectly regulate the formation, dissolution, or transmission of amyloid-like aggregates by providing energy to the molecular chaperones that maintain protein homeostasis. In this work, we demonstrate that ATP molecules, independent of any chaperones, modulate the formation and dissolution of amyloids from a yeast prion domain (NM domain of Saccharomyces cerevisiae Sup35) and restricts autocatalytic amplification by controlling the amount of fragmentable and seeding-competent aggregates. ATP, at (high) physiological concentrations in the presence of Mg2+, kinetically accelerates NM aggregation. Interestingly, ATP also promotes phase-separation-mediated aggregation of a human protein harboring a yeast prion-like domain. We also show that ATP disaggregates preformed NM fibrils in a dose-independent manner. Our results indicate that ATP-mediated disaggregation, unlike the disaggregation by the disaggregase Hsp104, yields no oligomers that are considered one of the critical species for amyloid transmission. Furthermore, high concentrations of ATP delimited the number of seeds by giving rise to compact, ATP-bound NM fibrils that exhibited nominal fragmentation by either free ATP or Hsp104 disaggregase to generate lower molecular weight amyloids. Additionally, (low) pathologically relevant ATP concentrations restricted autocatalytic amplification by forming structurally distinct amyloids which are found seeding-inefficient due to their reduced β-content. Our results provide key mechanistic underpinnings of concentration-dependent chemical chaperoning by ATP against prion-like transmissions of amyloids.
Collapse
Affiliation(s)
- Sayanta Mahapatra
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| | - Anusha Sarbahi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Neha Punia
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anamika Avni
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Anuja Walimbe
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
34
|
Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. Nat Commun 2023; 14:966. [PMID: 36810738 PMCID: PMC9944888 DOI: 10.1038/s41467-023-36649-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Inter-cellular movement of "prion-like" proteins is thought to explain propagation of neurodegeneration between cells. For example, propagation of abnormally phosphorylated cytoplasmic inclusions of TAR-DNA-Binding protein (TDP-43) is proposed to underlie progression of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). But unlike transmissible prion diseases, ALS and FTD are not infectious and injection of aggregated TDP-43 is not sufficient to cause disease. This suggests a missing component of a positive feedback necessary to sustain disease progression. We demonstrate that endogenous retrovirus (ERV) expression and TDP-43 proteinopathy are mutually reinforcing. Expression of either Drosophila mdg4-ERV (gypsy) or the human ERV, HERV-K (HML-2) are each sufficient to stimulate cytoplasmic aggregation of human TDP-43. Viral ERV transmission also triggers TDP-43 pathology in recipient cells that express physiological levels of TDP-43, whether they are in contact or at a distance. This mechanism potentially underlies the TDP-43 proteinopathy-caused neurodegenerative propagation through neuronal tissue.
Collapse
|
35
|
Vasilopoulou C, McDaid-McCloskey SL, McCluskey G, Duguez S, Morris AP, Duddy W. Genome-Wide Gene-Set Analysis Identifies Molecular Mechanisms Associated with ALS. Int J Mol Sci 2023; 24:4021. [PMID: 36835433 PMCID: PMC9966913 DOI: 10.3390/ijms24044021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset motor neuron disease characterized by the loss of the upper and lower motor neurons. Our understanding of the molecular basis of ALS pathology remains elusive, complicating the development of efficient treatment. Gene-set analyses of genome-wide data have offered insight into the biological processes and pathways of complex diseases and can suggest new hypotheses regarding causal mechanisms. Our aim in this study was to identify and explore biological pathways and other gene sets having genomic association to ALS. Two cohorts of genomic data from the dbGaP repository were combined: (a) the largest available ALS individual-level genotype dataset (N = 12,319), and (b) a similarly sized control cohort (N = 13,210). Following comprehensive quality control pipelines, imputation and meta-analysis, we assembled a large European descent ALS-control cohort of 9244 ALS cases and 12,795 healthy controls represented by genetic variants of 19,242 genes. Multi-marker analysis of genomic annotation (MAGMA) gene-set analysis was applied to an extensive collection of 31,454 gene sets from the molecular signatures database (MSigDB). Statistically significant associations were observed for gene sets related to immune response, apoptosis, lipid metabolism, neuron differentiation, muscle cell function, synaptic plasticity and development. We also report novel interactions between gene sets, suggestive of mechanistic overlaps. A manual meta-categorization and enrichment mapping approach is used to explore the overlap of gene membership between significant gene sets, revealing a number of shared mechanisms.
Collapse
Affiliation(s)
- Christina Vasilopoulou
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | | | - Gavin McCluskey
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Stephanie Duguez
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester M13 9PT, UK
| | - William Duddy
- Personalised Medicine Centre, School of Medicine, Ulster University, Londonderry BT47 6SB, UK
| |
Collapse
|
36
|
Metamorphism in TDP-43 prion-like domain determines chaperone recognition. Nat Commun 2023; 14:466. [PMID: 36709343 PMCID: PMC9884275 DOI: 10.1038/s41467-023-36023-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023] Open
Abstract
The RNA binding protein TDP-43 forms cytoplasmic inclusions via its C-terminal prion-like domain in several neurodegenerative diseases. Aberrant TDP-43 aggregation arises upon phase de-mixing and transitions from liquid to solid states, following still unknown structural conversions which are primed by oxidative stress and chaperone inhibition. Despite the well-established protective roles for molecular chaperones against protein aggregation pathologies, knowledge on the determinants of chaperone recognition in disease-related prions is scarce. Here we show that chaperones and co-chaperones primarily recognize the structured elements in TDP-43´s prion-like domain. Significantly, while HSP70 and HSP90 chaperones promote TDP-43 phase separation, co-chaperones from the three classes of the large human HSP40 family (namely DNAJA2, DNAJB1, DNAJB4 and DNAJC7) show strikingly different effects on TDP-43 de-mixing. Dismantling of the second helical element in TDP-43 prion-like domain by methionine sulfoxidation impacts phase separation and amyloid formation, abrogates chaperone recognition and alters phosphorylation by casein kinase-1δ. Our results show that metamorphism in the post-translationally modified TDP-43 prion-like domain encodes determinants that command mechanisms with major relevance in disease.
Collapse
|
37
|
Marzoughi S, Pfeffer G, Cashman N. Primary lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:89-99. [PMID: 37620095 DOI: 10.1016/b978-0-323-98817-9.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Like motor neuron diseases (MNDs) refer to a constellation of primarily sporadic neurodegenerative diseases characterized by a progressive loss of upper and/or lower motor neurons. Primary lateral sclerosis (PLS) is considered a neurodegenerative disorder that is characterized by a gradually progressive course affecting the central motor systems, designated by the phrase "upper motor neurons." Despite significant development in neuroimaging, neurophysiology, and molecular biology, there is a growing consensus that PLS is of unknown etiology. Currently there is no disease-modifying treatment for PLS, or prospective randomized trials being carried out, partly due to the rarity of the disease and lack of significant understanding of the underlying pathophysiology. Consequently, the approach to treatment remains largely symptomatic. In this chapter we provide an overview of primary lateral sclerosis including clinical and electrodiagnostic considerations, differential diagnosis, updates in genetics and pathophysiology, and future directions for research.
Collapse
Affiliation(s)
- Sina Marzoughi
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gerald Pfeffer
- Department of Neurosciences, Division of Neurology, University of Calgary, Calgary, AB, Canada
| | - Neil Cashman
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Muacevic A, Adler JR, Singh P, Faisal AR, Rai N, Poudel P, Waleed MS, Quinonez J, Ruxmohan S, Jain E. Investigating Edaravone Use for Management of Amyotrophic Lateral Sclerosis (ALS): A Narrative Review. Cureus 2023; 15:e33746. [PMID: 36788871 PMCID: PMC9922523 DOI: 10.7759/cureus.33746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 01/15/2023] Open
Abstract
The use of Edaravone, given orally, for the treatment of amyotrophic lateral sclerosis (ALS) was officially approved by the Federal Drug Association (FDA) in 2017. ALS is a rare and progressive degenerative disease that worsens over time. It attacks and destroys the nerve cells that control voluntary muscles, thus leading to weakness, eventual paralysis, and, ultimately death. Edaravone was given initially intravenously, but recent evidence shows better results with oral suspension. This narrative review is aimed to investigate the benefit of Edaravone for the management of ALS, compare it to Riluzole, discuss its mechanism of action, route of use, and side effects, and ultimately discuss future implications of this pharmacotherapy.
Collapse
|
39
|
Włodarczyk P, Witczak M, Gajewska A, Chady T, Piotrowski I. The role of TDP-43 protein in amyotrophic lateral sclerosis. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease where both upper and lower motoneurons are damaged. Even though the pathogenesis of ALS is unclear, the TDP-43 aggregations and non-nuclear localization may be crucial to understanding this process. Despite intensive research on ALS therapies, only two lifespan-prolonging medications have been approved: Riluzole and Edaravone. Unravelling the TDP-43 pathology could help develop new ALS therapies using mechanisms such as inhibition of nuclear export, autophagy, chaperones, or antisense oligonucleotides. Selective inhibitors of nuclear export (SINEs) are drugs that block Exportin 1 (XPO1) and cause the accumulation of not exported molecules inside the nucleus. SINEs that target XPO1 are shown to slightly extend the survival of neurons and soften motor symptoms. Dysfunctional proteins, including TDP-43, can be eliminated through autophagocytosis, which is regulated by the mTOR kinase. Stimulating the elimination of protein deposits may be an effective ALS therapy. Antisense oligonucleotides (ASO) are single-stranded, synthetic oligonucleotides that can bind and modulate specific RNA: via ribonuclease H, inducing their degradation or inducing alternative splicing via blocking primary RNA transcripts. Current ASOs therapies used in ALS focus on SOD1, C9ORF72, FUS, and ATXN2, and they may be used to slow the ALS progression. Reversing the aggregation is a promising therapeutic strategy. Chaperones control other proteins' quality and protect them against stress factors. Due to the irreversible character of ALS, it is essential to understand its complicated pathology better and to seek new therapies.
Collapse
|
40
|
Comprehensive evaluation of human-derived anti-poly-GA antibodies in cellular and animal models of C9orf72 disease. Proc Natl Acad Sci U S A 2022; 119:e2123487119. [PMID: 36454749 PMCID: PMC9894253 DOI: 10.1073/pnas.2123487119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hexanucleotide G4C2 repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intra-cellular poly-GA and reduced aggregate formation in a poly-GA overexpressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 mo was well-tolerated and led to measurable brain penetration of antibodies. Long-term treatment with anti-GA antibodies produced improvement in an open-field movement test in aged C9orf72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model.
Collapse
|
41
|
Staderini T, Bigi A, Mongiello D, Cecchi C, Chiti F. Biophysical characterization of full-length TAR DNA-binding protein (TDP-43) phase separation. Protein Sci 2022; 31:e4509. [PMID: 36371546 PMCID: PMC9703588 DOI: 10.1002/pro.4509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022]
Abstract
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions are associated with deposition of cytosolic inclusion bodies of TAR DNA-binding protein 43 (TDP-43) in brain and motor neurons. We induced phase separation of purified full-length TDP-43 devoid of large tags using a solution-jump method, and monitored it with an array of biophysical techniques. The tetramethylrhodamine-5-maleimide- or Alexa488-labeled protein formed rapidly (<1 min) apparently round, homogeneous and 0.5-1.0 μm wide assemblies, when imaged using confocal fluorescence, bright-field, and stimulated emission depletion microscopy. The assemblies, however, had limited internal diffusion, as assessed with fluorescence recovery after photobleaching, and did not coalesce, but rather clustered into irregular bunches, unlike those formed by the C-terminal domain. They were enriched with α-helical structure, with minor contributions of β-sheet/random structure, had a red-shifted tryptophan fluorescence and did not bind thioflavin T. By monitoring with turbidimetry both the formation of the spherical species and their further clustering under different experimental conditions, we carried out a multiparametric analysis of the two phenomena. In particular, both processes were found to be promoted by high protein concentrations, salts, crowding agents, weakly by reducing agents, as the pH approached a value of 6.0 from either side (corresponding to the TDP-43 isoionic point), and as the temperature approached a value of 31°C from either side. Important differences were found with respect to the TDP-43 C-terminal domain. Our multiparametric results also provide explanations to some of the solubility data obtained on full-length TDP-43 that were difficult to explain following the multiparametric analysis acquired on the C-terminal domain.
Collapse
Affiliation(s)
- Tommaso Staderini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Daniele Mongiello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| |
Collapse
|
42
|
Dar GH, Badierah R, Nathan EG, Bhat MA, Dar AH, Redwan EM. Extracellular vesicles: A new paradigm in understanding, diagnosing and treating neurodegenerative disease. Front Aging Neurosci 2022; 14:967231. [PMID: 36408114 PMCID: PMC9669424 DOI: 10.3389/fnagi.2022.967231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/29/2022] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders (NDs) are becoming one of the leading causes of disability and death across the globe due to lack of timely preventions and treatments. Concurrently, intensive research efforts are being carried out to understand the etiology of these age-dependent disorders. Extracellular vesicles (EVs)-biological nanoparticles released by cells-are gaining tremendous attention in understanding their role in pathogenesis and progression of NDs. EVs have been found to transmit pathogenic proteins of NDs between neurons. Moreover, the ability of EVs to exquisitely surmount natural biological barriers, including blood-brain barrier and in vivo safety has generated interest in exploring them as potential biomarkers and function as natural delivery vehicles of drugs to the central nervous system. However, limited knowledge of EV biogenesis, their heterogeneity and lack of adequate isolation and analysis tools have hampered their therapeutic potential. In this review, we cover the recent advances in understanding the role of EVs in neurodegeneration and address their role as biomarkers and delivery vehicles to the brain.
Collapse
Affiliation(s)
- Ghulam Hassan Dar
- Department of Biochemistry, S.P. College, Cluster University Srinagar, Srinagar, India
- Hassan Khoyihami Memorial Degree College, Bandipora, India
| | - Raied Badierah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Erica G. Nathan
- Department of Oncology, Cambridge Cancer Center, Cambridge, United Kingdom
| | | | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Elrashdy M. Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
43
|
Biological colloids: Unique properties of membranelles organelles in the cell. Adv Colloid Interface Sci 2022; 310:102777. [DOI: 10.1016/j.cis.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
|
44
|
Ahmad A, Uversky VN, Khan RH. Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases. Int J Biol Macromol 2022; 220:703-720. [PMID: 35998851 DOI: 10.1016/j.ijbiomac.2022.08.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
Recent evidence has shown that the processes of liquid-liquid phase separation (LLPS) or liquid-liquid phase transitions (LLPTs) are a crucial and prevalent phenomenon that underlies the biogenesis of numerous membrane-less organelles (MLOs) and biomolecular condensates within the cells. Findings show that processes associated with LLPS play an essential role in physiology and disease. In this review, we discuss the physical and biomolecular factors that contribute to the development of LLPS, the associated functions, as well as their consequences for cell physiology and neurological disorders. Additionally, the finding of mis-regulated proteins, which have long been linked to aggregates in neuropathology, are also known to induce LLPS/LLPTs, prompting a lot of interest in understanding the connection between aberrant phase separation and disorder conditions. Moreover, the methods used in recent and ongoing studies in this field are also explored, as is the possibility that these findings will encourage new lines of inquiry into the molecular causes of neurodegenerative diseases.
Collapse
Affiliation(s)
- Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P. 202002, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P. 202002, India.
| |
Collapse
|
45
|
Bajic VP, Salhi A, Lakota K, Radovanovic A, Razali R, Zivkovic L, Spremo-Potparevic B, Uludag M, Tifratene F, Motwalli O, Marchand B, Bajic VB, Gojobori T, Isenovic ER, Essack M. DES-Amyloidoses “Amyloidoses through the looking-glass”: A knowledgebase developed for exploring and linking information related to human amyloid-related diseases. PLoS One 2022; 17:e0271737. [PMID: 35877764 PMCID: PMC9312389 DOI: 10.1371/journal.pone.0271737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
More than 30 types of amyloids are linked to close to 50 diseases in humans, the most prominent being Alzheimer’s disease (AD). AD is brain-related local amyloidosis, while another amyloidosis, such as AA amyloidosis, tends to be more systemic. Therefore, we need to know more about the biological entities’ influencing these amyloidosis processes. However, there is currently no support system developed specifically to handle this extraordinarily complex and demanding task. To acquire a systematic view of amyloidosis and how this may be relevant to the brain and other organs, we needed a means to explore "amyloid network systems" that may underly processes that leads to an amyloid-related disease. In this regard, we developed the DES-Amyloidoses knowledgebase (KB) to obtain fast and relevant information regarding the biological network related to amyloid proteins/peptides and amyloid-related diseases. This KB contains information obtained through text and data mining of available scientific literature and other public repositories. The information compiled into the DES-Amyloidoses system based on 19 topic-specific dictionaries resulted in 796,409 associations between terms from these dictionaries. Users can explore this information through various options, including enriched concepts, enriched pairs, and semantic similarity. We show the usefulness of the KB using an example focused on inflammasome-amyloid associations. To our knowledge, this is the only KB dedicated to human amyloid-related diseases derived primarily through literature text mining and complemented by data mining that provides a novel way of exploring information relevant to amyloidoses.
Collapse
Affiliation(s)
- Vladan P. Bajic
- Institute of Nuclear Sciences “VINCA", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Republic of Serbia
- * E-mail: (ME); (VPB)
| | - Adil Salhi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Katja Lakota
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Radovanovic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Rozaimi Razali
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Lada Zivkovic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | | - Mahmut Uludag
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Faroug Tifratene
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaa Motwalli
- Saudi Electronic University (SEU), College of Computing and Informatics, Madinah, Kingdom of Saudi Arabia
| | | | - Vladimir B. Bajic
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Esma R. Isenovic
- Institute of Nuclear Sciences “VINCA", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Republic of Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- * E-mail: (ME); (VPB)
| |
Collapse
|
46
|
Xia K, Shen H, Wang P, Tan R, Xun D. Investigation of the conformation of human prion protein in ethanol solution using molecular dynamics simulations. J Biomol Struct Dyn 2022:1-10. [PMID: 35838152 DOI: 10.1080/07391102.2022.2099466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
When the conformation of protein is changed from its natural state to a misfolded state, some diseases will happen like prion disease. Prion diseases are a set of deadly neurodegenerative diseases caused by prion protein misfolding and aggregation. Monohydric alcohols have a strong influence on the structure of protein. However, whether monohydric alcohols inhibit amyloid fibrosis remains uncertain. Here, to elucidate the effect of ethanol on the structural stability of human prion protein, molecular dynamics simulations were employed to analyze the conformational changes and dynamics characteristics of human prion proteins at different temperatures. The results show that the extension of β-sheet occurs more easily and the α-helix is more easily disrupted at high temperatures. We found that ethanol can destroy the hydrophobic interactions and make the hydrogen bonds stable, which protects the secondary structure of the protein, especially at 500 K.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kui Xia
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Haolei Shen
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Peng Wang
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Rongri Tan
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Damao Xun
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
47
|
"Endothelial Antibody Factory" at the Blood Brain Barrier: Novel Approach to Therapy of Neurodegenerative Diseases. Pharmaceutics 2022; 14:pharmaceutics14071418. [PMID: 35890313 PMCID: PMC9320725 DOI: 10.3390/pharmaceutics14071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
The failures of anti-β-amyloid immunotherapies suggested that the very low fraction of injected antibodies reaching the brain parenchyma due to the filtering effect of the BBB may be a reason for the lack of therapeutic effect. However, there is no treatment, as yet, for the amyotrophic lateral sclerosis (ALS) despite substantial evidence existing of the involvement of TDP-43 protein in the evolution of ALS. To circumvent this filtering effect, we have developed a novel approach to facilitate the penetration of antibody fragments (Fabs) into the brain parenchyma. Leveraging the homing properties of endothelial progenitor cells (EPCs), we transfected, ex vivo, such cells with vectors encoding anti-β-amyloid and anti-TDP43 Fabs turning them into an “antibody fragment factory”. When injected these cells integrate into the BBB, where they secrete anti-TDP43 Fabs. The results showed the formation of tight junctions between the injected engineered EPCs and the unlabeled resident endothelial cells. When the EPCs were further modified to express the anti-TDP43 Fab, we could observe integration of these cells into the vasculature and the secretion of Fabs. Results confirm that production and secretion of Fabs at the BBB level leads to their migration to the brain parenchyma where they might exert a therapeutic effect.
Collapse
|
48
|
Gosset P, Camu W, Raoul C, Mezghrani A. Prionoids in amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac145. [PMID: 35783556 PMCID: PMC9242622 DOI: 10.1093/braincomms/fcac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most frequent neurodegenerative disease after Alzheimer’s and Parkinson’s disease. ALS is characterized by the selective and progressive loss of motoneurons in the spinal cord, brainstem and cerebral cortex. Clinical manifestations typically occur in midlife and start with focal muscle weakness, followed by the rapid and progressive wasting of muscles and subsequent paralysis. As with other neurodegenerative diseases, the condition typically begins at an initial point and then spreads along neuroanatomical tracts. This feature of disease progression suggests the spreading of prion-like proteins called prionoids in the affected tissues, which is similar to the spread of prion observed in Creutzfeldt-Jakob disease. Intensive research over the last decade has proposed the ALS-causing gene products Cu/Zn superoxide dismutase 1, TAR DNA-binding protein of 43 kDa, and fused in sarcoma as very plausible prionoids contributing to the spread of the pathology. In this review, we will discuss the molecular and cellular mechanisms leading to the propagation of these prionoids in ALS.
Collapse
Affiliation(s)
- Philippe Gosset
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - William Camu
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, CNRS, Montpellier 34095, France
| | | |
Collapse
|
49
|
Conversion of the Native N-Terminal Domain of TDP-43 into a Monomeric Alternative Fold with Lower Aggregation Propensity. Molecules 2022; 27:molecules27134309. [PMID: 35807552 PMCID: PMC9268139 DOI: 10.3390/molecules27134309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conformational state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and β-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative conformation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications.
Collapse
|
50
|
Wang LQ, Ma Y, Yuan HY, Zhao K, Zhang MY, Wang Q, Huang X, Xu WC, Dai B, Chen J, Li D, Zhang D, Wang Z, Zou L, Yin P, Liu C, Liang Y. Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Nat Commun 2022; 13:3491. [PMID: 35715417 PMCID: PMC9205981 DOI: 10.1038/s41467-022-31240-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. Misfolded Cu, Zn-superoxide dismutase (SOD1) has been linked to both familial and sporadic ALS. SOD1 fibrils formed in vitro share toxic properties with ALS inclusions. Here we produced cytotoxic amyloid fibrils from full-length apo human SOD1 under reducing conditions and determined the atomic structure using cryo-EM. The SOD1 fibril consists of a single protofilament with a left-handed helix. The fibril core exhibits a serpentine fold comprising N-terminal segment (residues 3–55) and C-terminal segment (residues 86–153) with an intrinsic disordered segment. The two segments are zipped up by three salt bridge pairs. By comparison with the structure of apo SOD1 dimer, we propose that eight β-strands (to form a β-barrel) and one α-helix in the subunit of apo SOD1 convert into thirteen β-strands stabilized by five hydrophobic cavities in the SOD1 fibril. Our data provide insights into how SOD1 converts between structurally and functionally distinct states. Misfolded SOD1 has been linked to both familial and sporadic ALS. Here the authors have determined the cryo-EM structure of SOD1 fibrils, providing insights into the conversion of SOD1 from its immature form into an aggregated form during pathogenesis of ALS.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mu-Ya Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xi Huang
- Department of Neurology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China
| | - Wen-Chang Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Bin Dai
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, 200030, Shanghai, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhengzhi Wang
- School of Civil Engineering, Wuhan University, 430072, Wuhan, China
| | - Liangyu Zou
- Department of Neurology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China. .,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China.
| |
Collapse
|