1
|
Akkaya A, Aykan D, Gencturk S, Unal G. Intermittent environmental enrichment induces behavioral despair, while intermittent social isolation impairs spatial learning in rats. Pharmacol Biochem Behav 2025; 250:174001. [PMID: 40118218 DOI: 10.1016/j.pbb.2025.174001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Environmental enrichment and social isolation constitute two well-studied experimental manipulations that result in several behavioral, neural, and molecular changes in rodents. Enrichment is linked to enhanced cognitive performance, and mitigation of different nervous system injuries and disorders. In contrast, social isolation or impoverished environment often induce negative effects on cognitive and affective systems. Both manipulations are typically examined with a short-term or chronic exposure, which cannot capture the actual human experiences. In this study, we explored the behavioral and neural alterations led by intermittent environmental enrichment or social isolation in adult Wistar rats. Animals were assigned to an enriched condition (EC), isolation/impoverished condition (IC), or standard condition (SC). The differential housing protocol involved transferring the animals to their respective cages for two days at the end of each five-day standard housing period for 8 weeks. Enriched animals exhibited behavioral despair in the forced swim test without differential overall locomotor activity. In the Morris water maze, impoverished animals displayed a slower learning rate compared to the SC and EC groups. In line with this, the IC group had fewer parvalbumin (PV) immunopositive (+) cells in the CA1 and dentate gyrus. No differences were observed in PV+ cell levels in the amygdala, while the IC group had more c-Fos+ cells in the same region following acute restraint stress. These findings implicate that intermittent isolation or enrichment are sufficient to trigger distinct behavioral changes at the cognitive and affective domains, and pinpoint PV as a biomarker for environmentally induced alterations in hippocampal memory performance.
Collapse
Affiliation(s)
- Aybuke Akkaya
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Sinem Gencturk
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
2
|
Paulson AL, Zhang L, Prichard AM, Singer AC. 40 Hz sensory stimulation enhances CA3-CA1 coordination and prospective coding during navigation in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2025; 122:e2419364122. [PMID: 40261930 DOI: 10.1073/pnas.2419364122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
40 Hz sensory stimulation ("flicker") has emerged as a new technique to potentially mitigate pathology and improve cognition in mouse models of Alzheimer's disease (AD) pathology. However, it remains unknown how 40 Hz flicker affects neural codes essential for memory. Accordingly, we investigate the effects of 40 Hz flicker on neural representations of experience in the hippocampus of the 5XFAD mouse model of AD by recording 1,000s of neurons during a goal-directed spatial navigation task. We find that an hour of daily exposure to 40 Hz audio-visual stimulation over 8 d leads to higher coordination between hippocampal subregions CA3 and CA1 during navigation. Consistent with CA3's role in generating sequential activity that represents future positions, 40 Hz flicker exposure increased prospective coding of future positions. In turn, prospective coding was more prominent during efficient navigation behavior. Our findings show how 40 Hz flicker enhances key hippocampal activity during behavior that is important for memory.
Collapse
Affiliation(s)
- Abigail L Paulson
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| | - Lu Zhang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
- National Institute of Mental Health, NIH, Bethesda, MD 20892
| | - Ashley M Prichard
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA 30033
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332
| |
Collapse
|
3
|
Jeans AF, Padamsey Z, Collins H, Foster W, Allison S, Dierksmeier S, Klein WL, van den Maagdenberg AMJM, Emptage NJ. Ca V2.1 mediates presynaptic dysfunction induced by amyloid β oligomers. Cell Rep 2025; 44:115451. [PMID: 40127100 DOI: 10.1016/j.celrep.2025.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Synaptic dysfunction is an early pathological phenotype of Alzheimer's disease (AD) that is initiated by oligomers of amyloid β peptide (Aβos). Treatments aimed at correcting synaptic dysfunction could be beneficial in preventing disease progression, but mechanisms underlying Aβo-induced synaptic defects remain incompletely understood. Here, we uncover an epithelial sodium channel (ENaC) - CaV2.3 - protein kinase C (PKC) - glycogen synthase kinase-3β (GSK-3β) signal transduction pathway that is engaged by Aβos to enhance presynaptic CaV2.1 voltage-gated Ca2+ channel activity, resulting in pathological potentiation of action-potential-evoked synaptic vesicle exocytosis. We present evidence that the pathway is active in human APP transgenic mice in vivo and in human AD brains, and we show that either pharmacological CaV2.1 inhibition or genetic CaV2.1 haploinsufficiency is sufficient to restore normal neurotransmitter release. These findings reveal a previously unrecognized mechanism driving synaptic dysfunction in AD and identify multiple potentially tractable therapeutic targets.
Collapse
Affiliation(s)
- Alexander F Jeans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William Foster
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sally Allison
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Steven Dierksmeier
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
4
|
Merino-Serrais P, Plaza-Alonso S, Tapia-Gonzalez S, León-Espinosa G, DeFelipe J. Parvalbumin interneurons in the hippocampal formation of individuals with Alzheimer's disease: a neuropathological study of abnormal phosphorylated tau in neurons. Front Neuroanat 2025; 19:1571514. [PMID: 40275866 PMCID: PMC12018435 DOI: 10.3389/fnana.2025.1571514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly. Recent efforts have centered on understanding early events that trigger AD, aiming to facilitate early diagnosis and intervention for improved patient outcomes. The traditional histopathological features observed in AD encompass the extracellular accumulation of amyloid-beta protein and the intracellular abnormal phosphorylation of Tau protein (pTau). However, elucidating how these pathological hallmarks ultimately contribute to cognitive deficits remains a complex challenge. While AD is commonly conceptualized as a disorder characterized by synaptic failure, substantial knowledge gaps persist regarding the mechanisms underlying the onset and progression of the disease, underscoring the need for novel and more effective therapeutic approaches. In this context, the impairment of GABAergic paravalbumin (PV+) neurons has been proposed as a crucial factor contributing to neuronal network dysfunction and cognitive decline in AD. The presence of pTau in pyramidal neurons is directly linked to their impairment in AD; however, the effect of pTau in PV+ neurons remains unclear. In this present study, we analyzed the existence of PV+ neurons containing pTau using immunocytochemistry in the hippocampal formation and entorhinal cortex of human samples from diagnosed AD cases and individuals without neurological or psychiatric disorders. Two pTau isoforms, pTauAT8 and pTaupS396, corresponding to early and late stages of AD respectively, were examined. Our findings indicate that most PV+ neurons across the hippocampal formation and entorhinal cortex did not contain pTau in either group cases. Interestingly, while AD cases diagnosed with dementia exhibited a higher number of pTau+ neurons, the majority of PV+/pTau+ neurons were found in individuals with no neurological alterations. This suggests that the presence of pTau in PV+ neurons does not directly correlate with the overall abundance of pTau+ neurons. Given that PV+ neuron impairment is a key pathogenic mechanism in AD and is associated with cognitive decline, understanding the changes in PV+ neurons during AD progression could provide critical insights into the alterations of neuronal circuits underlying the disease.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Silvia Tapia-Gonzalez
- Laboratorio de Neurofisiología Celular, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
5
|
Walls AB, Andersen JV, Waagepetersen HS, Bak LK. Fueling Brain Inhibition: Integrating GABAergic Neurotransmission and Energy Metabolism. Neurochem Res 2025; 50:136. [PMID: 40189668 DOI: 10.1007/s11064-025-04384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Despite decades of research in brain energy metabolism and to what extent different cell types utilize distinct substrates for their energy metabolism, this topic remains a vibrant area of neuroscience research. In this review, we focus on the substrates utilized by the inhibitory GABAergic neurons, which has been less explored than glutamatergic neurons. First, we discuss how GABAergic neurons may utilize both glucose, lactate, or ketone bodies under different functional conditions, and provide some preliminary data suggesting that unlike glutamatergic neurons, GABAergic neurons work well when substrate supply is restricted to lactate. We end by discussing the role of GABAergic neuron energy metabolism in pathologies where failure of inhibitory function play a central role, namely epilepsy, hepatic encephalopathy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Anne B Walls
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Capital Region Hospital Pharmacy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Lasse K Bak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Translational Research Center (TRACE), Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
6
|
Gonzalez MM, Magondu B, Rowan MJM, Forest CR. Regional susceptibility of PV interneurons in an hAPP-KI mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646485. [PMID: 40236235 PMCID: PMC11996532 DOI: 10.1101/2025.04.01.646485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Early-stage Alzheimer's pathology correlates with disrupted neuronal excitability, which can drive network and cognitive dysfunction even prior to neurodegeneration. However, the emergence and extent of these changes may vary by brain region and cell types situated in those regions. Here we aimed to investigate the effects of AD pathology on different neuron subtypes in both the entorhinal cortex, a region with enhanced pathology in early AD, and the primary visual cortex, a relatively unaffected region in early-stage AD. We designed and employed a semi-automated patch clamp electrophysiology apparatus to record from fast-spiking parvalbumin interneurons and excitatory neurons in these regions, recording from over 150 cells in young adult APP-KI mice. In entorhinal cortex, amyloid overproduction resulted in PV interneuron hypoexcitability, whereas excitatory neurons were concurrently hyperexcitable. Conversely, neurons of either subclass were largely unaffected in the visual cortex. Together, these findings suggest that fast-spiking parvalbumin interneurons in the entorhinal cortex, but not in the visual cortex, play an integral role in AD progression.
Collapse
|
7
|
Wang ZM, Grinevich V, Meeker WR, Zhang J, Messi ML, Budygin E, Delbono O. Early signs of neuron autonomous and non-autonomous hyperexcitability in locus coeruleus noradrenergic neurons of a mouse model of tauopathy and Alzheimer's disease. Acta Physiol (Oxf) 2025; 241:e70022. [PMID: 40083218 PMCID: PMC11922040 DOI: 10.1111/apha.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
AIM The locus coeruleus (LC) is one of the earliest brain regions affected by phosphorylated tau (p-tau) in Alzheimer's disease (AD). Using the P301S mouse model, we investigated the temporal progression of tau pathology and its functional consequences. METHODS Immunohistochemistry was used to assess p-tau deposition in LC noradrenergic neurons at 2-3 and 5-6 months. Electrophysiological recordings evaluated neuronal hyperexcitability, measuring membrane potential, rheobase, and spontaneous action potential (AP) frequency in P301S and wild-type (WT) mice. Fast-scan cyclic voltammetry (FSCV) was used to measure norepinephrine (NE) release. GABA(A) receptor subunit expression was analyzed via immunoblotting. RESULTS P-tau was detected in LC neurons as early as 2-3 months, with a rostral-to-caudal gradient, and by 5-6 months, nearly all LC neurons exhibited p-tau immunoreactivity. P301S neurons showed hyperexcitability, characterized by depolarized membrane potentials, a more negative rheobase, and increased spontaneous AP frequency. Synaptic blockade elicited a reduced increase in AP frequency, suggesting diminished inhibitory tone. GABA(A) α2 subunit expression significantly declined with age in P301S mice, whereas α3 remained unchanged. FSCV showed significantly elevated NE release in P301S mice at 3 and 6 months compared to WT. CONCLUSION The findings highlight early LC dysfunction in tauopathies, characterized by increased excitability, reduced inhibitory tone, and exaggerated NE release. This hyperactivity may contribute to excitotoxicity and downstream dysfunction in LC-regulated brain regions. Targeting LC hyperactivity and restoring inhibitory signaling could be promising therapeutic strategies for mitigating AD progression.
Collapse
Affiliation(s)
- Zhong-Min Wang
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Valentina Grinevich
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - William R Meeker
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jie Zhang
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - María Laura Messi
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Evgeny Budygin
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Osvaldo Delbono
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
8
|
Ding X, Zhou Y, Liu Y, Yao XL, Wang JX, Xie Q. Application and research progress of different frequency tACS in stroke rehabilitation: A systematic review. Brain Res 2025; 1852:149521. [PMID: 39983809 DOI: 10.1016/j.brainres.2025.149521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
After a stroke, abnormal changes in neural oscillations that are related to the severity and prognosis of the disease can occur. Resetting these abnormal neural oscillations is a potential approach for stroke rehabilitation. Transcranial alternating current stimulation (tACS) can modulate intrinsic neural oscillations noninvasively and has attracted attention as a possible technique to improve multiple post-stroke symptoms, including deficits in speech, vision, and motor ability and overall neurological recovery. The clinical effect of tACS varies according to the selected frequency. Therefore, choosing an appropriate frequency to optimize outcomes for specific dysfunctions is essential. This review focuses on the current research status and possibilities of tACS with different frequencies in stroke rehabilitation. We also discuss the possible mechanisms of tACS in stroke to provide a theoretical foundation for the method and highlight the controversial aspects that need further exploration. Although tACS has great potential, few clinical studies have applied it in the treatment of stroke, and no consensus has been reached. We analyze limitations in experimental designs and identify potential tACS approaches worthy of exploration in the future.
Collapse
Affiliation(s)
- Xue Ding
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ling Yao
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Xian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Rehabilitation Medicine, Shanghai Ruijin Rehabilitation Hospital, Shanghai, China.
| |
Collapse
|
9
|
Wu M, Zhang R, Fu P, Mei Y. Disrupted astrocyte-neuron signaling reshapes brain activity in epilepsy and Alzheimer's disease. Neuroscience 2025; 570:132-151. [PMID: 39986432 DOI: 10.1016/j.neuroscience.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Astrocytes establish dynamic interactions with surrounding neurons and synchronize neuronal networks within a specific range. However, these reciprocal astrocyte-neuronal interactions are selectively disrupted in epilepsy and Alzheimer's disease (AD), which contributes to the initiation and progression of network hypersynchrony. Deciphering how disrupted astrocyte-neuronal signaling reshapes brain activity is crucial to prevent subclinical epileptiform activity in epilepsy and AD. In this review, we provide an overview of the diverse astrocyte-neuronal crosstalk in maintaining of network activity via homeostatic control of extracellular ions and transmitters, synapse formation and elimination. More importantly, since AD and epilepsy share the common symptoms of neuronal hyperexcitability and astrogliosis, we then explore the crosstalk between astrocytes and neurons in the context of epilepsy and AD and discuss how these disrupted interactions reshape brain activity in pathological conditions. Collectively, this review sheds light on how disrupted astrocyte-neuronal signaling reshapes brain activity in epilepsy and AD, and highlights that modifying astrocyte-neuronal signaling could be a therapeutic approach to prevent epileptiform activity in AD.
Collapse
Affiliation(s)
- Mengjie Wu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruonan Zhang
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Fu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
10
|
Chen X, Lv Z, Xie G, Zhao C, Zhou Y, Fu F, Li J, Zhang X, Qi F, Xu Y, Chen Y. Unleashing the potential: 40 Hz multisensory stimulation therapy for cognitive impairment. J Cent Nerv Syst Dis 2025; 17:11795735251328029. [PMID: 40160278 PMCID: PMC11952037 DOI: 10.1177/11795735251328029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Cognitive impairment encompasses a spectrum of disorders marked by acquired deficits in cognitive function, potentially leading to diminished daily functioning and work capacity, often accompanied by psychiatric and behavioral disturbances. Alzheimer's disease (AD) and Post-stroke cognitive impairment (PSCI) are significant causes of cognitive decline. With the global population getting older, AD and PSCI are becoming major health concerns, underscoring the critical necessity for successful treatment options. In recent years, various non-invasive biophysical stimulation techniques, including ultrasound, light, electric, and magnetic stimulation, have been developed for the treatment of central nervous system diseases. Preliminary clinical studies have demonstrated the feasibility and safety of these techniques. This review discuss the impact of 40 Hz multisensory stimulation on cerebral function, behavioral outcomes, and disease progression in both animal models and individuals exhibiting cognitive deficits, such as AD and PSCI. Furthermore, it summarizes the potential neural pathways involved in this therapeutic modality by synthesizing evidence from a variety of studies within the field. Subsequently, it evaluates the existing constraints of this technique and underscores the potential advantages of 40 Hz multisensory stimulation therapy for individuals with cognitive deficits, with the goal of enhancing the management and care of AD and PSCI.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yan Zhou
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoling Zhang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yifei Xu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yifu Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Li C, Wang K, Mao X, Liu X, Lu Y. Upregulated inwardly rectifying K + current-mediated hypoactivity of parvalbumin interneuron underlies autism-like deficits in Bod1-deficient mice. J Biomed Res 2025; 39:1-13. [PMID: 40164568 DOI: 10.7555/jbr.38.20240394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Parvalbumin-positive (PV +) interneuron dysfunction is believed to be linked to autism spectrum disorder (ASD), a neurodevelopmental disorder, characterized by social deficits and stereotypical behaviors. However, the underlying mechanisms of PV + interneuron dysfunction remain largely unclear. Here, we found that a deficiency of biorientation defective 1 ( Bod1) in PV + interneuron led to an ASD-like phenotype in Pvalb-Cre; Bod1 f/f mice. Mechanistically, we identified that Bod1 deficiency induced hypoactivity of PV + interneuron and hyperactivity of calcium/calmodulin-dependent protein kinase Ⅱ alpha (CaMKⅡα) neurons in the medial prefrontal cortex (mPFC), as determined by whole-cell patch-clamp recording. Additionally, it concurrently decreased the power of high gamma oscillation, as assessed by in vivo multi-channel electrophysiological recording. Furthermore, we found that Bod1 deficiency enhanced inwardly rectifying K + current, leading to an increase in the resting membrane potential of PV + interneurons. Importantly, the gain-of-function of Bod1 improved social deficits and stereotypical behaviors in Pvalb-Cre; Bod1 f/f mice. These findings provide mechanistic insights into the PV + interneuron dysfunction and suggest new strategies for developing PV + interneuron therapies for ASD.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Kerui Wang
- Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xingfeng Mao
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine; School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingmei Lu
- Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
12
|
Vakili K, Fathi M, Ebrahimi R, Ahmadian S, Moafi M, Ebrahimi MJ, Tafazolimoghadam A, Davoodi A, Eghbaldoost A, Eyvani K, Ghayyem H, Jashni Pour M, Kosari M, Niknejad S, Sanaye Abbasi A, Zarebidoki A, Andrew M, Trenaman S, Batool Z, Sayehmiri F, Ebrahimzadeh K. Use of Drugs Affecting GABA A Receptors and the Risk of Developing Alzheimer's Disease and Dementia: a Meta-Analysis and Literature Review. Mol Neurobiol 2025:10.1007/s12035-025-04821-9. [PMID: 40108057 DOI: 10.1007/s12035-025-04821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
The gamma-aminobutyric acid (GABA) system is known for its role in cognitive functions and memory processes. However, the activity of GABAA receptors and their associated pathways influence the accumulation of β-amyloid peptide (Aβ), a key hallmark in the development and prognosis of research examining the relationship between the use of drugs affecting GABAA receptors and the risk of developing Alzheimer's disease (AD) and dementia. This study aimed to examine the association between GABAA receptor-affecting drugs and the risk of AD and dementia, focusing on benzodiazepines, zolpidem, and anesthetics. This meta-analysis included all English articles on AD, dementia, and GABAA receptor agonist medications published before May 2024. The articles were identified through searches conducted on PubMed and Scopus databases. The extracted data were analyzed using STATA software (version 14.2). Q statistics and the I2 index were used to evaluate heterogeneity, while Egger's test and funnel plot were utilized to detect publication bias. A total of 19 articles (10 case-control and 9 cohort articles) were eligible for the analysis, involving 2,953,980 patients. The use of GABA agonists was found to have a statistically significant relationship with the development of dementia (RR = 1.15, 95% CI: 1.02-1.29, I2 = 87.6%) and AD (RR = 1.21, 95% CI: 1.04-1.40, I2 = 97.6%). In the drug-based subgroup, we observed that zolpidem consumption was associated with an increased incidence of AD and dementia (RR = 1.28, 95% CI: 1.08-1.52, I2 = 24.3%), similar to the effects of benzodiazepines (BZDs; RR = 1.11, 95% CI: 1.04-1.18, I2 = 87.2%). Meta-regression analysis showed that the duration of follow-up, which ranged from 5 to 11 years across the studies, was significantly associated with heterogeneity (P = 0.036). Our findings indicate that the use of zolpidem and BZD is associated with an increased risk of dementia and AD.
Collapse
Affiliation(s)
- Kimia Vakili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarina Ahmadian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, 73461, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Ebrahimi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Davoodi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Amirreza Eghbaldoost
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, 4361844981, Iran
| | - Kimia Eyvani
- School of Medicine, Guilan University of Medical Sciences, Rasht, 4193833697, Iran
- Harvard Medical School, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Hani Ghayyem
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehraeen Jashni Pour
- Educational and Scientific Centre, Institute of Biology and Medicine of Taras, Shevchenko National University of Kyiv, Kiev, 01033, Ukraine
| | - Mohammadreza Kosari
- MBBS, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sepideh Niknejad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 7461686688, Iran
| | - Ali Sanaye Abbasi
- School of Medicine, Guilan University of Medical Sciences, Rasht, 4193833697, Iran
| | - Ameneh Zarebidoki
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Melissa Andrew
- Department of Medicine (Geriatrics), Dalhousie University, Halifax, Canada
| | - Shanna Trenaman
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Canada
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kaveh Ebrahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Palacino F, Manganotti P, Benussi A. Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:547. [PMID: 40142358 PMCID: PMC11943909 DOI: 10.3390/medicina61030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is marked by progressive cognitive decline, affecting memory, language, orientation, and behavior. Pathological hallmarks include extracellular amyloid plaques and intracellular tau tangles, which disrupt synaptic function and connectivity. Neural oscillations, the rhythmic synchronization of neuronal activity across frequency bands, are integral to cognitive processes but become dysregulated in AD, contributing to network dysfunction and memory impairments. Targeting these oscillations has emerged as a promising therapeutic strategy. Preclinical studies have demonstrated that specific frequency modulations can restore oscillatory balance, improve synaptic plasticity, and reduce amyloid and tau pathology. In animal models, interventions, such as gamma entrainment using sensory stimulation and transcranial alternating current stimulation (tACS), have shown efficacy in enhancing memory function and modulating neuroinflammatory responses. Clinical trials have reported promising cognitive improvements with repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), particularly when targeting key hubs in memory-related networks, such as the default mode network (DMN) and frontal-parietal network. Moreover, gamma-tACS has been linked to increased cholinergic activity and enhanced network connectivity, which are correlated with improved cognitive outcomes in AD patients. Despite these advancements, challenges remain in optimizing stimulation parameters, individualizing treatment protocols, and understanding long-term effects. Emerging approaches, including transcranial pulse stimulation (TPS) and closed-loop adaptive neuromodulation, hold promise for refining therapeutic strategies. Integrating neuromodulation with pharmacological and lifestyle interventions may maximize cognitive benefits. Continued interdisciplinary efforts are essential to refine these approaches and translate them into clinical practice, advancing the potential for neural oscillation-based therapies in AD.
Collapse
Affiliation(s)
| | | | - Alberto Benussi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.P.); (P.M.)
| |
Collapse
|
14
|
Lee R, Kim G, Black ER, Kim S. Co-activation of selective nicotinic acetylcholine receptor subtypes is required to reverse hippocampal network dysfunction, fear memory loss, and amyloid pathology in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.08.602576. [PMID: 39026693 PMCID: PMC11257460 DOI: 10.1101/2024.07.08.602576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no known cause and cure. Research suggests that a reduction of GABAergic inhibitory interneurons' activity in the hippocampus by beta-amyloid peptide (Aβ) is a crucial trigger for amyloid pathology and cognitive impairment in AD via hyperexcitability. Therefore, enhancing hippocampal inhibition is thought to be protective against AD. However, hippocampal inhibitory cells are highly diverse, and these distinct interneuron subtypes differentially regulate hippocampal inhibitory circuits and cognitive processes. Moreover, Aβ unlikely affects all subtypes of inhibitory interneurons in the hippocampus equally. Hence, identifying the affected interneuron subtypes in AD to enhance hippocampal inhibition optimally is conceptually and practically challenging. We have previously found that Aβ selectively binds to two of the three major hippocampal nicotinic acetylcholine receptor (nAChR) subtypes, α7- and α4β2-nAChRs, but not α3β4-nAChRs, and inhibits these two receptors in cultured hippocampal inhibitory interneurons to decrease their activity, leading to hyperexcitation in excitatory neurons. We have also revealed that co-activation of α7- and α4β2-nAChRs is required to reverse the Aβ-induced adverse effects in hippocampal excitatory neurons. Here, we discover that α7- and α4β2-nAChRs predominantly control the nicotinic cholinergic signaling and neuronal activity in hippocampal parvalbumin-positive (PV+) and somatostatin-positive (SST+) inhibitory interneurons, respectively. Furthermore, we reveal that co-activation of these receptors is necessary to reverse hippocampal network dysfunction, amyloid pathology, and fear memory loss in the amyloid pathology model mice. This suggests that co-activation of PV+ and SST+ cells via stimulating α7- and α4β2-nAChRs together is a novel strategy for neuroprotection against AD.
Collapse
|
15
|
Wan L, Zhong P, Li P, Ren Y, Wang W, Yu M, Feng HY, Yan Z. CRISPR-based epigenetic editing of Gad1 improves synaptic inhibition and cognitive behavior in a Tauopathy mouse model. Neurobiol Dis 2025; 206:106826. [PMID: 39894446 DOI: 10.1016/j.nbd.2025.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025] Open
Abstract
GABAergic signaling in the brain plays a key role in regulating synaptic transmission, neuronal excitability, and cognitive processes. Large-scale sequencing has revealed the diminished expression of GABA-related genes in Alzheimer's disease (AD), however, it is largely unclear about the epigenetic mechanisms that dysregulate the transcription of these genes in AD. We confirmed that GABA synthesizing enzymes, GAD1 and GAD2, were significantly downregulated in prefrontal cortex (PFC) of AD human postmortem tissues. A tauopathy mouse model also had the significantly reduced expression of GABA-related genes, as well as the diminished GABAergic synaptic transmission in PFC pyramidal neurons. To elevate endogenous Gad1 levels, we used the CRISPR/Cas9-based epigenome editing technology to recruit histone acetyltransferase p300 to Gad1. Cells transfected with a fusion protein consisting of the nuclease-null dCas9 protein and the catalytic core of p300 (dCas9p300), as well as a guide RNA targeting Gad1 promoter (gRNAGad1), had significantly increased Gad1 mRNA expression and histone acetylation at Gad1 promoter. Furthermore, the tauopathy mouse model with PFC injection of dCas9p300 and gRNAGad1 lentiviruses had significantly elevated GABAergic synaptic currents and improved spatial memory. These results have provided an epigenetic editing-based gene-targeting strategy to restore synaptic inhibition and cognitive function in AD and related disorders.
Collapse
Affiliation(s)
- Lei Wan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Pei Li
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Yong Ren
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Mingjun Yu
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Henry Y Feng
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
16
|
Martín‐Belmonte A, Aguado C, Alfaro‐Ruiz R, Kulik A, de la Ossa L, Moreno‐Martínez AE, Alberquilla S, García‐Carracedo L, Fernández M, Fajardo‐Serrano A, Aso E, Shigemoto R, Martín ED, Fukazawa Y, Ciruela F, Luján R. Nanoarchitecture of Ca V2.1 channels and GABA B receptors in the mouse hippocampus: Impact of APP/PS1 pathology. Brain Pathol 2025; 35:e13279. [PMID: 38887180 PMCID: PMC11835447 DOI: 10.1111/bpa.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Voltage-gated CaV2.1 (P/Q-type) Ca2+ channels play a crucial role in regulating neurotransmitter release, thus contributing to synaptic plasticity and to processes such as learning and memory. Despite their recognized importance in neural function, there is limited information on their potential involvement in neurodegenerative conditions such as Alzheimer's disease (AD). Here, we aimed to explore the impact of AD pathology on the density and nanoscale compartmentalization of CaV2.1 channels in the hippocampus in association with GABAB receptors. Histoblotting experiments showed that the density of CaV2.1 channel was significantly reduced in the hippocampus of APP/PS1 mice in a laminar-dependent manner. CaV2.1 channel was enriched in the active zone of the axon terminals and was present at a very low density over the surface of dendritic tree of the CA1 pyramidal cells, as shown by quantitative SDS-digested freeze-fracture replica labelling (SDS-FRL). In APP/PS1 mice, the density of CaV2.1 channel in the active zone was significantly reduced in the strata radiatum and lacunosum-moleculare, while it remained unaltered in the stratum oriens. The decline in Cav2.1 channel density was found to be associated with a corresponding impairment in the GABAergic synaptic function, as evidenced by electrophysiological experiments carried out in the hippocampus of APP/PS1 mice. Remarkably, double SDS-FRL showed a co-clustering of CaV2.1 channel and GABAB1 receptor in nanodomains (~40-50 nm) in wild type mice, while in APP/PS1 mice this nanoarchitecture was absent. Together, these findings suggest that the AD pathology-induced reduction in CaV2.1 channel density and CaV2.1-GABAB1 de-clustering may play a role in the synaptic transmission alterations shown in the AD hippocampus. Therefore, uncovering these layer-dependent changes in P/Q calcium currents associated with AD pathology can benefit the development of future strategies for AD management.
Collapse
Affiliation(s)
- Alejandro Martín‐Belmonte
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Carolina Aguado
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Rocío Alfaro‐Ruiz
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Akos Kulik
- Institute for Physiology II, Medical FacultyUniversity of FreiburgFreiburgGermany
| | - Luis de la Ossa
- Departamento de Sistemas Informáticos, Escuela Superior de Ingeniería InformáticaUniversidad de Castilla‐La ManchaAlbaceteSpain
| | - Ana Esther Moreno‐Martínez
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Samuel Alberquilla
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Lucía García‐Carracedo
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Miriam Fernández
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| | - Ana Fajardo‐Serrano
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA)KlosterneuburgAustria
| | - Eduardo D. Martín
- Laboratory of Neurophysiology and Synaptic Plasticity, Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical ScienceUniversity of FukuiFukuiJapan
- Life Science Innovation CenterUniversity of FukuiFukuiJapan
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de BellvitgeBarcelonaSpain
| | - Rafael Luján
- Departamento de Ciencias Médicas, Facultad de Medicina, Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB‐UCLM)Universidad Castilla‐La ManchaAlbaceteSpain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla‐La Mancha (IDISCAM)AlbaceteSpain
| |
Collapse
|
17
|
Segen V, Kabir MR, Streck A, Slavik J, Glanz W, Butryn M, Newman E, Tiganj Z, Wolbers T. Path integration impairments reveal early cognitive changes in Subjective Cognitive Decline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638583. [PMID: 40027817 PMCID: PMC11870602 DOI: 10.1101/2025.02.17.638583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Path integration, the ability to track one's position using self-motion cues, is critically dependent on the grid cell network in the entorhinal cortex, a region vulnerable to early Alzheimer's disease pathology. In this study, we examined path integration performance in individuals with subjective cognitive decline (SCD), a group at increased risk for Alzheimer's disease, and healthy controls using an immersive virtual reality task. We developed a Bayesian computational model to decompose path integration errors into distinct components. SCD participants exhibited significantly higher path integration error, primarily driven by increased memory leak, while other modelling-derived error sources, such as velocity gain, sensory and reporting noise, remained comparable across groups. Our findings suggest that path integration deficits, specifically memory leak, may serve as an early marker of neurodegeneration in SCD and highlight the potential of self-motion-based navigation tasks for detecting pre-symptomatic Alzheimer's disease-related cognitive changes. Teaser Virtual reality, computational modelling, and biomarkers uncover path integration deficits, distinguishing pre-symptomatic Alzheimer's from normal aging.
Collapse
|
18
|
Tang S, Stamberger H, Calhoun JD, Weckhuysen S, Carvill GL. Antisense oligonucleotides modulate aberrant inclusion of poison exons in SCN1A-related Dravet syndrome. JCI Insight 2025; 10:e188014. [PMID: 39946203 PMCID: PMC11981616 DOI: 10.1172/jci.insight.188014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/12/2025] [Indexed: 04/08/2025] Open
Abstract
Dravet syndrome is a developmental and epileptic encephalopathy associated with pathogenic variants in SCN1A. Most disease-causing variants are located within coding regions, but recent work has shed light on the role of noncoding variants associated with a poison exon in intron 20 of SCN1A. Discovery of the SCN1A poison exon known as 20N has led to the first potential disease-modifying therapy for Dravet syndrome in the form of an antisense oligonucleotide. Here, we demonstrate the existence of 2 additional poison exons in introns 1 and 22 of SCN1A through targeted, deep-coverage long-read sequencing of SCN1A transcripts. We show that inclusion of these poison exons is developmentally regulated in the human brain, and that deep intronic variants associated with these poison exons lead to their aberrant inclusion in vitro in a minigene assay or in iPSC-derived neurons. Additionally, we show that splice-modulating antisense oligonucleotides can ameliorate aberrant inclusion of poison exons. Our findings highlight the role of deep intronic pathogenic variants in disease and provide additional therapeutic targets for precision medicine in Dravet syndrome and other SCN1A-related disorders.
Collapse
Affiliation(s)
- Sheng Tang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hannah Stamberger
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Jeffrey D. Calhoun
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Gemma L. Carvill
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
19
|
Bay S, Rodina A, Haut F, Roychowdhury T, Argyrousi EK, Staniszewski A, Han K, Sharma S, Chakrabarty S, Digwal CS, Stanisavljevic A, Labuza A, Alldred MJ, Panchal P, SanthaSeela A, Tuffery L, Li Z, Hashmi A, Rosiek E, Chan E, Monetti M, Sasaguri H, Saido TC, Schneider JA, Bennett DA, Fraser PE, Erdjument-Bromage H, Neubert TA, Ginsberg SD, Arancio O, Chiosis G. Systems-Level Interactome Mapping Reveals Actionable Protein Network Dysregulation Across the Alzheimer's Disease Spectrum. RESEARCH SQUARE 2025:rs.3.rs-5930673. [PMID: 39989971 PMCID: PMC11844643 DOI: 10.21203/rs.3.rs-5930673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) progresses as a continuum, from preclinical stages to late-stage cognitive decline, yet the molecular mechanisms driving this progression remain poorly understood. Here, we provide a systems-level map of protein-protein interaction (PPI) network dysfunction across the AD spectrum and uncover epichaperomes-stable scaffolding platforms formed by chaperones and co-factors-as central drivers of this process. Using over 100 human brain specimens, mouse models, and human neurons, we show that epichaperomes emerge early, even in preclinical AD, and progressively disrupt multiple PPI networks critical for synaptic function and neuroplasticity. Glutamatergic neurons, essential for learning and memory, exhibit heightened vulnerability, with their dysfunction driven by protein sequestration into epichaperome scaffolds, independent of changes in protein expression. Notably, pharmacological disruption of epichaperomes with PU-AD restores PPI network integrity and reverses synaptic and cognitive deficits, directly linking epichaperome-driven network dysfunction to AD pathology. These findings establish epichaperomes as key mediators of molecular collapse in AD and identify network-centric intervention strategies as a promising avenue for disease-modifying therapies.
Collapse
Affiliation(s)
- Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Florence Haut
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
| | - Kyung Han
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Amanda Labuza
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anand SanthaSeela
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Laura Tuffery
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhuoning Li
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arsalan Hashmi
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Rosiek
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Chan
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mara Monetti
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
20
|
Wang X, Shao X, Yu L, Sun J, Yin XS, Chen Z, Xu Y, Wang N, Zhang D, Qiu W, Liu F, Ma C. Changes in the pH value of the human brain in Alzheimer's disease pathology correlated with CD68-positive microglia: a community-based autopsy study in Beijing, China. Mol Brain 2025; 18:10. [PMID: 39930501 PMCID: PMC11808972 DOI: 10.1186/s13041-025-01180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
The microenvironment of the central nervous system is highly complex and plays a crucial role in maintaining the function of neurons, which influences Alzheimer's disease (AD) progression. The pH value of the brain is a critical aspect of the brain microenvironment in regulating various physiological processes. However, the specific mechanisms and role of this mechanism are not yet fully understood. To better understand the relationship between brain pH and AD, we analyzed the brain pH of the frontal lobe and AD pathology scores in postmortem brain samples from 368 donors from the National Human Brain Bank for Development and Function, 96 of whom were diagnosed with AD pathology. Analysis revealed a significant decrease in brain pH in AD patients, which was strongly correlated with β-amyloid plaques and phosphorylated tau proteins. Here, we elucidated the differential protein expression level of CD68-positive microglia between control and AD groups (t = 3.198, df = 20, P = 0.0045), and its protein expression level was correlated negatively with the brain pH value (F = 26.93, p = 0.0006). Our findings revealed that increased activation of CD68-positive microglia and disrupted lysosomal homeostasis in the pathological brain tissue of individuals with AD may lead to a decrease in brain pH.
Collapse
Affiliation(s)
- Xue Wang
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiangqi Shao
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Liang Yu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianru Sun
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiang-Sha Yin
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhen Chen
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yuanyuan Xu
- Experimental Teaching Center, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Naili Wang
- Experimental Teaching Center, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Di Zhang
- Experimental Teaching Center, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
21
|
Lisgaras CP, de la Prida LM, Bertram E, Cunningham M, Henshall D, Liu AA, Gnatkovsky V, Balestrini S, de Curtis M, Galanopoulou AS, Jacobs J, Jefferys JGR, Mantegazza M, Reschke CR, Jiruska P. The role of electroencephalography in epilepsy research-From seizures to interictal activity and comorbidities. Epilepsia 2025. [PMID: 39913107 DOI: 10.1111/epi.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
Electroencephalography (EEG) has been instrumental in epilepsy research for the past century, both for basic and translational studies. Its contributions have advanced our understanding of epilepsy, shedding light on the pathophysiology and functional organization of epileptic networks, and the mechanisms underlying seizures. Here we re-examine the historical significance, ongoing relevance, and future trajectories of EEG in epilepsy research. We describe traditional approaches to record brain electrical activity and discuss novel cutting-edge, large-scale techniques using micro-electrode arrays. Contemporary EEG studies explore brain potentials beyond the traditional Berger frequencies to uncover underexplored mechanisms operating at ultra-slow and high frequencies, which have proven valuable in understanding the principles of ictogenesis, epileptogenesis, and endogenous epileptogenicity. Integrating EEG with modern techniques such as optogenetics, chemogenetics, and imaging provides a more comprehensive understanding of epilepsy. EEG has become an integral element in a powerful suite of tools for capturing epileptic network dynamics across various temporal and spatial scales, ranging from rapid pathological synchronization to the long-term processes of epileptogenesis or seizure cycles. Advancements in EEG recording techniques parallel the application of sophisticated mathematical analyses and algorithms, significantly augmenting the information yield of EEG recordings. Beyond seizures and interictal activity, EEG has been instrumental in elucidating the mechanisms underlying epilepsy-related cognitive deficits and other comorbidities. Although EEG remains a cornerstone in epilepsy research, persistent challenges such as limited spatial resolution, artifacts, and the difficulty of long-term recording highlight the ongoing need for refinement. Despite these challenges, EEG continues to be a fundamental research tool, playing a central role in unraveling disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, Orangeburg, New York, USA
| | | | | | - Mark Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anli A Liu
- Langone Medical Center, New York University, New York, New York, USA
- Department of Neurology, School of Medicine, New York University, New York, New York, USA
- Neuroscience Institute, Langone Medical Center, New York University, New York, New York, USA
| | - Vadym Gnatkovsky
- Department of Epileptology, University Hospital Bonn (UKB), Bonn, Germany
| | - Simona Balestrini
- Department of Neuroscience and Medical Genetics, Meyer Children's Hospital IRCSS, Florence, Italy
- University of Florence, Florence, Italy
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Julia Jacobs
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Alberta Health Services & University of Calgary, Calgary, Canada
| | - John G R Jefferys
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Massimo Mantegazza
- Université Côte d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm U1323, Valbonne-Sophia Antipolis, France
| | - Cristina R Reschke
- FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
22
|
Hernandez P, Rackles E, Alboniga OE, Martínez‐Lage P, Camacho EN, Onaindia A, Fernandez M, Talamillo A, Falcon‐Perez JM. Metabolic Profiling of Brain Tissue and Brain-Derived Extracellular Vesicles in Alzheimer's Disease. J Extracell Vesicles 2025; 14:e70043. [PMID: 39901643 PMCID: PMC11791017 DOI: 10.1002/jev2.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/05/2025] Open
Abstract
Alzheimer´s disease (AD) is the most frequent neurodegenerative disorder in the world and is characterised by the loss of memory and other cognitive functions. Metabolic changes associated with AD are important players in the development of the disease. However, the mechanism underlying these changes is still unknown. Extracellular vesicles (EVs) are nano-sized particles that play an important role in regulating pathophysiological processes and are a non-invasive manner to obtain information of the cell that is secreting them. The analysis of brain-derived EVs (bdEVs) will provide new insights in the metabolic processes associated with AD. To characterize bdEVs in AD, we optimised a method to isolate them from tissue of different brain regions, obtaining the highest enrichment in isolations from the temporal cortex. We performed unbiased untargeted metabolomics analysis on post-mortem human temporal cortex tissue and bdEVs from the same region of AD patients and healthy controls. Both, univariate and multivariate statistical analysis were used to determine the metabolites that influence the separation between AD patients and controls. Interestingly, a clear separation between control and AD groups was obtained with bdEVs, which allowed to select 12 relevant features by a validated PLS-DA model. Furthermore, comparison of tissue and bdEVs identified 68 common features. The pathway enrichment analysis of the common metabolites showed that the alanine, aspartate and glutamate pathway and the arginine, phenylalanine, tyrosine pathway were the most significant ones in the separation between the AD patients and controls. The phenylalanine, tyrosine and tryptophan pathway, still had a very high influence in the separation between groups, albeit not significant. Notably, some metabolites were identified for the first time in bdEVs. For example, the N-acetyl aspartic acid (NAA) metabolite present in bdEVs was suitable to differentiate AD patients from healthy controls. Furthermore, the analysis of the hippocampus, midbrain, temporal and entorhinal cortex and their respective bdEVs indicated that the metabolic profiles of different brain areas were distinct and showed some correlation between the metabolome of the tissue and its respective bdEVs. Thus, our study highlights the potential of bdEVs to understand the metabolic fingerprint associated with AD and their potential use as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Patricia Hernandez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Elisabeth Rackles
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Oihane E. Alboniga
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Pablo Martínez‐Lage
- Center for Research and Advanced TherapiesCITA‐Alzheimer FoundationGipuzkoaSpain
| | - Emma N. Camacho
- Anatomic PathologyAraba University HospitalVitoria‐GazteizAlavaSpain
| | - Arantza Onaindia
- Bioaraba Health Research InstituteOncohaematology Research GroupVitoria‐GasteizSpain
- Pathology DepartmentOsakidetza Basque Health ServiceAraba University HospitalVitoria‐GasteizSpain
| | - Manuel Fernandez
- Neurological DepartmentHospital Universitario Cruces (HUC)BarakaldoSpain
- Neuroscience DepartmentUniversidad del País Vasco (UPV‐EHU)LeioaSpain
| | - Ana Talamillo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Derio, BizkaiaSpain
- Biomedical Research Centre of Hepatic and Digestive Diseases (CIBERehd)Carlos III Health Institute (ISCIII)MadridSpain
- IKERBASQUE Basque Foundation for ScienceBilbao, BizkaiaSpain
| |
Collapse
|
23
|
Sabec MH, Savage QR, Wood JL, Maskos U. Targeting high-affinity nicotinic receptors protects against the functional consequences of β-amyloid in mouse hippocampus. Mol Psychiatry 2025; 30:556-566. [PMID: 39164528 DOI: 10.1038/s41380-024-02666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024]
Abstract
The accumulation of β-amyloid oligomers is a hallmark of Alzheimer's disease, inducing neural and network dysfunction in the early stages of pathology. The hippocampus is affected early in the pathogenesis of AD, however the impact of soluble β-amyloid on the dentate gyrus (DG) subregion of the hippocampus and its interaction with nicotinic acetylcholine receptors (nAChRs) within this region are not known. Using a localized model of over-expression, we show that β-amyloid induces early-onset neuronal hyperactivity and hippocampal-dependent memory deficits in mice. Further, we find the DG region to be under potent and sub-type specific nicotinic control in both healthy and pathophysiological conditions, with targeted receptor inhibition leading to a mnemonic rescue against localized amyloidosis. We show that while neurogenesis and synaptic functions are not severely affected in our model, reducing β2-containing nAChR function is associated with the promotion of young adult-born neurons within the pathological network, suggesting a possible protective mechanism. Our data thus reveal the DG network level changes which occur in the early-stages of β-amyloid accumulation and highlight the downstream consequences of targeted nicotinic neuromodulation.
Collapse
Affiliation(s)
- Marie H Sabec
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015, Paris, France.
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - Quentin R Savage
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - John L Wood
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, 75015, Paris, France.
| |
Collapse
|
24
|
Abdulai-Saiku S, Gupta S, Wang D, Marino F, Moreno AJ, Huang Y, Srivastava D, Panning B, Dubal DB. The maternal X chromosome affects cognition and brain ageing in female mice. Nature 2025; 638:152-159. [PMID: 39843739 PMCID: PMC11798838 DOI: 10.1038/s41586-024-08457-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated1-4. This renders either the maternal X (Xm) chromosome or the paternal X (Xp) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active5-7. Parent-of-X origin can modify epigenetics through DNA methylation8,9 and possibly gene expression; thus, mosaicism could buffer dysregulated processes in ageing and disease. However, whether X skew or its mosaicism alters functions in female individuals is largely unknown. Here we tested whether skew towards an active Xm chromosome influences the brain and body-and then delineated unique features of Xm neurons and Xp neurons. An active Xm chromosome impaired cognition in female mice throughout the lifespan and led to worsened cognition with age. Cognitive deficits were accompanied by Xm-mediated acceleration of biological or epigenetic ageing of the hippocampus, a key centre for learning and memory, in female mice. Several genes were imprinted on the Xm chromosome of hippocampal neurons, suggesting silenced cognitive loci. CRISPR-mediated activation of Xm-imprinted genes improved cognition in ageing female mice. Thus, the Xm chromosome impaired cognition, accelerated brain ageing and silenced genes that contribute to cognition in ageing. Understanding how Xm impairs brain function could lead to an improved understanding of heterogeneity in cognitive health in female individuals and to X-chromosome-derived pathways that protect against cognitive deficits and brain ageing.
Collapse
Affiliation(s)
- Samira Abdulai-Saiku
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Shweta Gupta
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Arturo J Moreno
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Dena B Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Neurosciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Zhang X, Wu M, Cheng L, Cao W, Liu Z, Yang SB, Kim MS. Fast-spiking parvalbumin-positive interneurons: new perspectives of treatment and future challenges in dementia. Mol Psychiatry 2025; 30:693-704. [PMID: 39695324 DOI: 10.1038/s41380-024-02756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Central nervous system parvalbumin-positive interneurons (PV-INs) are crucial and highly vulnerable to various stressors. They also play a significant role in the pathological processes of many neuropsychiatric diseases, especially those associated with cognitive impairment, such as Alzheimer's disease (AD), vascular dementia (VD), Lewy body dementia, and schizophrenia. Although accumulating evidence suggests that the loss of PV-INs is associated with memory impairment in dementia, the precise molecular mechanisms remain elusive. In this review, we delve into the current evidence regarding the physiological properties of PV-INs and summarize the latest insights into how their loss contributes to cognitive decline in dementia, particularly focusing on AD and VD. Additionally, we discuss the influence of PV-INs on brain development, the variations in their characteristics across different types of dementia, and how their loss affects the etiology and progression of cognitive impairments. Ultimately, our goal is to provide a comprehensive overview of PV-INs and to consider their potential as novel therapeutic targets in dementia treatment.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wa Cao
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Ziying Liu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Seung-Bum Yang
- Department of Paramedicine, Wonkwang Health Science University, Iksan, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
26
|
Kim TA, Cruz G, Syty MD, Wang F, Wang X, Duan A, Halterman M, Xiong Q, Palop JJ, Ge S. Neural circuit mechanisms underlying aberrantly prolonged functional hyperemia in young Alzheimer's disease mice. Mol Psychiatry 2025; 30:367-378. [PMID: 39043843 PMCID: PMC11750623 DOI: 10.1038/s41380-024-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Neurovascular defects are one of the most common alterations in Alzheimer's disease (AD) pathogenesis, but whether these deficits develop before the onset of amyloid beta (Aβ) accumulation remains to be determined. Using in vivo optical imaging in freely moving mice, we explored activity-induced hippocampal microvascular blood flow dynamics in AppSAA knock-in and J20 mouse models of AD at early stages of disease progression. We found that prior to the onset of Aβ accumulation, there was a pathologically elevated blood flow response to context exploration, termed functional hyperemia. After the onset of Aβ accumulation, this context exploration-induced hyperemia declined rapidly relative to that in control mice. Using in vivo electrophysiology recordings to explore the neural circuit mechanism underlying this blood flow alteration, we found that hippocampal interneurons before the onset of Aβ accumulation were hyperactive during context exploration. Chemogenetic tests suggest that hyperactive activation of inhibitory neurons accounted for the elevated functional hyperemia. The suppression of nitric oxide (NO) produced from hippocampal interneurons in young AD mice decreased the accumulation of Aβ. Together, these findings reveal that neurovascular coupling is aberrantly elevated before Aβ deposition, and this hyperactive functional hyperemia declines rapidly upon Aβ accumulation.
Collapse
Affiliation(s)
- Thomas A Kim
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Cruz
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michelle D Syty
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Faye Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alexandra Duan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Marc Halterman
- Department of Neurology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
27
|
de Vries LE, Bahnerth A, Swaab DF, Verhaagen J, Carulli D. Resilience to Alzheimer's disease associates with alterations in perineuronal nets. Alzheimers Dement 2025; 21:e14504. [PMID: 39737731 PMCID: PMC11848190 DOI: 10.1002/alz.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Some individuals show intact cognition despite the presence of neuropathological hallmarks of Alzheimer's disease (AD). The plasticity of parvalbumin (PV)-containing interneurons might contribute to resilience. Perineuronal nets (PNNs), that is, extracellular matrix structures around neurons, modulate PV neuron function. We hypothesize that PNNs play a role in resilience to AD. METHODS PNN amount and morphology were determined in immunolabelled sections of the frontal cortex of control, AD and resilient subjects. Expression levels of genes related to PNNs and microglia signatures were evaluated by bulk RNA sequencing. RESULTS The expression of the PNN-component aggrecan around PV neurons is decreased in resilient and AD subjects, whereas PNN-sugar chains are reduced only in resilient subjects. In AD, fewer presynaptic terminals on PV neurons are detected and genes related to PNN degradation are upregulated. DISCUSSION These data show distinct PNN changes in individuals resilient to AD, which may contribute to preserved cognition despite the neuropathology. HIGHLIGHTS Aggrecan levels are decreased in the frontal cortex of AD and resilient subjects. In resilient subjects, WFA+ PNNs are reduced around neuronal somata. In AD patients, PV neurons show disrupted WFA peridendritic staining and synaptic loss. Expression levels of PNN-degrading enzymes are higher in AD. Excitatory neurons bearing a PNN show low amounts of ptau.
Collapse
Affiliation(s)
- Luuk E. de Vries
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Anouck Bahnerth
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Joost Verhaagen
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Daniela Carulli
- Department of NeuroregenerationNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| |
Collapse
|
28
|
Park JM, Tsai LH. Innovations in noninvasive sensory stimulation treatments to combat Alzheimer's disease. PLoS Biol 2025; 23:e3003046. [PMID: 40019895 PMCID: PMC11870349 DOI: 10.1371/journal.pbio.3003046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide. There is no known cure for AD, highlighting an urgent need for new, innovative treatments. Recent studies have shed light on a promising, noninvasive approach using sensory stimulation as a potential therapy for AD. Exposing patients to light and sound pulses at a frequency of 40 hertz induces brain rhythms in the gamma frequency range that are important for healthy brain activity. Using this treatment in animal models, we are now beginning to understand the molecular, cellular, and circuit-level changes that underlie improvements in disease pathology, cognition, and behavior. A mechanistic understanding of the basic biology that underlies the 40-hertz treatment will inform ongoing clinical trials that offer a promising avenue of treatment without the side effects and high costs typically associated with pharmacological interventions. Concurrent advancements in neurotechnology that can also noninvasively stimulate healthy brain rhythms are illuminating new possibilities for alternative therapies. Altogether, these noninvasive approaches could herald a new era in treating AD, making them a beacon of hope for patients, families, and caregivers facing the challenges of this debilitating condition.
Collapse
Affiliation(s)
- Jung M. Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
29
|
Griesius S, Richardson A, Kullmann DM. Supralinear dendritic integration in murine dendrite-targeting interneurons. eLife 2025; 13:RP100268. [PMID: 39887034 PMCID: PMC11785373 DOI: 10.7554/elife.100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Non-linear summation of synaptic inputs to the dendrites of pyramidal neurons has been proposed to increase the computation capacity of neurons through coincidence detection, signal amplification, and additional logic operations such as XOR. Supralinear dendritic integration has been documented extensively in principal neurons, mediated by several voltage-dependent conductances. It has also been reported in parvalbumin-positive hippocampal basket cells, in dendrites innervated by feedback excitatory synapses. Whether other interneurons, which support feed-forward or feedback inhibition of principal neuron dendrites, also exhibit local non-linear integration of synaptic excitation is not known. Here, we use patch-clamp electrophysiology, and two-photon calcium imaging and glutamate uncaging, to show that supralinear dendritic integration of near-synchronous spatially clustered glutamate-receptor mediated depolarization occurs in NDNF-positive neurogliaform cells and oriens-lacunosum moleculare interneurons in the mouse hippocampus. Supralinear summation was detected via recordings of somatic depolarizations elicited by uncaging of glutamate on dendritic fragments, and, in neurogliaform cells, by concurrent imaging of dendritic calcium transients. Supralinearity was abolished by blocking NMDA receptors (NMDARs) but resisted blockade of voltage-gated sodium channels. Blocking L-type calcium channels abolished supralinear calcium signalling but only had a minor effect on voltage supralinearity. Dendritic boosting of spatially clustered synaptic signals argues for previously unappreciated computational complexity in dendrite-projecting inhibitory cells of the hippocampus.
Collapse
Affiliation(s)
- Simonas Griesius
- Department of Clinical Experimental and Epilepsy, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Amy Richardson
- Department of Clinical Experimental and Epilepsy, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Dimitri Michael Kullmann
- Department of Clinical Experimental and Epilepsy, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
30
|
Agavriloaei LM, Iliescu BF, Pintilie RM, Turliuc DM. Therapeutic Potential of Experimental Stereotactic Hippocampal Cell Transplant in the Management of Alzheimer's Disease. J Clin Med 2025; 14:891. [PMID: 39941562 PMCID: PMC11818268 DOI: 10.3390/jcm14030891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Due to a continuous increase in life expectancy and the progress made in specialized healthcare, the incidence of Alzheimer's disease (AD) has dramatically increased to the point that it has become one of the main challenges of contemporary medicine. Despite a huge scientific and clinical effort, current treatments manage just a temporary alleviation of symptomatology but offer no cure. Modern trials involving cell transplantation in experimental animals require the involvement of neurosurgeons in the treatment protocol. CSF shunting, intraventricular infusions, or DBS for symptoms relief have been an integral part of the therapeutic arsenal from the very beginning. The development of stereotactic surgery has facilitated the experimental potential of cell transplantation in the hippocampus for Alzheimer's disease. We conducted a narrative review of the literature in the top three medical databases (PubMed, Science Direct, and Google Scholar) using the keywords "Alzheimer's disease", "hippocampus", and "transplant". After eliminating duplicates, 241 papers were selected and screened by title and abstract. Two reviewers independently analyzed the 88 papers and chose 32 experiments that involved stereotactic hippocampal transplantation of cells in experimental animals with AD. The stereotactic transplantation of cells such as mesenchymal stem cells (MSCs), neuronal stem cells (NSCs), induced pluripotent cells (iPSCs), astrocytes, and derivates from stem cells was analyzed. The experiments used either a chemically induced or transgenic AD model and observed the impact of the stereotactic transplantation with behavioral testing, MRS spectroscopy, and biochemical analysis. The stereotaxic method delivers minimal invasive treatment option by cell transplantation at the hippocampus. The results showed that amyloid deposits were lower after transplantation, showing a positive impact. Other impactful results involve proliferation of neurogenesis, downregulation of anti-inflammatory response, and increased neuronal plasticity. The increased precision with which the stereotaxic method manages to target deep structures of the brain and the results of the reviewed papers could represent an argument for future human trials. More studies are needed to confirm the viability of the transplanted cells and the long-term effects.
Collapse
Affiliation(s)
- Loredana Mariana Agavriloaei
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.A.)
| | - Bogdan Florin Iliescu
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.A.)
- Department of Neurosurgery, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Robert Mihai Pintilie
- Department of Neurosurgery, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Dana Mihaela Turliuc
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.A.)
- Department of Neurosurgery, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
31
|
Hu Y, Feng Y, Luo H, Zhu XN, Chen S, Yang K, Deng Z, Luo M, Du W, Wang Q, Wang S, Wei K, Hu J, Wang Y. Dissociation-related behaviors in mice emerge from the inhibition of retrosplenial cortex parvalbumin interneurons. Cell Rep 2025; 44:115086. [PMID: 39708317 DOI: 10.1016/j.celrep.2024.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Dissociation, characterized by altered consciousness and perception, underlies multiple mental disorders, but the specific neuronal subtypes involved remain elusive. In mice, we find that dissociation-inducing doses of ketamine significantly inhibit retrosplenial cortex (RSC) parvalbumin interneurons (PV-INs), enhancing delta oscillations (1-3 Hz) and delta-gamma phase-amplitude coupling (δ-γ PAC) and inducing dissociation-like behaviors. Optogenetic inhibition of RSC PV-INs triggers delta oscillations, δ-γ PAC, and some dissociation-like behaviors without ketamine. Furthermore, activation of RSC PV-INs or knockdown of the N-methyl-D-aspartate receptor subunit NR1 and the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) in RSC PV-INs attenuates ketamine-induced delta oscillations, δ-γ PAC, and certain dissociation-like behaviors. These findings reveal that PV-INs regulate delta oscillations and δ-γ PAC and identify NR1 and HCN1 as ketamine targets in PV-INs that may cooperatively affect dissociation, possibly providing potential therapeutic targets for dissociative symptoms.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Siyu Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziqing Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shubai Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kai Wei
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
32
|
Allami P, Yazdanpanah N, Rezaei N. The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders. Rev Neurosci 2025:revneuro-2024-0153. [PMID: 39842401 DOI: 10.1515/revneuro-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors. Neuroinflammation is one of the most significant stressors that have an adverse, long-lasting impact on PV interneurons. Neuroinflammation affects PV interneurons through specialized inflammatory pathways triggered by cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6). The crucial cells in neuroinflammation, microglia, also play a significant role. The destructive effect of inflammation on PV interneurons can have comprehensive effects and cause neurological disorders such as schizophrenia, Alzheimer's disease (AD), autism spectrum disorder (ASD), and bipolar disorder. In this article, we provide a comprehensive review of mechanisms in which neuroinflammation leads to PV interneuron hypofunction in these diseases. The integrated knowledge about the role of PV interneurons in cognitive networks of the brain and mechanisms involved in PV interneuron impairment in the pathology of these diseases can help us with better therapeutic interventions.
Collapse
Affiliation(s)
- Pantea Allami
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| | - Niloufar Yazdanpanah
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| |
Collapse
|
33
|
Vetere LM, Galas AM, Vaughan N, Feng Y, Wick ZC, Philipsberg PA, Liobimova O, Fernandez-Ruiz A, Cai DJ, Shuman T. Medial entorhinal-hippocampal desynchronization parallels the emergence of memory impairment in a mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633171. [PMID: 39868201 PMCID: PMC11761809 DOI: 10.1101/2025.01.15.633171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive impairments in episodic and spatial memory, as well as circuit and network-level dysfunction. While functional impairments in medial entorhinal cortex (MEC) and hippocampus (HPC) have been observed in patients and rodent models of AD, it remains unclear how communication between these regions breaks down in disease, and what specific physiological changes are associated with the onset of memory impairment. We used silicon probes to simultaneously record neural activity in MEC and hippocampus before or after the onset of spatial memory impairment in the 3xTg mouse model of AD pathology. We found that reduced hippocampal theta power, reduced MEC-CA1 theta coherence, and altered phase locking of MEC and hippocampal neurons all coincided with the emergence of spatial memory impairment in 3xTg mice. Together, these findings indicate that disrupted temporal coordination of neural activity in the MEC-hippocampal system parallels the emergence of memory impairment in a model of AD pathology.
Collapse
Affiliation(s)
| | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
34
|
Li G, Hsu LM, Wu Y, Bozoki AC, Shih YYI, Yap PT. Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI. COMMUNICATIONS MEDICINE 2025; 5:17. [PMID: 39814858 PMCID: PMC11735810 DOI: 10.1038/s43856-025-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disorder without a clear understanding of pathophysiology. Recent experimental data have suggested neuronal excitation-inhibition (E-I) imbalance as an essential element of AD pathology, but E-I imbalance has not been systematically mapped out for either local or large-scale neuronal circuits in AD, precluding precise targeting of E-I imbalance in AD treatment. METHOD In this work, we apply a Multiscale Neural Model Inversion (MNMI) framework to the resting-state functional MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to identify brain regions with disrupted E-I balance in a large network during AD progression. RESULTS We observe that both intra-regional and inter-regional E-I balance is progressively disrupted from cognitively normal individuals, to mild cognitive impairment (MCI) and to AD. Also, we find that local inhibitory connections are more significantly impaired than excitatory ones and the strengths of most connections are reduced in MCI and AD, leading to gradual decoupling of neural populations. Moreover, we reveal a core AD network comprised mainly of limbic and cingulate regions. These brain regions exhibit consistent E-I alterations across MCI and AD, and thus may represent important AD biomarkers and therapeutic targets. Lastly, the E-I balance of multiple brain regions in the core AD network is found to be significantly correlated with the cognitive test score. CONCLUSIONS Our study constitutes an important attempt to delineate E-I imbalance in large-scale neuronal circuits during AD progression, which may facilitate the development of new treatment paradigms to restore physiological E-I balance in AD.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Kostyanovskaya E, Lasser MC, Wang B, Schmidt J, Bader E, Buteo C, Arbelaez J, Sindledecker AR, McCluskey KE, Castillo O, Wang S, Dea J, Helde KA, Graglia JM, Brimble E, Kastner DB, Ehrlich AT, State MW, Willsey AJ, Willsey HR. Convergence of autism proteins at the cilium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.626924. [PMID: 39677731 PMCID: PMC11643032 DOI: 10.1101/2024.12.05.626924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hundreds of high-confidence autism genes have been identified, yet the relevant etiological mechanisms remain unclear. Gene ontology analyses have repeatedly identified enrichment of proteins with annotated functions in gene expression regulation and neuronal communication. However, proteins are often pleiotropic and these annotations are inherently incomplete. Our recent autism functional genetics work has suggested that these genes may share a common mechanism at the cilium, a membrane-bound organelle critical for neurogenesis, brain patterning, and neuronal activity-all processes strongly implicated in autism. Moreover, autism commonly co-occurs with conditions that are known to involve ciliary-related pathologies, including congenital heart disease, hydrocephalus, and blindness. However, the role of autism genes at the cilium has not been systematically investigated. Here we demonstrate that autism proteins spanning disparate functional annotations converge in expression, localization, and function at cilia, and that patients with pathogenic variants in these genes have cilia-related co-occurring conditions and biomarkers of disrupted ciliary function. This degree of convergence among genes spanning diverse functional annotations strongly suggests that cilia are relevant to autism, as well as to commonly co-occurring conditions, and that this organelle should be explored further for therapeutic potential.
Collapse
Affiliation(s)
- Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - James Schmidt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Chad Buteo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aria Rani Sindledecker
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Kate E. McCluskey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Octavio Castillo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | | | | | - David B. Kastner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aliza T. Ehrlich
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Matthew W. State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA
| |
Collapse
|
36
|
Naguib S, Lopez-Lee C, Torres ER, Lee SI, Zhu J, Zhu D, Ye P, Norman K, Zhao M, Wong MY, Ambaw YA, Castaneda R, Wang W, Patel T, Bhagwat M, Norinsky R, Mok SA, Walther TC, Farese RV, Luo W, Sinha S, Wu Z, Fan L, Gong S, Gan L. APOE3- R136S mutation confers resilience against tau pathology via cGAS-STING-IFN inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.25.591140. [PMID: 38712164 PMCID: PMC11071490 DOI: 10.1101/2024.04.25.591140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The Christchurch mutation (R136S) on the APOE3 (E3 S/S ) gene is associated with attenuation of tau load and cognitive decline despite the presence of a causal PSEN1 mutation and high levels of amyloid beta pathology in the carrier1. However, the specific molecular mechanisms enabling the E3 S/S mutation to mitigate tau-induced neurodegeneration remain unclear. Here, we replaced mouse ApoE with wild-type human E3 or E3 S/S on a tauopathy background. The R136S mutation markedly decreased tau load and protected against tau-induced synaptic loss, myelin loss, and reduction in theta and gamma powers. Additionally, the R136S mutation reduced interferon response to tau pathology in both mouse and human microglia, suppressing cGAS-STING activation. Treating tauopathy mice carrying wild-type E3 with a cGAS inhibitor protected against tau-induced synaptic loss and induced similar transcriptomic alterations to those induced by the R136S mutation across brain cell types. Thus, suppression of microglial cGAS-STING-IFN pathway plays a central role in mediating the protective effects of R136S against tauopathy.
Collapse
Affiliation(s)
- Sarah Naguib
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Authors contributed equally
| | - Chloe Lopez-Lee
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
- Authors contributed equally
| | - Eileen Ruth Torres
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Authors contributed equally
| | - Se-In Lee
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Jingjie Zhu
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Daphne Zhu
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Pearly Ye
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Kendra Norman
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Mingrui Zhao
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Man Ying Wong
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Yohannes A. Ambaw
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rodrigo Castaneda
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Wei Wang
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Tark Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Maitreyee Bhagwat
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Rada Norinsky
- Transgenic and Reproductive Technology Center, Rockefeller University, New York, NY
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Robert V. Farese
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenjie Luo
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Subhash Sinha
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Zhuhao Wu
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Li Fan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Shiaoching Gong
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Li Gan
- Helen and Robert Appel Institute for Alzheimer’s Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
37
|
Lesuis SL, Park S, Hoorn A, Rashid AJ, Mocle AJ, Salter EW, Vislavski S, Gray MT, Torelli AM, DeCristofaro A, Driever WPF, van der Stelt M, Zweifel LS, Collingridge GL, Lefebvre JL, Walters BJ, Frankland PW, Hill MN, Josselyn SA. Stress disrupts engram ensembles in lateral amygdala to generalize threat memory in mice. Cell 2025; 188:121-140.e20. [PMID: 39549697 PMCID: PMC11726195 DOI: 10.1016/j.cell.2024.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024]
Abstract
Stress induces aversive memory overgeneralization, a hallmark of many psychiatric disorders. Memories are encoded by a sparse ensemble of neurons active during an event (an engram ensemble). We examined the molecular and circuit processes mediating stress-induced threat memory overgeneralization in mice. Stress, acting via corticosterone, increased the density of engram ensembles supporting a threat memory in lateral amygdala, and this engram ensemble was reactivated by both specific and non-specific retrieval cues (generalized threat memory). Furthermore, we identified a critical role for endocannabinoids, acting retrogradely on parvalbumin-positive (PV+) lateral amygdala interneurons in the formation of a less-sparse engram and memory generalization induced by stress. Glucocorticoid receptor antagonists, endocannabinoid synthesis inhibitors, increasing PV+ neuronal activity, and knocking down cannabinoid receptors in lateral amygdala PV+ neurons restored threat memory specificity and a sparse engram in stressed mice. These findings offer insights into stress-induced memory alterations, providing potential therapeutic avenues for stress-related disorders.
Collapse
Affiliation(s)
- Sylvie L Lesuis
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Cellular and Computational Neuroscience, Swammerdam Institute for Life Science, Amsterdam Neuroscience, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Sungmo Park
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Annelies Hoorn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Asim J Rashid
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Andrew J Mocle
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eric W Salter
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and TANZ Centre for Research in Neurodegenerative Diseases, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Stefan Vislavski
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Madison T Gray
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Angelica M Torelli
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Antonietta DeCristofaro
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Wouter P F Driever
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Larry S Zweifel
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, 2815 Eastlake Ave E Suite 200, Seattle, WA 98102, USA
| | - Graham L Collingridge
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and TANZ Centre for Research in Neurodegenerative Diseases, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Julie L Lefebvre
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon J Walters
- Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada
| | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
38
|
Palmisano A, Pezanko LR, Cappon D, Tatti E, Macone J, Koch G, Smeralda CL, Romanella SM, Ruffini G, Rivolta D, Press DZ, Pascual-Leone A, El-Fakhri G, Santarnecchi E. Preliminary Evidence for Perturbation-Based tACS-EEG Biomarkers of Gamma Activity in Alzheimer's Disease. Int J Geriatr Psychiatry 2025; 40:e70025. [PMID: 39799469 DOI: 10.1002/gps.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype. METHODS Fourteen participants with mild to moderate dementia due to AD underwent a baseline assessment including cognitive status, peripheral neuroinflammation, and resting-state (rs)EEG. The tACS-EEG recordings included brief (6') tACS blocks of gamma (i.e., 40 Hz) stimulation administered through 4 different montages, with Pre/Post 32-Channels EEG for each block. Changes in tACS-EEG and rsEEG γ band power with respect to baseline were adopted as a metric of induction and compared with cognitive scores and neuroinflammatory biomarkers. RESULTS We found positive correlations between 40 Hz-induced γ activity in fronto-central-parietal areas and patient cognitive status and negative ones with neuroinflammatory markers. Participants with greater cognitive impairment exhibited less γ induction and higher peripheral neuroinflammation. The same analysis performed with spectral power from baseline rsEEG resulted in no significant correlations, promoting the value of tACS-based perturbation for capturing individual differences in pathology-related brain features. CONCLUSIONS Our work suggests a link between tACS-induced γ band spectral power and clinical severity, with weaker γ induction corresponding to more severe clinical/cognitive impairment. This study provides preliminary support for the development of novel physiological biomarkers and therapeutic targets based on disease severity.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Luke R Pezanko
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Elisa Tatti
- CUNY School of Medicine, New York City, New York, USA
| | - Joanna Macone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Carmelo L Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Siena Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Sara M Romanella
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Siena Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | | | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Daniel Z Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Georges El-Fakhri
- Department of Radiology & Biomedical Imaging, Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Anton PE, Maphis NM, Linsenbardt DN, Coleman LG. Excessive Alcohol Use as a Risk Factor for Alzheimer's Disease: Epidemiological and Preclinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:211-242. [PMID: 40128481 DOI: 10.1007/978-3-031-81908-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Alcohol use has recently emerged as a modifiable risk factor for Alzheimer's disease (AD). However, the neurobiological mechanisms by which alcohol interacts with AD pathogenesis remain poorly understood. In this chapter, we review the epidemiological and preclinical support for the interaction between alcohol use and AD. We hypothesize that alcohol use increases the rate of accumulation of specific AD-relevant pathologies during the prodromal phase and exacerbates dementia onset and progression. We find that alcohol consumption rates are increasing in adolescence, middle age, and aging populations. In tandem, rates of AD are also on the rise, potentially as a result of this increased alcohol use throughout the lifespan. We then review the biological processes in common between alcohol use disorder and AD as a means to uncover potential mechanisms by which they interact; these include oxidative stress, neuroimmune function, metabolism, pathogenic tauopathy development and spread, and neuronal excitatory/inhibitory balance (EIB). Finally, we provide some forward-thinking suggestions we believe this field should consider. In particular, the inclusion of alcohol use assessments in longitudinal studies of AD and more preclinical studies on alcohol's impacts using better animal models of late-onset Alzheimer's disease (LOAD).
Collapse
Affiliation(s)
- Paige E Anton
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole M Maphis
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - David N Linsenbardt
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
40
|
Schneeweis A, Hillyer D, Lama T, Kim D, Palka C, Djemil S, Abdel-Ghani M, Mandella K, Zhu W, Alvarez N, Stefansson L, Yasuda R, Ma J, Pak DTS. Mass spectrometry identifies tau C-terminal phosphorylation cluster during neuronal hyperexcitation. J Neurochem 2025; 169:e16221. [PMID: 39308063 DOI: 10.1111/jnc.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 12/20/2024]
Abstract
Tau is a microtubule-associated protein implicated in Alzheimer's disease (AD) and other neurodegenerative disorders termed tauopathies. Pathological, aggregated forms of tau form neurofibrillary tangles (NFTs), impairing its ability to stabilize microtubules and promoting neurotoxicity. Indeed, NFTs correlate with neuronal loss and cognitive impairment. Hyperphosphorylation of tau is seen in all tauopathies and mirrors disease progression, suggesting an essential role in pathogenesis. However, hyperphosphorylation remains a generic and ill-defined term, obscuring the functional importance of specific sites in different physiological or pathological settings. Here, we focused on global mapping of tau phosphorylation specifically during conditions of neuronal hyperexcitation. Hyperexcitation is a property of AD and other tauopathies linked to human cognitive deficits and increased risk of developing seizures and epilepsy. Moreover, hyperexcitation promotes extracellular secretion and trans-synaptic propagation of tau. Using unbiased mass spectrometry, we identified a novel phosphorylation signature in the C-terminal domain of tau detectable only during neuronal hyperactivity in primary cultured rat hippocampal neurons. These sites influenced tau localization to dendrites as well as the size of excitatory postsynaptic sites. These results demonstrate novel physiological tau functions at synapses and the utility of comprehensive analysis of tau phosphorylation during specific signaling contexts.
Collapse
Affiliation(s)
- Amanda Schneeweis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Dawson Hillyer
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Tsering Lama
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Daeun Kim
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Charles Palka
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Sarra Djemil
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mai Abdel-Ghani
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Kelly Mandella
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - William Zhu
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Nicole Alvarez
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Lara Stefansson
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Robert Yasuda
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Junfeng Ma
- Mass Spectrometry and Analytical Pharmacology Shared Resource, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
41
|
Thompson JC, Levis Rabi M, Novoa M, Nash KR, Joly-Amado A. Evaluating the Efficacy of Levetiracetam on Non-Cognitive Symptoms and Pathology in a Tau Mouse Model. Biomedicines 2024; 12:2891. [PMID: 39767797 PMCID: PMC11727630 DOI: 10.3390/biomedicines12122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Alzheimer's disease (AD) is marked by amyloid-β plaques and hyperphosphorylated tau neurofibrillary tangles (NFTs), leading to cognitive decline and debilitating non-cognitive symptoms. This study aimed to evaluate compounds from four different classes in a short-term (7-day) study using transgenic tau mice to assess their ability to reduce non-cognitive symptoms. The best candidate was then evaluated for longer exposure to assess non-cognitive symptoms, cognition, and pathology. Methods: Tg4510 mice, expressing mutated human tau (P301L), were administered with levetiracetam, methylphenidate, diazepam, and quetiapine for 7 days at 6 months old, when pathology and cognitive deficits are established. Drugs were given in the diet, and non-cognitive symptoms were evaluated using metabolic cages. Levetiracetam was chosen for longer exposure (3 months) in 3-month-old Tg4510 mice and non-transgenic controls to assess behavior and pathology. Results: After 3 months of diet, levetiracetam mildly reduced tau pathology in the hippocampus but did not improve cognition in Tg4510 mice. Interestingly, it influenced appetite, body weight, anxiety-like behavior, and contextual fear memory in non-transgenic animals but not in Tg4510 mice. Conclusions: While levetiracetam has shown benefits in amyloid deposition models, it had limited effects on tau pathology and behavior in an animal model of tau deposition, which is crucial for AD context. The differential effects on non-transgenic versus Tg4510 mice warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (J.C.T.); (M.L.R.); (M.N.); (K.R.N.)
| |
Collapse
|
42
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 PMCID: PMC11657232 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
43
|
Elhabbari K, Sireci S, Rothermel M, Brunert D. Olfactory deficits in aging and Alzheimer's-spotlight on inhibitory interneurons. Front Neurosci 2024; 18:1503069. [PMID: 39737436 PMCID: PMC11683112 DOI: 10.3389/fnins.2024.1503069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Cognitive function in healthy aging and neurodegenerative diseases like Alzheimer's disease (AD) correlates to olfactory performance. Aging and disease progression both show marked olfactory deficits in humans and rodents. As a clear understanding of what causes olfactory deficits is still missing, research on this topic is paramount to diagnostics and early intervention therapy. A recent development of this research is focusing on GABAergic interneurons. Both aging and AD show a change in excitation/inhibition balance, indicating reduced inhibitory network functions. In the olfactory system, inhibition has an especially prominent role in processing information, as the olfactory bulb (OB), the first relay station of olfactory information in the brain, contains an unusually high number of inhibitory interneurons. This review summarizes the current knowledge on inhibitory interneurons at the level of the OB and the primary olfactory cortices to gain an overview of how these neurons might influence olfactory behavior. We also compare changes in interneuron composition in different olfactory brain areas between healthy aging and AD as the most common neurodegenerative disease. We find that pathophysiological changes in olfactory areas mirror findings from hippocampal and cortical regions that describe a marked cell loss for GABAergic interneurons in AD but not aging. Rather than differences in brain areas, differences in vulnerability were shown for different interneuron populations through all olfactory regions, with somatostatin-positive cells most strongly affected.
Collapse
Affiliation(s)
| | | | | | - Daniela Brunert
- Institute of Physiology, RG Neurophysiology and Optogenetics, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
44
|
Hu R, Boshans LL, Zhu B, Cai P, Tao Y, Youssef M, Girrbach GI, Song Y, Wang X, Tsankov A, Buxbaum JD, Ma S, Yang N. Expanding GABAergic Neuronal Diversity in iPSC-Derived Disease Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626438. [PMID: 39677822 PMCID: PMC11642846 DOI: 10.1101/2024.12.03.626438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
GABAergic interneurons play a critical role in maintaining neural circuit function, and their dysfunction is implicated in various neurodevelopmental and psychiatric disorders. Traditional approaches for differentiating human pluripotent stem cells (PSCs) into neuronal cells often face challenges such as incomplete neural differentiation, prolonged culture periods, and variability across PSC lines. To address these limitations, we developed a new strategy that integrates overexpression of transcription factors ASCL1 and DLX2 with dual-SMAD and WNT inhibition, efficiently driving the differentiation of human PSCs into diverse, region-specific GABAergic neuronal types. Using single-cell sequencing, we characterized the cellular heterogeneity of GABAergic induced neurons (iNs) generated with the patterning factors (patterned iNs) and those derived solely with transcription factors (PSC-derived iNs), uncovering the regulatory mechanisms that govern their fate specification. Patterned iNs exhibited gene expression features corresponding to multiple brain regions, particularly ganglionic eminence (GE) and neocortex, while GABAergic PSC-derived iNs predominantly resembled hypothalamic and thalamic neurons. Both iN types were enriched for genes relevant to neurodevelopmental and psychiatric disorders, with patterned iNs more specifically linked to neural lineage genes, highlighting their utility for disease modeling. We further applied this protocol to investigate the impact of an ADNP syndrome-associated mutation (p.Tyr719* variant) on GABAergic neuron differentiation, revealing that this mutation disrupts GABAergic fate specification and synaptic transmission. Overall, this study expands the toolkit for disease modeling by demonstrating the complementary advantages of GABAergic PSC-derived iNs and patterned iNs in representing distinct GABAergic neuron subtypes, brain regions, and disease contexts. These approaches offer a powerful platform for elucidating the molecular mechanisms underlying various neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Ruiqi Hu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- These authors contributed equally
| | - Linda L Boshans
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- These authors contributed equally
| | - Bohan Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peiwen Cai
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiran Tao
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Youssef
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gizem Inak Girrbach
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yingnan Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuran Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph D Buxbaum
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sai Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nan Yang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neurodevelopment and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Lead contact
| |
Collapse
|
45
|
Riga MS, Pérez-Fernández M, Miquel-Rio L, Paz V, Campa L, Martínez-Losa M, Esteban FJ, Callado LF, Meana J, Artigas F, Bortolozzi A, Álvarez-Dolado M. Scn1a haploinsufficiency in the prefrontal cortex leads to cognitive impairment and depressive phenotype. Brain 2024; 147:4169-4184. [PMID: 38769595 PMCID: PMC11729715 DOI: 10.1093/brain/awae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Altered development and function of the prefrontal cortex (PFC) during adolescence is implicated in the origin of mental disorders. Deficits in the GABAergic system prominently contribute to these alterations. Nav1.1 is a voltage-gated Na+ channel critical for normal GABAergic activity. Here, we studied the role of Nav1.1 in PFC function and its potential relationship with the aetiology of mental disorders. Dysfunction of Nav1.1 activity in the medial PFC (mPFC) of adolescent mice enhanced the local excitation/inhibition ratio, resulting in epileptic activity, cognitive deficits and depressive-like behaviour in adulthood, along with a gene expression profile linked to major depressive disorder (MDD). Additionally, it reduced extracellular serotonin concentration in the dorsal raphe nucleus and brain-derived neurotrophic factor expression in the hippocampus, two MDD-related brain areas beyond the PFC. We also observed alterations in oscillatory activity and impaired hippocampal-mPFC coherence during sleep. Finally, we found reduced expression levels of SCN1A, the gene encoding Nav1.1, in post-mortem PFC samples from human MDD subjects. Collectively, our results provide a novel mechanistic framework linking adolescence-specific alterations in Nav1.1 function in the PFC to the pathogenesis of epilepsy and comorbidities such as cognitive impairment and depressive disorders.
Collapse
Affiliation(s)
- Maurizio S Riga
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-JA-US-UPO, Seville 41092, Spain
| | - Mercedes Pérez-Fernández
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-JA-US-UPO, Seville 41092, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Leticia Campa
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Magdalena Martínez-Losa
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-JA-US-UPO, Seville 41092, Spain
- Department of Experimental Psychology, Universidad de Sevilla, 41018 Sevilla, Spain
| | - Francisco J Esteban
- Systems Biology Unit, Department of Experimental Biology, University of Jaén, Campus Las Lagunillas s/n, Jaén 23071, Spain
| | - Luis F Callado
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Francesc Artigas
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Analía Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Manuel Álvarez-Dolado
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), CSIC-JA-US-UPO, Seville 41092, Spain
| |
Collapse
|
46
|
Lee SH, Kang YJ, Smith BN. Activation of hypoactive parvalbumin-positive fast-spiking interneurons restores dentate inhibition to reduce electrographic seizures in the mouse intrahippocampal kainate model of temporal lobe epilepsy. Neurobiol Dis 2024; 203:106737. [PMID: 39542222 DOI: 10.1016/j.nbd.2024.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/20/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Parvalbumin-positive (PV+) GABAergic interneurons in the dentate gyrus provide powerful perisomatic inhibition of dentate granule cells (DGCs) to prevent overexcitation and maintain the stability of dentate gyrus circuits. Most dentate PV+ interneurons survive status epilepticus, but surviving PV+ interneuron mediated inhibition is compromised in the dentate gyrus shortly after status epilepticus, contributing to epileptogenesis in temporal lobe epilepsy. It is uncertain whether the impaired activity of dentate PV+ interneurons recovers at later times or if it continues for months following status epilepticus. The development of compensatory modifications related to PV+ interneuron circuits in the months following status epilepticus is unknown, although reduced dentate GABAergic inhibition persists long after status epilepticus. We employed whole-cell patch-clamp recordings from dentate PV+ interneurons and DGCs in slices from male and female sham controls and intrahippocampal kainate (IHK) treated mice that developed spontaneous seizures months after status epilepticus to study epilepsy-associated changes in dentate PV+ interneuron circuits. Electrical recordings showed that: 1) Action potential firing rates of dentate PV+ interneurons were reduced in IHK treated mice up to four months after status epilepticus; 2) spontaneous inhibitory postsynaptic currents (sIPSCs) in DGCs exhibited reduced frequency but increased amplitude in IHK treated mice; and 3) the amplitude of IPSCs in DGCs evoked by optogenetic activation of dentate PV+ cells was upregulated without changes in short-term plasticity. Video-EEG recordings revealed that IHK treated mice showed spontaneous electrographic seizures in the dentate gyrus and that chemogenetic activation of PV+ interneurons abolished electrographic seizures. Our results suggest not only that the compensatory changes in PV+ interneuron circuits develop after IHK treatment, but also that increased PV+ interneuron mediated inhibition in the dentate gyrus may compensate for cell loss and reduced intrinsic excitability of dentate PV+ interneurons to stop seizures in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Young-Jin Kang
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Bret N Smith
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
47
|
Perdok A, Van Acker ZP, Vrancx C, Sannerud R, Vorsters I, Verrengia A, Callaerts-Végh Z, Creemers E, Gutiérrez Fernández S, D'hauw B, Serneels L, Wierda K, Chávez-Gutiérrez L, Annaert W. Altered expression of Presenilin2 impacts endolysosomal homeostasis and synapse function in Alzheimer's disease-relevant brain circuits. Nat Commun 2024; 15:10412. [PMID: 39613768 DOI: 10.1038/s41467-024-54777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Rare mutations in the gene encoding presenilin2 (PSEN2) are known to cause familial Alzheimer's disease (FAD). Here, we explored how altered PSEN2 expression impacts on the amyloidosis, endolysosomal abnormalities, and synaptic dysfunction observed in female APP knock-in mice. We demonstrate that PSEN2 knockout (KO) as well as the FAD-associated N141IKI mutant accelerate AD-related pathologies in female mice. Both models showed significant deficits in working memory that linked to elevated PSEN2 expression in the hippocampal CA3 region. The mossy fiber circuit of APPxPSEN2KO and APPxFADPSEN2 mice had smaller pre-synaptic compartments, distinct changes in synaptic vesicle populations and significantly impaired long term potentiation compared to APPKI mice. At the cellular level, altered PSEN2 expression resulted in endolysosomal defects and lowered surface expression of synaptic proteins. As PSEN2/γ-secretase is restricted to late endosomes/lysosomes, we propose PSEN2 impacts endolysosomal homeostasis, affecting synaptic signaling in AD-relevant vulnerable brain circuits; which could explain how mutant PSEN2 accelerates AD pathogenesis.
Collapse
Affiliation(s)
- Anika Perdok
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Assunta Verrengia
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
| | - Zsuzsanna Callaerts-Végh
- mINT Animal Behavior Facility, Faculty of Psychology, KU Leuven, Tiensestraat 102, Leuven, Belgium
| | - Eline Creemers
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Sara Gutiérrez Fernández
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Laboratory of Proteolytic Mechanisms mediating Neurodegeneration, Leuven, Belgium
| | - Britt D'hauw
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Lutgarde Serneels
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Mouse Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Keimpe Wierda
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Lucía Chávez-Gutiérrez
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium
- Laboratory of Proteolytic Mechanisms mediating Neurodegeneration, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Herestraat 49box 602, Leuven, Belgium.
| |
Collapse
|
48
|
Miller SR, Luxem K, Lauderdale K, Nambiar P, Honma PS, Ly KK, Bangera S, Bullock M, Shin J, Kaliss N, Qiu Y, Cai C, Shen K, Mallen KD, Yan Z, Mendiola AS, Saito T, Saido TC, Pico AR, Thomas R, Roberson ED, Akassoglou K, Bauer P, Remy S, Palop JJ. Machine learning reveals prominent spontaneous behavioral changes and treatment efficacy in humanized and transgenic Alzheimer's disease models. Cell Rep 2024; 43:114870. [PMID: 39427315 PMCID: PMC12010505 DOI: 10.1016/j.celrep.2024.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/18/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
Computer-vision and machine-learning (ML) approaches are being developed to provide scalable, unbiased, and sensitive methods to assess mouse behavior. Here, we used the ML-based variational animal motion embedding (VAME) segmentation platform to assess spontaneous behavior in humanized App knockin and transgenic APP models of Alzheimer's disease (AD) and to test the role of AD-related neuroinflammation in these behavioral manifestations. We found marked alterations in spontaneous behavior in AppNL-G-F and 5xFAD mice, including age-dependent changes in motif utilization, disorganized behavioral sequences, increased transitions, and randomness. Notably, blocking fibrinogen-microglia interactions in 5xFAD-Fggγ390-396A mice largely prevented spontaneous behavioral alterations, indicating a key role for neuroinflammation. Thus, AD-related spontaneous behavioral alterations are prominent in knockin and transgenic models and sensitive to therapeutic interventions. VAME outcomes had higher specificity and sensitivity than conventional behavioral outcomes. We conclude that spontaneous behavior effectively captures age- and sex-dependent disease manifestations and treatment efficacy in AD models.
Collapse
Affiliation(s)
- Stephanie R Miller
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Kevin Luxem
- German Center for Neurodegenerative Diseases (DZNE), 39118 Bonn and Magdeburg, Germany; Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Kelli Lauderdale
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pranav Nambiar
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Patrick S Honma
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Katie K Ly
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shreya Bangera
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mary Bullock
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jia Shin
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nick Kaliss
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Yuechen Qiu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Catherine Cai
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Kevin Shen
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - K Dakota Mallen
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Zhaoqi Yan
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA 94158, USA
| | - Andrew S Mendiola
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA 94158, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi 351-0198, Japan
| | - Alexander R Pico
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Katerina Akassoglou
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA 94158, USA
| | - Pavol Bauer
- German Center for Neurodegenerative Diseases (DZNE), 39118 Bonn and Magdeburg, Germany; Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Stefan Remy
- German Center for Neurodegenerative Diseases (DZNE), 39118 Bonn and Magdeburg, Germany; Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; German Center for Mental Health (DZPG), 39118 Magdeburg, Germany
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Rodriguez GA, Rothenberg EF, Shetler CO, Aoun A, Posani L, Vajram SV, Tedesco T, Fusi S, Hussaini SA. Impaired spatial coding and neuronal hyperactivity in the medial entorhinal cortex of aged App NL-G-F mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624990. [PMID: 39651258 PMCID: PMC11623597 DOI: 10.1101/2024.11.26.624990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The progressive accumulation of amyloid beta (Aβ) pathology in the brain has been associated with aberrant neuronal network activity and poor cognitive performance in preclinical mouse models of Alzheimer's disease (AD). Presently, our understanding of the mechanisms driving pathology-associated neuronal dysfunction and impaired information processing in the brain remains incomplete. Here, we assessed the impact of advanced Aβ pathology on spatial information processing in the medial entorhinal cortex (MEC) of 18-month App NL-G-F/NL- G-F knock-in (APP KI) mice as they explored contextually novel and familiar open field arenas in a two-day, four-session recording paradigm. We tracked single unit firing activity across all sessions and found that spatial information scores were decreased in MEC neurons from APP KI mice versus those in age-matched C57BL/6J controls. MEC single unit spatial representations were also impacted in APP KI mice. Border cell firing preferences were unstable across sessions and spatial periodicity in putative grid cells was disrupted. In contrast, MEC border cells and grid cells in Control mice were intact and stable across sessions. We then quantified the stability of MEC spatial maps across sessions by utilizing a metric based on the Earth Mover's Distance (EMD). We found evidence for increased instability in spatially-tuned APP KI MEC neurons versus Controls when mice were re-exposed to familiar environments and exposed to a novel environment. Additionally, spatial decoding analysis of MEC single units revealed deficits in position and speed coding in APP KI mice in all session comparisons. Finally, MEC single unit analysis revealed a mild hyperactive phenotype in APP KI mice that appeared to be driven by narrow-spiking units (putative interneurons). These findings tie Aβ-associated dysregulation in neuronal firing to disruptions in spatial information processing that may underlie certain cognitive deficits associated with AD.
Collapse
|
50
|
van Nifterick AM, de Haan W, Stam CJ, Hillebrand A, Scheltens P, van Kesteren RE, Gouw AA. Functional network disruption in cognitively unimpaired autosomal dominant Alzheimer's disease: a magnetoencephalography study. Brain Commun 2024; 6:fcae423. [PMID: 39713236 PMCID: PMC11660908 DOI: 10.1093/braincomms/fcae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Understanding the nature and onset of neurophysiological changes, and the selective vulnerability of central hub regions in the functional network, may aid in managing the growing impact of Alzheimer's disease on society. However, the precise neurophysiological alterations occurring in the pre-clinical stage of human Alzheimer's disease remain controversial. This study aims to provide increased insights on quantitative neurophysiological alterations during a true early stage of Alzheimer's disease. Using high spatial resolution source-reconstructed magnetoencephalography, we investigated regional and whole-brain neurophysiological changes in a unique cohort of 11 cognitively unimpaired individuals with pathogenic mutations in the presenilin-1 or amyloid precursor protein gene and a 1:3 matched control group (n = 33) with a median age of 49 years. We examined several quantitative magnetoencephalography measures that have been shown robust in detecting differences in sporadic Alzheimer's disease patients and are sensitive to excitation-inhibition imbalance. This includes spectral power and functional connectivity in different frequency bands. We also investigated hub vulnerability using the hub disruption index. To understand how magnetoencephalography measures change as the disease progresses through its pre-clinical stage, correlations between magnetoencephalography outcomes and various clinical variables like age were analysed. A comparison of spectral power between mutation carriers and controls revealed oscillatory slowing, characterized by widespread higher theta (4-8 Hz) power, a lower posterior peak frequency and lower occipital alpha 2 (10-13 Hz) power. Functional connectivity analyses presented a lower whole-brain (amplitude-based) functional connectivity in the alpha (8-13 Hz) and beta (13-30 Hz) bands, predominantly located in parieto-temporal hub regions. Furthermore, we found a significant hub disruption index for (phase-based) functional connectivity in the theta band, attributed to both higher functional connectivity in 'non-hub' regions alongside a hub disruption. Neurophysiological changes did not correlate with indicators of pre-clinical disease progression in mutation carriers after multiple comparisons correction. Our findings provide evidence that oscillatory slowing and functional connectivity differences occur before cognitive impairment in individuals with autosomal dominant mutations leading to early onset Alzheimer's disease. The nature and direction of these alterations are comparable to those observed in the clinical stages of Alzheimer's disease, suggest an early excitation-inhibition imbalance, and fit with the activity-dependent functional degeneration hypothesis. These insights may prove useful for early diagnosis and intervention in the future.
Collapse
Affiliation(s)
- Anne M van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Willem de Haan
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|