1
|
Qi Q, Liu Y, Puranik V, Patra S, Svindrych Z, Gong X, She Z, Zhang Y, Aprahamian I. Photoswitchable Fluorescent Hydrazone for Super-Resolution Cell Membrane Imaging. J Am Chem Soc 2025; 147:16404-16411. [PMID: 40315017 DOI: 10.1021/jacs.5c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Advancing the field of super-resolution microscopy will require the design and optimization of new molecular probes whose emission can be toggled "ON" and "OFF" using light. Recently, we reported on a hydrazone photochrome (1) whose emission can be photoswitched on demand, although its low brightness and UV light-dependent back isomerization limited its use in such applications. Here, we report on the optimization of this parent fluorophore by replacing its dimethylamine electron-donating group with conformationally more rigid groups, namely, azetidine (2), 3,3-difluoroazetidine (3), and julolidine (4). This structural change resulted in enhanced brightness (i.e., extinction coefficient multiplied by fluorescence quantum yield), specifically in 4 because of its rigidity and ED capability. Next, three electron push-pull hydrazones (5-7) were designed based on the scaffold of 4, using cyano, nitro, or dicyanovinyl, respectively, as the electron-withdrawing groups, resulting in the progressive red-shifting of the photoswitching wavelengths into the visible region and further enhancement in brightness. Finally, fluorogenic probe 8 was developed based on parent compound 7, which could be activated solely with visible light and used in the super-resolution imaging of fixed-cell and live-cell plasma membranes with average localization precisions of 17 and 25 nm, respectively.
Collapse
Affiliation(s)
- Qingkai Qi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yunshu Liu
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Vedang Puranik
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Shefali Patra
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zdenek Svindrych
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Xiayi Gong
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ziwei She
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yang Zhang
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Lin XJ, Wang ML, Kong WW, Mo BX. Molecular Studies on Plant Telomeres: Expanding Horizons in Plant Biology. ACS Synth Biol 2025. [PMID: 40340407 DOI: 10.1021/acssynbio.4c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The integrity of plant genomes is intricately safeguarded by telomeres, the protective caps located at the ends of the chromosome. This review provides a comprehensive analysis of the molecular mechanisms governing the structure, maintenance, and dynamics of plant telomeres, highlighting their genetic and epigenetic regulation and their pivotal roles in plant development, longevity, stress adaptation, and disease resistance. Recent advancements, such as next-generation sequencing and single-molecule imaging, have revolutionized our understanding of telomere biology, unveiling new insights into telomerase activity and telomere-associated genetic variants. Additionally, the review also discusses the challenges and future directions of telomere research, including the potential applications of telomere biology in plant breeding and genetic engineering.
Collapse
Affiliation(s)
- Xiao J Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ming L Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wen W Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bei X Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Solh T, Cevher ŞC. The relationship between neuropsychiatric disorders and aging: A review on telomere length, oxidative stress, and inflammation. Behav Brain Res 2025; 485:115528. [PMID: 40064353 DOI: 10.1016/j.bbr.2025.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Aging is the group of time-independent changes that occur in an organism and that ultimately end in death. The relationship between aging and neuropsychiatric disorders is complex. Not only does the incidence of several neuropsychiatric disorders rise with age, but also these disorders are linked with premature mortality and are even thought to be syndromes of accelerated biological aging. Oxidative stress, inflammation and telomere length are factors commonly used to assess biological aging. The purpose of this review is to sum up the existing information about the state of those factors in schizophrenia, depression, bipolar disorder and anxiety disorders, and to summarize the effects of treatment on telomere length in patients with those neuropsychiatric disorders. The main focus, however, is on telomere length seeing the highly controversial study results on this biomarker in neuropsychiatric disorders. There is no scientific consensus on the state of those factors in the mentioned neuropsychiatric disorders or on the effects of treatment on telomere length, thus further research is needed where confounding variables are controlled. Regarding telomere length, it is highly important to explore whether short telomeres lead to the development of neuropsychiatric disorders or vice versa, as it carries huge clinical potential.
Collapse
Affiliation(s)
- Tala Solh
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Şule Coşkun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
4
|
Shibuya H. Telomeres, the nuclear lamina, and membrane remodeling: Orchestrating meiotic chromosome movements. J Cell Biol 2025; 224:e202412135. [PMID: 40261310 PMCID: PMC12013511 DOI: 10.1083/jcb.202412135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Telomeres, the DNA-protein complex located at the ends of linear eukaryotic chromosomes, not only safeguard genetic information from DNA erosion and aberrant activation of the DNA damage response pathways but also play a pivotal role in sexual reproduction. During meiotic prophase I, telomeres attach to the nuclear envelope and migrate along its surface, facilitating two-dimensional DNA homology searches that ensure precise pairing and recombination of the paternal and maternal chromosomes. Recent studies across diverse model systems have revealed intricate molecular mechanisms, including modifications to telomere- and nuclear envelope-binding proteins, the nuclear lamina, and even membrane composition. Emerging evidence reveals mutations in the genes encoding these meiotic telomere and nuclear envelope-associated proteins among infertile patients. This review highlights recent advances in the field of meiotic telomere research, particularly emphasizing mammalian model systems, contextualizes these findings through comparisons with other eukaryotes, and concludes by exploring potential future research directions in the field.
Collapse
Affiliation(s)
- Hiroki Shibuya
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Lanna A. Unexpected links between cancer and telomere state. Semin Cancer Biol 2025; 110:46-55. [PMID: 39952372 DOI: 10.1016/j.semcancer.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Eukaryotes possess chromosome ends known as telomeres. As telomeres shorten, organisms age, a process defined as senescence. Although uncontrolled telomere lengthening has been naturally connected with cancer developments and immortalized state, many cancers are instead characterized by extremely short, genomically unstable telomeres that may hide cancer cells from immune attack. By contrast, other malignancies feature extremely long telomeres due to absence of 'shelterin' end cap protecting factors. The reason for rampant telomere extension in these cancers had remained elusive. Hence, while telomerase supports tumor progression and escape in cancers with very short telomeres, it is possible that different - transfer based or alternative - lengthening pathways be involved in the early stage of tumorigenesis, when telomere length is intact. In this Review, I hereby discuss recent discoveries in the field of telomeres and highlight unexpected links connecting cancer and telomere state. We hope these parallelisms may inform new therapies to eradicate cancers.
Collapse
Affiliation(s)
- Alessio Lanna
- Sentcell UK laboratories, Tuscany Life Sciences, GSK Vaccine Campus, Siena, Italy; University College London, Division of Medicine, London, United Kingdom; Monte-Carlo, Principality of Monaco, France.
| |
Collapse
|
6
|
Montaldo NP, Nilsen HL, Bordin DL. Targeting base excision repair in precision oncology. DNA Repair (Amst) 2025; 149:103844. [PMID: 40359788 DOI: 10.1016/j.dnarep.2025.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Targeting the DNA damage response (DDR) is a key strategy in cancer therapy, leveraging tumour-specific weaknesses in DNA repair pathways to enhance treatment efficacy. Traditional treatments, such as chemotherapy and radiation, use a broad, damage-inducing approach, whereas precision oncology aims to tailor therapies to specific genetic mutations or vulnerabilities. The clinical success of PARP inhibitors has renewed the interest in targeting DNA repair as a therapeutic strategy. Expanding the precision oncology toolbox by targeting the base excision repair (BER) pathway presents a promising avenue for cancer therapy, particularly in tumours that rely heavily on this pathway due to deficiencies in other DNA repair mechanisms. This review discusses how targeting BER could improve treatment outcomes, particularly in DDR-defective cancers. With ongoing advancements in biomarker discovery and drug development, BER-targeted therapies hold significant potential for refining precision oncology approaches.
Collapse
Affiliation(s)
- Nicola P Montaldo
- Department of Microbiology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway; CRESCO - Centre for embryology and healthy Development, University of Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Microbiology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway; CRESCO - Centre for embryology and healthy Development, University of Oslo, Norway.
| | - Diana L Bordin
- Akershus University Hospital, Department of Clinical Molecular Biology, Unit for Precision Medicine, Lørenskog, Norway
| |
Collapse
|
7
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
8
|
Romero-Zamora D, Rogers S, Low RRJ, Page SG, Lane BJE, Kosaka S, Robinson AB, French L, Lamm N, Ishikawa F, Hayashi MT, Cesare AJ. A CPC-shelterin-BTR axis regulates mitotic telomere deprotection. Nat Commun 2025; 16:2277. [PMID: 40097392 PMCID: PMC11914695 DOI: 10.1038/s41467-025-57456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Telomeres prevent ATM activation by sequestering chromosome termini within telomere loops (t-loops). Mitotic arrest promotes telomere linearity and a localized ATM-dependent telomere DNA damage response (DDR) through an unknown mechanism. Using unbiased interactomics, biochemical screening, molecular biology, and super-resolution imaging, we found that mitotic arrest-dependent (MAD) telomere deprotection requires the combined activities of the Chromosome passenger complex (CPC) on shelterin, and the BLM-TOP3A-RMI1/2 (BTR) complex on t-loops. During mitotic arrest, the CPC component Aurora Kinase B (AURKB) phosphorylated both the TRF1 hinge and TRF2 basic domains. Phosphorylation of the TRF1 hinge domain enhances CPC and TRF1 interaction through the CPC Survivin subunit. Meanwhile, phosphorylation of the TRF2 basic domain promotes telomere linearity, activates a telomere DDR dependent on BTR-mediated double Holliday junction dissolution, and leads to mitotic death. We identify that the TRF2 basic domain functions in mitosis-specific telomere protection and reveal a regulatory role for TRF1 in controlling a physiological ATM-dependent telomere DDR. The data demonstrate that MAD telomere deprotection is a sophisticated active mechanism that exposes telomere ends to signal mitotic stress.
Collapse
Affiliation(s)
- Diana Romero-Zamora
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Samuel Rogers
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Ronnie Ren Jie Low
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Scott G Page
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Blake J E Lane
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Shunya Kosaka
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Andrew B Robinson
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Lucy French
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Noa Lamm
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Fuyuki Ishikawa
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan
| | - Makoto T Hayashi
- Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto, Japan.
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
| | - Anthony J Cesare
- Children's Medical Research Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Li X, Hu D, Zhang M, Wang W. Human telomere length detected by quantitative fluorescent in situ hybridization: overlooked importance and application. Crit Rev Clin Lab Sci 2025; 62:135-147. [PMID: 39726249 DOI: 10.1080/10408363.2024.2441733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
The technique of Quantitative Fluorescence in Situ Hybridization (Q-FISH) plays a crucial role in determining the length of telomeres for studies in molecular biology and cytogenetics. Throughout the years, the use of Q-FISH for measuring telomere length has made substantial contributions to research in aging, cancer, and stem cells. The objective of this analysis is to delineate the categorization, fundamental concepts, pros and cons, and safety measures of Q-FISH in telomere length analysis, encapsulate, and anticipate its principal uses across diverse human biomedical research fields.
Collapse
Affiliation(s)
- Xinling Li
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Ma Q, Xu W, Guo X. Pan‑cancer analysis of the oncogenic role of telomeric repeat binding factor 2 (TERF2) in human tumors and in vitro validation in gastric cancer by TERF2 knockdown. Discov Oncol 2025; 16:234. [PMID: 39994081 PMCID: PMC11850661 DOI: 10.1007/s12672-025-01954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Telomeric repeat binding factor 2 (TERF2), a key component of the Shelterin complex, is crucial for maintaining telomere integrity and genome stability. While the involvement of TERF2 in tumorigenesis and progression has been documented, comprehensive pan-cancer analyses of TERF2 across different malignancies remain scarce. METHODS In the present study, the expression, mutations, immune cell infiltration, and interacting genes of TERF2 were systematically evaluated through bioinformatics analysis, and in vitro experiments were performed to elucidate the functional roles of TERF2 in gastric cancer. RESULTS The findings revealed that TERF2 was predominantly upregulated in cholangiocarcinoma (CHOL), diffuse large B-cell lymphoma (DLBC), pancreatic adenocarcinoma (PAAD), stomach adenocarcinoma (STAD), and thymoma (THYM), correlating with tumor progression. Amplification and mutations were identified as the primary alterations of TERF2, particularly associated with liver hepatocellular carcinoma (LIHC). Furthermore, TERF2 expression was linked to the infiltration of cancer-associated fibroblasts and immune cells in certain cancer types. Protein-protein interaction (PPI) analysis highlighted several genes associated with TERF2, including CTCF, DDX19A, MATR3, ZFP1, and ZFP90. Additionally, in vitro experiments demonstrated that TERF2 knockdown significantly suppressed the proliferation and migration of gastric cancer cells. CONCLUSIONS These results suggest that dysregulation and mutations of TERF2 are prevalent across various cancers, contributing to tumor immunity and acting as an oncogenic factor, thus positioning TERF2 as a potential therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Wen Xu
- Department of Gastroenterology, People's Hospital of Hechuan District, Chongqing, 401520, People's Republic of China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- School of Laboratory Medicine & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| |
Collapse
|
11
|
Billing D, Sfeir A. The Role of Microhomology-Mediated End Joining (MMEJ) at Dysfunctional Telomeres. Cold Spring Harb Perspect Biol 2025; 17:a041687. [PMID: 39500624 PMCID: PMC11864110 DOI: 10.1101/cshperspect.a041687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
DNA double-strand break (DSB) repair pathways are crucial for maintaining genome stability and cell viability. However, these pathways can mistakenly recognize chromosome ends as DNA breaks, leading to adverse outcomes such as telomere fusions and malignant transformation. The shelterin complex protects telomeres from activation of DNA repair pathways by inhibiting nonhomologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). The focus of this paper is on MMEJ, an error-prone DSB repair pathway characterized by short insertions and deletions flanked by sequence homology. MMEJ is critical in mediating telomere fusions in cells lacking the shelterin complex and at critically short telomeres. Furthermore, studies suggest that MMEJ is the preferred pathway for repairing intratelomeric DSBs and facilitates escape from telomere crisis. Targeting MMEJ to prevent telomere fusions in hematologic malignancies is of potential therapeutic value.
Collapse
Affiliation(s)
- David Billing
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
12
|
De Rosa M, Barnes RP, Detwiler AC, Nyalapatla PR, Wipf P, Opresko PL. OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced senescence in human fibroblasts. Nat Commun 2025; 16:893. [PMID: 39837827 PMCID: PMC11751180 DOI: 10.1038/s41467-024-55638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts. Glycosylase deficiency also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that downstream single-stranded break (SSB) repair intermediates impair telomere replication. Preventing BER initiation suppresses PARylation and confers resistance to the synergistic effects of PARP inhibitors on 8oxoG-induced senescence. However, OGG1 activity is essential for preserving cell growth after chronic telomeric 8oxoG formation, whereas MUTYH promotes senescence to prevent chromosomal instability from unrepaired damage. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which disrupt telomere function.
Collapse
Affiliation(s)
| | - Ryan P Barnes
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ariana C Detwiler
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Peter Wipf
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L Opresko
- UPMC Hillman Cancer Center at the University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Xu X, Wang T. Autoregulation of TRF2 through G-Quadruplex-Specific Interaction between the Gene and N-Terminal Domain of the Protein. Biochemistry 2025; 64:57-66. [PMID: 39705116 DOI: 10.1021/acs.biochem.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Telomere repeat-binding factor 2 (TRF2) is a key component of the shelterin complex which guards the integrity of the telomere. Most of the TRF2 discussed previously was focused on the telomere, and relatively less is discussed on aspects other than that. It is proved that TRF2 also localizes to other potential G-quadruplex-forming sequences among the whole genome besides the telomere. Therefore, it may participate in regulating genes generally except for the well-known function of protecting telomeres. Here, we demonstrate that the N-terminal basic domain of TRF2 (TRF2B) can interact with the G-quadruplex formed by the 5'-UTR sequence of its gene. Subsequently, this interaction was identified as G-quadruplex-specific. Using a reporter gene system, we proved that the translation of the reporter gene was dramatically reduced, triggered by the interaction between TRF2B and the G-quadruplex. Altogether, we propose that TRF2 can be "auto-regulated" through the G-quadruplex formed by its own gene sequence. This finding indicates a potential feedback mechanism in the regulation of the TRF2 gene. Additionally, it suggests a common mode in gene regulation involving the cooperation of TRF2 and the G-quadruplex.
Collapse
Affiliation(s)
- Xiaojuan Xu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biology and Food Engineering, Hefei Normal University, Hefei 230031, China
| | - Tao Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
14
|
Janovič T, Perez GI, Schmidt JC. TRF1 and TRF2 form distinct shelterin subcomplexes at telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630076. [PMID: 39763972 PMCID: PMC11703185 DOI: 10.1101/2024.12.23.630076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes in vitro. However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined. To quantitatively analyze the shelterin function in living cells we generated a panel of cancer cell lines expressing HaloTagged shelterin proteins from their endogenous loci. We systematically determined the total cellular abundance and telomeric copy number of each shelterin subunit, demonstrating that the shelterin proteins are present at telomeres in equal numbers. In addition, we used single-molecule live-cell imaging to analyze the dynamics of shelterin protein association with telomeres. Our results demonstrate that TRF1-TIN2-TPP1-POT1 and TRF2-RAP1 form distinct subcomplexes that occupy non-overlapping binding sites on telomeric chromatin. TRF1-TIN2-TPP1-POT1 tightly associates with chromatin, while TRF2-RAP1 binding to telomeres is more dynamic, allowing it to recruit a variety of co-factors to chromatin to protect chromosome ends from DNA repair factors. In total, our work provides critical mechanistic insight into how the shelterin proteins carry out multiple essential functions in telomere maintenance and significantly advances our understanding of macromolecular structure of telomeric chromatin.
Collapse
Affiliation(s)
- Tomáš Janovič
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| |
Collapse
|
15
|
Syed S, Aloe S, Sutherland JH, Holloman WK, Lue NF. Ustilago maydis Trf2 ensures genome stability by antagonizing Blm-mediated telomere recombination: Fine-tuning DNA repair factor activity at telomeres through opposing regulations. PLoS Genet 2024; 20:e1011515. [PMID: 39652599 DOI: 10.1371/journal.pgen.1011515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/26/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
TRF2 is an essential and conserved double-strand telomere binding protein that stabilizes chromosome ends by suppressing DNA damage response and aberrant DNA repair. Herein we investigated the mechanisms and functions of the Trf2 ortholog in the basidiomycete fungus Ustilago maydis, which manifests strong resemblances to metazoans with regards to the telomere and DNA repair machinery. We showed that UmTrf2 binds to Blm in vitro and inhibits Blm-mediated unwinding of telomeric DNA substrates. Consistent with a similar inhibitory activity in vivo, over-expression of Trf2 induces telomere shortening, just like deletion of blm, which is required for efficient telomere replication. While the loss of Trf2 engenders growth arrest and multiple telomere aberrations, these defects are fully suppressed by the concurrent deletion of blm or mre11 (but not other DNA repair factors). Over-expression of Blm alone triggers aberrant telomere recombination and the accumulation of aberrant telomere structures, which are blocked by concurrent Trf2 over-expression. Together, these findings highlight the suppression of Blm as a key protective mechanism of Trf2. Notably, U. maydis harbors another double-strand telomere-binding protein (Tay1), which promotes Blm activity to ensure efficient replication. We found that deletion of tay1 partially suppresses the telomere aberration of Trf2-depleted cells. Our results thus point to opposing regulation of Blm helicase by telomere proteins as a strategy for optimizing both telomere maintenance and protection. We also show that aberrant transcription of both telomere G- and C-strand is a recurrent phenotype of telomere mutants, underscoring another potential similarity between double strand breaks and de-protected telomeres.
Collapse
Affiliation(s)
- Shahrez Syed
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah Aloe
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Jeanette H Sutherland
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - William K Holloman
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
16
|
Choudhir G, Kumar S, Kumar A. Targeting telomeric RNA quadruplexes with natural metabolites to prevent cancer. In Silico Pharmacol 2024; 12:112. [PMID: 39611109 PMCID: PMC11599832 DOI: 10.1007/s40203-024-00283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Cancer is a major global health burden, causing significant economic losses and premature deaths worldwide. Maintenance of telomeric repeats by telomerase makes the cancer cells immortal. Non-nucleoside mushroom metabolites were screened for their ability to stabilize RG4 structures, making telomeres inaccessible to telomerase and inducing telomere shortening in cancer cells. Selected mushroom metabolites, namely, Sterenin M, Melleolide K, and Zhankuic Acid A were docked with RG4 using the AutoDock Vina and evaluated for non-covalent interactions. These compounds were found to have strong binding affinity and manifested a set of molecular interactions with RG4. To assess the stability of complexes, state-of-the-art molecular dynamics simulations were carried out using the GROMACS 2018.7 software suite with the AMBER99SB-ILDN force field on 250 nanoseconds. Molecular docking and MD simulations revealed the strong interaction patterns between RG4 and the selected metabolites at the atomic level followed by binding free energy calculations. The results suggest that all three metabolites have the potential to be developed into therapeutic agents for cancer treatment. Further in vitro and in vivo studies are needed to assess these compounds' toxicity, efficacy, and dosage.
Collapse
Affiliation(s)
- Gourav Choudhir
- Department of Botany, Chaudhary Charan Singh University, Meerut, 250004 India
| | - Sushil Kumar
- Department of Botany, Shaheed Mangal Pandey Govt. Girls PG College, Madhavpuram, Meerut, 250002 India
| | - Anuj Kumar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| |
Collapse
|
17
|
Czaja AJ. Cellular senescence and its pathogenic and therapeutic implications in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2024; 18:725-743. [PMID: 39575891 DOI: 10.1080/17474124.2024.2432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Senescent cells are characterized by replicative arrest and phenotypes that produce diverse pro-inflammatory and pro-oxidant mediators. The senescence of diverse hepatic cell types could constitute an unrecognized pathogenic mechanism and prognostic determinant in autoimmune hepatitis. The impact of cellular senescence in autoimmune hepatitis is unknown, and it may suggest adjunctive management strategies. AREAS COVERED This review describes the molecular mechanisms of cellular senescence, indicates its diagnostic features, suggests its consequences, presents possible therapeutic interventions, and encourages investigations of its pathogenic role and management in autoimmune hepatitis. Treatment prospects include elimination or reversal of senescent cells, generation of ectopic telomerase, reactivation of dormant telomerase, neutralization of specific pro-inflammatory secretory products, and mitigation of the effects of mitochondrial dysfunction. EXPERT OPINION The occurrence, nature, and consequences of cellular senescence in autoimmune hepatitis must be determined. The senescence of diverse hepatic cell types could affect the outcome of autoimmune hepatitis by impairing hepatic regeneration, intensifying liver inflammation, and worsening hepatic fibrosis. Cellular senescence could contribute to suboptimal responses during conventional glucocorticoid-based therapy. Interventions that target specific pro-inflammatory products of the senescent phenotype or selectively promote apoptosis of senescent cells may be preferred adjunctive treatments for autoimmune hepatitis depending on the cancer risk.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic, Department of Medicine, Division of Gastroenterology and Hepatology, Rochester, MN, USA
| |
Collapse
|
18
|
Knecht H, Petrogiannis-Haliotis T, Louis S, Mai S. 3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma. Cells 2024; 13:1748. [PMID: 39513855 PMCID: PMC11545283 DOI: 10.3390/cells13211748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The bi- or multinucleated Reed-Sternberg cell (RS) is the diagnostic cornerstone of Epstein-Barr Virus (EBV)-positive and EBV-negative classical Hodgkin lymphoma (cHL). cHL is a germinal center (GC)-derived B-cell disease. Hodgkin cells (H) are the mononuclear precursors of RS. An experimental model has to fulfill three conditions to qualify as common pathogenic denominator: (i) to be of GC-derived B-cell origin, (ii) to be EBV-negative to avoid EBV latency III expression and (iii) to support permanent EBV-encoded oncogenic latent membrane protein (LMP1) expression upon induction. These conditions are unified in the EBV-, diffuse large B-Cell lymphoma (DLBCL) cell line BJAB-tTA-LMP1. 3D reconstructive nanotechnology revealed spatial, quantitative and qualitative disturbance of telomere/shelterin interactions in mononuclear H-like cells, with further progression during transition to RS-like cells, including progressive complexity of the karyotype with every mitotic cycle, due to BBF (breakage/bridge/fusion) events. The findings of this model were confirmed in diagnostic patient samples and correlate with clinical outcomes. Moreover, in vitro, significant disturbance of the lamin AC/telomere interaction progressively occurred. In summary, our research over the past three decades identified cHL as the first lymphoid malignancy driven by a disturbed telomere/shelterin/lamin AC interaction, generating the diagnostic RS. Our findings may act as trailblazer for tailored therapies in refractory cHL.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Hematology, Department of Medicine, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | | | - Sherif Louis
- Telo Genomics Corp., Ontario, ON M5G 1L7, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
19
|
Harman A, Bryan TM. Telomere maintenance and the DNA damage response: a paradoxical alliance. Front Cell Dev Biol 2024; 12:1472906. [PMID: 39483338 PMCID: PMC11524846 DOI: 10.3389/fcell.2024.1472906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Telomeres are the protective caps at the ends of linear chromosomes of eukaryotic organisms. Telomere binding proteins, including the six components of the complex known as shelterin, mediate the protective function of telomeres. They do this by suppressing many arms of the canonical DNA damage response, thereby preventing inappropriate fusion, resection and recombination of telomeres. One way this is achieved is by facilitation of DNA replication through telomeres, thus protecting against a "replication stress" response and activation of the master kinase ATR. On the other hand, DNA damage responses, including replication stress and ATR, serve a positive role at telomeres, acting as a trigger for recruitment of the telomere-elongating enzyme telomerase to counteract telomere loss. We postulate that repression of telomeric replication stress is a shared mechanism of control of telomerase recruitment and telomere length, common to several core telomere binding proteins including TRF1, POT1 and CTC1. The mechanisms by which replication stress and ATR cause recruitment of telomerase are not fully elucidated, but involve formation of nuclear actin filaments that serve as anchors for stressed telomeres. Perturbed control of telomeric replication stress by mutations in core telomere binding proteins can therefore cause the deregulation of telomere length control characteristic of diseases such as cancer and telomere biology disorders.
Collapse
Affiliation(s)
| | - Tracy M. Bryan
- Cell Biology Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
20
|
Douglas ME. How to write an ending: Telomere replication as a multistep process. DNA Repair (Amst) 2024; 144:103774. [PMID: 39426311 DOI: 10.1016/j.dnarep.2024.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Telomeres are protective nucleoprotein caps found at the natural ends of eukaryotic chromosomes and are crucial for the preservation of stable chromosomal structure. In cycling cells, telomeres are maintained by a multi-step process called telomere replication, which involves the eukaryotic replisome navigating a complex repetitive template tightly bound by specific proteins, before terminating at the chromosome end prior to a 5' resection step that generates a protective 3' overhang. In this review, we examine mechanistic aspects of the telomere replication process and consider how individual parts of this multistep event are integrated and coordinated with one-another.
Collapse
Affiliation(s)
- Max E Douglas
- Telomere Biology Laboratory, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
21
|
Lu Y, Ying Y, Huang C, Li X, Cheng J, Yu R, Ma L, Shuai J, Zhou X, Zhong J. STORM image denoising and information extraction. Biomed Phys Eng Express 2024; 10:065028. [PMID: 39265585 DOI: 10.1088/2057-1976/ad7a02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Stochastic optical reconstruction microscopy (STORM) is extensively utilized in the fields of cell and molecular biology as a super-resolution imaging technique for visualizing cells and molecules. Nonetheless, the imaging process of STORM is frequently susceptible to noise, which can significantly impact the subsequent image analysis. Moreover, there is currently a lack of a comprehensive automated processing approach for analyzing protein aggregation states from a large number of STORM images. This paper initially applies our previously proposed denoising algorithm, UNet-Att, in STORM image denoising. This algorithm was constructed based on attention mechanism and multi-scale features, showcasing a remarkably efficient performance in denoising. Subsequently, we propose a collection of automated image processing algorithms for the ultimate feature extractions and data analyses of the STORM images. The information extraction workflow effectively integrates automated methods of image denoising, objective image segmentation and binarization, and object information extraction, and a novel image information clustering algorithm specifically developed for the morphological analysis of the objects in the STORM images. This automated workflow significantly improves the efficiency of the effective data analysis for large-scale original STORM images.
Collapse
Affiliation(s)
- Yuer Lu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, People's Republic of China
| | - Yongfa Ying
- Department of Physics, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chengliang Huang
- Academy of Artificial Intelligence, Zhejiang Dongfang Polytechnic, Wenzhou, 325025, People's Republic of China
| | - Xiang Li
- Department of Physics, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Jinyan Cheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
| | - Rongwen Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
| | - Lixiang Ma
- Department of Anatomy, Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jianwei Shuai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, People's Republic of China
| | - Xuejin Zhou
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Jinjin Zhong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, People's Republic of China
| |
Collapse
|
22
|
Strom AR, Kim Y, Zhao H, Chang YC, Orlovsky ND, Košmrlj A, Storm C, Brangwynne CP. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity. Cell 2024; 187:5282-5297.e20. [PMID: 39168125 DOI: 10.1016/j.cell.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
Biomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells. Here, we introduce viscoelastic chromatin tethering and organization (VECTOR), which uses light-inducible biomolecular condensates to generate capillary forces at targeted DNA loci. VECTOR can be utilized to programmably reposition genomic loci on a timescale of seconds to minutes, quantitatively revealing local heterogeneity in the viscoelastic material properties of chromatin. These synthetic condensates are built from components that naturally form liquid-like structures in living cells, highlighting the potential role for native condensates to generate forces and do work to reorganize the genome and impact chromatin architecture.
Collapse
Affiliation(s)
- Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hongbo Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Mechanical and Aerospace Engineering, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Yi-Che Chang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Natalia D Orlovsky
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Princeton Materials Institute, Princeton University, Princeton, NJ 08544, USA
| | - Cornelis Storm
- Eindhoven University of Technology, Department of Applied Physics and Science Education, Eindhoven, the Netherlands
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Princeton Materials Institute, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 21044, USA.
| |
Collapse
|
23
|
Liang F, Rai R, Sodeinde T, Chang S. TRF2-RAP1 represses RAD51-dependent homology-directed telomere repair by promoting BLM-mediated D-loop unwinding and inhibiting BLM-DNA2-dependent 5'-end resection. Nucleic Acids Res 2024; 52:9695-9709. [PMID: 39082275 PMCID: PMC11381343 DOI: 10.1093/nar/gkae642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024] Open
Abstract
Inappropriate homology-directed repair (HDR) of telomeres results in catastrophic telomere loss and aberrant chromosome fusions, leading to genome instability. We have previously shown that the TRF2-RAP1 heterodimer protects telomeres from engaging in aberrant telomere HDR. Cells lacking the basic domain of TRF2 and functional RAP1 display HDR-mediated telomere clustering, resulting in the formation of ultrabright telomeres (UTs) and massive chromosome fusions. Using purified proteins, we uncover three distinct molecular pathways that the TRF2-RAP1 heterodimer utilizes to protect telomeres from engaging in aberrant HDR. We show mechanistically that TRF2-RAP1 inhibits RAD51-initiated telomeric D-loop formation. Both the TRF2 basic domain and RAP1-binding to TRF2 are required to block RAD51-mediated homology search. TRF2 recruits the BLM helicase to telomeres through its TRFH domain to promote BLM-mediated unwinding of telomere D-loops. In addition, TRF2-RAP1 inhibits BLM-DNA2-mediated 5' telomere end resection, preventing the generation of 3' single-stranded telomere overhangs necessary for RAD51-dependent HDR. Importantly, cells expressing BLM mutants unable to interact with TRF2 accumulate telomere D-loops and UTs. Our findings uncover distinct molecular mechanisms coordinated by TRF2-RAP1 to protect telomeres from engaging in aberrant HDR.
Collapse
Affiliation(s)
- Fengshan Liang
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Rekha Rai
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Tori Sodeinde
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Sandy Chang
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
- Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| |
Collapse
|
24
|
Hu H, Yan HL, Nguyen THD. Structural biology of shelterin and telomeric chromatin: the pieces and an unfinished puzzle. Biochem Soc Trans 2024; 52:1551-1564. [PMID: 39109533 PMCID: PMC7617103 DOI: 10.1042/bst20230300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The six-subunit shelterin complex binds to mammalian telomeres and protects them from triggering multiple DNA damage response pathways. The loss of this protective function by shelterin can have detrimental effects on cells. In this review, we first discuss structural studies of shelterin, detailing the contributions of each subunit and inter-subunit interactions in protecting chromosome ends. We then examine the influence of telomeric chromatin dynamics on the function of shelterin at telomeres. These studies provide valuable insights and underscore the challenges that future research must tackle to attain high-resolution structures of shelterin.
Collapse
Affiliation(s)
- Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, U.K
| | | | | |
Collapse
|
25
|
Ghilain C, Vidal-Cruchez O, Joly A, Debatisse M, Gilson E, Giraud-Panis MJ. Innovative Tools for DNA Topology Probing in Human Cells Reveal a Build-Up of Positive Supercoils Following Replication Stress at Telomeres and at the FRA3B Fragile Site. Cells 2024; 13:1361. [PMID: 39195250 PMCID: PMC11352870 DOI: 10.3390/cells13161361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Linear unconstrained DNA cannot harbor supercoils since these supercoils can diffuse and be eliminated by free rotation of the DNA strands at the end of the molecule. Mammalian telomeres, despite constituting the ends of linear chromosomes, can hold supercoils and be subjected to topological stress. While negative supercoiling was previously observed, thus proving the existence of telomeric topological constraints, positive supercoils were never probed due to the lack of an appropriate tool. Indeed, the few tools available currently could only investigate unwound (Trioxsalen) or overwound (GapR) DNA topology (variations in twist) but not the variations in writhe (supercoils and plectonemes). To address this question, we have designed innovative tools aimed at analyzing both positive and negative DNA writhe in cells. Using them, we could observe the build-up of positive supercoils following replication stress and inhibition of Topoisomerase 2 on telomeres. TRF2 depletion caused both telomere relaxation and an increase in positive supercoils while the inhibition of Histone Deacetylase I and II by TSA only caused telomere relaxation. Moving outside telomeres, we also observed a build-up of positive supercoils on the FRA3B fragile site following replication stress, suggesting a topological model of DNA fragility for this site.
Collapse
Affiliation(s)
- Claire Ghilain
- CNRS UMR7284/INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Faculty of Medicine, University Côte d’Azur, 06107 Nice, France;
| | | | - Aurélia Joly
- Medical Microbiology and Immunology Department, Faculty of Medicine & Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton, AB T6G 2R3, Canada;
| | - Michelle Debatisse
- Gustave Roussy Institute, Sorbonne Université, UPMC, 94805 Villejuif, France;
| | - Eric Gilson
- CNRS UMR7284/INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Faculty of Medicine, University Côte d’Azur, 06107 Nice, France;
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
- International Research Project in Hematology, Cancer and Aging, Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, Ruijin Hospital, Shanghai Jiao Tong University School, Shanghai 200025, China
- Department of Genetics, CHU, FHU OncoAge, 06000 Nice, France
| | - Marie-Josèphe Giraud-Panis
- CNRS UMR7284/INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Faculty of Medicine, University Côte d’Azur, 06107 Nice, France;
| |
Collapse
|
26
|
Stuart A, de Lange T. Replicative senescence is ATM driven, reversible, and accelerated by hyperactivation of ATM at normoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600514. [PMID: 38979390 PMCID: PMC11230194 DOI: 10.1101/2024.06.24.600514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Programmed telomere shortening limits tumorigenesis through the induction of replicative senescence. Here we address three long-standing questions concerning senescence. First, we show that the ATM kinase is solely responsible for the induction of replicative senescence. Senescence was delayed by ATM inhibition (ATMi) or overexpression of TRF2, the shelterin subunit dedicated to ATM repression. In contrast, there was no evidence for ATR signaling contributing to replicative senescence even when ATMi was combined with ATR inhibition. Second, we show ATMi can induce apparently normal cell divisions in a subset of senescent cells, indicating that senescence can be reversed. Third, we show that the extended replicative life span at low (physiological) oxygen is due to diminished ATM activity. At low oxygen, cells show a decreased ATM response to dysfunctional telomeres and genome-wide DSBs compared to 20% oxygen. As this effect could be reversed by NAC, the attenuated response of ATM to critically short telomeres and the resulting extended life span at low oxygen is likely due to ROS-induced formation of cysteine disulfide-bridges that crosslink ATM dimers into a form that is not activated by DSBs. These findings show how primary human cells detect shortened telomeres and reveal the molecular mechanism underlying the telomere tumor suppressor pathway.
Collapse
Affiliation(s)
- Alexander Stuart
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
27
|
Schmidt TT, Tyer C, Rughani P, Haggblom C, Jones JR, Dai X, Frazer KA, Gage FH, Juul S, Hickey S, Karlseder J. High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer. Nat Commun 2024; 15:5149. [PMID: 38890299 PMCID: PMC11189484 DOI: 10.1038/s41467-024-48917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Telomeres are the protective nucleoprotein structures at the end of linear eukaryotic chromosomes. Telomeres' repetitive nature and length have traditionally challenged the precise assessment of the composition and length of individual human telomeres. Here, we present Telo-seq to resolve bulk, chromosome arm-specific and allele-specific human telomere lengths using Oxford Nanopore Technologies' native long-read sequencing. Telo-seq resolves telomere shortening in five population doubling increments and reveals intrasample, chromosome arm-specific, allele-specific telomere length heterogeneity. Telo-seq can reliably discriminate between telomerase- and ALT-positive cancer cell lines. Thus, Telo-seq is a tool to study telomere biology during development, aging, and cancer at unprecedented resolution.
Collapse
Affiliation(s)
| | - Carly Tyer
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | | | - Candy Haggblom
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jeffrey R Jones
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Xiaoguang Dai
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Kelly A Frazer
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093-0761, USA
| | - Fred H Gage
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sissel Juul
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Scott Hickey
- Oxford Nanopore Technologies, Inc., New York, NY, USA.
| | - Jan Karlseder
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
28
|
Qiu YD, Yan Q, Wang Y, Ye YF, Wang Y, Wang MY, Wang PP, Zhang SY, Wang DL, Yan H, Ruan J, Zhao YJ, Huang LH, Cho N, Wang K, Zheng XH, Liu ZG. Discovery of a selective TRF2 inhibitor FKB04 induced telomere shortening and senescence in liver cancer cells. Acta Pharmacol Sin 2024; 45:1276-1286. [PMID: 38438580 PMCID: PMC11130216 DOI: 10.1038/s41401-024-01243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024]
Abstract
Telomere repeat binding factor 2 (TRF2), a critical element of the shelterin complex, plays a vital role in the maintenance of genome integrity. TRF2 overexpression is found in a wide range of malignant cancers, whereas its down-regulation could cause cell death. Despite its potential role, the selectively small-molecule inhibitors of TRF2 and its therapeutic effects on liver cancer remain largely unknown. Our clinical data combined with bioinformatic analysis demonstrated that TRF2 is overexpressed in liver cancer and that high expression is associated with poor prognosis. Flavokavain B derivative FKB04 potently inhibited TRF2 expression in liver cancer cells while having limited effects on the other five shelterin subunits. Moreover, FKB04 treatment induced telomere shortening and increased the amounts of telomere-free ends, leading to the destruction of T-loop structure. Consequently, FKB04 promoted liver cancer cell senescence without modulating apoptosis levels. In corroboration with these findings, FKB04 inhibited tumor cell growth by promoting telomeric TRF2 deficiency-induced telomere shortening in a mouse xenograft tumor model, with no obvious side effects. These results demonstrate that TRF2 is a potential therapeutic target for liver cancer and suggest that FKB04 may be a selective small-molecule inhibitor of TRF2, showing promise in the treatment of liver cancer.
Collapse
Affiliation(s)
- Yin-da Qiu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Qi Yan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan-Fei Ye
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Meng-Ying Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pei-Pei Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shu-Yuan Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Da-Long Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao Yan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing Ruan
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Yun-Jie Zhao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Le-Hao Huang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kun Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiao-Hui Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Zhi-Guo Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
- Oujiang Laboratory, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
29
|
Sonmez C, Toia B, Eickhoff P, Matei AM, El Beyrouthy M, Wallner B, Douglas ME, de Lange T, Lottersberger F. DNA-PK controls Apollo's access to leading-end telomeres. Nucleic Acids Res 2024; 52:4313-4327. [PMID: 38407308 PMCID: PMC11077071 DOI: 10.1093/nar/gkae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.
Collapse
Affiliation(s)
- Ceylan Sonmez
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Beatrice Toia
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Patrik Eickhoff
- Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Andreea Medeea Matei
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Michael El Beyrouthy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| | - Björn Wallner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58 183, Sweden
| | - Max E Douglas
- Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, NY, NY 10021, USA
| | - Francisca Lottersberger
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58 183, Sweden
| |
Collapse
|
30
|
Eppard M, Passos JF, Victorelli S. Telomeres, cellular senescence, and aging: past and future. Biogerontology 2024; 25:329-339. [PMID: 38150087 DOI: 10.1007/s10522-023-10085-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
Over half a century has passed since Alexey Olovnikov's groundbreaking proposal of the end-replication problem in 1971, laying the foundation for our understanding of telomeres and their pivotal role in cellular senescence. This review paper delves into the intricate and multifaceted relationship between cellular senescence, the influence of telomeres in this process, and the far-reaching consequences of telomeres in the context of aging and age-related diseases. Additionally, the paper investigates the various factors that can influence telomere shortening beyond the confines of the end-replication problem and how telomeres can exert their impact on aging, even in the absence of significant shortening. Ultimately, this paper stands as a tribute to the pioneering work of Olovnikov, whose seminal contributions established the solid foundation upon which our ongoing explorations of telomeres and the aging process are based.
Collapse
Affiliation(s)
- Madeline Eppard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
31
|
Yin L, Jiang N, Li T, Zhang Y, Yuan S. Telomeric function and regulation during male meiosis in mice and humans. Andrology 2024. [PMID: 38511802 DOI: 10.1111/andr.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Telomeres are unique structures situated at the ends of chromosomes. Preserving the structure and function of telomeres is essential for maintaining genomic stability and promoting genetic diversity during male meiosis in mammals. MATERIAL-METHODS This review compiled recent literature on the function and regulation of telomeres during male meiosis in both mice and humans, and also highlighted the critical roles of telomeres in reproductive biology and medicine. RESULTS-DISCUSSION Various structures, consisting of the LINC complex (SUN-KASH), SPDYA-CDK2, TTM trimer (TERB1-TERB2-MAJIN), and shelterin, are critical in controlling telomeric activities, such as nuclear envelope attachment and bouquet formation. Other than telomere-related proteins, cohesins and genes responsible for regulating telomere function are also highlighted, though the exact mechanism remains unclear. The gene-mutant mouse models with meiotic defects directly reveal the essential roles of telomeres in male meiosis. Recently reported mutant genes associated with telomere activity in clinical practice have also been illustrated in detail. CONCLUSIONS Proper regulation of telomere activities is essential for male meiosis progression in mice and humans.
Collapse
Affiliation(s)
- Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Jiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youzhi Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Takai H, Aria V, Borges P, Yeeles JTP, de Lange T. CST-polymerase α-primase solves a second telomere end-replication problem. Nature 2024; 627:664-670. [PMID: 38418884 PMCID: PMC11160940 DOI: 10.1038/s41586-024-07137-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ('the end-replication problem'2). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1-Stn1-Ten1 (CST-Polα-primase). In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in a zone of approximately 150 nucleotides (nt) more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost 50-60 nt of telomeric CCCTAA repeats per population doubling. The C-strands of leading-end telomeres shortened by around 100 nt per population doubling, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in the absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-rich strand and CST-Polα-primase to maintain the C-strand.
Collapse
Affiliation(s)
- Hiroyuki Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Valentina Aria
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Pamela Borges
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Joseph T P Yeeles
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY, USA.
| |
Collapse
|
33
|
Zhao X, Vogirala VK, Liu M, Zhou Y, Rhodes D, Sandin S, Yan J. Exploring TRF2-Dependent DNA Distortion Through Single-DNA Manipulation Studies. Commun Biol 2024; 7:148. [PMID: 38310140 PMCID: PMC10838314 DOI: 10.1038/s42003-024-05838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2024] [Indexed: 02/05/2024] Open
Abstract
TRF2 is a component of shelterin, a telomere-specific protein complex that protects the ends of mammalian chromosomes from DNA damage signaling and improper repair. TRF2 functions as a homodimer and its interaction with telomeric DNA has been studied, but its full-length DNA-binding properties are unknown. This study examines TRF2's interaction with single-DNA strands and focuses on the conformation of the TRF2-DNA complex and TRF2's preference for DNA chirality. The results show that TRF2-DNA can switch between extended and compact conformations, indicating multiple DNA-binding modes, and TRF2's binding does not have a strong preference for DNA supercoiling chirality when DNA is under low tension. Instead, TRF2 induces DNA bending under tension. Furthermore, both the N-terminal domain of TRF2 and the Myb domain enhance its affinity for the telomere sequence, highlighting the crucial role of multivalent DNA binding in enhancing its affinity and specificity for telomere sequence. These discoveries offer unique insights into TRF2's interaction with telomeric DNA.
Collapse
Affiliation(s)
- Xiaodan Zhao
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore
| | - Vinod Kumar Vogirala
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Meihan Liu
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Yu Zhou
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore.
- Umeå university, KBC-huset (KB), Linnaeus väg 10, Umeå, 90187, Sweden.
| | - Jie Yan
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore.
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
34
|
Rai R, Sodeinde T, Boston A, Chang S. Telomeres cooperate with the nuclear envelope to maintain genome stability. Bioessays 2024; 46:e2300184. [PMID: 38047499 DOI: 10.1002/bies.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ava Boston
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
35
|
Tire B, Talibova G, Ozturk S. The crosstalk between telomeres and DNA repair mechanisms: an overview to mammalian somatic cells, germ cells, and preimplantation embryos. J Assist Reprod Genet 2024; 41:277-291. [PMID: 38165506 PMCID: PMC10894803 DOI: 10.1007/s10815-023-03008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Telomeres are located at the ends of linear chromosomes and play a critical role in maintaining genomic stability by preventing premature activation of DNA repair mechanisms. Because of exposure to various genotoxic agents, telomeres can undergo shortening and genetic changes. In mammalian cells, the basic DNA repair mechanisms, including base excision repair, nucleotide excision repair, double-strand break repair, and mismatch repair, function in repairing potential damages in telomeres. If these damages are not repaired correctly in time, the unfavorable results such as apoptosis, cell cycle arrest, and cancerous transition may occur. During lifespan, mammalian somatic cells, male and female germ cells, and preimplantation embryos experience a number of telomeric damages. Herein, we comprehensively reviewed the crosstalk between telomeres and the DNA repair mechanisms in the somatic cells, germ cells, and embryos. Infertility development resulting from possible defects in this crosstalk is also discussed in the light of existing studies.
Collapse
Affiliation(s)
- Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
36
|
Takai H, Aria V, Borges P, Yeeles JTP, de Lange T. CST-Polymeraseα-primase solves a second telomere end-replication problem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564248. [PMID: 37961611 PMCID: PMC10634868 DOI: 10.1101/2023.10.26.564248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ("the end-replication problem"2). We report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand by lagging-strand synthesis. This problem is solved by CST-Polymeraseα(Polα)-primase fill-in synthesis. In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in an ~150-nt zone more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost ~50-60 nt of CCCTAA repeats per population doubling (PD). The C-strands of leading-end telomeres shortened by ~100 nt/PD, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading-ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-strand and CST-Polα-primase to maintain the C-strand.
Collapse
Affiliation(s)
- Hiroyuki Takai
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Valentina Aria
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2, 0QH
| | - Pamela Borges
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| | - Joseph T. P. Yeeles
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2, 0QH
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, USA
| |
Collapse
|
37
|
Wong SY, Soman A, Korolev N, Surya W, Chen Q, Shum W, van Noort J, Nordenskiöld L. The shelterin component TRF2 mediates columnar stacking of human telomeric chromatin. EMBO J 2024; 43:87-111. [PMID: 38177309 PMCID: PMC10883271 DOI: 10.1038/s44318-023-00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/06/2024] Open
Abstract
Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.
Collapse
Affiliation(s)
- Sook Yi Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Department of Emerging Infectious Diseases, Duke-NUS, Medical School, Singapore, 169857, Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- M Diagnostics PTE. LTD, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Wayne Shum
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - John van Noort
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Huygens-Kamerlingh Ones Laboratory, Leiden University, Leiden, 2333 AL, The Netherlands
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
38
|
Nassour J, Przetocka S, Karlseder J. Telomeres as hotspots for innate immunity and inflammation. DNA Repair (Amst) 2024; 133:103591. [PMID: 37951043 PMCID: PMC10842095 DOI: 10.1016/j.dnarep.2023.103591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Aging is marked by the gradual accumulation of deleterious changes that disrupt organ function, creating an altered physiological state that is permissive for the onset of prevalent human diseases. While the exact mechanisms governing aging remain a subject of ongoing research, there are several cellular and molecular hallmarks that contribute to this biological process. This review focuses on two factors, namely telomere dysfunction and inflammation, which have emerged as crucial contributors to the aging process. We aim to discuss the mechanistic connections between these two distinct hallmarks and provide compelling evidence highlighting the loss of telomere protection as a driver of pro-inflammatory states associated with aging. By reevaluating the interplay between telomeres, innate immunity, and inflammation, we present novel perspectives on the etiology of aging and its associated diseases.
Collapse
Affiliation(s)
- Joe Nassour
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA; The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sara Przetocka
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Braun H, Xu Z, Chang F, Viceconte N, Rane G, Levin M, Lototska L, Roth F, Hillairet A, Fradera-Sola A, Khanchandani V, Sin ZW, Yong WK, Dreesen O, Yang Y, Shi Y, Li F, Butter F, Kappei D. ZNF524 directly interacts with telomeric DNA and supports telomere integrity. Nat Commun 2023; 14:8252. [PMID: 38086788 PMCID: PMC10716145 DOI: 10.1038/s41467-023-43397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Telomeres are nucleoprotein structures at the ends of linear chromosomes. In humans, they consist of TTAGGG repeats, which are bound by dedicated proteins such as the shelterin complex. This complex blocks unwanted DNA damage repair at telomeres, e.g. by suppressing nonhomologous end joining (NHEJ) through its subunit TRF2. Here, we describe ZNF524, a zinc finger protein that directly binds telomeric repeats with nanomolar affinity, and reveal base-specific sequence recognition by cocrystallization with telomeric DNA. ZNF524 localizes to telomeres and specifically maintains the presence of the TRF2/RAP1 subcomplex at telomeres without affecting other shelterin members. Loss of ZNF524 concomitantly results in an increase in DNA damage signaling and recombination events. Overall, ZNF524 is a direct telomere-binding protein involved in the maintenance of telomere integrity.
Collapse
Affiliation(s)
- Hanna Braun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Ziyan Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fiona Chang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | | | - Grishma Rane
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Michal Levin
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | | | - Franziska Roth
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Alexia Hillairet
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | | | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Zi Wayne Sin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Wai Khang Yong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Oliver Dreesen
- Cell Aging Laboratory, A*STAR Skin Research Labs, Singapore, 138648, Singapore
| | - Yang Yang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunyu Shi
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany.
- Institute of Molecular Virology and Cell Biology (IMVZ), Friedrich Loeffler Institute, Greifswald, 17493, Germany.
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
40
|
Lee J, Lee J, Sohn EJ, Taglialatela A, O’Sullivan RJ, Ciccia A, Min J. Extrachromosomal Telomeres Derived from Excessive Strand Displacements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551186. [PMID: 37577643 PMCID: PMC10418088 DOI: 10.1101/2023.07.31.551186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Alternative Lengthening of Telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication (BIR), evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), unique to ALT cells, are considered potential precursors of C-circles, their generation process remains undefined. Here, we introduce a highly sensitive method to detect single stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear C-rich ssDNA accumulation may indeed precede C-circle formation. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a new model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.
Collapse
Affiliation(s)
- Junyeop Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jina Lee
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eric J. Sohn
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Roderick J. O’Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alberto Ciccia
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jaewon Min
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
41
|
Nakashima K, Kunisaki Y, Hosokawa K, Gotoh K, Yao H, Yuta R, Semba Y, Nogami J, Kikushige Y, Stumpf PS, MacArthur BD, Kang D, Akashi K, Ohga S, Arai F. POT1a deficiency in mesenchymal niches perturbs B-lymphopoiesis. Commun Biol 2023; 6:996. [PMID: 37773433 PMCID: PMC10541440 DOI: 10.1038/s42003-023-05374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
Protection of telomeres 1a (POT1a) is a telomere binding protein. A decrease of POT1a is related to myeloid-skewed haematopoiesis with ageing, suggesting that protection of telomeres is essential to sustain multi-potency. Since mesenchymal stem cells (MSCs) are a constituent of the hematopoietic niche in bone marrow, their dysfunction is associated with haematopoietic failure. However, the importance of telomere protection in MSCs has yet to be elucidated. Here, we show that genetic deletion of POT1a in MSCs leads to intracellular accumulation of fatty acids and excessive ROS and DNA damage, resulting in impaired osteogenic-differentiation. Furthermore, MSC-specific POT1a deficient mice exhibited skeletal retardation due to reduction of IL-7 producing bone lining osteoblasts. Single-cell gene expression profiling of bone marrow from POT1a deficient mice revealed that B-lymphopoiesis was selectively impaired. These results demonstrate that bone marrow microenvironments composed of POT1a deficient MSCs fail to support B-lymphopoiesis, which may underpin age-related myeloid-bias in haematopoiesis.
Collapse
Affiliation(s)
- Kentaro Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Kentaro Hosokawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisayuki Yao
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Yuta
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Semba
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshikane Kikushige
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, UK
- Mathematical Sciences, University of Southampton, Southampton, UK
- The Alan Turing Institute, London, UK
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
42
|
Rivosecchi J, Cusanelli E. TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. FRONTIERS IN AGING 2023; 4:1224225. [PMID: 37636218 PMCID: PMC10448526 DOI: 10.3389/fragi.2023.1224225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
The telomeric noncoding RNA TERRA is a key component of telomeres and it is widely expressed in normal as well as cancer cells. In the last 15 years, several publications have shed light on the role of TERRA in telomere homeostasis and cell survival in cancer cells. However, only few studies have investigated the regulation or the functions of TERRA in normal tissues. A better understanding of the biology of TERRA in non-cancer cells may provide unexpected insights into how these lncRNAs are transcribed and operate in cells, and their potential role in physiological processes, such as aging, age-related pathologies, inflammatory processes and human genetic diseases. In this review we aim to discuss the findings that have advanced our understanding of the biology of TERRA using non-cancer mammalian cells as a model system.
Collapse
Affiliation(s)
- Julieta Rivosecchi
- Laboratory of Cell Biology and Molecular Genetics, Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, Trento, Italy
| | | |
Collapse
|
43
|
Zhang C, Tian Z, Chen R, Rowan F, Qiu K, Sun Y, Guan JL, Diao J. Advanced imaging techniques for tracking drug dynamics at the subcellular level. Adv Drug Deliv Rev 2023; 199:114978. [PMID: 37385544 PMCID: PMC10527994 DOI: 10.1016/j.addr.2023.114978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.
Collapse
Affiliation(s)
- Chengying Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
44
|
Irvin EM, Wang H. Single-molecule imaging of genome maintenance proteins encountering specific DNA sequences and structures. DNA Repair (Amst) 2023; 128:103528. [PMID: 37392578 PMCID: PMC10989508 DOI: 10.1016/j.dnarep.2023.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
DNA repair pathways are tightly regulated processes that recognize specific hallmarks of DNA damage and coordinate lesion repair through discrete mechanisms, all within the context of a three-dimensional chromatin landscape. Dysregulation or malfunction of any one of the protein constituents in these pathways can contribute to aging and a variety of diseases. While the collective action of these many proteins is what drives DNA repair on the organismal scale, it is the interactions between individual proteins and DNA that facilitate each step of these pathways. In much the same way that ensemble biochemical techniques have characterized the various steps of DNA repair pathways, single-molecule imaging (SMI) approaches zoom in further, characterizing the individual protein-DNA interactions that compose each pathway step. SMI techniques offer the high resolving power needed to characterize the molecular structure and functional dynamics of individual biological interactions on the nanoscale. In this review, we highlight how our lab has used SMI techniques - traditional atomic force microscopy (AFM) imaging in air, high-speed AFM (HS-AFM) in liquids, and the DNA tightrope assay - over the past decade to study protein-nucleic acid interactions involved in DNA repair, mitochondrial DNA replication, and telomere maintenance. We discuss how DNA substrates containing specific DNA sequences or structures that emulate DNA repair intermediates or telomeres were generated and validated. For each highlighted project, we discuss novel findings made possible by the spatial and temporal resolution offered by these SMI techniques and unique DNA substrates.
Collapse
Affiliation(s)
| | - Hong Wang
- Toxicology Program, North Carolina State University, Raleigh, NC, USA; Physics Department, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
45
|
Bloom SI, Liu Y, Tucker JR, Islam MT, Machin DR, Abdeahad H, Thomas TG, Bramwell RC, Lesniewski LA, Donato AJ. Endothelial cell telomere dysfunction induces senescence and results in vascular and metabolic impairments. Aging Cell 2023; 22:e13875. [PMID: 37259606 PMCID: PMC10410008 DOI: 10.1111/acel.13875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
In advanced age, increases in oxidative stress and inflammation impair endothelial function, which contributes to the development of cardiovascular disease (CVD). One plausible source of this oxidative stress and inflammation is an increase in the abundance of senescent endothelial cells. Cellular senescence is a cell cycle arrest that occurs in response to various damaging stimuli. In the present study, we tested the hypothesis that advanced age results in endothelial cell telomere dysfunction that induces senescence. In both human and mouse endothelial cells, advanced age resulted in an increased abundance of dysfunctional telomeres, characterized by activation of DNA damage signaling at telomeric DNA. To test whether this results in senescence, we selectively reduced the telomere shelterin protein telomere repeat binding factor 2 (Trf2) from endothelial cells of young mice. Trf2 reduction increased endothelial cell telomere dysfunction and resulted in cellular senescence. Furthermore, induction of endothelial cell telomere dysfunction increased inflammatory signaling and oxidative stress, resulting in impairments in endothelial function. Finally, we demonstrate that endothelial cell telomere dysfunction-induced senescence impairs glucose tolerance. This likely occurs through increases in inflammatory signaling in the liver and adipose tissue, as well as reductions in microvascular density and vasodilation to metabolic stimuli. Cumulatively, the findings of the present study identify age-related telomere dysfunction as a mechanism that leads to endothelial cell senescence. Furthermore, these data provide compelling evidence that senescent endothelial cells contribute to age-related increases in oxidative stress and inflammation that impair arterial and metabolic function.
Collapse
Affiliation(s)
- Samuel I. Bloom
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Yu Liu
- Department of GeriatricsTongji HospitalWuhanChina
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Jordan R. Tucker
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Md Torikul Islam
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Daniel R. Machin
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyFlorida State UniversityTallahasseeFloridaUSA
| | - Hossein Abdeahad
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Tyler G. Thomas
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - R. Colton Bramwell
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Lisa A. Lesniewski
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Geriatric Research, Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Anthony J. Donato
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Geriatric Research, Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
- Department of BiochemistryThe University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
46
|
Blandino G, Dinami R, Marcia M, Anastasiadou E, Ryan BM, Palcau AC, Fattore L, Regazzo G, Sestito R, Loria R, Díaz Méndez AB, Cappelletto MC, Pulito C, Monteonofrio L, Calin GA, Sozzi G, Cheong JK, Aharonov R, Ciliberto G. The new world of RNA diagnostics and therapeutics. J Exp Clin Cancer Res 2023; 42:189. [PMID: 37507791 PMCID: PMC10386627 DOI: 10.1186/s13046-023-02752-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The 5th Workshop IRE on Translational Oncology was held in Rome (Italy) on 27-28 March at the IRCCS Regina Elena National Cancer Institute. This meeting entitled "The New World of RNA diagnostics and therapeutics" highlightes the significant progress in the RNA field made over the last years. Research moved from pure discovery towards the development of diagnostic biomarkers or RNA-base targeted therapies seeking validation in several clinical trials. Non-coding RNAs in particular have been the focus of this workshop due to their unique properties that make them attractive tools for the diagnosis and therapy of cancer.This report collected the presentations of many scientists from different institutions that discussed recent oncology research providing an excellent overview and representative examples for each possible application of RNA as biomarker, for therapy or to increase the number of patients that can benefit from precision oncology treatment.In particular, the meeting specifically emphasized two key features of RNA applications: RNA diagnostic (Blandino, Palcau, Sestito, Díaz Méndez, Cappelletto, Pulito, Monteonofrio, Calin, Sozzi, Cheong) and RNA therapeutics (Dinami, Marcia, Anastasiadou, Ryan, Fattore, Regazzo, Loria, Aharonov).
Collapse
Affiliation(s)
- Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| | - Roberto Dinami
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Alina Catalina Palcau
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Luigi Fattore
- SAFU Laboratory, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical models and new therapeutic agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Loria
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ana Belén Díaz Méndez
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Chiara Cappelletto
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Jit Kong Cheong
- National University of Singapore Yong Loo Lin School of Medicine, NUS Centre for Cancer Research and Mirxes Lab Pte Ltd, Singapore, Singapore
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
47
|
Reiss M, Keegan J, Aldrich A, Lyons SM, Flynn RL. The exoribonuclease XRN2 mediates degradation of the long non-coding telomeric RNA TERRA. FEBS Lett 2023; 597:1818-1836. [PMID: 37191774 PMCID: PMC10524182 DOI: 10.1002/1873-3468.14639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
The telomeric repeat-containing RNA, TERRA, associates with both telomeric DNA and telomeric proteins, often forming RNA:DNA hybrids (R-loops). TERRA is most abundant in cancer cells utilizing the alternative lengthening of telomeres (ALT) pathway for telomere maintenance, suggesting that persistent TERRA R-loops may contribute to activation of the ALT mechanism. Therefore, we sought to identify the enzyme(s) that regulate TERRA metabolism in mammalian cells. Here, we identify that the 5'-3' exoribonuclease XRN2 regulates the stability of TERRA RNA. Moreover, while stabilization of TERRA alone was insufficient to drive ALT, depletion of XRN2 in ALT-positive cells led to a significant increase in TERRA R-loops and exacerbated ALT activity. Together, our findings highlight XRN2 as a key determinant of TERRA metabolism and telomere stability in cancer cells that rely on the ALT pathway.
Collapse
Affiliation(s)
- Matthew Reiss
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Joshua Keegan
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anne Aldrich
- Departments of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Shawn M. Lyons
- Departments of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Rachel Litman Flynn
- Departments of Pharmacology and Experimental Therapeutics, and Medicine, Cancer Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
48
|
Rai R, Biju K, Sun W, Sodeinde T, Al-Hiyasat A, Morgan J, Ye X, Li X, Chen Y, Chang S. Homology directed telomere clustering, ultrabright telomere formation and nuclear envelope rupture in cells lacking TRF2 B and RAP1. Nat Commun 2023; 14:2144. [PMID: 37059728 PMCID: PMC10104862 DOI: 10.1038/s41467-023-37761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
Double-strand breaks (DSBs) due to genotoxic stress represent potential threats to genome stability. Dysfunctional telomeres are recognized as DSBs and are repaired by distinct DNA repair mechanisms. RAP1 and TRF2 are telomere binding proteins essential to protect telomeres from engaging in homology directed repair (HDR), but how this occurs remains unclear. In this study, we examined how the basic domain of TRF2 (TRF2B) and RAP1 cooperate to repress HDR at telomeres. Telomeres lacking TRF2B and RAP1 cluster into structures termed ultrabright telomeres (UTs). HDR factors localize to UTs, and UT formation is abolished by RNaseH1, DDX21 and ADAR1p110, suggesting that they contain DNA-RNA hybrids. Interaction between the BRCT domain of RAP1 and KU70/KU80 is also required to repress UT formation. Expressing TRF2∆B in Rap1-/- cells resulted in aberrant lamin A localization in the nuclear envelope and dramatically increased UT formation. Expressing lamin A phosphomimetic mutants induced nuclear envelope rupturing and aberrant HDR-mediated UT formation. Our results highlight the importance of shelterin and proteins in the nuclear envelope in repressing aberrant telomere-telomere recombination to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
| | - Kevin Biju
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wenqi Sun
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Amer Al-Hiyasat
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Jaida Morgan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Xianwen Ye
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Xueqing Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
49
|
De Rosa M, Barnes RP, Nyalapatla PR, Wipf P, Opresko PL. OGG1 and MUTYH repair activities promote telomeric 8-oxoguanine induced cellular senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536247. [PMID: 37090589 PMCID: PMC10120708 DOI: 10.1101/2023.04.10.536247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Telomeres are prone to formation of the common oxidative lesion 8-oxoguanine (8oxoG), and the acute production of 8oxoG damage at telomeres is sufficient to drive rapid cellular senescence. OGG1 and MUTYH glycosylases initiate base excision repair (BER) at 8oxoG sites to remove the lesion or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced senescence, and loss of both glycosylases results in a near complete rescue. Loss of these glycosylases also suppresses 8oxoG-induced telomere fragility and dysfunction, indicating that single-stranded break (SSB) intermediates arising downstream of glycosylase activity impair telomere replication. The failure to initiate BER in glycosylase-deficient cells suppresses PARylation at SSB intermediates and confers resistance to the synergistic effects of PARP inhibitors on damage-induced senescence. Our studies reveal that inefficient completion of 8oxoG BER at telomeres triggers cellular senescence via SSB intermediates which impair telomere replication and stability.
Collapse
Affiliation(s)
- Mariarosaria De Rosa
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan P. Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Peter Wipf
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Deparment of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia L. Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Scionti F, Juli G, Rocca R, Polerà N, Nadai M, Grillone K, Caracciolo D, Riillo C, Altomare E, Ascrizzi S, Caparello B, Cerra M, Arbitrio M, Richter SN, Artese A, Alcaro S, Tagliaferri P, Tassone P, Di Martino MT. TERRA G-quadruplex stabilization as a new therapeutic strategy for multiple myeloma. J Exp Clin Cancer Res 2023; 42:71. [PMID: 36967378 PMCID: PMC10041726 DOI: 10.1186/s13046-023-02633-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematologic malignancy characterized by high genomic instability, and telomere dysfunction is an important cause of acquired genomic alterations. Telomeric repeat-containing RNA (TERRA) transcripts are long non-coding RNAs involved in telomere stability through the interaction with shelterin complex. Dysregulation of TERRAs has been reported across several cancer types. We recently identified a small molecule, hit 17, which stabilizes the secondary structure of TERRA. In this study, we investigated in vitro and in vivo anti-MM activities of hit 17. METHODS Anti-proliferative activity of hit 17 was evaluated in different MM cell lines by cell proliferation assay, and the apoptotic process was analyzed by flow cytometry. Gene and protein expressions were detected by RT-qPCR and western blotting, respectively. Microarray analysis was used to analyze the transcriptome profile. The effect of hit 17 on telomeric structure was evaluated by chromatin immunoprecipitation. Further evaluation in vivo was proceeded upon NCI-H929 and AMO-1 xenograft models. RESULTS TERRA G4 stabilization induced in vitro dissociation of telomeric repeat-binding factor 2 (TRF2) from telomeres leading to the activation of ATM-dependent DNA damage response, cell cycle arrest, proliferation block, and apoptotic death in MM cell lines. In addition, up-regulation of TERRA transcription was observed upon DNA damage and TRF2 loss. Transcriptome analysis followed by gene set enrichment analysis (GSEA) confirmed the involvement of the above-mentioned processes and other pathways such as E2F, MYC, oxidative phosphorylation, and DNA repair genes as early events following hit 17-induced TERRA stabilization. Moreover, hit 17 exerted anti-tumor activity against MM xenograft models. CONCLUSION Our findings provide evidence that targeting TERRA by hit 17 could represent a promising strategy for a novel therapeutic approach to MM.
Collapse
Affiliation(s)
- Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Roberta Rocca
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Net4science Srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Basilio Caparello
- Presidio Ospedaliero "Giovanni Paolo II", Lamezia Terme, Catanzaro, Italy
| | - Maria Cerra
- Presidio Ospedaliero "Giovanni Paolo II", Lamezia Terme, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Research and Biomedical Innovation (IRIB), Italian National Council (CNR), 88100, Catanzaro, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121, Padua, Italy
| | - Anna Artese
- Net4science Srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Net4science Srl, Università degli Studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus "Salvatore Venuta", Viale Europa, 88100, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|