1
|
Matsumoto N. Endogenously generated patterns of neural activity sculpt axon connectivity. Neurosci Res 2025:S0168-0102(25)00085-9. [PMID: 40389064 DOI: 10.1016/j.neures.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/06/2025] [Accepted: 05/12/2025] [Indexed: 05/21/2025]
Abstract
Neural activity is crucial in establishing functional circuit connectivity in the central nervous system. Prior to the onset of sensory experience, sensory organs spontaneously generate patterned neural activity, which is essential for sculpting and refining immature circuit connectivity coordinating functional and physiological responses to the external world in advance. How these endogenous patterns of neural activity drive circuit refinement is a major long-standing question; however, it has been impeded, at least partly, by technical difficulties in visualizing circuit refinement and patterned spontaneous activity in living animals. In this review, I discuss recent progress in visualizing circuit refinement processes and patterned spontaneous activity at the single-axon level in the mammalian visual system and consider how endogenous patterns of spontaneous activity drive fine-scale axon refinement during development.
Collapse
Affiliation(s)
- Naoyuki Matsumoto
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
2
|
Kurashina M, Snow AW, Mizumoto K. A modular system to label endogenous presynaptic proteins using split fluorophores in Caenorhabditis elegans. Genetics 2025; 229:iyae214. [PMID: 39708832 PMCID: PMC11912834 DOI: 10.1093/genetics/iyae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024] Open
Abstract
Visualizing the subcellular localization of presynaptic proteins with fluorescent proteins is a powerful tool to dissect the genetic and molecular mechanisms underlying synapse formation and patterning in live animals. Here, we utilize split green and red fluorescent proteins to visualize the localization of endogenously expressed presynaptic proteins at a single-neuron resolution in Caenorhabditis elegans. By using CRISPR/Cas9 genome editing, we generated a collection of C. elegans strains in which endogenously expressed presynaptic proteins (RAB-3/Rab3, SNG-1/Synaptogyrin, CLA-1/Piccolo, SYD-2/Liprin-α, UNC-10/RIM, RIMB-1/RIM-BP, and ELKS-1/ELKS) are tagged with tandem repeats of GFP11 and/or wrmScarlet11. We show that the expression of GFP1-10 and wrmScarlet1-10 under neuron-specific promoters can robustly label presynaptic proteins in different neuron types. We believe that the combination of our knock-in strains and GFP1-10 and wrmScarlet1-10 plasmids is a versatile modular system useful for neuroscientists to examine the localization of endogenous presynaptic proteins in any neuron type in C. elegans.
Collapse
Affiliation(s)
- Mizuki Kurashina
- Graduate Program of Cell and Developmental Biology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada V6T 1Z3
- Department of Zoology, The University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Andrew W Snow
- Graduate Program of Cell and Developmental Biology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada V6T 1Z3
- Department of Zoology, The University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Kota Mizumoto
- Graduate Program of Cell and Developmental Biology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada V6T 1Z3
- Department of Zoology, The University of British Columbia, Vancouver, Canada V6T 1Z3
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada V6T 1Z3
| |
Collapse
|
3
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
4
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
5
|
Hegde S, Modi S, Deihl EW, Glomb OV, Yogev S, Hoerndli FJ, Koushika SP. Axonal mitochondria regulate gentle touch response through control of axonal actin dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607780. [PMID: 39185223 PMCID: PMC11343141 DOI: 10.1101/2024.08.13.607780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Actin in neuronal processes is both stable and dynamic. The origin & functional roles of the different pools of actin is not well understood. We find that mutants that lack mitochondria, ric-7 and mtx-2; miro-1, in neuronal processes also lack dynamic actin. Mitochondria can regulate actin dynamics upto a distance ~80 μm along the neuronal process. Absence of axonal mitochondria and dynamic actin does not markedly alter the Spectrin Membrane Periodic Skeleton (MPS) in touch receptor neurons (TRNs). Restoring mitochondria inTRNs cell autonomously restores dynamic actin in a sod-2 dependent manner. We find that dynamic actin is necessary and sufficient for the localization of gap junction proteins in the TRNs and for the C. elegans gentle touch response. We identify an in vivo mechanism by which axonal mitochondria locally facilitate actin dynamics through reactive oxygen species that we show is necessary for electrical synapses & behaviour.
Collapse
Affiliation(s)
- Sneha Hegde
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| | - Souvik Modi
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| | - Ennis W. Deihl
- Colorado State University, Anatomy and Zoology W309, 1617 Campus Delivery, Fort Collins, 80523 Colorado
| | - Oliver Vinzenz Glomb
- Yale University, Boyer Center for Molecular Medicine, 295 Congress Ave, New Haven, CT 06510
- Current address: Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, 72074 Tübingen, Germany
| | - Shaul Yogev
- Yale University, Boyer Center for Molecular Medicine, 295 Congress Ave, New Haven, CT 06510
| | - Frederic J. Hoerndli
- Colorado State University, Anatomy and Zoology W309, 1617 Campus Delivery, Fort Collins, 80523 Colorado
| | - Sandhya P. Koushika
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| |
Collapse
|
6
|
Baltar J, Miranda RM, Cabral M, Rebelo S, Grahammer F, Huber TB, Reguenga C, Monteiro FA. Neph1 is required for neurite branching and is negatively regulated by the PRRXL1 homeodomain factor in the developing spinal cord dorsal horn. Neural Dev 2024; 19:13. [PMID: 39049046 PMCID: PMC11271021 DOI: 10.1186/s13064-024-00190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
The cell-adhesion molecule NEPH1 is required for maintaining the structural integrity and function of the glomerulus in the kidneys. In the nervous system of Drosophila and C. elegans, it is involved in synaptogenesis and axon branching, which are essential for establishing functional circuits. In the mammalian nervous system, the expression regulation and function of Neph1 has barely been explored. In this study, we provide a spatiotemporal characterization of Neph1 expression in mouse dorsal root ganglia (DRGs) and spinal cord. After the neurogenic phase, Neph1 is broadly expressed in the DRGs and in their putative targets at the dorsal horn of the spinal cord, comprising both GABAergic and glutamatergic neurons. Interestingly, we found that PRRXL1, a homeodomain transcription factor that is required for proper establishment of the DRG-spinal cord circuit, prevents a premature expression of Neph1 in the superficial laminae of the dorsal spinal cord at E14.5, but has no regulatory effect on the DRGs or on either structure at E16.5. By chromatin immunoprecipitation analysis of the dorsal spinal cord, we identified four PRRXL1-bound regions within the Neph1 introns, suggesting that PRRXL1 directly regulates Neph1 transcription. We also showed that Neph1 is required for branching, especially at distal neurites. Together, our work showed that Prrxl1 prevents the early expression of Neph1 in the superficial dorsal horn, suggesting that Neph1 might function as a downstream effector gene for proper assembly of the DRG-spinal nociceptive circuit.
Collapse
Affiliation(s)
- João Baltar
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rafael Mendes Miranda
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Cabral
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Rebelo
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Florian Grahammer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos Reguenga
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Almeida Monteiro
- Unidade de Biologia Experimental, Departamento de Biomedicina, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
- Pain Neurobiology, IBMC - Instituto de Biologia Celular e Molecular, Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
7
|
Vasudevan A, Ratnakaran N, Murthy K, Kumari S, Hall DH, Koushika SP. Preferential transport of synaptic vesicles across neuronal branches is regulated by the levels of the anterograde motor UNC-104/KIF1A in vivo. Genetics 2024; 227:iyae021. [PMID: 38467475 PMCID: PMC11232277 DOI: 10.1093/genetics/iyae021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Asymmetric transport of cargo across axonal branches is a field of active research. Mechanisms contributing to preferential cargo transport along specific branches in vivo in wild type neurons are poorly understood. We find that anterograde synaptic vesicles preferentially enter the synaptic branch or pause at the branch point in Caenorhabditis elegans Posterior Lateral Mechanosensory neurons. The synaptic vesicle anterograde kinesin motor UNC-104/KIF1A regulates this vesicle behavior at the branch point. Reduced levels of functional UNC-104 cause vesicles to predominantly pause at the branch point and lose their preference for turning into the synaptic branch. SAM-4/Myrlysin, which aids in recruitment/activation of UNC-104 on synaptic vesicles, regulates vesicle behavior at the branch point similar to UNC-104. Increasing the levels of UNC-104 increases the preference of vesicles to go straight toward the asynaptic end. This suggests that the neuron optimizes UNC-104 levels on the cargo surface to maximize the fraction of vesicles entering the branch and minimize the fraction going to the asynaptic end.
Collapse
Affiliation(s)
- Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Kausalya Murthy
- Neurobiology, NCBS-TIFR, Bellary Road, Bengaluru 560 065, India
| | - Shikha Kumari
- Neurobiology, NCBS-TIFR, Bellary Road, Bengaluru 560 065, India
| | - David H Hall
- Centre for C. elegans Anatomy, Albert Einstein College of Medicine, New York, New York, NY 10461, USA
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
8
|
Zhan H, Pal DS, Borleis J, Janetopoulos C, Huang CH, Devreotes PN. Self-organizing glycolytic waves fuel cell migration and cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577603. [PMID: 38328193 PMCID: PMC10849635 DOI: 10.1101/2024.01.28.577603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Glycolysis has traditionally been thought to take place in the cytosol but we observed the enrichment of glycolytic enzymes in propagating waves of the cell cortex in human epithelial cells. These waves reflect excitable Ras/PI3K signal transduction and F-actin/actomyosin networks that drive cellular protrusions, suggesting that localized glycolysis at the cortex provides ATP for cell morphological events such as migration, phagocytosis, and cytokinesis. Perturbations that altered cortical waves caused corresponding changes in enzyme localization and ATP production whereas synthetic recruitment of glycolytic enzymes to the cell cortex enhanced cell spreading and motility. Interestingly, the cortical waves and ATP levels were positively correlated with the metastatic potential of cancer cells. The coordinated signal transduction, cytoskeletal, and glycolytic waves in cancer cells may explain their increased motility and their greater reliance on glycolysis, often referred to as the Warburg effect.
Collapse
Affiliation(s)
- Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Jane Borleis
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Chris Janetopoulos
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Total Experience Learning, Albright College, Reading, PA 19612
| | - Chuan-Hsiang Huang
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- NDepartment of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Peter N. Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Lead Contact
| |
Collapse
|
9
|
Veeraraghavan P, Engmann AK, Hatch JJ, Itoh Y, Nguyen D, Addison T, Macklis JD. Dynamic subtype- and context-specific subcellular RNA regulation in growth cones of developing neurons of the cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559186. [PMID: 38328182 PMCID: PMC10849483 DOI: 10.1101/2023.09.24.559186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Molecular mechanisms that cells employ to compartmentalize function via localization of function-specific RNA and translation are only partially elucidated. We investigate long-range projection neurons of the cerebral cortex as highly polarized exemplars to elucidate dynamic regulation of RNA localization, stability, and translation within growth cones (GCs), leading tips of growing axons. Comparison of GC-localized transcriptomes between two distinct subtypes of projection neurons- interhemispheric-callosal and corticothalamic- across developmental stages identifies both distinct and shared subcellular machinery, and intriguingly highlights enrichment of genes associated with neurodevelopmental and neuropsychiatric disorders. Developmental context-specific components of GC-localized transcriptomes identify known and novel potential regulators of distinct phases of circuit formation: long-distance growth, target area innervation, and synapse formation. Further, we investigate mechanisms by which transcripts are enriched and dynamically regulated in GCs, and identify GC-enriched motifs in 3' untranslated regions. As one example, we identify cytoplasmic adenylation element binding protein 4 (CPEB4), an RNA binding protein regulating localization and translation of mRNAs encoding molecular machinery important for axonal branching and complexity. We also identify RNA binding motif single stranded interacting protein 1 (RBMS1) as a dynamically expressed regulator of RNA stabilization that enables successful callosal circuit formation. Subtly aberrant associative and integrative cortical circuitry can profoundly affect cortical function, often causing neurodevelopmental and neuropsychiatric disorders. Elucidation of context-specific subcellular RNA regulation for GC- and soma-localized molecular controls over precise circuit development, maintenance, and function offers generalizable insights for other polarized cells, and might contribute substantially to understanding neurodevelopmental and behavioral-cognitive disorders and toward targeted therapeutics.
Collapse
Affiliation(s)
- Priya Veeraraghavan
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anne K. Engmann
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John J. Hatch
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Duane Nguyen
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Thomas Addison
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
10
|
McDonald NA, Tao L, Dong MQ, Shen K. SAD-1 kinase controls presynaptic phase separation by relieving SYD-2/Liprin-α autoinhibition. PLoS Biol 2023; 21:e3002421. [PMID: 38048304 PMCID: PMC10695385 DOI: 10.1371/journal.pbio.3002421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through liquid-liquid phase separation. Here, we find that the phase separation of Caenorhabditis elegans SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation. We identify the SAD-1 kinase as a regulator of SYD-2 phase separation and determine presynaptic assembly is impaired in sad-1 mutants and increased by overactivation of SAD-1. Using phosphoproteomics, we find SAD-1 phosphorylates SYD-2 on 3 sites that are critical to activate phase separation. Mechanistically, SAD-1 phosphorylation relieves a binding interaction between 2 folded domains in SYD-2 that inhibits phase separation by an intrinsically disordered region (IDR). We find synaptic cell adhesion molecules localize SAD-1 to nascent synapses upstream of active zone formation. We conclude that SAD-1 phosphorylates SYD-2 at developing synapses, activating its phase separation and active zone assembly.
Collapse
Affiliation(s)
- Nathan A. McDonald
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Li Tao
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, People’s Republic of China
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| |
Collapse
|
11
|
Zhou S, Zhou Y, Zhong W, Su Z, Qin Z. Involvement of protein L-isoaspartyl methyltransferase in the physiopathology of neurodegenerative diseases: Possible substrates associated with synaptic function. Neurochem Int 2023; 170:105606. [PMID: 37657764 DOI: 10.1016/j.neuint.2023.105606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Synaptic dysfunction is a typical pathophysiologic change in neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Hintington's disease (HD) and amyotrophic lateral sclerosis (ALS), which involves protein post-translational modifications (PTMs) including L-isoaspartate (L-isoAsp) formed by isomerization of aspartate or deamidation of asparagine. The formation of L-isoAsp could be repaired by protein L-isoaspartyl methyltransferase (PIMT). Some synaptic proteins have been identified as PIMT potential substrates and play an essential role in ensuring synaptic function. In this review, we discuss the role of certain synaptic proteins as PIMT substrates in neurodegenerative disease, thus providing therapeutic synapse-centered targets for the treatment of NDs.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yancheng Zhou
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wanyu Zhong
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhonghao Su
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhenxia Qin
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Kramer DA, Narvaez-Ortiz HY, Patel U, Shi R, Shen K, Nolen BJ, Roche J, Chen B. The intrinsically disordered cytoplasmic tail of a dendrite branching receptor uses two distinct mechanisms to regulate the actin cytoskeleton. eLife 2023; 12:e88492. [PMID: 37555826 PMCID: PMC10411975 DOI: 10.7554/elife.88492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 08/10/2023] Open
Abstract
Dendrite morphogenesis is essential for neural circuit formation, yet the molecular mechanisms underlying complex dendrite branching remain elusive. Previous studies on the highly branched Caenorhabditis elegans PVD sensory neuron identified a membrane co-receptor complex that links extracellular signals to intracellular actin remodeling machinery, promoting high-order dendrite branching. In this complex, the claudin-like transmembrane protein HPO-30 recruits the WAVE regulatory complex (WRC) to dendrite branching sites, stimulating the Arp2/3 complex to polymerize actin. We report here our biochemical and structural analysis of this interaction, revealing that the intracellular domain (ICD) of HPO-30 is intrinsically disordered and employs two distinct mechanisms to regulate the actin cytoskeleton. First, HPO-30 ICD binding to the WRC requires dimerization and involves the entire ICD sequence, rather than a short linear peptide motif. This interaction enhances WRC activation by the GTPase Rac1. Second, HPO-30 ICD directly binds to the sides and barbed end of actin filaments. Binding to the barbed end requires ICD dimerization and inhibits both actin polymerization and depolymerization, resembling the actin capping protein CapZ. These dual functions provide an intriguing model of how membrane proteins can integrate distinct mechanisms to fine-tune local actin dynamics.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Heidy Y Narvaez-Ortiz
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Urval Patel
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Rebecca Shi
- Department of Biology, Stanford UniversityStanfordUnited States
- Neurosciences IDP, Stanford UniversityStanfordUnited States
| | - Kang Shen
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Julien Roche
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Baoyu Chen
- Roy J Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State UniversityAmesUnited States
| |
Collapse
|
13
|
McDonald NA, Tao L, Dong MQ, Shen K. SAD-1 kinase controls presynaptic phase separation by relieving SYD-2/Liprin-α autoinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544643. [PMID: 37398223 PMCID: PMC10312667 DOI: 10.1101/2023.06.12.544643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through a liquid-liquid phase separation. Here, we find that the phase separation of SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation. Using phosphoproteomics, we identify the SAD-1 kinase to phosphorylate SYD-2 and a number of other substrates. Presynaptic assembly is impaired in sad-1 mutants and increased by overactivation of SAD-1. We determine SAD-1 phosphorylation of SYD-2 at three sites is critical to activate its phase separation. Mechanistically, phosphorylation relieves a binding interaction between two folded SYD-2 domains that inhibits phase separation by an intrinsically disordered region. We find synaptic cell adhesion molecules localize SAD-1 to nascent synapses upstream of active zone formation. We conclude that SAD-1 phosphorylates SYD-2 at developing synapses, enabling its phase separation and active zone assembly.
Collapse
Affiliation(s)
| | - Li Tao
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Han KA, Ko J. Orchestration of synaptic functions by WAVE regulatory complex-mediated actin reorganization. Exp Mol Med 2023; 55:1065-1075. [PMID: 37258575 PMCID: PMC10318009 DOI: 10.1038/s12276-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The WAVE regulatory complex (WRC), composed of five components-Cyfip1/Sra1, WAVE/Scar, Abi, Nap1/Nckap1, and Brk1/HSPC300-is essential for proper actin cytoskeletal dynamics and remodeling in eukaryotic cells, likely by matching various patterned signals to Arp2/3-mediated actin nucleation. Accumulating evidence from recent studies has revealed diverse functions of the WRC in neurons, demonstrating its crucial role in dictating the assembly of molecular complexes for the patterning of various trans-synaptic signals. In this review, we discuss recent exciting findings on the physiological role of the WRC in regulating synaptic properties and highlight the involvement of WRC dysfunction in various brain disorders.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
15
|
Mizumoto K, Jin Y, Bessereau JL. Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans. Genetics 2023; 223:iyac176. [PMID: 36630525 PMCID: PMC9910414 DOI: 10.1093/genetics/iyac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023] Open
Abstract
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yishi Jin
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean-Louis Bessereau
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| |
Collapse
|
16
|
Dutta SB, Linneweber GA, Andriatsilavo M, Hiesinger PR, Hassan BA. EGFR-dependent suppression of synaptic autophagy is required for neuronal circuit development. Curr Biol 2023; 33:517-532.e5. [PMID: 36640763 DOI: 10.1016/j.cub.2022.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
The development of neuronal connectivity requires stabilization of dynamic axonal branches at sites of synapse formation. Models that explain how axonal branching is coupled to synaptogenesis postulate molecular regulators acting in a spatiotemporally restricted fashion to ensure branching toward future synaptic partners while also stabilizing the emerging synaptic contacts between such partners. We investigated this question using neuronal circuit development in the Drosophila brain as a model system. We report that epidermal growth factor receptor (EGFR) activity is required in presynaptic axonal branches during two distinct temporal intervals to regulate circuit wiring in the developing Drosophila visual system. EGFR is required early to regulate primary axonal branching. EGFR activity is then independently required at a later stage to prevent degradation of the synaptic active zone protein Bruchpilot (Brp). Inactivation of EGFR results in a local increase of autophagy in presynaptic branches and the translocation of active zone proteins into autophagic vesicles. The protection of synaptic material during this later interval of wiring ensures the stabilization of terminal branches, circuit connectivity, and appropriate visual behavior. Phenotypes of EGFR inactivation can be rescued by increasing Brp levels or downregulating autophagy. In summary, we identify a temporally restricted molecular mechanism required for coupling axonal branching and synaptic stabilization that contributes to the emergence of neuronal wiring specificity.
Collapse
Affiliation(s)
- Suchetana B Dutta
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié Salpêtrière, 75013 Paris, France; Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany; Einstein-BIH, Charité Universitätsmedizin, 10117 Berlin, Germany
| | | | - Maheva Andriatsilavo
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié Salpêtrière, 75013 Paris, France; Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany; Einstein-BIH, Charité Universitätsmedizin, 10117 Berlin, Germany
| | | | - Bassem A Hassan
- Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié Salpêtrière, 75013 Paris, France; Division of Neurobiology, Free University of Berlin, 14195 Berlin, Germany; Einstein-BIH, Charité Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
17
|
Zhao T, Guan L, Ma X, Chen B, Ding M, Zou W. The cell cortex-localized protein CHDP-1 is required for dendritic development and transport in C. elegans neurons. PLoS Genet 2022; 18:e1010381. [PMID: 36126047 PMCID: PMC9524629 DOI: 10.1371/journal.pgen.1010381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/30/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cortical actin, a thin layer of actin network underneath the plasma membranes, plays critical roles in numerous processes, such as cell morphogenesis and migration. Neurons often grow highly branched dendrite morphologies, which is crucial for neural circuit assembly. It is still poorly understood how cortical actin assembly is controlled in dendrites and whether it is critical for dendrite development, maintenance and function. In the present study, we find that knock-out of C. elegans chdp-1, which encodes a cell cortex-localized protein, causes dendrite formation defects in the larval stages and spontaneous dendrite degeneration in adults. Actin assembly in the dendritic growth cones is significantly reduced in the chdp-1 mutants. PVD neurons sense muscle contraction and act as proprioceptors. Loss of chdp-1 abolishes proprioception, which can be rescued by expressing CHDP-1 in the PVD neurons. In the high-ordered branches, loss of chdp-1 also severely affects the microtubule cytoskeleton assembly, intracellular organelle transport and neuropeptide secretion. Interestingly, knock-out of sax-1, which encodes an evolutionary conserved serine/threonine protein kinase, suppresses the defects mentioned above in chdp-1 mutants. Thus, our findings suggest that CHDP-1 and SAX-1 function in an opposing manner in the multi-dendritic neurons to modulate cortical actin assembly, which is critical for dendrite development, maintenance and function. Neurons often grow highly-branched cell protrusions called “dendrites” to receive signals from the environment or other neurons. Inside these cells, two types of cytoskeletons, known as the actin cytoskeleton and microtubule cytoskeleton, play essential roles during dendritic branching, growth and function. However, it is not fully understood how the dynamics of the neuronal cytoskeletons are controlled. Using the nematode C. elegans (a tiny roundworm found in the soil) as a research model, we found that CHDP-1, a protein localized on the cell cortex, plays a vital role in the formation of actin and microtubule cytoskeleton in the dendrites. Mutations in chdp-1 cause defective dendrite branching and transport of intracellular organelles. chdp-1 mutants cannot secrete neuropeptides from the PVD dendrites to module the muscle contraction. Surprisingly, mutating a gene called sax-1, which encodes a protein kinase, restores dendrite formation and organelle transport. Our findings reveal novel regulatory mechanisms for dendritic cytoskeleton assembly and intracellular transport.
Collapse
Affiliation(s)
- Ting Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Liying Guan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xuehua Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (MD); (WZ)
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- * E-mail: (MD); (WZ)
| |
Collapse
|
18
|
Liu X, Hua F, Yang D, Lin Y, Zhang L, Ying J, Sheng H, Wang X. Roles of neuroligins in central nervous system development: focus on glial neuroligins and neuron neuroligins. Lab Invest 2022; 20:418. [PMID: 36088343 PMCID: PMC9463862 DOI: 10.1186/s12967-022-03625-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022]
Abstract
Neuroligins are postsynaptic cell adhesion molecules that are relevant to many neurodevelopmental disorders. They are differentially enriched at the postsynapse and interact with their presynaptic ligands, neurexins, whose differential binding to neuroligins has been shown to regulate synaptogenesis, transmission, and other synaptic properties. The proper functioning of functional networks in the brain depends on the proper connection between neuronal synapses. Impaired synaptogenesis or synaptic transmission results in synaptic dysfunction, and these synaptic pathologies are the basis for many neurodevelopmental disorders. Deletions or mutations in the neuroligins genes have been found in patients with both autism and schizophrenia. It is because of the important role of neuroligins in synaptic connectivity and synaptic dysfunction that studies on neuroligins in the past have mainly focused on their expression in neurons. As studies on the expression of genes specific to various cells of the central nervous system deepened, neuroligins were found to be expressed in non-neuronal cells as well. In the central nervous system, glial cells are the most representative non-neuronal cells, which can also express neuroligins in large amounts, especially astrocytes and oligodendrocytes, and they are involved in the regulation of synaptic function, as are neuronal neuroligins. This review examines the mechanisms of neuron neuroligins and non-neuronal neuroligins in the central nervous system and also discusses the important role of neuroligins in the development of the central nervous system and neurodevelopmental disorders from the perspective of neuronal neuroligins and glial neuroligins.
Collapse
|
19
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
20
|
Lim D, Kim D, Um JW, Ko J. Reassessing synaptic adhesion pathways. Trends Neurosci 2022; 45:517-528. [DOI: 10.1016/j.tins.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023]
|
21
|
Bali N, Lee HK(P, Zinn K. Sticks and Stones, a conserved cell surface ligand for the Type IIa RPTP Lar, regulates neural circuit wiring in Drosophila. eLife 2022; 11:e71469. [PMID: 35356892 PMCID: PMC9000958 DOI: 10.7554/elife.71469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Type IIa receptor-like protein tyrosine phosphatases (RPTPs) are essential for neural development. They have cell adhesion molecule (CAM)-like extracellular domains that interact with cell-surface ligands and coreceptors. We identified the immunoglobulin superfamily CAM Sticks and Stones (Sns) as a new partner for the Drosophila Type IIa RPTP Lar. Lar and Sns bind to each other in embryos and in vitro, and the human Sns ortholog, Nephrin, binds to human Type IIa RPTPs. Genetic analysis shows that Lar and Sns function together to regulate larval neuromuscular junction development, axon guidance in the mushroom body (MB), and innervation of the optic lobe (OL) medulla by R7 photoreceptors. In the neuromuscular system, Lar and Sns are both required in motor neurons, and may function as coreceptors. In the MB and OL, however, the relevant Lar-Sns interactions are in trans (between neurons), so Sns functions as a Lar ligand in these systems.
Collapse
Affiliation(s)
- Namrata Bali
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Hyung-Kook (Peter) Lee
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
22
|
Avilés EC, Krol A, Henle SJ, Burroughs-Garcia J, Deans MR, Goodrich LV. Fat3 acts through independent cytoskeletal effectors to coordinate asymmetric cell behaviors during polarized circuit assembly. Cell Rep 2022; 38:110307. [PMID: 35108541 PMCID: PMC8865054 DOI: 10.1016/j.celrep.2022.110307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
The polarized flow of information through neural circuits depends on the orderly arrangement of neurons, their processes, and their synapses. This polarity emerges sequentially in development, starting with the directed migration of neuronal precursors, which subsequently elaborate neurites that form synapses in specific locations. In other organs, Fat cadherins sense the position and then polarize individual cells by inducing localized changes in the cytoskeleton that are coordinated across the tissue. Here, we show that the Fat-related protein Fat3 plays an analogous role during the assembly of polarized circuits in the murine retina. We find that the Fat3 intracellular domain (ICD) binds to cytoskeletal regulators and synaptic proteins, with discrete motifs required for amacrine cell migration and neurite retraction. Moreover, upon ICD deletion, extra neurites form but do not make ectopic synapses, suggesting that Fat3 independently regulates synapse localization. Thus, Fat3 serves as a molecular node to coordinate asymmetric cell behaviors across development.
Collapse
Affiliation(s)
- Evelyn C Avilés
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Krol
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven J Henle
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Burroughs-Garcia
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Michael R Deans
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Abstract
Axonal transport is an essential component of neuronal function. Several neurodegenerative disorders have been associated with defects in cargo transport. Thus, studying axonal transport is important to understand such disorders. Live imaging of fluorescently labeled cargo is a prevailing technique to study properties of axonal transport. C. elegans is both transparent and genetically amenable, making it an excellent model system to study axonal transport. In this chapter, we describe protocols to live image several neuronal cargo in vivo in C. elegans neurons.
Collapse
Affiliation(s)
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
24
|
Oliver D, Ramachandran S, Philbrook A, Lambert CM, Nguyen KCQ, Hall DH, Francis MM. Kinesin-3 mediated axonal delivery of presynaptic neurexin stabilizes dendritic spines and postsynaptic components. PLoS Genet 2022; 18:e1010016. [PMID: 35089924 PMCID: PMC8827443 DOI: 10.1371/journal.pgen.1010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/09/2022] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.
Collapse
Affiliation(s)
- Devyn Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Alison Philbrook
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Christopher M. Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
25
|
Lamb R, Dhar B, Cherra SJ. PXF-1 promotes synapse development at the neuromuscular junction in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:945680. [PMID: 36311020 PMCID: PMC9606220 DOI: 10.3389/fnmol.2022.945680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are a family of proteins that modulate small G protein signaling. Mutations in a subfamily of GEFs that act on Rap, known as RapGEFs, have been associated with neurological disorders, and knockout mice display impairments in neuronal activity. However, the precise functions of RapGEFs in the nervous system remain unclear. Here, we have used the Caenorhabditis elegans neuromuscular junction, to investigate how the RapGEF homolog, PXF-1, regulates synaptic function. We found that loss of function mutations in pxf-1 reduced cholinergic activity at the neuromuscular junction. We observed that PXF-1 is expressed in the nervous system, and its expression in neurons is sufficient to promote synaptic activity. In pxf-1 mutant animals, there is a reduction in the levels of synaptic vesicles in cholinergic motor neurons but no change in the overall synapse numbers. In addition to synaptic vesicles proteins, we also found that filamentous actin, a scaffold for nascent synapses, was reduced at developing cholinergic synapses in pxf-1 mutant animals. Our studies indicate that PXF-1 regulates neuromuscular function by promoting the formation of actin filaments to support the development of motor neuron synapses.
Collapse
Affiliation(s)
- Reagan Lamb
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Bithika Dhar
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Salvatore J Cherra
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
26
|
Tsutsui K, Kim HS, Yoshikata C, Kimura K, Kubota Y, Shibata Y, Tian C, Liu J, Nishiwaki K. Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans. Sci Rep 2021; 11:22370. [PMID: 34785759 PMCID: PMC8595726 DOI: 10.1038/s41598-021-01853-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Repulsive guidance molecules (RGMs) are evolutionarily conserved proteins implicated in repulsive axon guidance. Here we report the function of the Caenorhabditis elegans ortholog DRAG-1 in axon branching. The axons of hermaphrodite-specific neurons (HSNs) extend dorsal branches at the region abutting the vulval muscles. The drag-1 mutants exhibited defects in HSN axon branching in addition to a small body size phenotype. DRAG-1 expression in the hypodermal cells was required for the branching of the axons. Although DRAG-1 is normally expressed in the ventral hypodermis excepting the vulval region, its ectopic expression in vulval precursor cells was sufficient to induce the branching. The C-terminal glycosylphosphatidylinositol anchor of DRAG-1 was important for its function, suggesting that DRAG-1 should be anchored to the cell surface. Genetic analyses suggested that the membrane receptor UNC-40 acts in the same pathway with DRAG-1 in HSN branching. We propose that DRAG-1 expressed in the ventral hypodermis signals via the UNC-40 receptor expressed in HSNs to elicit branching activity of HSN axons.
Collapse
Affiliation(s)
- Kaname Tsutsui
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Hon-Song Kim
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chizu Yoshikata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Kenji Kimura
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukihiko Kubota
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Yukimasa Shibata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan
| | - Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Kiyoji Nishiwaki
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337, Japan.
| |
Collapse
|
27
|
Mehidi A, Kage F, Karatas Z, Cercy M, Schaks M, Polesskaya A, Sainlos M, Gautreau AM, Rossier O, Rottner K, Giannone G. Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration. Nat Cell Biol 2021; 23:1148-1162. [PMID: 34737443 DOI: 10.1038/s41556-021-00786-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Actin filaments generate mechanical forces that drive membrane movements during trafficking, endocytosis and cell migration. Reciprocally, adaptations of actin networks to forces regulate their assembly and architecture. Yet, a demonstration of forces acting on actin regulators at actin assembly sites in cells is missing. Here we show that local forces arising from actin filament elongation mechanically control WAVE regulatory complex (WRC) dynamics and function, that is, Arp2/3 complex activation in the lamellipodium. Single-protein tracking revealed WRC lateral movements along the lamellipodium tip, driven by elongation of actin filaments and correlating with WRC turnover. The use of optical tweezers to mechanically manipulate functional WRC showed that piconewton forces, as generated by single-filament elongation, dissociated WRC from the lamellipodium tip. WRC activation correlated with its trapping, dwell time and the binding strength at the lamellipodium tip. WRC crosslinking, hindering its mechanical dissociation, increased WRC dwell time and Arp2/3-dependent membrane protrusion. Thus, forces generated by individual actin filaments on their regulators can mechanically tune their turnover and hence activity during cell migration.
Collapse
Affiliation(s)
- Amine Mehidi
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zeynep Karatas
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Maureen Cercy
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anna Polesskaya
- CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Matthieu Sainlos
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Alexis M Gautreau
- CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
28
|
Kulkarni SS, Sabharwal V, Sheoran S, Basu A, Matsumoto K, Hisamoto N, Ghosh-Roy A, Koushika SP. UNC-16 alters DLK-1 localization and negatively regulates actin and microtubule dynamics in Caenorhabditis elegans regenerating neurons. Genetics 2021; 219:6359182. [PMID: 34740241 DOI: 10.1093/genetics/iyab139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neuronal regeneration after injury depends on the intrinsic growth potential of neurons. Our study shows that UNC-16, a Caenorhabditis elegans JIP3 homolog, inhibits axonal regeneration by regulating initiation and rate of regrowth. This occurs through the inhibition of the regeneration-promoting activity of the long isoform of DLK-1 and independently of the inhibitory short isoform of DLK-1. We show that UNC-16 promotes DLK-1 punctate localization in a concentration-dependent manner limiting the availability of the long isoform of DLK-1 at the cut site, minutes after injury. UNC-16 negatively regulates actin dynamics through DLK-1 and microtubule dynamics partially via DLK-1. We show that post-injury cytoskeletal dynamics in unc-16 mutants are also partially dependent on CEBP-1. The faster regeneration seen in unc-16 mutants does not lead to functional recovery. Our data suggest that the inhibitory control by UNC-16 and the short isoform of DLK-1 balances the intrinsic growth-promoting function of the long isoform of DLK-1 in vivo. We propose a model where UNC-16's inhibitory role in regeneration occurs through both a tight temporal and spatial control of DLK-1 and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Sucheta S Kulkarni
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Vidur Sabharwal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Seema Sheoran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Atrayee Basu
- Department of Biotechnology National Brain Research Centre, Manesar 122052, India
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Nagoya University, Nagoya 4648601, Japan
| | - Naoki Hisamoto
- Department of Molecular Biology, Nagoya University, Nagoya 4648601, Japan
| | - Anindya Ghosh-Roy
- Department of Biotechnology National Brain Research Centre, Manesar 122052, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
29
|
Wang J, Vaddadi N, Pak JS, Park Y, Quilez S, Roman CA, Dumontier E, Thornton JW, Cloutier JF, Özkan E. Molecular and structural basis of olfactory sensory neuron axon coalescence by Kirrel receptors. Cell Rep 2021; 37:109940. [PMID: 34731636 PMCID: PMC8628261 DOI: 10.1016/j.celrep.2021.109940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
Projections from sensory neurons of olfactory systems coalesce into glomeruli in the brain. The Kirrel receptors are believed to homodimerize via their ectodomains and help separate sensory neuron axons into Kirrel2- or Kirrel3-expressing glomeruli. Here, we present the crystal structures of homodimeric Kirrel receptors and show that the closely related Kirrel2 and Kirrel3 have evolved specific sets of polar and hydrophobic interactions, respectively, disallowing heterodimerization while preserving homodimerization, likely resulting in proper segregation and coalescence of Kirrel-expressing axons into glomeruli. We show that the dimerization interface at the N-terminal immunoglobulin (IG) domains is necessary and sufficient to create homodimers and fail to find evidence for a secondary interaction site in Kirrel ectodomains. Furthermore, we show that abolishing dimerization of Kirrel3 in vivo leads to improper formation of glomeruli in the mouse accessory olfactory bulb as observed in Kirrel3-/- animals. Our results provide evidence for Kirrel3 homodimerization controlling axonal coalescence.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Neelima Vaddadi
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Yeonwoo Park
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sabrina Quilez
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
| | - Christina A Roman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Emilie Dumontier
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
| | - Joseph W Thornton
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Jean-François Cloutier
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
30
|
Axonal CB1 Receptors Mediate Inhibitory Bouton Formation via cAMP Increase and PKA. J Neurosci 2021; 41:8279-8296. [PMID: 34413209 DOI: 10.1523/jneurosci.0851-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/25/2021] [Indexed: 12/11/2022] Open
Abstract
Experience-dependent formation and removal of inhibitory synapses are essential throughout life. For instance, GABAergic synapses are removed to facilitate learning, and strong excitatory activity is accompanied by the formation of inhibitory synapses to maintain coordination between excitation and inhibition. We recently discovered that active dendrites trigger the growth of inhibitory synapses via CB1 receptor-mediated endocannabinoid signaling, but the underlying mechanism remained unclear. Using two-photon microscopy to monitor the formation of individual inhibitory boutons in hippocampal organotypic slices from mice (both sexes), we found that CB1 receptor activation mediated the formation of inhibitory boutons and promoted their subsequent stabilization. Inhibitory bouton formation did not require neuronal activity and was independent of Gi/o-protein signaling, but was directly induced by elevating cAMP levels using forskolin and by activating Gs-proteins using DREADDs. Blocking PKA activity prevented CB1 receptor-mediated inhibitory bouton formation. Our findings reveal that axonal CB1 receptors signal via unconventional downstream pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels. Our results demonstrate an unexpected role for axonal CB1 receptors in axon-specific, and context-dependent, inhibitory synapse formation.SIGNIFICANCE STATEMENT Coordination between excitation and inhibition is required for proper brain function throughout life. It was previously shown that new inhibitory synapses can be formed in response to strong excitation to maintain this coordination, and this was mediated by endocannabinoid signaling via CB1 receptors. As activation of CB1 receptors generally results in the suppression of synaptic transmission, it remained unclear how CB1 receptors can mediate the formation of inhibitory synapses. Here we show that CB1 receptors on inhibitory axons signal via unconventional intracellular pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels and requires PKA activity. Our findings point to a central role for axonal cAMP signaling in activity-dependent inhibitory synapse formation.
Collapse
|
31
|
The RNA-binding protein Musashi controls axon compartment-specific synaptic connectivity through ptp69D mRNA poly(A)-tailing. Cell Rep 2021; 36:109713. [PMID: 34525368 DOI: 10.1016/j.celrep.2021.109713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
Synaptic targeting with subcellular specificity is essential for neural circuit assembly. Developing neurons use mechanisms to curb promiscuous synaptic connections and to direct synapse formation to defined subcellular compartments. How this selectivity is achieved molecularly remains enigmatic. Here, we discover a link between mRNA poly(A)-tailing and axon collateral branch-specific synaptic connectivity within the CNS. We reveal that the RNA-binding protein Musashi binds to the mRNA encoding the receptor protein tyrosine phosphatase Ptp69D, thereby increasing poly(A) tail length and Ptp69D protein levels. This regulation specifically promotes synaptic connectivity in one axon collateral characterized by a high degree of arborization and strong synaptogenic potential. In a different compartment of the same axon, Musashi prevents ectopic synaptogenesis, revealing antagonistic, compartment-specific functions. Moreover, Musashi-dependent Ptp69D regulation controls synaptic connectivity in the olfactory circuit. Thus, Musashi differentially shapes synaptic connectivity at the level of individual subcellular compartments and within different developmental and neuron type-specific contexts.
Collapse
|
32
|
Izadifar A, Courchet J, Virga DM, Verreet T, Hamilton S, Ayaz D, Misbaer A, Vandenbogaerde S, Monteiro L, Petrovic M, Sachse S, Yan B, Erfurth ML, Dascenco D, Kise Y, Yan J, Edwards-Faret G, Lewis T, Polleux F, Schmucker D. Axon morphogenesis and maintenance require an evolutionary conserved safeguard function of Wnk kinases antagonizing Sarm and Axed. Neuron 2021; 109:2864-2883.e8. [PMID: 34384519 DOI: 10.1016/j.neuron.2021.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The molecular and cellular mechanisms underlying complex axon morphogenesis are still poorly understood. We report a novel, evolutionary conserved function for the Drosophila Wnk kinase (dWnk) and its mammalian orthologs, WNK1 and 2, in axon branching. We uncover that dWnk, together with the neuroprotective factor Nmnat, antagonizes the axon-destabilizing factors D-Sarm and Axundead (Axed) during axon branch growth, revealing a developmental function for these proteins. Overexpression of D-Sarm or Axed results in axon branching defects, which can be blocked by overexpression of dWnk or Nmnat. Surprisingly, Wnk kinases are also required for axon maintenance of adult Drosophila and mouse cortical pyramidal neurons. Requirement of Wnk for axon maintenance is independent of its developmental function. Inactivation of dWnk or mouse Wnk1/2 in mature neurons leads to axon degeneration in the adult brain. Therefore, Wnk kinases are novel signaling components that provide a safeguard function in both developing and adult axons.
Collapse
Affiliation(s)
- Azadeh Izadifar
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 69622 Villeurbanne, France; Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Daniel M Virga
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Tine Verreet
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Stevie Hamilton
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Derya Ayaz
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anke Misbaer
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sofie Vandenbogaerde
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Laloe Monteiro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, 69622 Villeurbanne, France
| | - Milan Petrovic
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sonja Sachse
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Bing Yan
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maria-Luise Erfurth
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Jiekun Yan
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gabriela Edwards-Faret
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Tommy Lewis
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Franck Polleux
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Dietmar Schmucker
- Life and Medical Sciences Institute (LIMES), Bonn, Germany; VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
33
|
Yan Y, Liu S, Hu C, Xie C, Zhao L, Wang S, Zhang W, Cheng Z, Gao J, Fu X, Yang Z, Wang X, Zhang J, Lin L, Shi A. RTKN-1/Rhotekin shields endosome-associated F-actin from disassembly to ensure endocytic recycling. J Cell Biol 2021; 220:211976. [PMID: 33844824 PMCID: PMC8047894 DOI: 10.1083/jcb.202007149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/22/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cargo sorting and the subsequent membrane carrier formation require a properly organized endosomal actin network. To better understand the actin dynamics during endocytic recycling, we performed a genetic screen in C. elegans and identified RTKN-1/Rhotekin as a requisite to sustain endosome-associated actin integrity. Loss of RTKN-1 led to a prominent decrease in actin structures and basolateral recycling defects. Furthermore, we showed that the presence of RTKN-1 thwarts the actin disassembly competence of UNC-60A/cofilin. Consistently, in RTKN-1–deficient cells, UNC-60A knockdown replenished actin structures and alleviated the recycling defects. Notably, an intramolecular interaction within RTKN-1 could mediate the formation of oligomers. Overexpression of an RTKN-1 mutant form that lacks self-binding capacity failed to restore actin structures and recycling flow in rtkn-1 mutants. Finally, we demonstrated that SDPN-1/Syndapin acts to direct the recycling endosomal dwelling of RTKN-1 and promotes actin integrity there. Taken together, these findings consolidated the role of SDPN-1 in organizing the endosomal actin network architecture and introduced RTKN-1 as a novel regulatory protein involved in this process.
Collapse
Affiliation(s)
- Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyi Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linyue Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shimin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenrong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
34
|
Chaudhari K, Gorla M, Chang C, Kania A, Bashaw GJ. Robo recruitment of the Wave regulatory complex plays an essential and conserved role in midline repulsion. eLife 2021; 10:e64474. [PMID: 33843588 PMCID: PMC8096436 DOI: 10.7554/elife.64474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
The Roundabout (Robo) guidance receptor family induces axon repulsion in response to its ligand Slit by inducing local cytoskeletal changes; however, the link to the cytoskeleton and the nature of these cytoskeletal changes are poorly understood. Here, we show that the heteropentameric Scar/Wave Regulatory Complex (WRC), which drives Arp2/3-induced branched actin polymerization, is a direct effector of Robo signaling. Biochemical evidence shows that Slit triggers WRC recruitment to the Robo receptor's WRC-interacting receptor sequence (WIRS) motif. In Drosophila embryos, mutants of the WRC enhance Robo1-dependent midline crossing defects. Additionally, mutating Robo1's WIRS motif significantly reduces receptor activity in rescue assays in vivo, and CRISPR-Cas9 mutagenesis shows that the WIRS motif is essential for endogenous Robo1 function. Finally, axon guidance assays in mouse dorsal spinal commissural axons and gain-of-function experiments in chick embryos demonstrate that the WIRS motif is also required for Robo1 repulsion in mammals. Together, our data support an essential conserved role for the WIRS-WRC interaction in Robo1-mediated axon repulsion.
Collapse
Affiliation(s)
- Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Madhavi Gorla
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Chao Chang
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM)MontréalCanada
- Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
35
|
Wang X, Jiang W, Luo S, Yang X, Wang C, Wang B, Dang Y, Shen Y, Ma DK. The C. elegans homolog of human panic-disorder risk gene TMEM132D orchestrates neuronal morphogenesis through the WAVE-regulatory complex. Mol Brain 2021; 14:54. [PMID: 33726789 PMCID: PMC7962252 DOI: 10.1186/s13041-021-00767-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/03/2021] [Indexed: 01/11/2023] Open
Abstract
TMEM132D is a human gene identified with multiple risk alleles for panic disorders, anxiety and major depressive disorders. Defining a conserved family of transmembrane proteins, TMEM132D and its homologs are still of unknown molecular functions. By generating loss-of-function mutants of the sole TMEM132 ortholog in C. elegans, we identify abnormal morphologic phenotypes in the dopaminergic PDE neurons. Using a yeast two-hybrid screen, we find that NAP1 directly interacts with the cytoplasmic domain of human TMEM132D, and mutations in C. elegans tmem-132 that disrupt interaction with NAP1 cause similar morphologic defects in the PDE neurons. NAP1 is a component of the WAVE regulatory complex (WRC) that controls F-actin cytoskeletal dynamics. Decreasing activity of WRC rescues the PDE defects in tmem-132 mutants, whereas gain-of-function of TMEM132D in mammalian cells inhibits WRC, leading to decreased abundance of select WRC components, impaired actin nucleation and cell motility. We propose that metazoan TMEM132 family proteins play evolutionarily conserved roles in regulating NAP1 protein homologs to restrict inappropriate WRC activity, cytoskeletal and morphologic changes in the cell.
Collapse
Affiliation(s)
- Xin Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Fudan University, Shanghai, 200032, China
| | - Shuo Luo
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xiaoyu Yang
- Institute for Human Genetics, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Fudan University, Shanghai, 200032, China
| | - Yin Shen
- Institute for Human Genetics, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
36
|
Zang Y, Chaudhari K, Bashaw GJ. New insights into the molecular mechanisms of axon guidance receptor regulation and signaling. Curr Top Dev Biol 2021; 142:147-196. [PMID: 33706917 DOI: 10.1016/bs.ctdb.2020.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the nervous system develops, newly differentiated neurons need to extend their axons toward their synaptic targets to form functional neural circuits. During this highly dynamic process of axon pathfinding, guidance receptors expressed at the tips of motile axons interact with soluble guidance cues or membrane tethered molecules present in the environment to be either attracted toward or repelled away from the source of these cues. As competing cues are often present at the same location and during the same developmental period, guidance receptors need to be both spatially and temporally regulated in order for the navigating axons to make appropriate guidance decisions. This regulation is exerted by a diverse array of molecular mechanisms that have come into focus over the past several decades and these mechanisms ensure that the correct complement of surface receptors is present on the growth cone, a fan-shaped expansion at the tip of the axon. This dynamic, highly motile structure is defined by a lamellipodial network lining the periphery of the growth cone interspersed with finger-like filopodial projections that serve to explore the surrounding environment. Once axon guidance receptors are deployed at the right place and time at the growth cone surface, they respond to their respective ligands by initiating a complex set of signaling events that serve to rearrange the growth cone membrane and the actin and microtubule cytoskeleton to affect axon growth and guidance. In this review, we highlight recent advances that shed light on the rich complexity of mechanisms that regulate axon guidance receptor distribution, activation and downstream signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
37
|
Meng L, Yan D. NLR-1/CASPR Anchors F-Actin to Promote Gap Junction Formation. Dev Cell 2020; 55:574-587.e3. [PMID: 33238150 DOI: 10.1016/j.devcel.2020.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Gap junctions are present in most tissues and play essential roles in various biological processes. However, we know surprisingly little about the molecular mechanisms underlying gap junction formation. Here, we uncover the essential role of a conserved EGF- and laminin-G-domain-containing protein nlr-1/CASPR in the regulation of gap junction formation in multiple tissues across different developmental stages in C. elegans. NLR-1 is located in the gap junction perinexus, a region adjacent to but not overlapping with gap junctions, and forms puncta before the clusters of gap junction channels appear on the membrane. We show that NLR-1 can directly bind to actin to recruit F-actin networks at the gap junction formation plaque, and the formation of F-actin patches plays a critical role in the assembly of gap junction channels. Our findings demonstrate that nlr-1/CASPR acts as an early stage signal for gap junction formation through anchoring of F-actin networks.
Collapse
Affiliation(s)
- Lingfeng Meng
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Qu Z, Zhang A, Yan D. Robo functions as an attractive cue for glial migration through SYG-1/Neph. eLife 2020; 9:e57921. [PMID: 33211005 PMCID: PMC7676865 DOI: 10.7554/elife.57921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023] Open
Abstract
As one of the most-studied receptors, Robo plays functions in many biological processes, and its functions highly depend on Slit, the ligand of Robo. Here we uncover a Slit-independent role of Robo in glial migration and show that neurons can release an extracellular fragment of Robo upon cleavage to attract glia during migration in Caenorhabditis elegans. Furthermore, we identified the conserved cell adhesion molecule SYG-1/Neph as a receptor for the cleaved extracellular Robo fragment to mediate glial migration and SYG-1/Neph functions through regulation of the WAVE complex. Our studies reveal a previously unknown Slit-independent function and regulatory mechanism of Robo and show that the cleaved extracellular fragment of Robo can function as a ligand for SYG-1/Neph to guide glial migration. As Robo, the cleaved region of Robo, and SYG-1/Neph are all highly conserved across the animal kingdom, our findings may present a conserved Slit-independent Robo mechanism during brain development.
Collapse
Affiliation(s)
- Zhongwei Qu
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Regeneration Next Initiative, Duke Center for Neurodegeneration and Neurotherapeutics, and Duke Institute for Brain Sciences, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
39
|
Adnan G, Rubikaite A, Khan M, Reber M, Suetterlin P, Hindges R, Drescher U. The GTPase Arl8B Plays a Principle Role in the Positioning of Interstitial Axon Branches by Spatially Controlling Autophagosome and Lysosome Location. J Neurosci 2020; 40:8103-8118. [PMID: 32917789 PMCID: PMC7574663 DOI: 10.1523/jneurosci.1759-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Interstitial axon branching is an essential step during the establishment of neuronal connectivity. However, the exact mechanisms on how the number and position of branches are determined are still not fully understood. Here, we investigated the role of Arl8B, an adaptor molecule between lysosomes and kinesins. In chick retinal ganglion cells (RGCs), downregulation of Arl8B reduces axon branch density and shifts their location more proximally, while Arl8B overexpression leads to increased density and more distal positions of branches. These alterations correlate with changes in the location and density of lysosomes and autophagosomes along the axon shaft. Diminishing autophagy directly by knock-down of atg7, a key autophagy gene, reduces branch density, while induction of autophagy by rapamycin increases axon branching, indicating that autophagy plays a prominent role in axon branch formation. In vivo, local inactivation of autophagy in the retina using a mouse conditional knock-out approach disturbs retino-collicular map formation which is dependent on the formation of interstitial axon branches. These data suggest that Arl8B plays a principal role in the positioning of axon branches by spatially controlling autophagy, thus directly controlling formation of neural connectivity in the brain.SIGNIFICANCE STATEMENT The formation of interstitial axonal branches plays a prominent role in numerous places of the developing brain during neural circuit establishment. We show here that the GTPase Arl8B controls density and location of interstitial axon branches, and at the same time controls also density and location of the autophagy machinery. Upregulation or downregulation of autophagy in vitro promotes or inhibits axon branching. Local disruption of autophagy in vivo disturbs retino-collicular mapping. Our data suggest that Arl8B controls axon branching by controlling locally autophagy. This work is one of the first reports showing a role of autophagy during early neural circuit development and suggests that autophagy in general plays a much more prominent role during brain development than previously anticipated.
Collapse
Affiliation(s)
- Gee Adnan
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Aine Rubikaite
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Moqadisa Khan
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
| | - Michael Reber
- Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada
| | - Philip Suetterlin
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
- Craniofacial Development and Stem Cell Biology, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Uwe Drescher
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
40
|
Jin H, Kim B. Neurite Branching Regulated by Neuronal Cell Surface Molecules in Caenorhabditis elegans. Front Neuroanat 2020; 14:59. [PMID: 32973467 PMCID: PMC7471659 DOI: 10.3389/fnana.2020.00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
The high synaptic density in the nervous system results from the ability of neurites to branch. Neuronal cell surface molecules play central roles during neurite branch formation. The underlying mechanisms of surface molecule activity have often been elucidated using invertebrates with simple nervous systems. Here, we review recent advances in understanding the molecular mechanisms of neurite branching in the nematode Caenorhabditis elegans. We discuss how cell surface receptor complexes link to and modulate actin dynamics to regulate dendritic and axonal branch formation. The mechanisms of neurite branching are often coupled with other neural circuit developmental processes, such as synapse formation and axon guidance, via the same cell-cell surface molecular interactions. We also cover ectopic and sex-specific neurite branching in C. elegans in an attempt to illustrate the importance of these studies in contributing to our understanding of conserved cell surface molecule regulation of neurite branch formation.
Collapse
Affiliation(s)
- HoYong Jin
- Department of Life Science, Dongguk University-Seoul, Goyang, South Korea
| | - Byunghyuk Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, South Korea
| |
Collapse
|
41
|
Hsu HW, Liao CP, Chiang YC, Syu RT, Pan CL. Caenorhabditis elegans Flamingo FMI-1 controls dendrite self-avoidance through F-actin assembly. Development 2020; 147:dev179168. [PMID: 32631831 DOI: 10.1242/dev.179168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Self-avoidance is a conserved mechanism that prevents crossover between sister dendrites from the same neuron, ensuring proper functioning of the neuronal circuits. Several adhesion molecules are known to be important for dendrite self-avoidance, but the underlying molecular mechanisms are incompletely defined. Here, we show that FMI-1/Flamingo, an atypical cadherin, is required autonomously for self-avoidance in the multidendritic PVD neuron of Caenorhabditis elegans The fmi-1 mutant shows increased crossover between sister PVD dendrites. Our genetic analysis suggests that FMI-1 promotes transient F-actin assembly at the tips of contacting sister dendrites to facilitate their efficient retraction during self-avoidance events, probably by interacting with WSP-1/N-WASP. Mutations of vang-1, which encodes the planar cell polarity protein Vangl2 previously shown to inhibit F-actin assembly, suppress self-avoidance defects of the fmi-1 mutant. FMI-1 downregulates VANG-1 levels probably through forming protein complexes. Our study identifies molecular links between Flamingo and the F-actin cytoskeleton that facilitate efficient dendrite self-avoidance.
Collapse
Affiliation(s)
- Hao-Wei Hsu
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chien-Po Liao
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yueh-Chen Chiang
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ru-Ting Syu
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine and Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| |
Collapse
|
42
|
Kirrel3-Mediated Synapse Formation Is Attenuated by Disease-Associated Missense Variants. J Neurosci 2020; 40:5376-5388. [PMID: 32503885 DOI: 10.1523/jneurosci.3058-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Missense variants in Kirrel3 are repeatedly identified as risk factors for autism spectrum disorder and intellectual disability, but it has not been reported if or how these variants disrupt Kirrel3 function. Previously, we studied Kirrel3 loss of function using KO mice and showed that Kirrel3 is a synaptic adhesion molecule necessary to form one specific type of hippocampal synapse in vivo Here, we developed an in vitro, gain-of-function assay for Kirrel3 using neuron cultures prepared from male and female mice and rats. We find that WT Kirrel3 induces synapse formation selectively between Kirrel3-expressing neurons via homophilic, transcellular binding. We tested six disease-associated Kirrel3 missense variants and found that five attenuate this synaptogenic function. All variants tested traffic to the cell surface and localize to synapses similar to WT Kirrel3. Two tested variants lack homophilic transcellular binding, which likely accounts for their reduced synaptogenic function. Interestingly, we also identified variants that bind in trans but cannot induce synapses, indicating that Kirrel3 transcellular binding is necessary but not sufficient for its synaptogenic function. Collectively, these results suggest Kirrel3 functions as a synaptogenic, cell-recognition molecule, and this function is attenuated by missense variants associated with autism spectrum disorder and intellectual disability. Thus, we provide critical insight to the mechanism of Kirrel3 function and the consequences of missense variants associated with autism and intellectual disability.SIGNIFICANCE STATEMENT Here, we advance our understanding of mechanisms mediating target-specific synapse formation by providing evidence that Kirrel3 transcellular interactions mediate target recognition and signaling to promote synapse development. Moreover, this study tests the effects of disease-associated Kirrel3 missense variants on synapse formation, and thereby, increases understanding of the complex etiology of neurodevelopmental disorders arising from rare missense variants in synaptic genes.
Collapse
|
43
|
Ward H, West SJ. Microglia: sculptors of neuropathic pain? ROYAL SOCIETY OPEN SCIENCE 2020; 7:200260. [PMID: 32742693 PMCID: PMC7353970 DOI: 10.1098/rsos.200260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/01/2020] [Indexed: 05/02/2023]
Abstract
Neuropathic pain presents a huge societal and individual burden. The limited efficacy of current analgesics, diagnostic markers and clinical trial outcome measures arises from an incomplete understanding of the underlying mechanisms. A large and growing body of evidence has established the important role of microglia in the onset and possible maintenance of neuropathic pain, and these cells may represent an important target for future therapy. Microglial research has further revealed their important role in structural remodelling of the nervous system. In this review, we aim to explore the evidence for microglia in sculpting nervous system structure and function, as well as their important role in neuropathic pain, and finally integrate these studies to synthesize a new model for microglia in somatosensory circuit remodelling, composed of six key and inter-related mechanisms. Summarizing the mechanisms through which microglia modulate nervous system structure and function helps to frame a better understanding of neuropathic pain, and provide a clear roadmap for future research.
Collapse
Affiliation(s)
- Harry Ward
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Steven J. West
- Sainsbury Wellcome Centre, University College London, 25 Howland St, London WC1E 6BT, UK
- Author for correspondence: Steven J. West e-mail:
| |
Collapse
|
44
|
Molecular Dissection of Neurodevelopmental Disorder-Causing Mutations in CYFIP2. Cells 2020; 9:cells9061355. [PMID: 32486060 PMCID: PMC7348743 DOI: 10.3390/cells9061355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Actin remodeling is frequently regulated by antagonistic activities driving protrusion and contraction downstream of Rac and Rho small GTPases, respectively. WAVE regulatory complex (WRC), which primarily operates downstream of Rac, plays pivotal roles in neuronal morphogenesis. Recently, two independent studies described de novo mutations in the CYFIP2 subunit of WRC, which caused intellectual disability (ID) in humans. Although mutations had been proposed to effect WRC activation, no experimental evidence for this was provided. Here, we made use of CRISPR/Cas9-engineered B16-F1 cell lines that were reconstituted with ID-causing CYFIP variants in different experimental contexts. Almost all CYFIP2-derived mutations (7 out of 8) promoted WRC activation, but to variable extent and with at least two independent mechanisms. The majority of mutations occurs in a conserved WAVE-binding region, required for WRC transinhibition. One mutation is positioned closely adjacent to the Rac-binding A site and appears to ease Rac-mediated WRC activation. As opposed to these gain-of-function mutations, a truncating mutant represented a loss-of-function variant and failed to interact with WRC components. Collectively, our data show that explored CYFIP2 mutations frequently, but not always, coincide with WRC activation and suggest that normal brain development requires a delicate and precisely tuned balance of neuronal WRC activity.
Collapse
|
45
|
Faulkner J, Jiang P, Farris D, Walker R, Dai Z. CRISPR/CAS9-mediated knockout of Abi1 inhibits p185 Bcr-Abl-induced leukemogenesis and signal transduction to ERK and PI3K/Akt pathways. J Hematol Oncol 2020; 13:34. [PMID: 32276588 PMCID: PMC7147029 DOI: 10.1186/s13045-020-00867-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Abl interactor 1 (Abi1) is a downstream target of Abl tyrosine kinases and a component of the WAVE regulatory complex (WRC) that plays an important role in regulating actin cytoskeleton remodeling and membrane receptor signaling. While studies using short hairpin RNA (shRNA) have suggested that Abi1 plays a critical role in Bcr-Abl-induced leukemogenesis, the mechanism involved is not clear. Methods In this study, we knocked out Abi1 expression in p185Bcr-Abl-transformed hematopoietic cells using CRISPR/Cas9-mediated gene editing technology. The effects of Abi1 deficiency on actin cytoskeleton remodeling, the Bcr-Abl signaling, IL-3 independent growth, and SDF-induced chemotaxis in these cells were examined by various in vitro assays. The leukemogenic activity of these cells was evaluated by a syngeneic mouse transplantation model. Results We show here that Abi1 deficiency reduced the IL3-independent growth and SDF-1α-mediated chemotaxis in p185Bcr-Abl-transformed hematopoietic cells and inhibited Bcr-Abl-induced abnormal actin remodeling. Depletion of Abi1 also impaired the Bcr-Abl signaling to the ERK and PI3 kinase/Akt pathways. Remarkably, the p185Bcr-Abl-transformed cells with Abi1 deficiency lost their ability to develop leukemia in syngeneic mice. Even though these cells developed drug tolerance in vitro after prolonged selection with imatinib as their parental cells, the imatinib-tolerant cells remain incapable of leukemogenesis in vivo. Conclusions Together, this study highlights an essential role of Abi1 in Bcr-Abl-induced leukemogenesis and provides a model system for dissecting the Abi1 signaling in Bcr-Abl-positive leukemia.
Collapse
Affiliation(s)
- James Faulkner
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Peixin Jiang
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Delaney Farris
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Ryan Walker
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA
| | - Zonghan Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, 1406 Coulter St, Amarillo, TX, 79106, USA.
| |
Collapse
|
46
|
Davenport EC, Szulc BR, Drew J, Taylor J, Morgan T, Higgs NF, López-Doménech G, Kittler JT. Autism and Schizophrenia-Associated CYFIP1 Regulates the Balance of Synaptic Excitation and Inhibition. Cell Rep 2020; 26:2037-2051.e6. [PMID: 30784587 PMCID: PMC6381785 DOI: 10.1016/j.celrep.2019.01.092] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/26/2018] [Accepted: 01/24/2019] [Indexed: 12/28/2022] Open
Abstract
Altered excitatory/inhibitory (E/I) balance is implicated in neuropsychiatric and neurodevelopmental disorders, but the underlying genetic etiology remains poorly understood. Copy number variations in CYFIP1 are associated with autism, schizophrenia, and intellectual disability, but its role in regulating synaptic inhibition or E/I balance remains unclear. We show that CYFIP1, and the paralog CYFIP2, are enriched at inhibitory postsynaptic sites. While CYFIP1 or CYFIP2 upregulation increases excitatory synapse number and the frequency of miniature excitatory postsynaptic currents (mEPSCs), it has the opposite effect at inhibitory synapses, decreasing their size and the amplitude of miniature inhibitory postsynaptic currents (mIPSCs). Contrary to CYFIP1 upregulation, its loss in vivo, upon conditional knockout in neocortical principal cells, increases expression of postsynaptic GABAA receptor β2/3-subunits and neuroligin 3, enhancing synaptic inhibition. Thus, CYFIP1 dosage can bi-directionally impact inhibitory synaptic structure and function, potentially leading to altered E/I balance and circuit dysfunction in CYFIP1-associated neurological disorders. CYFIP1 and CYFIP2 are enriched at inhibitory synapses. CYFIP1 upregulation differentially disrupts inhibitory and excitatory synapses. Conditional loss of CYFIP1 alters neuroligin 3 and GABAAR β-subunits expression. Loss of CYFIP1 increases inhibitory synaptic clusters and hence mIPSC amplitude.
Collapse
Affiliation(s)
- Elizabeth C Davenport
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Blanka R Szulc
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - James Drew
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - James Taylor
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Toby Morgan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nathalie F Higgs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
47
|
Dong X, Jin S, Shao Z. Glia Promote Synaptogenesis through an IQGAP PES-7 in C. elegans. Cell Rep 2020; 30:2614-2626.e2. [PMID: 32101740 DOI: 10.1016/j.celrep.2020.01.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 11/25/2022] Open
Abstract
Synapses are fundamental to the normal function of the nervous system. Glia play a pivotal role in regulating synaptic formation. However, how presynaptic neurons assemble synaptic structure in response to the glial signals remains largely unexplored. To address this question, we use cima-1 mutant C. elegans as an in vivo model, in which the astrocyte-like VCSC glial processes ectopically reach an asynaptic neurite region and promote presynaptic formation there. Through an RNAi screen, we find that the Rho GTPase CDC-42 and IQGAP PES-7 are required in presynaptic neurons for VCSC glia-induced presynaptic formation. In addition, we find that cdc-42 and pes-7 are also required for normal synaptogenesis during postembryonic developmental stages. PES-7 activated by CDC-42 promotes presynaptic formation, most likely through regulating F-actin assembly. Given the evolutionary conservation of CDC-42 and IQGAPs, we speculate that our findings in C. elegans apply to vertebrates.
Collapse
Affiliation(s)
- Xiaohua Dong
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuhan Jin
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiyong Shao
- Department of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
48
|
Martin-Peña A, Ferrus A. CCB is Involved in Actin-Based Axonal Transport of Selected Synaptic Proteins. J Neurosci 2020; 40:542-556. [PMID: 31754011 PMCID: PMC6961990 DOI: 10.1523/jneurosci.0915-18.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/21/2022] Open
Abstract
Synapse formation, maturation, and turnover require a finely regulated transport system that delivers selected cargos to specific synapses. However, the supporting mechanisms of this process are not fully understood. The present study unravels a new molecular system for vesicle-based axonal transport of proteins in male and female flies (Drosophila melanogaster). Here, we identify the gene CG14579 as the transcription unit corresponding to the regulatory mutations known as central complex broad (ccb). These mutations were previously isolated for their morphological phenotype in R-neurons of the ellipsoid body, a component of the central complex. Mutant axons from R-neurons fail to cross the midline, which is indicative of an aberrant composition of the growth cone. However, the molecular mechanism remained to be deciphered. In this manuscript, we show that CCB is involved in axonal trafficking of FasII and synaptobrevin, but not syntaxin. These results suggest that axonal transport of certain proteins is required for the correct pathfinding of R-neurons. We further investigated the molecular network supporting the CCB system and found that CCB colocalizes and coimmunoprecipitates with Rab11. Epistasis studies indicated that Rab11 is positioned downstream of CCB within this axonal transport system. Interestingly, ccb also interacts with actin and the actin nucleator spire The data revealed that this interaction plays a key role in the development of axonal connections within the ellipsoid body. We propose that the CCB/Rab11/SPIRE system regulates axonal trafficking of synaptic proteins required for proper connectivity and synaptic function.SIGNIFICANCE STATEMENT Proper function of the nervous system requires the establishment of mature, functional synapses. Differential protein composition in the synapse enables optimal performance of cognitive tasks. Therefore, it is critical to have a finely regulated transport system to deliver selected synaptic proteins to synapses. Remarkably, impairments in cytoskeleton-based protein-transport systems often underlie cognitive deficits, such as those associated with aging and neurodegenerative diseases. This study reveals that CCB is part of a novel transport system that delivers certain synaptic proteins via the actin cytoskeleton within the Rab11-related domain of slow recycling endosomes.
Collapse
Affiliation(s)
- Alfonso Martin-Peña
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Madrid 28002, Spain,
- Department of Neurology, and
- Center for Smell and Taste, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611
| | - Alberto Ferrus
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Madrid 28002, Spain,
| |
Collapse
|
49
|
Hendi A, Kurashina M, Mizumoto K. Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans. Cell Mol Life Sci 2019; 76:2719-2738. [PMID: 31037336 PMCID: PMC11105629 DOI: 10.1007/s00018-019-03109-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Precise neuronal wiring is critical for the function of the nervous system and is ultimately determined at the level of individual synapses. Neurons integrate various intrinsic and extrinsic cues to form synapses onto their correct targets in a stereotyped manner. In the past decades, the nervous system of nematode (Caenorhabditis elegans) has provided the genetic platform to reveal the genetic and molecular mechanisms of synapse formation and specificity. In this review, we will summarize the recent discoveries in synapse formation and specificity in C. elegans.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
50
|
Anbalagan S, Blechman J, Gliksberg M, Gordon L, Rotkopf R, Dadosh T, Shimoni E, Levkowitz G. Robo2 regulates synaptic oxytocin content by affecting actin dynamics. eLife 2019; 8:45650. [PMID: 31180321 PMCID: PMC6590984 DOI: 10.7554/elife.45650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/08/2019] [Indexed: 12/28/2022] Open
Abstract
The regulation of neuropeptide level at the site of release is essential for proper neurophysiological functions. We focused on a prominent neuropeptide, oxytocin (OXT) in the zebrafish as an in vivo model to visualize and quantify OXT content at the resolution of a single synapse. We found that OXT-loaded synapses were enriched with polymerized actin. Perturbation of actin filaments by either cytochalasin-D or conditional Cofilin expression resulted in decreased synaptic OXT levels. Genetic loss of robo2 or slit3 displayed decreased synaptic OXT content and robo2 mutants displayed reduced mobility of the actin probe Lifeact-EGFP in OXT synapses. Using a novel transgenic reporter allowing real-time monitoring of OXT-loaded vesicles, we show that robo2 mutants display slower rate of vesicles accumulation. OXT-specific expression of dominant-negative Cdc42, which is a key regulator of actin dynamics and a downstream effector of Robo2, led to a dose-dependent increase in OXT content in WT, and a dampened effect in robo2 mutants. Our results link Slit3-Robo2-Cdc42, which controls local actin dynamics, with the maintenance of synaptic neuropeptide levels.
Collapse
Affiliation(s)
- Savani Anbalagan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Gliksberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ludmila Gordon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, LSCF, Weizmann Institute of Science, Rehovot, Israel.,Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|