1
|
Zhong S, Lan Z, Qu LJ. Ingenious Male-Female Communication Ensures Successful Double Fertilization in Angiosperms. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:401-431. [PMID: 39952677 DOI: 10.1146/annurev-arplant-083123-071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The colonization of land by plants marked a pivotal transformation in terrestrial ecosystems. In order to adapt to the terrestrial environment, angiosperms, which dominate the terrestrial flora with around 300,000 species, have evolved sophisticated mechanisms for sexual reproduction involving intricate interactions between male and female structures, starting from pollen deposition on the stigma and culminating in double fertilization within the ovule. The pollen tube plays a crucial role by navigating through female tissues to deliver sperm cells. The molecular intricacies of these male-female interactions, involving numerous signaling pathways and regulatory proteins, have been extensively studied over the past two decades. This review summarizes recent findings on the regulatory mechanisms of these male-female interactions in angiosperms. We aim to provide a comprehensive understanding of plant reproductive biology and highlight the implications of these mechanisms for crop improvement and the development of new agricultural technologies.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing, China;
| | - Zijun Lan
- State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing, China;
| | - Li-Jia Qu
- State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing, China;
| |
Collapse
|
2
|
Chen J, Wang H, Wang J, Zheng X, Qu W, Fang H, Wang S, He L, Hao S, Dresselhaus T. Fertilization-induced synergid cell death by RALF12-triggered ROS production and ethylene signaling. Nat Commun 2025; 16:3059. [PMID: 40155397 PMCID: PMC11953305 DOI: 10.1038/s41467-025-58246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Fertilization-dependent elimination of the persistent synergid cell is essential to block supernumerary pollen tubes and thus to avoid polyspermy in flowering plants. Little is known about the molecular mechanisms ensuring timely induction and execution of synergid cell death. We analyzed manually isolated maize synergid cells along their degeneration and show that they are gland cells expressing batteries of genes encoding small secreted proteins under control of the MYB98 transcription factor. This network is down-regulated after fertilization, while genes involved in reactive oxygen species (ROS) production, ethylene biosynthesis and response, senescence, and oxidative stress regulation are induced before synergid elimination and its ultimate fusion with the endosperm. We further show that the fertilization-induced RALF12 peptide specifically triggers mitochondrial ROS and apoptosis, while ethylene promotes synergid degeneration. In conclusion, this study sheds light on developmental programmed cell death (dPCD) in plants and provides a unique resource to discover unknown PCD regulators.
Collapse
Affiliation(s)
- Junyi Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China.
| | - Huan Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Jinlin Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xixi Zheng
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Wantong Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Huijian Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Shuang Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Le He
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Shuang Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Simonini S. Regulation of cell cycle in plant gametes: when is the right time to divide? Development 2025; 152:dev204217. [PMID: 39831611 PMCID: PMC11829769 DOI: 10.1242/dev.204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cell division is a fundamental process shared across diverse life forms, from yeast to humans and plants. Multicellular organisms reproduce through the formation of specialized types of cells, the gametes, which at maturity enter a quiescent state that can last decades. At the point of fertilization, signalling lifts the quiescent state and triggers cell cycle reactivation. Studying how the cell cycle is regulated during plant gamete development and fertilization is challenging, and decades of research have provided valuable, yet sometimes contradictory, insights. This Review summarizes the current understanding of plant cell cycle regulation, gamete development, quiescence, and fertilization-triggered reactivation.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH8008, Zurich, Switzerland
| |
Collapse
|
4
|
Wang W, Xiong H, Sun MX. Gamete activation for fertilization and seed development in flowering plants. Curr Top Dev Biol 2024; 162:1-31. [PMID: 40180506 DOI: 10.1016/bs.ctdb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Double fertilization is a defining feature of flowering plants, in which two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to trigger embryogenesis and endosperm development. Gamete activation before fertilization is essential for the success of fertilization, while gamete activation after fertilization is the prerequisite for embryo and endosperm development. The two phases of activation are an associated and continuous process. In this review, we focus on current understanding of gamete activation both before and after fertilization in flowering plants, summarize and discuss the detailed cellular and molecular mechanisms underlying gamete activation for fertilization or initiation of embryogenesis and endosperm development.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R. China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, P.R. China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R. China.
| |
Collapse
|
5
|
Xue J, Du Q, Yang F, Chen LY. The emerging role of cysteine-rich peptides in pollen-pistil interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6228-6243. [PMID: 39126383 DOI: 10.1093/jxb/erae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Unlike early land plants, flowering plants have evolved a pollen tube that transports a pair of non-motile sperm cells to the female gametophyte. This process, known as siphonogamy, was first observed in gymnosperms and later became prevalent in angiosperms. However, the precise molecular mechanisms underlying the male-female interactions remain enigmatic. From the landing of the pollen grain on the stigma to gamete fusion, the male part needs to pass various tests: how does the stigma distinguish between compatible and incompatible pollen? what mechanisms guide the pollen tube towards the ovule? what factors trigger pollen tube rupture? how is polyspermy prevented? and how does the sperm cell ultimately reach the egg? Successful male-female communication is essential for surmounting these challenges, with cysteine-rich peptides (CRPs) playing a pivotal role in this dialogue. In this review, we summarize the characteristics of four distinct classes of CRPs, systematically review recent progress in the role of CRPs in four crucial stages of pollination and fertilization, consider potential applications of this knowledge in crop breeding, and conclude by suggesting avenues for future research.
Collapse
Affiliation(s)
- Jiao Xue
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Du
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fangfang Yang
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Yu Chen
- Fujian Provincial Key laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Zheng S, Wang F, Liu Z, Zhang H, Zhang L, Chen D. The Role of Female and Male Genes in Regulating Pollen Tube Guidance in Flowering Plants. Genes (Basel) 2024; 15:1367. [PMID: 39596567 PMCID: PMC11593715 DOI: 10.3390/genes15111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, fertilization is a complex process governed by precise communication between the male and female gametophytes. This review focuses on the roles of various female gametophyte cells-synergid, central, and egg cells-in facilitating pollen tube guidance and ensuring successful fertilization. Synergid cells play a crucial role in attracting the pollen tube, while the central cell influences the direction of pollen tube growth, and the egg cell is responsible for preventing polyspermy, ensuring correct fertilization. The review also examines the role of the pollen tube in this communication, highlighting the mechanisms involved in its growth regulation, including the importance of pollen tube receptors, signal transduction pathways, cell wall dynamics, and ion homeostasis. The Ca2+ concentration gradient is identified as a key factor in guiding pollen tube growth toward the ovule. Moreover, the review briefly compares these communication processes in angiosperms with those in non-flowering plants, such as mosses, ferns, and early gymnosperms, providing evolutionary insights into gametophytic signaling. Overall, this review synthesizes the current understanding of male-female gametophyte interactions and outlines future directions for research in plant reproductive biology.
Collapse
Affiliation(s)
- Siyuan Zheng
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Feng Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zehui Liu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| | - Hongbin Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
| | - Liangsheng Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Dan Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| |
Collapse
|
7
|
Huang W, Tan C, Guo H. Ethylene in fruits: beyond ripening control. HORTICULTURE RESEARCH 2024; 11:uhae229. [PMID: 39415973 PMCID: PMC11480664 DOI: 10.1093/hr/uhae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024]
Abstract
Fruits are a rich source of nutrients, minerals, and dietary fibers for both humans and animals. While the gaseous phytohormone ethylene is well-known for its role in controlling fruit ripening, there is growing evidence that ethylene also plays crucial roles in regulating other developmental processes of fruits, such as sex determination, fruit set, and fruit growth. In this review, we aim to revisit these findings from various species like cucumber, melon, tomato, rice, maize, and more. These studies not only enhance our understanding of ethylene's function in fruits but also highlight the potential for manipulating ethylene to improve crops. Furthermore, we discuss recent studies that show the ethylene precursor ACC (1-AMINOCYCLOPROPANE-1-CARBOXYLATE), and the ethylene signaling components EIN2 (ETHYLENE INSENSITIVE2) and EIN3 (ETHYLENE INSENSITIVE3) have ethylene-independent function in specific conditions. This phenomenon, combined with findings of dosage-dependent ethylene functions in certain conditions, highlights the importance of analyzing mutants with completely blocked ethylene pathways in different species at specific developmental stages and tissue types. Overall, this review offers a timely and essential summary of ethylene's role in sex determination, fruit formation, and fruit growth, which could be beneficial for horticulture crop breeding.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agricultural, BGI Research, Shenzhen 518083, China
- BGI Bioverse, Shenzhen 518083, China
| | - Cong Tan
- BGI Bioverse, Shenzhen 518083, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
8
|
Meng JG, Li SZ, Li HJ. Central cell: the key to determine persistent pollen tube attraction or termination. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2030-2032. [PMID: 38733514 DOI: 10.1007/s11427-023-2534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Jiang-Guo Meng
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shi-Zhen Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Mizuta Y, Sakakibara D, Nagahara S, Kaneshiro I, Nagae TT, Kurihara D, Higashiyama T. Deep imaging reveals dynamics and signaling in one-to-one pollen tube guidance. EMBO Rep 2024; 25:2529-2549. [PMID: 38773320 PMCID: PMC11169409 DOI: 10.1038/s44319-024-00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024] Open
Abstract
In the pistil of flowering plants, each ovule usually associates with a single pollen tube for fertilization. This one-to-one pollen tube guidance, which contributes to polyspermy blocking and efficient seed production, is largely different from animal chemotaxis of many sperms to one egg. However, the functional mechanisms underlying the directional cues and polytubey blocks in the depths of the pistil remain unknown. Here, we develop a two-photon live imaging method to directly observe pollen tube guidance in the pistil of Arabidopsis thaliana, clarifying signaling and cellular behaviors in the one-to-one guidance. Ovules are suggested to emit multiple signals for pollen tubes, including an integument-dependent directional signal that reaches the inner surface of the septum and adhesion signals for emerged pollen tubes on the septum. Not only FERONIA in the septum but ovular gametophytic FERONIA and LORELEI, as well as FERONIA- and LORELEI-independent repulsion signal, are involved in polytubey blocks on the ovular funiculus. However, these funicular blocks are not strictly maintained in the first 45 min, explaining previous reports of polyspermy in flowering plants.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| | - Daigo Sakakibara
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Ikuma Kaneshiro
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Takuya T Nagae
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Kurihara
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bukyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
10
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Binmöller L, Volkert C, Kiefer C, Zühl L, Slawinska MW, Loreth A, Nauerth BH, Ibberson D, Martinez R, Mandakova TM, Zipper R, Schmidt A. Differential expression and evolutionary diversification of RNA helicases in Boechera sexual and apomictic reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2451-2469. [PMID: 38263359 DOI: 10.1093/jxb/erae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
In higher plants, sexual reproduction is characterized by meiosis of the first cells of the germlines, and double fertilization of the egg and central cell after gametogenesis. In contrast, in apomicts of the genus Boechera, meiosis is omitted or altered and only the central cell requires fertilization, while the embryo forms parthenogenetically from the egg cell. To deepen the understanding of the transcriptional basis underlying these differences, we applied RNA-seq to compare expression in reproductive tissues of different Boechera accessions. This confirmed previous evidence of an enrichment of RNA helicases in plant germlines. Furthermore, few RNA helicases were differentially expressed in female reproductive ovule tissues harboring mature gametophytes from apomictic and sexual accessions. For some of these genes, we further found evidence for a complex recent evolutionary history. This included a homolog of Arabidopsis thaliana FASCIATED STEM4 (FAS4). In contrast to AtFAS4, which is a single-copy gene, FAS4 is represented by three homologs in Boechera, suggesting a potential for subfunctionalization to modulate reproductive development. To gain first insights into functional roles of FAS4, we studied Arabidopsis lines carrying mutant alleles. This identified the crucial importance of AtFAS4 for reproduction, as we observed developmental defects and arrest during male and female gametogenesis.
Collapse
Affiliation(s)
- Laura Binmöller
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Christopher Volkert
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Christiane Kiefer
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Luise Zühl
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Magdalena W Slawinska
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Anna Loreth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Berit H Nauerth
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, CellNetworks Excellence Cluster, Heidelberg University, Im Neuenheimer Feld 267, D-69120 Heidelberg, Germany
| | - Rafael Martinez
- Centre for Organismal Studies Heidelberg, Department of Developmental Biology, Heidelberg University, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany
| | - Terezie M Mandakova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Reinhard Zipper
- Institute of Biology, Plant Evolutionary Biology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany
| | - Anja Schmidt
- Centre for Organismal Studies Heidelberg, Department of Biodiversity and Plant Systematics, Heidelberg University, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
- Institute of Biology, Plant Evolutionary Biology, University of Hohenheim, Garbenstrasse 30, D-70599 Stuttgart, Germany
| |
Collapse
|
12
|
Matsumoto H, Ueda M. Polarity establishment in the plant zygote at a glance. J Cell Sci 2024; 137:jcs261809. [PMID: 38436556 DOI: 10.1242/jcs.261809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
The complex structures of multicellular organisms originate from a unicellular zygote. In most angiosperms, including Arabidopsis thaliana, the zygote is distinctly polar and divides asymmetrically to produce an apical cell, which generates the aboveground part of the plant body, and a basal cell, which generates the root tip and extraembryonic suspensor. Thus, zygote polarity is pivotal for establishing the apical-basal axis running from the shoot apex to the root tip of the plant body. The molecular mechanisms and spatiotemporal dynamics behind zygote polarization remain elusive. However, advances in live-cell imaging of plant zygotes have recently made significant insights possible. In this Cell Science at a Glance article and the accompanying poster, we summarize our understanding of the early steps in apical-basal axis formation in Arabidopsis, with a focus on de novo transcriptional activation after fertilization and the intracellular dynamics leading to the first asymmetric division of the zygote.
Collapse
Affiliation(s)
- Hikari Matsumoto
- Graduate School of Life Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Sendai, 980-8578, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, Sendai, 980-8578, Japan
| |
Collapse
|
13
|
Baillie AL, Sloan J, Qu LJ, Smith LM. Signalling between the sexes during pollen tube reception. TRENDS IN PLANT SCIENCE 2024; 29:343-354. [PMID: 37640641 DOI: 10.1016/j.tplants.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
Plant reproduction is a complex, highly-coordinated process in which a single, male germ cell grows through the maternal reproductive tissues to reach and fertilise the egg cell. Focussing on Arabidopsis thaliana, we review signalling between male and female partners which is important throughout the pollen tube journey, especially during pollen tube reception at the ovule. Numerous receptor kinases and their coreceptors are implicated in signal perception in both the pollen tube and synergid cells at the ovule entrance, and several specific peptide and carbohydrate ligands for these receptors have recently been identified. Clarifying the interplay between these signals and the downstream responses they instigate presents a challenge for future research and may help to illuminate broader principles of plant cell-cell communication.
Collapse
Affiliation(s)
- Alice L Baillie
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jen Sloan
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Lisa M Smith
- Plants, Photosynthesis, and Soil Research Cluster, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
14
|
Quiroz LF, Gondalia N, Brychkova G, McKeown PC, Spillane C. Haploid rhapsody: the molecular and cellular orchestra of in vivo haploid induction in plants. THE NEW PHYTOLOGIST 2024; 241:1936-1949. [PMID: 38180262 DOI: 10.1111/nph.19523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
In planta haploid induction (HI), which reduces the chromosome number in the progeny after fertilization, has garnered increasing attention for its significant potential in crop breeding and genetic research. Despite the identification of several natural and synthetic HI systems in different plant species, the molecular and cellular mechanisms underlying these HI systems remain largely unknown. This review synthesizes the current understanding of HI systems in plants (with a focus on genes and molecular mechanisms involved), including the molecular and cellular interactions which orchestrate the HI process. As most HI systems can function across taxonomic boundaries, we particularly discuss the evidence for conserved mechanisms underlying the process. These include mechanisms involved in preserving chromosomal integrity, centromere function, gamete communication and/or fusion, and maintenance of karyogamy. While significant discoveries and advances on haploid inducer systems have arisen over the past decades, we underscore gaps in understanding and deliberate on directions for further research for a more comprehensive understanding of in vivo HI processes in plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| |
Collapse
|
15
|
Seidel T, Artmann PJ, Gkekas I, Illies F, Baack AL, Viefhues M. Microfluidic Single-Cell Study on Arabidopsis thaliana Protoplast Fusion-New Insights on Timescales and Reversibilities. PLANTS (BASEL, SWITZERLAND) 2024; 13:295. [PMID: 38256848 PMCID: PMC10820889 DOI: 10.3390/plants13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are omnipotent and breeding of new varieties can be achieved by protoplast fusion. Such fusions can be achieved by treatment with poly(ethylene glycol) or by applying an electric field. Microfluidic devices allow for controlled conditions and targeted manipulation of small batches of cells down to single-cell analysis. To provide controlled conditions for protoplast fusions and achieve high reproducibility, we developed and characterized a microfluidic device to reliably trap some Arabidopsis thaliana protoplasts and induced cell fusion by controlled addition of poly(ethylene glycol) (PEG, with a molecular weight of 6000). Experiments were conducted to determine the survival rate of isolated protoplasts in our microfluidic system. Afterward, PEG-induced fusion was studied. Our results indicate that the following fusion parameters had a significant impact on the fusion efficiency and duration: PEG concentration, osmolality of solution and flow velocity. A PEG concentration below 10% led to only partial fusion. The osmolality of the PEG fusion solution was found to strongly impact the fusion process; complete fusion of two source cells sufficiently took part in slightly hyper-osmotic solutions, whereas iso-osmotic solutions led to only partial fusion at a 20% PEG concentration. We observed accelerated fusion for higher fluid velocities. Until this study, it was common sense that fusion is one-directional, i.e., once two cells are fused into one cell, they stay fused. Here, we present for the first time the reversible fusion of protoplasts. Our microfluidic device paves the way to a deeper understanding of the kinetics and processes of cell fusion.
Collapse
Affiliation(s)
- Thorsten Seidel
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Philipp Johannes Artmann
- Experimental Biophysics and Applied Nanosciences, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Ioannis Gkekas
- Experimental Biophysics and Applied Nanosciences, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Franziska Illies
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Experimental Biophysics and Applied Nanosciences, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Anna-Lena Baack
- Dynamic Cell Imaging, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Martina Viefhues
- Experimental Biophysics and Applied Nanosciences, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
16
|
Voichek Y, Hurieva B, Michaud C, Schmücker A, Vergara Z, Desvoyes B, Gutierrez C, Nizhynska V, Jaegle B, Borg M, Berger F, Nordborg M, Ingouff M. Cell cycle status of male and female gametes during Arabidopsis reproduction. PLANT PHYSIOLOGY 2023; 194:412-421. [PMID: 37757882 PMCID: PMC10756760 DOI: 10.1093/plphys/kiad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Fertilization in Arabidopsis (Arabidopsis thaliana) is a highly coordinated process that begins with a pollen tube delivering the 2 sperm cells into the embryo sac. Each sperm cell can then fertilize either the egg or the central cell to initiate embryo or endosperm development, respectively. The success of this double fertilization process requires a tight cell cycle synchrony between the male and female gametes to allow karyogamy (nuclei fusion). However, the cell cycle status of the male and female gametes during fertilization remains elusive as DNA quantification and DNA replication assays have given conflicting results. Here, to reconcile these results, we quantified the DNA replication state by DNA sequencing and performed microscopic analyses of fluorescent markers covering all phases of the cell cycle. We show that male and female Arabidopsis gametes are both arrested prior to DNA replication at maturity and initiate their DNA replication only during fertilization.
Collapse
Affiliation(s)
- Yoav Voichek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Bohdana Hurieva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | | | - Anna Schmücker
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Zaida Vergara
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | | | | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Benjamin Jaegle
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Mathieu Ingouff
- DIADE, IRD, CIRAD, University Montpellier, Montpellier, France
| |
Collapse
|
17
|
Wu X, Xie L, Sun X, Wang N, Finnegan EJ, Helliwell C, Yao J, Zhang H, Wu X, Hands P, Lu F, Ma L, Zhou B, Chaudhury A, Cao X, Luo M. Mutation in Polycomb repressive complex 2 gene OsFIE2 promotes asexual embryo formation in rice. NATURE PLANTS 2023; 9:1848-1861. [PMID: 37814022 PMCID: PMC10654051 DOI: 10.1038/s41477-023-01536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Prevention of autonomous division of the egg apparatus and central cell in a female gametophyte before fertilization ensures successful reproduction in flowering plants. Here we show that rice ovules of Polycomb repressive complex 2 (PRC2) Osfie1 and Osfie2 double mutants exhibit asexual embryo and autonomous endosperm formation at a high frequency, while ovules of single Osfie2 mutants display asexual pre-embryo-like structures at a lower frequency without fertilization. Earlier onset, higher penetrance and better development of asexual embryos in the double mutants compared with those in Osfie2 suggest that the autonomous endosperm facilitated asexual embryo development. Transcriptomic analysis showed that male genome-expressed OsBBM1 and OsWOX8/9 were activated in the asexual embryos. Similarly, the maternal alleles of the paternally expressed imprinted genes were activated in the autonomous endosperm, suggesting that the egg apparatus and central cell convergently adopt PRC2 to maintain the non-dividing state before fertilization, possibly through silencing of the maternal alleles of male genome-expressed genes.
Collapse
Affiliation(s)
- Xiaoba Wu
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi, P. R. China
| | - Xizhe Sun
- The State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, P. R. China
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, P. R. China
| | - E Jean Finnegan
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Chris Helliwell
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, P. R. China
| | - Phil Hands
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lisong Ma
- The State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, P. R. China
- Division of Plant Science, Research School of Biology, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Bing Zhou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Abed Chaudhury
- Krishan Foundation Pty Ltd, Canberra, Australian Capital Territory, Australia
| | - Xiaofeng Cao
- University of Chinese Academy of Sciences, Beijing, P. R. China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Ming Luo
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
18
|
Ogawa ST, Kessler SA. Update on signaling pathways regulating polarized intercellular communication in Arabidopsis reproduction. PLANT PHYSIOLOGY 2023; 193:1732-1744. [PMID: 37453128 DOI: 10.1093/plphys/kiad414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Sienna T Ogawa
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47905, USA
| | - Sharon A Kessler
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47905, USA
| |
Collapse
|
19
|
Dresselhaus T, van der Linde K. Plant reproduction: Fertilization SALvaged by the central cell. Curr Biol 2023; 33:R1013-R1015. [PMID: 37816321 DOI: 10.1016/j.cub.2023.08.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Flowering plants evolved glandular synergid cells assisting female gametes to attract pollen tubes carrying sperm cells. A recent study shows how central cells serve as a back-up to ensure pollen tube attraction and reproductive success in the absence of the assistants.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| | - Karina van der Linde
- Cell Biology and Plant Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
20
|
Meng JG, Xu YJ, Wang WQ, Yang F, Chen SY, Jia PF, Yang WC, Li HJ. Central-cell-produced attractants control fertilization recovery. Cell 2023; 186:3593-3605.e12. [PMID: 37516107 DOI: 10.1016/j.cell.2023.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/31/2023]
Abstract
Animal fertilization relies on hundreds of sperm racing toward the egg, whereas, in angiosperms, only two sperm cells are delivered by a pollen tube to the female gametes (egg cell and central cell) for double fertilization. However, unsuccessful fertilization under this one-pollen-tube design can be detrimental to seed production and plant survival. To mitigate this risk, unfertilized-gamete-controlled extra pollen tube entry has been evolved to bring more sperm cells and salvage fertilization. Despite its importance, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we report that, in Arabidopsis, the central cell secretes peptides SALVAGER1 and SALVAGER2 in a directional manner to attract pollen tubes when the synergid-dependent attraction fails or is terminated by pollen tubes carrying infertile sperm cells. Moreover, loss of SALs impairs the fertilization recovery capacity of the ovules. Therefore, this research uncovers a female gamete-attraction system that salvages seed production for reproductive assurance.
Collapse
Affiliation(s)
- Jiang-Guo Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Jiao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qi Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Yan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ju Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Sugi N, Maruyama D. Exploring Novel Polytubey Reproduction Pathways Utilizing Cumulative Genetic Tools. PLANT & CELL PHYSIOLOGY 2023; 64:454-460. [PMID: 36943745 DOI: 10.1093/pcp/pcad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
In the anthers and ovaries of flowers, pollen grains and embryo sacs are produced with uniform cell compositions. This stable gametogenesis enables elaborate interactions between male and female gametophytes after pollination, forming the highly successful sexual reproduction system in flowering plants. As most ovules are fertilized with a single pollen tube, the resulting genome set in the embryo and endosperm is determined in a single pattern by independent fertilization of the egg cell and central cell by two sperm cells. However, if ovules receive four sperm cells from two pollen tubes, the expected options for genome sets in the developing seeds would more than double. In wild-type Arabidopsis thaliana plants, around 5% of ovules receive two pollen tubes. Recent studies have elucidated the abnormal fertilization in supernumerary pollen tubes and sperm cells related to polytubey, polyspermy, heterofertilization and fertilization recovery. Analyses of model plants have begun to uncover the mechanisms underlying this new pollen tube biology. Here, we review unusual fertilization phenomena and propose several breeding applications for flowering plants. These arguments contribute to the remodeling of plant reproduction, a challenging concept that alters typical plant fertilization by utilizing the current genetic toolbox.
Collapse
Affiliation(s)
- Naoya Sugi
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813 Japan
| |
Collapse
|
22
|
Luo M, Wu X, Xie L, Sun X, Wang N, Finnegan J, Helliwell C, Yao J, Zhang H, Wu X, Lu F, Ma L, Zhou B, Chaudhury A, Cao X, Hands P. Polycomb Repressive Complex 2 (PRC2) suppresses asexual embryo and autonomous endosperm formation in rice.. [DOI: 10.21203/rs.3.rs-1087314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Abstract
Prevention of autonomous division of the egg apparatus and central cell in a female gametophyte before fertilization ensures successful reproduction in flowering plants. Here we show that rice ovules with PRC2 Osfie1 and Osfie2 double mutations exhibit asexual embryo and autonomous endosperm formation at a high frequency, while ovules with a single Osfie2 mutation display asexual pre-embryo-like structures at a lower frequency without fertilization. Confocal microscopy images indicate that the asexual embryos were mainly derived from eggs in the double mutants, while the asexual pre-embryos likely originated from eggs or synergids. Early onsetting, higher penetrance and better development of asexual embryos in the double mutants compared with those in Osfie2 suggest that autonomous endosperm facilitated the asexual embryo development. Transcriptomic analysis showed pluripotency factors such as male genome expressed OsBBM1 and OsWOX8/9 were activated in the asexual embryos. Similarly, the maternal alleles of the paternally expressed imprinted genes were activated in the autonomous endosperm. Our results suggest that the egg apparatus and central cell convergently adopt PRC2 to suppresses asexual embryo and autonomous endosperm formation possibly through silencing male genome-expressed genes.
Collapse
Affiliation(s)
- Ming Luo
- CSIRO Agriculture and Food, Box 1700, ACT 2601, Australia
| | - Xiaoba Wu
- Institute of Botany, Chinese Academy of Sciences
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830046, P. R. China
| | - Xizhe Sun
- Division of Plant Science, Research School of Biology, the Australian National University, ACT 2601, Australia
| | - Ningning Wang
- Faculty of agronomy, Jilin Agricultural University, Changchun, 130118, P.R. China
| | - Jean Finnegan
- CSIRO Agriculture and Food, Box 1700, ACT 2601, Australia
| | | | | | - Hongyu Zhang
- Sate Key Laboratory of Gene Discovery and Utilization, Rice Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, P. R. China
| | | | - Falong Lu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Lisong Ma
- Division of Plant Science, Research School of Biology, the Australian National University, ACT 2601, Australia
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences; Beijing
| | | | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
| | - Phil Hands
- CSIRO Agriculture and Food, Box 1700, ACT 2601, Australia
| |
Collapse
|
23
|
Moreira D, Kaur D, Pereira AM, Held MA, Showalter AM, Coimbra S. Type II arabinogalactans initiated by hydroxyproline-O-galactosyltransferases play important roles in pollen-pistil interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:371-389. [PMID: 36775989 DOI: 10.1111/tpj.16141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-GALT) enzymes which add the first galactose to Hyp residues in the protein backbone. Eight Hyp-GALT enzymes have been identified so far, and in the present work a mutant affecting five of these enzymes (galt2galt5galt7galt8galt9) was analyzed regarding the reproductive process. The galt25789 mutant presented a low seed set, and reciprocal crosses indicated a significant female gametophytic contribution to this mutant phenotype. Mutant ovules revealed abnormal callose accumulation inside the embryo sac and integument defects at the micropylar region culminating in defects in pollen tube reception. In addition, immunolocalization and biochemical analyses allowed the detection of a reduction in the amount of glucuronic acid in mutant ovary AGPs. Dramatically low amounts of high-molecular-weight Hyp-O-glycosides obtained following size exclusion chromatography of base-hydrolyzed mutant AGPs compared to the wild type indicated the presence of underglycosylated AGPs in the galt25789 mutant, while the monosaccharide composition of these Hyp-O-glycosides displayed no significant changes compared to the wild-type Hyp-O-glycosides. The present work demonstrates the functional importance of the carbohydrate moieties of AGPs in ovule development and pollen-pistil interactions.
Collapse
Affiliation(s)
- Diana Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Ana Marta Pereira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Michael A Held
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio, 45701, USA
| | - Allan M Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, Ohio, 45701-2979, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, 45701, USA
| | - Sílvia Coimbra
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
24
|
Jiang J, Qu LJ. Response to Zhang et al., 'do egg cell-secreted aspartic proteases promote gamete attachment?'. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:7-9. [PMID: 36625468 DOI: 10.1111/jipb.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Jiahao Jiang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
25
|
Yu TY, Xu CX, Li WJ, Wang B. Peptides/receptors signaling during plant fertilization. FRONTIERS IN PLANT SCIENCE 2022; 13:1090836. [PMID: 36589119 PMCID: PMC9797866 DOI: 10.3389/fpls.2022.1090836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Double fertilization is a unique and particularly complicated process for the generation alternation of angiosperms. Sperm cells of angiosperms lose the motility compared with that of gymnosperms. The sperm cells are passively carried and transported by the pollen tube for a long journey before targeting the ovule. Two sperm cells are released at the cleft between the egg and the central cell and fused with two female gametes to produce a zygote and endosperm, respectively, to accomplish the so-called double fertilization process. In this process, extensive communication and interaction occur between the male (pollen or pollen tube) and the female (ovule). It is suggested that small peptides and receptor kinases play critical roles in orchestrating this cell-cell communication. Here, we illuminate the understanding of phases in the process, such as pollen-stigma recognition, the hydration and germination of pollen grains, the growth, guidance, and rupture of tubes, the release of sperm cells, and the fusion of gametes, by reviewing increasing data recently. The roles of peptides and receptor kinases in signaling mechanisms underlying cell-cell communication were focused on, and directions of future studies were perspected in this review.
Collapse
|
26
|
Shin JM, Yuan L, Kawashima T. Live-cell imaging reveals the cellular dynamics in seed development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111485. [PMID: 36206961 DOI: 10.1016/j.plantsci.2022.111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Seed development in flowering plants is highly complex and governed by three genetically distinct tissues: the fertilization products, the diploid embryo and triploid endosperm, as well as the seed coat that has maternal origin. There are diverse cellular dynamics such as nuclear movement in gamete cells for fertilization, cell polarity establishment for embryo development, and multinuclear endosperm formation. These tissues also coordinate and synchronize the developmental timing for proper seed formation through cell-to-cell communications. Live-cell imaging using advanced microscopy techniques enables us to decipher the dynamics of these events. Especially, the establishment of a less-invasive semi-in vivo live-cell imaging approach has allowed us to perform time-lapse analyses for long period observation of Arabidopsis thaliana intact seed development dynamics. Here we highlight the recent trends of live-cell imaging for seed development and discuss where we are heading.
Collapse
Affiliation(s)
- Ji Min Shin
- Department of Plant and Soil Sciences, University of Kentucky, KY, USA; Kentucky Tobacco Research and Development Center, University of Kentucky, KY, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, KY, USA; Kentucky Tobacco Research and Development Center, University of Kentucky, KY, USA
| | | |
Collapse
|
27
|
Xie F, Vahldick H, Lin Z, Nowack M. Killing me softly - Programmed cell death in plant reproduction from sporogenesis to fertilization. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102271. [PMID: 35963096 PMCID: PMC7613566 DOI: 10.1016/j.pbi.2022.102271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Regulated or programmed cell death (RCD or PCD) is a fundamental biological principle integral to a considerable variety of functions in multicellular organisms. In plants, different PCD processes are part of biotic and abiotic stress responses, but also occur as an essential aspect of unperturbed plant development. PCD is particularly abundant during plant reproduction, eliminating unwanted or no longer needed cells, tissues, or organs in a precisely controlled manner. Failure in reproductive PCD can have detrimental consequences for plant reproduction. Here we shed a light on the latest research into PCD mechanisms in plant reproduction from sex determination over sporogenesis to pollination and fertilization.
Collapse
Affiliation(s)
- Fei Xie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Hannah Vahldick
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Zongcheng Lin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Moritz Nowack
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
28
|
Cheung AY, Duan Q, Li C, James Liu MC, Wu HM. Pollen-pistil interactions: It takes two to tangle but a molecular cast of many to deliver. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102279. [PMID: 36029655 DOI: 10.1016/j.pbi.2022.102279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Explosive advances have been made in the molecular understanding of pollen-pistil interactions that underlie reproductive success in flowering plants in the past three decades. Among the most notable is the discovery of pollen tube attractants [1∗,2∗]. The roles these molecules play in facilitating conspecific precedence thus promoting interspecific genetic isolation are also emerging [3-5]. Male-female interactions during the prezygotic phase and contributions from the male and female gametophytes have been comprehensively reviewed recently. Here, we focus on key advances in understanding the mechanistic underpinnings of how these interactions overcome barriers at various pollen-pistil interfaces along the pollen tube growth pathway to facilitate fertilization by desirable mates.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, China; College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
29
|
ROS homeostasis mediated by MPK4 and SUMM2 determines synergid cell death. Nat Commun 2022; 13:1746. [PMID: 35365652 PMCID: PMC8976062 DOI: 10.1038/s41467-022-29373-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
Sexual plant reproduction depends on the attraction of sperm-cell delivering pollen tubes (PT) by two synergids, followed by their programmed cell death (PCD) in Arabidopsis. Disruption of the mitogen-activated protein kinase 4 (MPK4) by pathogenic effectors activates the resistance protein (R) SUMM2-mediated immunity and cell death. Here we show that synergid preservation and reactive oxygen species (ROS) homeostasis are intimately linked and maintained by MPK4. In mpk4, ROS levels are increased and synergids prematurely undergo PCD before PT-reception. However, ROS scavengers and the disruption of SUMM2, in mpk4, restore ROS homeostasis, synergid maintenance and PT perception, demonstrating that the guardian of MPK4, SUMM2, triggers synergid-PCD. In mpk4/summ2, PTs show a feronia-like overgrowth phenotype. Our results show that immunity-associated PCD and synergid cell death during plant reproduction are regulated by MPK4 underscoring an underlying molecular mechanism for the suppression of plant reproduction during systemic R-mediated immunity. Synergid cells undergo programmed cell death following pollen tube reception and successful fertilization. Here the authors show that premature synergid cell death is prevented by the mitogen activated protein kinase MPK4 and the R protein SUMM2 which maintain ROS homeostasis in Arabidopsis.
Collapse
|
30
|
Li W, Li Q, Lyu M, Wang Z, Song Z, Zhong S, Gu H, Dong J, Dresselhaus T, Zhong S, Qu LJ. Lack of ethylene does not affect reproductive success and synergid cell death in Arabidopsis. MOLECULAR PLANT 2022; 15:354-362. [PMID: 34740849 PMCID: PMC9066556 DOI: 10.1016/j.molp.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 05/12/2023]
Abstract
The signaling pathway of the gaseous hormone ethylene is involved in plant reproduction, growth, development, and stress responses. During reproduction, the two synergid cells of the angiosperm female gametophyte both undergo programmed cell death (PCD)/degeneration but in a different manner: PCD/degeneration of one synergid facilitates pollen tube rupture and thereby the release of sperm cells, while PCD/degeneration of the other synergid blocks supernumerary pollen tubes. Ethylene signaling was postulated to participate in some of the synergid cell functions, such as pollen tube attraction and the induction of PCD/degeneration. However, ethylene-mediated induction of synergid PCD/degeneration and the role of ethylene itself have not been firmly established. Here, we employed the CRISPR/Cas9 technology to knock out the five ethylene-biosynthesis 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes and created Arabidopsis mutants free of ethylene production. The ethylene-free mutant plants showed normal triple responses when treated with ethylene rather than 1-aminocyclopropane-1-carboxylic acid, but had increased lateral root density and enlarged petal sizes, which are typical phenotypes of mutants defective in ethylene signaling. Using these ethylene-free plants, we further demonstrated that production of ethylene is not necessarily required to trigger PCD/degeneration of the two synergid cells, but certain components of ethylene signaling including transcription factors ETHYLENE-INSENSITIVE 3 (EIN3) and EIN3-LIKE 1 (EIL1) are necessary for the death of the persistent synergid cell.
Collapse
Affiliation(s)
- Wenhao Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qiyun Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Mohan Lyu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zihan Song
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Shangwei Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China.
| |
Collapse
|
31
|
Heydlauff J, Erbasol Serbes I, Vo D, Mao Y, Gieseking S, Nakel T, Harten T, Völz R, Hoffmann A, Groß-Hardt R. Dual and opposing roles of EIN3 reveal a generation conflict during seed growth. MOLECULAR PLANT 2022; 15:363-371. [PMID: 34848348 PMCID: PMC8837274 DOI: 10.1016/j.molp.2021.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 05/28/2023]
Abstract
Seed size critically affects grain yield of crops and hence represents a key breeding target. The development of embryo-nourishing endosperm is a key driver of seed expansion. We here report unexpected dual roles of the transcription factor EIN3 in regulating seed size. These EIN3 functions have remained largely undiscovered because they oppose each other. Capitalizing on the analysis of multiple ethylene biosynthesis mutants, we demonstrate that EIN3 represses endosperm and seed development in a pathway regulated by ethylene. We, in addition, provide evidence that EIN3-mediated synergid nucleus disintegration promotes endosperm expansion. Interestingly, synergid nucleus disintegration is not affected in various ethylene biosynthesis mutants, suggesting that this promoting function of EIN3 is independent of ethylene. Whereas the growth-inhibitory ethylene-dependent EIN3 action appears to be encoded by sporophytic tissue, the growth-promoting role of EIN3 is induced by fertilization, revealing a generation conflict that converges toward the key signaling component EIN3.
Collapse
Affiliation(s)
- Juliane Heydlauff
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Isil Erbasol Serbes
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Dieu Vo
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Yanbo Mao
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Sonja Gieseking
- ZMBP, University of Tübingen, Auf der Morgenstelle 32 72076 Tübingen, Germany
| | - Thomas Nakel
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Theresa Harten
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Ronny Völz
- ZMBP, University of Tübingen, Auf der Morgenstelle 32 72076 Tübingen, Germany
| | - Anja Hoffmann
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany
| | - Rita Groß-Hardt
- University of Bremen, Centre for Biomolecular Interactions Bremen (CBIB), Leobenerstrasse 5, 28359 Bremen, Germany.
| |
Collapse
|
32
|
Zhong S, Li L, Wang Z, Ge Z, Li Q, Bleckmann A, Wang J, Song Z, Shi Y, Liu T, Li L, Zhou H, Wang Y, Zhang L, Wu HM, Lai L, Gu H, Dong J, Cheung AY, Dresselhaus T, Qu LJ. RALF peptide signaling controls the polytubey block in Arabidopsis. Science 2022; 375:290-296. [PMID: 35050671 PMCID: PMC9040003 DOI: 10.1126/science.abl4683] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Fertilization of an egg by multiple sperm (polyspermy) leads to lethal genome imbalance and chromosome segregation defects. In Arabidopsis thaliana, the block to polyspermy is facilitated by a mechanism that prevents polytubey (the arrival of multiple pollen tubes to one ovule). We show here that FERONIA, ANJEA, and HERCULES RECEPTOR KINASE 1 receptor-like kinases located at the septum interact with pollen tube-specific RALF6, 7, 16, 36, and 37 peptide ligands to establish this polytubey block. The same combination of RALF (rapid alkalinization factor) peptides and receptor complexes controls pollen tube reception and rupture inside the targeted ovule. Pollen tube rupture releases the polytubey block at the septum, which allows the emergence of secondary pollen tubes upon fertilization failure. Thus, orchestrated steps in the fertilization process in Arabidopsis are coordinated by the same signaling components to guarantee and optimize reproductive success.
Collapse
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Ling Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zhijuan Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zengxiang Ge
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Qiyun Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Jizong Wang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Zihan Song
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Yihao Shi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Tianxu Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Luhan Li
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Huabin Zhou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yanyan Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Li Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center (Beijing), Beijing 100101, People’s Republic of China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- The National Plant Gene Research Center (Beijing), Beijing 100101, People’s Republic of China
| |
Collapse
|
33
|
Ajayi OO, Held MA, Showalter AM. Glucuronidation of type II arabinogalactan polysaccharides function in sexual reproduction of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:164-181. [PMID: 34726315 DOI: 10.1111/tpj.15562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Arabinogalactan proteins (AGPs) are complex, hyperglycosylated plant cell wall proteins with little known about the biological roles of their glycan moieties in sexual reproduction. Here, we report that GLCAT14A, GLCAT14B, and GLCAT14C, three enzymes responsible for the addition of glucuronic acid residues to AGPs, function in pollen development, polytubey block, and normal embryo development in Arabidopsis. Using biochemical and immunolabeling techniques, we demonstrated that the loss of function of the GLCAT14A, GLCAT14B, and GLCAT14C genes resulted in disorganization of the reticulate structure of the exine wall, abnormal development of the intine layer, and collapse of pollen grains in glcat14a/b and glcat14a/b/c mutants. Synchronous development between locules within the same anther was also lost in some glcat14a/b/c stamens. In addition, we observed excessive attraction of pollen tubes targeting glcat14a/b/c ovules, indicating that the polytubey block mechanism was compromised. Monosaccharide composition analysis revealed significant reductions in all sugars in glcat14a/b and glcat14a/b/c mutants except for arabinose and galactose, while immunolabeling showed decreased amounts of AGP sugar epitopes recognized by glcat14a/b and glcat14a/b/c mutants compared with the wild type. This work demonstrates the important roles that AG glucuronidation plays in Arabidopsis sexual reproduction and reproductive development.
Collapse
Affiliation(s)
- Oyeyemi O Ajayi
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| | - Michael A Held
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Allan M Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
34
|
Maryenti T, Kato N, Ichikawa M, Okamoto T. In Vitro Fertilization System Using Wheat Gametes by Electric Fusion. Methods Mol Biol 2022; 2484:259-273. [PMID: 35461457 DOI: 10.1007/978-1-0716-2253-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In vitro fertilization (IVF) systems using isolated gametes have been used to dissect post-fertilization events in angiosperms, as female plant gametophytes are deeply embedded within the ovaries. In addition, hybrid and polyploid zygotes can be produced by using IVF systems. Complete IVF systems of maize and rice, two out of three major energy-providing crops, have been established in order to acquire detailed knowledge of mechanisms of fertilization and early embryogenesis. Following in the footsteps of previous success, a wheat IVF system was developed to introduce the advantages of this technology to wheat research. Fusion of gametes was performed via a modified electrofusion method, and the zygote formed a cell wall and two nucleoli. The zygotes divided into symmetric two-celled embryos, globular-like embryos and multicellular club-shaped embryos which are mostly consistent with those in the embryos in planta. IVF-produced club-shaped embryos developed into compact embryonic calli and subsequently regenerated into fertile plants. In this chapter, we provide a detailed description of wheat IVF system that might become an important technique for generating new genotypes of wheat and/or new hybrids as well as for investigating fertilization-induced events in wheat.
Collapse
Affiliation(s)
- Tety Maryenti
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Norio Kato
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Masako Ichikawa
- Agri-Bio Research Center, KANEKA Corp., Iwata, Shizuoka, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| |
Collapse
|
35
|
Zhao L, Liu L, Liu Y, Dou X, Cai H, Aslam M, Hou Z, Jin X, Li Y, Wang L, Zhao H, Wang X, Sicard A, Qin Y. Characterization of germline development and identification of genes associated with germline specification in pineapple. HORTICULTURE RESEARCH 2021; 8:239. [PMID: 34719672 PMCID: PMC8558326 DOI: 10.1038/s41438-021-00669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 05/04/2023]
Abstract
Understanding germline specification in plants could be advantageous for agricultural applications. In recent decades, substantial efforts have been made to understand germline specification in several plant species, including Arabidopsis, rice, and maize. However, our knowledge of germline specification in many agronomically important plant species remains obscure. Here, we characterized the female germline specification and subsequent female gametophyte development in pineapple using callose staining, cytological, and whole-mount immunolocalization analyses. We also determined the male germline specification and gametophyte developmental timeline and observed male meiotic behavior using chromosome spreading assays. Furthermore, we identified 229 genes that are preferentially expressed at the megaspore mother cell (MMC) stage during ovule development and 478 genes that are preferentially expressed at the pollen mother cell (PMC) stage of anther development using comparative transcriptomic analysis. The biological functions, associated regulatory pathways and expression patterns of these genes were also analyzed. Our study provides a convenient cytological reference for exploring pineapple germline development and a molecular basis for the future functional analysis of germline specification in related plant species.
Collapse
Affiliation(s)
- Lihua Zhao
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Liping Liu
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhui Liu
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianying Dou
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanyang Cai
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Zhimin Hou
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingyue Jin
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Li
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Heming Zhao
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning, China
| | - Adrien Sicard
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Centre for Plant Biology, Uppsala, Sweden
| | - Yuan Qin
- College of Life Science, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
36
|
Wang H, Zhang S, Qu Y, Gao R, Xiao Y, Wang Z, Zhai R, Yang C, Xu L. Jasmonic Acid and Ethylene Participate in the Gibberellin-Induced Ovule Programmed Cell Death Process in Seedless Pear '1913' ( Pyrus hybrid). Int J Mol Sci 2021; 22:ijms22189844. [PMID: 34576007 PMCID: PMC8466629 DOI: 10.3390/ijms22189844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Seedless fruit is a feature appreciated by consumers. The ovule abortion process is highly orchestrated and controlled by numerous environmental and endogenous signals. However, the mechanisms underlying ovule abortion in pear remain obscure. Here, we found that gibberellins (GAs) have diverse functions during ovules development between seedless pear '1913' and seeded pear, and that GA4+7 activates a potential programmed cell death process in '1913' ovules. After hormone analyses, strong correlations were determined among jasmonic acid (JA), ethylene and salicylic acid (SA) in seedless and seeded cultivars, and GA4+7 treatments altered the hormone accumulation levels in ovules, resulting in significant correlations between GA and both JA and ethylene. Additionally, SA contributed to ovule abortion in '1913'. Exogenously supplying JA, SA or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid promoted 'Bartlett' seed death. The regulatory mechanism in which ethylene controls ovule death has been demonstrated; therefore, JA's role in regulating '1913' ovule abortion was investigated. A further study identified that the JA signaling receptor MYC2 bound the SENESCENCE-ASSOCIATED 39 promoter and triggered its expression to regulate ovule abortion. Thus, we established ovule abortion-related relationships between GA and the hormones JA, ethylene and SA, and we determined their synergistic functions in regulating ovule death.
Collapse
Affiliation(s)
- Huibin Wang
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Shichao Zhang
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Yingying Qu
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Rui Gao
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Yuxiong Xiao
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
- Correspondence: (Z.W.); (L.X.); Tel.: +86-29-8708-1023 (L.X.); Fax: +86-29-8708-2613 (L.X.)
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng Road. 3, Yangling, Xianyang 712100, China; (H.W.); (S.Z.); (Y.Q.); (R.G.); (Y.X.); (R.Z.); (C.Y.)
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road, Yangling, Xianyang 712100, China
- Correspondence: (Z.W.); (L.X.); Tel.: +86-29-8708-1023 (L.X.); Fax: +86-29-8708-2613 (L.X.)
| |
Collapse
|
37
|
Kim MJ, Jeon BW, Oh E, Seo PJ, Kim J. Peptide Signaling during Plant Reproduction. TRENDS IN PLANT SCIENCE 2021; 26:822-835. [PMID: 33715959 DOI: 10.1016/j.tplants.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
Plant signaling peptides are involved in cell-cell communication networks and coordinate a wide range of plant growth and developmental processes. Signaling peptides generally bind to receptor-like kinases, inducing their dimerization with co-receptors for signaling activation to trigger cellular signaling and biological responses. Fertilization is an important life event in flowering plants, involving precise control of cell-cell communications between male and female tissues. Peptide-receptor-like kinase-mediated signaling plays an important role in male-female interactions for successful fertilization in flowering plants. Here, we describe the recent findings on the functions and signaling pathways of peptides and receptors involved in plant reproduction processes including pollen germination, pollen tube growth, pollen tube guidance to the embryo sac, and sperm cell reception in female tissues.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Byeong Wook Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea; Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju 61186, Korea.
| |
Collapse
|
38
|
Takeuchi H. The role of diverse LURE-type cysteine-rich peptides as signaling molecules in plant reproduction. Peptides 2021; 142:170572. [PMID: 34004266 DOI: 10.1016/j.peptides.2021.170572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023]
Abstract
In angiosperm sexual reproduction, the male pollen tube undergoes a series of interactions with female tissues. For efficient growth and precise guidance, the pollen tube perceives extracellular ligands. In recent decades, various types of secreted cysteine-rich peptides (CRPs) have been identified as peptide ligands that regulate diverse angiosperm reproduction processes, including pollen tube germination, growth, guidance, and rupture. Notably, in two distant core eudicot plants, multiple LURE-type CRPs were found to be secreted from egg-accompanying synergid cells, and these CRPs act as a cocktail of pollen tube attractants for the final step of pollen tube guidance. LURE-type CRPs have species-preferential activity, even among close relatives, and exhibit remarkably divergent molecular evolution with conserved cysteine frameworks, demonstrating that they play a key role in species recognition in pollen tube guidance. In this review, I focus on "reproductive CRPs," particularly LURE-type CRPs, which underlie common but species-specific mechanisms in angiosperm sexual reproduction, and discuss their action, functional regulation, receptors, and evolution.
Collapse
Affiliation(s)
- Hidenori Takeuchi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
39
|
Yu X, Zhang X, Zhao P, Peng X, Chen H, Bleckmann A, Bazhenova A, Shi C, Dresselhaus T, Sun MX. Fertilized egg cells secrete endopeptidases to avoid polytubey. Nature 2021; 592:433-437. [PMID: 33790463 DOI: 10.1038/s41586-021-03387-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/24/2021] [Indexed: 11/09/2022]
Abstract
Upon gamete fusion, animal egg cells secrete proteases from cortical granules to establish a fertilization envelope as a block to polyspermy1-4. Fertilization in flowering plants is more complex and involves the delivery of two non-motile sperm cells by pollen tubes5,6. Simultaneous penetration of ovules by multiple pollen tubes (polytubey) is usually avoided, thus indirectly preventing polyspermy7,8. How plant egg cells regulate the rejection of extra tubes after successful fertilization is not known. Here we report that the aspartic endopeptidases ECS1 and ECS2 are secreted to the extracellular space from a cortical network located at the apical domain of the Arabidopsis egg cell. This reaction is triggered only after successful fertilization. ECS1 and ECS2 are exclusively expressed in the egg cell and transcripts are degraded immediately after gamete fusion. ECS1 and ESC2 specifically cleave the pollen tube attractor LURE1. As a consequence, polytubey is frequent in ecs1 ecs2 double mutants. Ectopic secretion of these endopeptidases from synergid cells led to a decrease in the levels of LURE1 and reduced the rate of pollen tube attraction. Together, these findings demonstrate that plant egg cells sense successful fertilization and elucidate a mechanism as to how a relatively fast post-fertilization block to polytubey is established by fertilization-induced degradation of attraction factors.
Collapse
Affiliation(s)
- Xiaobo Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Anastasiia Bazhenova
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
40
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 PMCID: PMC7997040 DOI: 10.1371/journal.pbio.3001123] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar–chalazal (distal–proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP–MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell–like gene expression profiles. Although in myb98, egg cell–specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell–specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type–specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants. The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Live-cell imaging and transcriptome analysis of single female gametophyte cell reveal novel insights into the dynamics and mechanisms of cell fate specifications in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- * E-mail: (TH); (DK)
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
- * E-mail: (TH); (DK)
| |
Collapse
|
41
|
Susaki D, Suzuki T, Maruyama D, Ueda M, Higashiyama T, Kurihara D. Dynamics of the cell fate specifications during female gametophyte development in Arabidopsis. PLoS Biol 2021; 19:e3001123. [PMID: 33770073 DOI: 10.1101/2020.04.07.023028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/29/2021] [Indexed: 05/22/2023] Open
Abstract
The female gametophytes of angiosperms contain cells with distinct functions, such as those that enable reproduction via pollen tube attraction and fertilization. Although the female gametophyte undergoes unique developmental processes, such as several rounds of nuclear division without cell plate formation and final cellularization, it remains unknown when and how the cell fate is determined during development. Here, we visualized the living dynamics of female gametophyte development and performed transcriptome analysis of individual cell types to assess the cell fate specifications in Arabidopsis thaliana. We recorded time lapses of the nuclear dynamics and cell plate formation from the 1-nucleate stage to the 7-cell stage after cellularization using an in vitro ovule culture system. The movies showed that the nuclear division occurred along the micropylar-chalazal (distal-proximal) axis. During cellularization, the polar nuclei migrated while associating with the forming edge of the cell plate, and then, migrated toward each other to fuse linearly. We also tracked the gene expression dynamics and identified that the expression of MYB98pro::GFP-MYB98, a synergid-specific marker, was initiated just after cellularization in the synergid, egg, and central cells and was then restricted to the synergid cells. This indicated that cell fates are determined immediately after cellularization. Transcriptome analysis of the female gametophyte cells of the wild-type and myb98 mutant revealed that the myb98 synergid cells had egg cell-like gene expression profiles. Although in myb98, egg cell-specific gene expression was properly initiated in the egg cells only after cellularization, but subsequently expressed ectopically in one of the 2 synergid cells. These results, together with the various initiation timings of the egg cell-specific genes, suggest complex regulation of the individual gametophyte cells, such as cellularization-triggered fate initiation, MYB98-dependent fate maintenance, cell morphogenesis, and organelle positioning. Our system of live-cell imaging and cell type-specific gene expression analysis provides insights into the dynamics and mechanisms of cell fate specifications in the development of female gametophytes in plants.
Collapse
Affiliation(s)
- Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Japan
- JST, PRESTO, Nagoya, Japan
| |
Collapse
|
42
|
Nagahara S, Takeuchi H, Higashiyama T. Polyspermy Block in the Central Cell During Double Fertilization of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 11:588700. [PMID: 33510743 PMCID: PMC7835324 DOI: 10.3389/fpls.2020.588700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/10/2020] [Indexed: 06/01/2023]
Abstract
During double fertilization in angiosperms, two male gametes (sperm cells), are released from a pollen tube into the receptive region between two female gametes; the egg cell and the central cell of the ovule. The sperm cells fertilize the egg cell and the central cell in a one-to-one manner to yield a zygote and an endosperm, respectively. The one-to-one distribution of the sperm cells to the two female gametes is strictly regulated, possibly via communication among the four gametes. Polyspermy block is the mechanism by which fertilized female gametes prevent fertilization by a secondary sperm cell, and has been suggested to operate in the egg cell rather than the central cell. However, whether the central cell also has the ability to avoid polyspermy during double fertilization remains unclear. Here, we assessed the one-to-one fertilization mechanism of the central cell by laser irradiation of the female gametes and live cell imaging of the fertilization process in Arabidopsis thaliana. We successfully disrupted an egg cell within the ovules by irradiation using a femtosecond pulse laser. In the egg-disrupted ovules, the central cell predominantly showed single fertilization by one sperm cell, suggesting that neither the egg cell nor its fusion with one sperm cell is necessary for one-to-one fertilization (i.e., monospermy) of the central cell. In addition, using tetraspore mutants possessing multiple sperm cell pairs in one pollen, we demonstrated that normal double fertilization was observed even when excess sperm cells were released into the receptive region between the female gametes. In ovules accepting four sperm cells, the egg cell never fused with more than one sperm cell, whereas half of the central cells fused with more than one sperm cell (i.e., polyspermy) even 1 h later. Our results suggest that the central cell can block polyspermy during double fertilization, although the central cell is more permissive to polyspermy than the egg cell. The potential contribution of polyspermy block by the central cell is discussed in terms of how it is involved in the one-to-one distribution of the sperm cells to two distinct female gametes.
Collapse
Affiliation(s)
- Shiori Nagahara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hidenori Takeuchi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Wang Y, Ye H, Bai J, Ren F. The regulatory framework of developmentally programmed cell death in floral organs: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:103-112. [PMID: 33307422 DOI: 10.1016/j.plaphy.2020.11.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/30/2020] [Indexed: 05/27/2023]
Abstract
Developmentally programmed cell death (dPCD) is a tightly controlled biological process. In recent years, vital roles of dPCD on regulating floral organ growth and development have been reported. It is well known that flower is an essential organ for reproduction and a turning point of plants' life cycle. Hence, uncovering the complex molecular networks which regulates dPCD processes in floral organs is utmost important. So far, our understanding of dPCD on floral organ growth and development is just starting. Herein, we summarize the important factors that involved in the tapetal degeneration, pollen tube rupture, receptive synergid cell death, nucellar degradation, and antipodal cell degradation. Meanwhile, the known factors that involved in transmitting tract formation and self-incompatibility-induced PCD were also introduced. Furthermore, the genes that associated with anther dehiscence and petal senescence and abscission were reviewed as well. The functions of various types of factors involved in floral dPCD processes are highlighted principally. The regulatory panorama described here can provide us some insights about flower-specific dPCD process.
Collapse
Affiliation(s)
- Yukun Wang
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| | - Hong Ye
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Jianfang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Fei Ren
- School of Agricultural Science and Engineering, Shaoguan University, 288 Daxue Road, Shaoguan, 512000, PR China.
| |
Collapse
|
44
|
Ali MF, Fatema U, Peng X, Hacker SW, Maruyama D, Sun MX, Kawashima T. ARP2/3-independent WAVE/SCAR pathway and class XI myosin control sperm nuclear migration in flowering plants. Proc Natl Acad Sci U S A 2020; 117:32757-32763. [PMID: 33288691 PMCID: PMC7768783 DOI: 10.1073/pnas.2015550117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
After eukaryotic fertilization, gamete nuclei migrate to fuse parental genomes in order to initiate development of the next generation. In most animals, microtubules control female and male pronuclear migration in the zygote. Flowering plants, on the other hand, have evolved actin filament (F-actin)-based sperm nuclear migration systems for karyogamy. Flowering plants have also evolved a unique double-fertilization process: two female gametophytic cells, the egg and central cells, are each fertilized by a sperm cell. The molecular and cellular mechanisms of how flowering plants utilize and control F-actin for double-fertilization events are largely unknown. Using confocal microscopy live-cell imaging with a combination of pharmacological and genetic approaches, we identified factors involved in F-actin dynamics and sperm nuclear migration in Arabidopsis thaliana (Arabidopsis) and Nicotiana tabacum (tobacco). We demonstrate that the F-actin regulator, SCAR2, but not the ARP2/3 protein complex, controls the coordinated active F-actin movement. These results imply that an ARP2/3-independent WAVE/SCAR-signaling pathway regulates F-actin dynamics in female gametophytic cells for fertilization. We also identify that the class XI myosin XI-G controls active F-actin movement in the Arabidopsis central cell. XI-G is not a simple transporter, moving cargos along F-actin, but can generate forces that control the dynamic movement of F-actin for fertilization. Our results provide insights into the mechanisms that control gamete nuclear migration and reveal regulatory pathways for dynamic F-actin movement in flowering plants.
Collapse
Affiliation(s)
- Mohammad Foteh Ali
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312
| | - Umma Fatema
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, 430072 Wuhan, China
| | - Samuel W Hacker
- Agriculture and Medical Biotechnology Program, University of Kentucky, Lexington, KY 40546-0312
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, 244-0813 Yokohama, Kanagawa, Japan
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, 430072 Wuhan, China
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312;
- Agriculture and Medical Biotechnology Program, University of Kentucky, Lexington, KY 40546-0312
| |
Collapse
|
45
|
Goto C, Tamura K, Nishimaki S, Maruyama D, Hara-Nishimura I. The nuclear envelope protein KAKU4 determines the migration order of the vegetative nucleus and sperm cells in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6273-6281. [PMID: 32777040 DOI: 10.1093/jxb/eraa367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
A putative component protein of the nuclear lamina, KAKU4, modulates nuclear morphology in Arabidopsis thaliana seedlings, but its physiological significance is unknown. KAKU4 was highly expressed in mature pollen grains, each of which has a vegetative cell and two sperm cells. KAKU4 protein was highly abundant on the envelopes of vegetative nuclei and less abundant on the envelopes of sperm cell nuclei in pollen grains and elongating pollen tubes. Vegetative nuclei are irregularly shaped in wild-type pollen. However, KAKU4 deficiency caused them to become more spherical. After a pollen grain germinates, the vegetative nuclei and sperm cells enter and move along the pollen tube. In the wild type, the vegetative nucleus preceded the sperm cell nuclei in >90% of the pollen tubes, whereas, in kaku4 mutants, the vegetative nucleus preceded the sperm cell nuclei in only about half of the pollen tubes. kaku4 pollen was less competitive for fertilization than wild-type pollen after pollination. These results led us to hypothesize that the nuclear shape in vegetative cells of pollen grains affects the orderly migration of the vegetative nucleus and sperm cells in pollen tubes.
Collapse
Affiliation(s)
- Chieko Goto
- Graduate School of Science, Kyoto University, Kyoto, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Kyoto, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satsuki Nishimaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| |
Collapse
|
46
|
Shin JM, Yuan L, Ohme-Takagi M, Kawashima T. Cellular dynamics of double fertilization and early embryogenesis in flowering plants. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:642-651. [PMID: 32638525 DOI: 10.1002/jez.b.22981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Flowering plants (angiosperms) perform a unique double fertilization in which two sperm cells fuse with two female gamete cells in the embryo sac to develop a seed. Furthermore, during land plant evolution, the mode of sexual reproduction has been modified dramatically from motile sperm in the early-diverging land plants, such as mosses and ferns as well as some gymnosperms (Ginkgo and cycads) to nonmotile sperm that are delivered to female gametes by the pollen tube in flowering plants. Recent studies have revealed the cellular dynamics and molecular mechanisms for the complex series of double fertilization processes and elucidated differences and similarities between animals and plants. Here, together with a brief comparison with animals, we review the current understanding of flowering plant zygote dynamics, covering from gamete nuclear migration, karyogamy, and polyspermy block, to zygotic genome activation as well as asymmetrical division of the zygote. Further analyses of the detailed molecular and cellular mechanisms of flowering plant fertilization should shed light on the evolution of the unique sexual reproduction of flowering plants.
Collapse
Affiliation(s)
- Ji Min Shin
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky.,Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky.,Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky.,Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky
| | - Masaru Ohme-Takagi
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
47
|
Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. Fertilization in flowering plants: an odyssey of sperm cell delivery. PLANT MOLECULAR BIOLOGY 2020; 103:9-32. [PMID: 32124177 DOI: 10.1007/s11103-020-00987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm. Each of the successfully fertilized ovules later develops into a seed. Sets of macromolecules play roles in pollen tube (PT) guidance, from the stigma, through the transmitting tract and funiculus to the micropylar end of the ovule. Other sets of genetic players are involved in PT reception and in its rupture after it enters the ovule, and yet other sets of genes function in gametic fusion. Angiosperms have come long way from primitive reproductive structure development to today's sophisticated, diverse, and in most cases flamboyant organ. In this review, we will be discussing on the intricate yet complex molecular mechanism of double fertilization and how it might have been shaped by the evolutionary forces focusing particularly on the model plant Arabidopsis.
Collapse
Affiliation(s)
- Prakash B Adhikari
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro D Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
48
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
49
|
FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature 2020; 579:561-566. [DOI: 10.1038/s41586-020-2106-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
|
50
|
Tekleyohans DG, Groß-Hardt R. New advances and future directions in plant polyspermy. Mol Reprod Dev 2020; 87:370-373. [PMID: 31515875 PMCID: PMC7616914 DOI: 10.1002/mrd.23261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/21/2019] [Indexed: 01/27/2023]
Abstract
Plants have evolved a battery of mechanisms that potentially act as polyspermy barriers. Supernumerary sperm fusion to one egg cell has consequently long remained a hypothetical concept. The recent discovery that polyspermy in flowering plants is not lethal but generates viable triploid plants is a game changer affecting the field of developmental biology, evolution, and plant breeding. The establishment of protocols to artificially induce polyspermy together with the development of a high-throughput assay to identify and trace polyspermic events in planta now provide powerful tools to unravel mechanisms of polyspermy regulation. These achievements are likely to open new avenues for animal polyspermy research as well, where forward genetic approaches are hampered by the fatal outcome of supernumerary sperm fusion.
Collapse
Affiliation(s)
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, Bremen, Germany
| |
Collapse
|