1
|
Kasdin J, Duffy A, Nadler N, Raha A, Fairhall AL, Stachenfeld KL, Gadagkar V. Natural behaviour is learned through dopamine-mediated reinforcement. Nature 2025:10.1038/s41586-025-08729-1. [PMID: 40074908 DOI: 10.1038/s41586-025-08729-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Many natural motor skills, such as speaking or locomotion, are acquired through a process of trial-and-error learning over the course of development. It has long been hypothesized, motivated by observations in artificial learning experiments, that dopamine has a crucial role in this process. Dopamine in the basal ganglia is thought to guide reward-based trial-and-error learning by encoding reward prediction errors1, decreasing after worse-than-predicted reward outcomes and increasing after better-than-predicted ones. Our previous work in adult zebra finches-in which we changed the perceived song quality with distorted auditory feedback-showed that dopamine in Area X, the singing-related basal ganglia, encodes performance prediction error: dopamine is suppressed after worse-than-predicted (distorted syllables) and activated after better-than-predicted (undistorted syllables) performance2. However, it remains unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Here we tracked song learning trajectories in juvenile zebra finches and used fibre photometry3 to monitor concurrent dopamine activity in Area X. We found that dopamine was activated after syllable renditions that were closer to the eventual adult version of the song, compared with recent renditions, and suppressed after renditions that were further away. Furthermore, the relationship between dopamine and song fluctuations revealed that dopamine predicted the future evolution of song, suggesting that dopamine drives behaviour. Finally, dopamine activity was explained by the contrast between the quality of the current rendition and the recent history of renditions-consistent with dopamine's hypothesized role in encoding prediction errors in an actor-critic reinforcement-learning model4,5. Reinforcement-learning algorithms6 have emerged as a powerful class of model to explain learning in reward-based laboratory tasks, as well as for driving autonomous learning in artificial intelligence7. Our results suggest that complex natural behaviours in biological systems can also be acquired through dopamine-mediated reinforcement learning.
Collapse
Affiliation(s)
- Jonathan Kasdin
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Alison Duffy
- Department of Neurobiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Nathan Nadler
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Arnav Raha
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Adrienne L Fairhall
- Department of Neurobiology and Biophysics and Computational Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Kimberly L Stachenfeld
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Google DeepMind, New York, NY, USA
| | - Vikram Gadagkar
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Bashir K, Ghafar SA, Rehman AT, Waris T, Farooq F, Alamin AA. Molecular Analysis of Genes CEBPA, NPM1, IDH1, and RUNX1 Polymorphisms as Biomarker Potential in Leukemia Patients. Mol Carcinog 2025; 64:357-368. [PMID: 39565200 DOI: 10.1002/mc.23846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
Leukemia is found in approximately 2.3 million people worldwide and causes many deaths all over the world. This research study was conducted to figure out the link of single nucleotide polymorphisms of genes CEBPA (rs34529039), NPM1 (rs753788683), IDH1 (of rs11554137) and RUNX1 (rs13051066) polymorphisms as biomarker potential in leukemia patients. A total of 600 subjects were included in the study which included 300 patients and 300 healthy controls with age and gender matched. After DNA extraction, PCR was carried out to analyze polymorphisms of selected genes. A significant association with increased risk of leukemia by almost twofolds is observed in homozygous mutant (AA) of rs34529039 SNP of gene CEBPA (odds ratio [OR] = 1.71; 95% confidence interval [CI] = 1.04-2.82; p = 0.03) while highly significant association but with decrease risk of leukemia is observed in heterozygote genotype (CA) of same SNP (OR = 0.36; 95% CI = 0.22-0.59; p = 0.0001). A highly significant association with increased risk of leukemia up to twofolds is observed in heterozygote genotype (AG) of rs753788683 of gene NPM1 (OR 2.10: 95% CI 1.32-3.36 p = 0.0017) while increasing risk by two-fold and show significant association in homozygous mutant (AA) (OR = 1.75; 95% Cl = 1.09-2.79; p = 0.01). Leukemia risk increases by twofold and shows significant association in the homozygous mutant (AA) of rs11554137 (OR = 1.75; 95%Cl = 1.09-2.79; p = 0.01). Leukemia risk increases by twofold and shows significant association in the homozygous mutant (AA) of rs13051066 of gene RUNX1 (OR = 0.63; 95%Cl = 0.39-1.63; p = 0.06).
Collapse
Affiliation(s)
- Kashif Bashir
- Department of Biological Sciences, Superior University Lahore, Sargodha, Punjab, Pakistan
| | | | - Afifa Tur Rehman
- Department of Zoology, University of Lahore, Sargodha, Punjab, Pakistan
| | - Tayyaba Waris
- Department of Zoology, University of Lahore, Sargodha, Punjab, Pakistan
| | - Fatima Farooq
- Department of Zoology, University of Lahore, Sargodha, Punjab, Pakistan
| | - Amin A Alamin
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
3
|
Valle-Bautista R, Olivera-Acevedo M, Horta-Brussolo VR, Díaz NF, Ávila-González D, Molina-Hernández A. From songbird to humans: The multifaceted roles of FOXP2 in speech and motor learning. Neurosci Biobehav Rev 2024; 167:105936. [PMID: 39510218 DOI: 10.1016/j.neubiorev.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Motor learning involves a complex network of brain structures and is crucial for tasks like speech. The cerebral cortex, subcortical nuclei, and cerebellum are involved in motor learning and vocalization. Vocal learning has been demonstrated across species. However, it is a task that should be further studied and reevaluated, particularly in species considered non-vocal learners, to potentially uncover new insights. FOXP2, a transcription factor, has been implicated in speech learning and execution. Several variants have been involved in speech and cognitive impairments; the most studied is the R553H, found in the KE family, where more than half of the members show verbal dyspraxia. Brain FOXP2 expression shows consistent patterns across species in regions associated with motor learning and execution. Animal models expressing mutated FOXP2 showed impaired motor learning and vocalization. Genes regulated by FOXP2 are related to neural differentiation, connectivity, and synaptic plasticity, indicating its role in brain development and function. This review explores the intricate relationship between FOXP2, motor learning, and speech in an anatomical and functional context.
Collapse
Affiliation(s)
- Rocío Valle-Bautista
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Monserrath Olivera-Acevedo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Instituto Tecnológico de Monterrey Campus Ciudad de México, Escuela de Medicina y Ciencias de la Salud, Colombia
| | - Victoria Regina Horta-Brussolo
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV-IPN, Ciudad de México, México
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Daniela Ávila-González
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico.
| |
Collapse
|
4
|
Gomes LHF, Marques AB, Dias ICDM, Gabeira SCDO, Barcelos TR, Guimarães MDO, Ferreira IR, Guida LC, Lucena SL, Rocha AD. Validation of Gene Expression Patterns for Oral Feeding Readiness: Transcriptional Analysis of Set of Genes in Neonatal Salivary Samples. Genes (Basel) 2024; 15:936. [PMID: 39062715 PMCID: PMC11275400 DOI: 10.3390/genes15070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Neonatal health assessment is crucial for detecting and intervening in various disorders. Traditional gene expression analysis methods often require invasive procedures during sample collection, which may not be feasible or ideal for preterm infants. In recent years, saliva has emerged as a promising noninvasive biofluid for assessing gene expression. Another trend that has been growing is the use of "omics" technologies such as transcriptomics in the analysis of gene expression. The costs for carrying out these analyses and the difficulty of analysis make the detection of candidate genes necessary. These genes act as biomarkers for the maturation stages of the oral feeding issue. METHODOLOGY Salivary samples (n = 225) were prospectively collected from 45 preterm (<34 gestational age) infants from five predefined feeding stages and submitted to RT-qPCR. A better description of the targeted genes and results from RT-qPCR analyses were included. The six genes previously identified as predictive of feeding success were tested. The genes are AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1, along with two reference genes: GAPDH and 18S. RT-qPCR amplification enabled the analysis of the gene expression of AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1 in neonatal saliva. Expression results were correlated with the feeding status during sample collection. CONCLUSIONS In summary, the genes AMPK, FOXP2, WNT3, NPHP4, NPY2R, and PLXNA1 play critical roles in regulating oral feeding and the development of premature infants. Understanding the influence of these genes can provide valuable insights for improving nutritional care and support the development of these vulnerable babies. Evidence suggests that saliva-based gene expression analysis in newborns holds great promise for early detection and monitoring of disease and understanding developmental processes. More research and standardization of protocols are needed to fully explore the potential of saliva as a noninvasive biomarker in neonatal care.
Collapse
Affiliation(s)
- Leonardo Henrique Ferreira Gomes
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Andressa Brito Marques
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Isabel Cristina de Meireles Dias
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Sanny Cerqueira de O. Gabeira
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Tamara Rosa Barcelos
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Mariana de Oliveira Guimarães
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Igor Ribeiro Ferreira
- Rural and Remote Support Services, Department of Health, Integrated Cardiovascular Clinical Network SA, Adelaide, SA 5042, Australia
| | - Letícia Cunha Guida
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Sabrina Lopes Lucena
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| | - Adriana Duarte Rocha
- Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira–Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil; (L.H.F.G.)
| |
Collapse
|
5
|
Ahmed NI, Khandelwal N, Anderson AG, Oh E, Vollmer RM, Kulkarni A, Gibson JR, Konopka G. Compensation between FOXP transcription factors maintains proper striatal function. Cell Rep 2024; 43:114257. [PMID: 38761373 PMCID: PMC11234887 DOI: 10.1016/j.celrep.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/05/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
Spiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs. Utilizing mice with a D1-SPN-specific loss of Foxp1, Foxp2, or both and a combination of behavior, electrophysiology, and cell-type-specific genomic analysis, loss of both genes results in impaired motor and social behavior as well as increased firing of the D1-SPNs. Differential gene expression analysis implicates genes involved in autism risk, electrophysiological properties, and neuronal development and function. Viral-mediated re-expression of Foxp1 into the double knockouts is sufficient to restore electrophysiological and behavioral deficits. These data indicate complementary roles between Foxp1 and Foxp2 in the D1-SPNs.
Collapse
Affiliation(s)
- Newaz I Ahmed
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nitin Khandelwal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashley G Anderson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Emily Oh
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Rachael M Vollmer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jay R Gibson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
6
|
Rickelton K, Zintel TM, Pizzollo J, Miller E, Ely JJ, Raghanti MA, Hopkins WD, Hof PR, Sherwood CC, Bauernfeind AL, Babbitt CC. Tempo and mode of gene expression evolution in the brain across primates. eLife 2024; 13:e70276. [PMID: 38275218 PMCID: PMC10876213 DOI: 10.7554/elife.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Abstract
Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.
Collapse
Affiliation(s)
- Katherine Rickelton
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Trisha M Zintel
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Jason Pizzollo
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Emily Miller
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - John J Ely
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
- MAEBIOS Epidemiology UnitAlamogordoUnited States
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State UniversityKentUnited States
| | - William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine,The University of Texas M D Anderson Cancer CentreBastropUnited States
| | - Patrick R Hof
- New York Consortium in Evolutionary PrimatologyNew YorkUnited States
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Amy L Bauernfeind
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Anthropology, Washington University in St. LouisSt. LouisUnited States
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
7
|
Ahmed NI, Khandelwal N, Anderson AG, Kulkarni A, Gibson J, Konopka G. Compensation between FOXP transcription factors maintains proper striatal function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546567. [PMID: 37425820 PMCID: PMC10327074 DOI: 10.1101/2023.06.26.546567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spiny projection neurons (SPNs) of the striatum are critical in integrating neurochemical information to coordinate motor and reward-based behavior. Mutations in the regulatory transcription factors expressed in SPNs can result in neurodevelopmental disorders (NDDs). Paralogous transcription factors Foxp1 and Foxp2, which are both expressed in the dopamine receptor 1 (D1) expressing SPNs, are known to have variants implicated in NDDs. Utilizing mice with a D1-SPN specific loss of Foxp1, Foxp2, or both and a combination of behavior, electrophysiology, and cell-type specific genomic analysis, loss of both genes results in impaired motor and social behavior as well as increased firing of the D1-SPNs. Differential gene expression analysis implicates genes involved in autism risk, electrophysiological properties, and neuronal development and function. Viral mediated re-expression of Foxp1 into the double knockouts was sufficient to restore electrophysiological and behavioral deficits. These data indicate complementary roles between Foxp1 and Foxp2 in the D1-SPNs.
Collapse
Affiliation(s)
- Newaz I. Ahmed
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nitin Khandelwal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashley G. Anderson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, 77030, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jay Gibson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Lead Contact
| |
Collapse
|
8
|
Rashid M, Olson EC. Delayed cortical development in mice with a neural specific deletion of β1 integrin. Front Neurosci 2023; 17:1158419. [PMID: 37250402 PMCID: PMC10213249 DOI: 10.3389/fnins.2023.1158419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
The adhesion systems employed by migrating cortical neurons are not well understood. Genetic deletion studies of focal adhesion kinase (FAK) and paxillin in mice suggested that these classical focal adhesion molecules control the morphology and speed of cortical neuron migration, but whether β1 integrins also regulate migration morphology and speed is not known. We hypothesized that a β1 integrin adhesion complex is required for proper neuronal migration and for proper cortical development. To test this, we have specifically deleted β1 integrin from postmitotic migrating and differentiating neurons by crossing conditional β1 integrin floxed mice into the NEX-Cre transgenic line. Similar to our prior findings with conditional paxillin deficiency, we found that both homozygous and heterozygous deletion of β1 integrin causes transient mispositioning of cortical neurons in the developing cortex when analyzed pre- and perinatally. Paxillin and β1 integrin colocalize in the migrating neurons and deletion of paxillin in the migrating neuron causes an overall reduction of the β1 integrin immunofluorescence signal and reduction in the number of activated β1 integrin puncta in the migrating neurons. These findings suggest that these molecules may form a functional complex in migrating neurons. Similarly, there was an overall reduced number of paxillin+ puncta in the β1 integrin deficient neurons, despite the normal distribution of FAK and Cx26, a connexin required for cortical migration. The double knockout of paxillin and β1 integrin produces a cortical malpositioning phenotype similar to the paxillin or β1 integrin single knockouts, as would be expected if paxillin and β1 integrin function on a common pathway. Importantly, an isolation-induced pup vocalization test showed that β1 integrin mutants produced a significantly smaller number of calls compared to their littermate controls when analyzed at postnatal day 4 (P4) and revealed a several days trend in reduced vocalization development compared to controls. The current study establishes a role for β1 integrin in cortical development and suggests that β1 integrin deficiency leads to migration and neurodevelopmental delays.
Collapse
Affiliation(s)
- Mamunur Rashid
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric C. Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
9
|
Qi H, Luo L, Lu C, Chen R, Zhou X, Zhang X, Jia Y. TCF7L2 acts as a molecular switch in midbrain to control mammal vocalization through its DNA binding domain but not transcription activation domain. Mol Psychiatry 2023; 28:1703-1717. [PMID: 36782064 DOI: 10.1038/s41380-023-01993-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Vocalization is an essential medium for social signaling in birds and mammals. Periaqueductal gray (PAG) a conserved midbrain structure is believed to be responsible for innate vocalizations, but its molecular regulation remains largely unknown. Here, through a mouse forward genetic screening we identified one of the key Wnt/β-catenin effectors TCF7L2/TCF4 controls ultrasonic vocalization (USV) production and syllable complexity during maternal deprivation and sexual encounter. Early developmental expression of TCF7L2 in PAG excitatory neurons is necessary for the complex trait, while TCF7L2 loss reduces neuronal gene expressions and synaptic transmission in PAG. TCF7L2-mediated vocal control is independent of its β-catenin-binding domain but dependent of its DNA binding ability. Patient mutations associated with developmental disorders, including autism spectrum disorders, disrupt the transcriptional repression effect of TCF7L2, while mice carrying those mutations display severe USV impairments. Therefore, we conclude that TCF7L2 orchestrates gene expression in midbrain to control vocal production through its DNA binding but not transcription activation domain.
Collapse
Affiliation(s)
- Huihui Qi
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,School of Medicine, Tsinghua University, Beijing, 100084, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Li Luo
- Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, 100084, China
| | - Caijing Lu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runze Chen
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Xianyao Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Science, Beijing Normal University, Beijing, 100875, China
| | - Yichang Jia
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. .,School of Medicine, Tsinghua University, Beijing, 100084, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. .,Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Benítez-Burraco A, Jiménez-Romero MS, Fernández-Urquiza M. Delving into the Genetic Causes of Language Impairment in a Case of Partial Deletion of NRXN1. Mol Syndromol 2023; 13:496-510. [PMID: 36660026 PMCID: PMC9843585 DOI: 10.1159/000524710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/22/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Copy-number variations (CNVs) impacting on small DNA stretches and associated with language deficits provide a unique window to the role played by specific genes in language function. Methods We report in detail on the cognitive, language, and genetic features of a girl bearing a small deletion (0.186 Mb) in the 2p16.3 region, arr[hg19] 2p16.3(50761778_50947729)×1, affecting exons 3-7 of NRXN1, a neurexin-coding gene previously related to schizophrenia, autism (ASD), attention deficit hyperactivity disorder (ADHD), mood disorder, and intellectual disability (ID). Results The proband exhibits many of the features commonly found in subjects with deletions of NRXN1, like ASD-like traits (including ritualized behaviors, disordered sensory aspects, social disturbances, and impaired theory of mind), ADHD symptoms, moderate ID, and impaired speech and language. Regarding this latter aspect, we observed altered speech production, underdeveloped phonological awareness, minimal syntax, serious shortage of active vocabulary, impaired receptive language, and inappropriate pragmatic behavior (including lack of metapragmatic awareness and communicative use of gaze). Microarray analyses point to the dysregulation of several genes important for language function in the girl compared to her healthy parents. Discussion Although some basic cognitive deficit - such as the impairment of executive function - might contribute to the language problems exhibited by the proband, molecular evidence suggests that they might result, to a great extent, from the abnormal expression of genes directly related to language.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain,*Antonio Benítez-Burraco,
| | | | | |
Collapse
|
11
|
Colquitt BM. Organizational Conservation and Flexibility in the Evolution of Birdsong and Avian Motor Control. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:255-264. [PMID: 35644127 DOI: 10.1159/000525019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Birds and mammals have independently evolved complex behavioral and cognitive capabilities yet have markedly different brain structures. An open question is to what extent, despite these differences in anatomy, birds and mammals have evolved similar neural solutions to complex motor control and at what level of organization these similarities might lie. Courtship song in songbirds, a learned motor skill that is similar to the fine motor skills of many mammals including human speech, provides a powerful system in which to study the links connecting the development and evolution of cells, circuits, and behavior. Until recently, obtaining cellular-resolution views of the specialized neural circuitry that subserves birdsong was impossible due to a lack of molecular tools for songbirds. However, the ongoing revolution in cellular profiling and genomics offers unprecedented opportunities for molecular analysis in organisms that lack a traditional genetic infrastructure but have tractable, well-defined behaviors. Here, I describe recent efforts to understand the evolutionary relationships between birdsong control circuitry and mammalian neocortical circuitry using new approaches to measure gene expression in single cells. These results, combined with foundational work relating avian and mammalian brains at a range of biological levels, present an emerging view that amniote pallium evolution is a story of diverse neural circuit architectures employing conserved neuronal elements within a conserved topological framework. This view suggests that one locus of pallial neural circuit evolution lies at the intersection between the gene regulatory programs that regulate regional patterning and those that specify functional identity. Modifications to this intersection may underlie the evolution of pallial motor control in birds in general and to the evolutionary and developmental relationships of these circuits to the avian pallial amygdala.
Collapse
Affiliation(s)
- Bradley M Colquitt
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Physiology, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis 2021; 162:105564. [PMID: 34838666 DOI: 10.1016/j.nbd.2021.105564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.
Collapse
|
13
|
Levi G, de Lombares C, Giuliani C, Iannuzzi V, Aouci R, Garagnani P, Franceschi C, Grimaud-Hervé D, Narboux-Nême N. DLX5/6 GABAergic Expression Affects Social Vocalization: Implications for Human Evolution. Mol Biol Evol 2021; 38:4748-4764. [PMID: 34132815 PMCID: PMC8557472 DOI: 10.1093/molbev/msab181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DLX5 and DLX6 are two closely related transcription factors involved in brain development and in GABAergic differentiation. The DLX5/6 locus is regulated by FoxP2, a gene involved in language evolution and has been associated with neurodevelopmental disorders and mental retardation. Targeted inactivation of Dlx5/6 in mouse GABAergic neurons (Dlx5/6VgatCre mice) results in behavioral and metabolic phenotypes notably increasing lifespan by 33%. Here, we show that Dlx5/6VgatCre mice present a hyper-vocalization and hyper-socialization phenotype. While only 7% of control mice emitted more than 700 vocalizations/10 min, 30% and 56% of heterozygous or homozygous Dlx5/6VgatCre mice emitted more than 700 and up to 1,400 calls/10 min with a higher proportion of complex and modulated calls. Hyper-vocalizing animals were more sociable: the time spent in dynamic interactions with an unknown visitor was more than doubled compared to low-vocalizing individuals. The characters affected by Dlx5/6 in the mouse (sociability, vocalization, skull, and brain shape…) overlap those affected in the "domestication syndrome". We therefore explored the possibility that DLX5/6 played a role in human evolution and "self-domestication" comparing DLX5/6 genomic regions from Neanderthal and modern humans. We identified an introgressed Neanderthal haplotype (DLX5/6-N-Haplotype) present in 12.6% of European individuals that covers DLX5/6 coding and regulatory sequences. The DLX5/6-N-Haplotype includes the binding site for GTF2I, a gene associated with Williams-Beuren syndrome, a hyper-sociability and hyper-vocalization neurodevelopmental disorder. The DLX5/6-N-Haplotype is significantly underrepresented in semi-supercentenarians (>105 years of age), a well-established human model of healthy aging and longevity, suggesting their involvement in the coevolution of longevity, sociability, and speech.
Collapse
Affiliation(s)
- Giovanni Levi
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Camille de Lombares
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - Vincenzo Iannuzzi
- Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Italy
| | - Rym Aouci
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Dominique Grimaud-Hervé
- Histoire Naturelle de l’Homme Préhistorique, CNRS UMR 7194, Département H&E, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Narboux-Nême
- Physiologie Moléculaire et Adaptation, CNRS UMR7221, Département AVIV, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
14
|
Mazumder TH, Alqahtani AM, Alqahtani T, Emran TB, A. Aldahish A, Uddin A. Analysis of Codon Usage of Speech Gene FoxP2 among Animals. BIOLOGY 2021; 10:1078. [PMID: 34827071 PMCID: PMC8614651 DOI: 10.3390/biology10111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/03/2022]
Abstract
The protein-coding gene FoxP2 (fork head box protein P2) plays a major role in communication and evolutionary changes. The present study carried out a comprehensive codon usage bias analysis in the FoxP2 gene among a diverse group of animals including fishes, birds, reptiles, and mammals. We observed that in the genome of fishes for the FoxP2 gene, codons ending with C or G were most frequently used, while in birds, reptiles, and mammals, codons ending with T or A were most frequently used. A higher ENC value was observed for the FoxP2 gene indicating a lower CUB. Parity role two-bias plots suggested that apart from mutation pressure, other factors such as natural selection might have influenced the CUB. The frequency distribution of the ENC observed and ENC expected ratio revealed that mutation pressure plays a key role in the patterns of codon usage of FoxP2. Besides, correspondence analysis exposed the composition of the nucleobase under mutation bias affects the codon usage of the FoxP2 gene. However, neutrality plots revealed the major role of natural selection over mutation pressure in the CUB of FoxP2. In addition, the codon usage patterns for FoxP2 among the selected genomes suggested that nature has favored nearly all the synonymous codons for encoding the corresponding amino acid. The uniform usage of 12 synonymous codons for FoxP2 was observed among the species of birds. The amino acid usage frequency for FoxP2 revealed that the amino acids Leucine, Glutamine, and Serine were predominant over other amino acids among all the species of fishes, birds, reptiles, and mammals.
Collapse
Affiliation(s)
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.M.A.); (T.A.); (A.A.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.M.A.); (T.A.); (A.A.A.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Afaf A. Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (A.M.A.); (T.A.); (A.A.A.)
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial College, Hailakandi 788150, Assam, India
| |
Collapse
|
15
|
Lombardo MV, Eyler L, Pramparo T, Gazestani VH, Hagler DJ, Chen CH, Dale AM, Seidlitz J, Bethlehem RAI, Bertelsen N, Barnes CC, Lopez L, Campbell K, Lewis NE, Pierce K, Courchesne E. Atypical genomic cortical patterning in autism with poor early language outcome. SCIENCE ADVANCES 2021; 7:eabh1663. [PMID: 34516910 PMCID: PMC8442861 DOI: 10.1126/sciadv.abh1663] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/15/2021] [Indexed: 05/21/2023]
Abstract
Cortical regionalization develops via genomic patterning along anterior-posterior (A-P) and dorsal-ventral (D-V) gradients. Here, we find that normative A-P and D-V genomic patterning of cortical surface area (SA) and thickness (CT), present in typically developing and autistic toddlers with good early language outcome, is absent in autistic toddlers with poor early language outcome. Autistic toddlers with poor early language outcome are instead specifically characterized by a secondary and independent genomic patterning effect on CT. Genes involved in these effects can be traced back to midgestational A-P and D-V gene expression gradients and different prenatal cell types (e.g., progenitor cells and excitatory neurons), are functionally important for vocal learning and human-specific evolution, and are prominent in prenatal coexpression networks enriched for high-penetrance autism risk genes. Autism with poor early language outcome may be explained by atypical genomic cortical patterning starting in prenatal development, which may detrimentally affect later regional functional specialization and circuit formation.
Collapse
Affiliation(s)
- Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lisa Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- VISN 22 Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Tiziano Pramparo
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Vahid H. Gazestani
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Donald J. Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Chi-Hua Chen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Anders M. Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard A. I. Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Natasha Bertelsen
- Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Linda Lopez
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen Campbell
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Orije J, Cardon E, Hamaide J, Jonckers E, Darras VM, Verhoye M, Van der Linden A. Uncovering a 'sensitive window' of multisensory and motor neuroplasticity in the cerebrum and cerebellum of male and female starlings. eLife 2021; 10:e66777. [PMID: 34096502 PMCID: PMC8219385 DOI: 10.7554/elife.66777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/06/2021] [Indexed: 12/21/2022] Open
Abstract
Traditionally, research unraveling seasonal neuroplasticity in songbirds has focused on the male song control system and testosterone. We longitudinally monitored the song behavior and neuroplasticity in male and female starlings during multiple photoperiods using Diffusion Tensor and Fixel-Based techniques. These exploratory data-driven whole-brain methods resulted in a population-based tractogram confirming microstructural sexual dimorphisms in the song control system. Furthermore, male brains showed hemispheric asymmetries in the pallium, whereas females had higher interhemispheric connectivity, which could not be attributed to brain size differences. Only females with large brains sing but differ from males in their song behavior by showing involvement of the hippocampus. Both sexes experienced multisensory neuroplasticity in the song control, auditory and visual system, and cerebellum, mainly during the photosensitive period. This period with low gonadal hormone levels might represent a 'sensitive window' during which different sensory and motor systems in the cerebrum and cerebellum can be seasonally re-shaped in both sexes.
Collapse
Affiliation(s)
- Jasmien Orije
- Bio-Imaging Lab, University of AntwerpAntwerpBelgium
| | - Emilie Cardon
- Bio-Imaging Lab, University of AntwerpAntwerpBelgium
| | - Julie Hamaide
- Bio-Imaging Lab, University of AntwerpAntwerpBelgium
| | | | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology DepartmentLeuvenBelgium
| | | | | |
Collapse
|
17
|
Xiao L, Merullo DP, Koch TMI, Cao M, Co M, Kulkarni A, Konopka G, Roberts TF. Expression of FoxP2 in the basal ganglia regulates vocal motor sequences in the adult songbird. Nat Commun 2021; 12:2617. [PMID: 33976169 PMCID: PMC8113549 DOI: 10.1038/s41467-021-22918-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Disruption of the transcription factor FoxP2, which is enriched in the basal ganglia, impairs vocal development in humans and songbirds. The basal ganglia are important for the selection and sequencing of motor actions, but the circuit mechanisms governing accurate sequencing of learned vocalizations are unknown. Here, we show that expression of FoxP2 in the basal ganglia is vital for the fluent initiation and termination of birdsong, as well as the maintenance of song syllable sequencing in adulthood. Knockdown of FoxP2 imbalances dopamine receptor expression across striatal direct-like and indirect-like pathways, suggesting a role of dopaminergic signaling in regulating vocal motor sequencing. Confirming this prediction, we show that phasic dopamine activation, and not inhibition, during singing drives repetition of song syllables, thus also impairing fluent initiation and termination of birdsong. These findings demonstrate discrete circuit origins for the dysfluent repetition of vocal elements in songbirds, with implications for speech disorders.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Devin P Merullo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Therese M I Koch
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mou Cao
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marissa Co
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Anderson AG, Kulkarni A, Harper M, Konopka G. Single-Cell Analysis of Foxp1-Driven Mechanisms Essential for Striatal Development. Cell Rep 2021; 30:3051-3066.e7. [PMID: 32130906 PMCID: PMC7137930 DOI: 10.1016/j.celrep.2020.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/16/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022] Open
Abstract
The striatum is a critical forebrain structure integrating cognitive, sensory, and motor information from diverse brain regions into meaningful behavioral output. However, the transcriptional mechanisms underlying striatal development at single-cell resolution remain unknown. Using single-cell RNA sequencing (RNA-seq), we examine the cellular diversity of the early postnatal striatum and show that Foxp1, a transcription factor strongly linked to autism and intellectual disability, regulates the cellular composition, neurochemical architecture, and connectivity of the striatum in a cell-type-dependent fashion. We also identify Foxp1-regulated target genes within distinct cell types and connect these molecular changes to functional and behavioral deficits relevant to phenotypes described in patients with FOXP1 loss-of-function mutations. Using this approach, we could also examine the non-cell-autonomous effects produced by disrupting one cell type and the molecular compensation that occurs in other populations. These data reveal the cell-type-specific transcriptional mechanisms regulated by Foxp1 that underlie distinct features of striatal circuitry.
Collapse
Affiliation(s)
- Ashley G Anderson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Matthew Harper
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
19
|
Gessara I, Dittrich F, Hertel M, Hildebrand S, Pfeifer A, Frankl-Vilches C, McGrew M, Gahr M. Highly Efficient Genome Modification of Cultured Primordial Germ Cells with Lentiviral Vectors to Generate Transgenic Songbirds. Stem Cell Reports 2021; 16:784-796. [PMID: 33740464 PMCID: PMC8072032 DOI: 10.1016/j.stemcr.2021.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The ability to genetically manipulate organisms has led to significant insights into functional genomics in many species. In birds, manipulation of the genome is hindered by the inaccessibility of the one-cell embryo. During embryonic development, avian primordial germ cells (PGCs) migrate through the bloodstream and reach the gonadal anlage, where they develop into mature germ cells. Here, we explored the use of PGCs to produce transgenic offspring in the zebra finch, which is a major animal model for sexual brain differentiation, vocal learning, and vocal communication. Zebra finch PGCs (zfPGCs) obtained from embryonic blood significantly proliferated when cultured in an optimized culture medium and conserved the expression of germ and stem cell markers. Transduction of cultured zfPGCs with lentiviral vectors was highly efficient, leading to strong expression of the enhanced green fluorescent protein. Transduced zfPGCs were injected into the host embryo and transgenic songbirds were successfully generated.
Collapse
Affiliation(s)
- Ivana Gessara
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany.
| | - Falk Dittrich
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| | - Moritz Hertel
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| | - Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Mike McGrew
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Manfred Gahr
- Max Planck Institute for Ornithology, Eberhard Gwinner Strasse, 82319 Seewiesen, Germany
| |
Collapse
|
20
|
Colquitt BM, Merullo DP, Konopka G, Roberts TF, Brainard MS. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science 2021; 371:371/6530/eabd9704. [PMID: 33574185 DOI: 10.1126/science.abd9704] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Birds display advanced behaviors, including vocal learning and problem-solving, yet lack a layered neocortex, a structure associated with complex behavior in mammals. To determine whether these behavioral similarities result from shared or distinct neural circuits, we used single-cell RNA sequencing to characterize the neuronal repertoire of the songbird song motor pathway. Glutamatergic vocal neurons had considerable transcriptional similarity to neocortical projection neurons; however, they displayed regulatory gene expression patterns more closely related to neurons in the ventral pallium. Moreover, while γ-aminobutyric acid-releasing neurons in this pathway appeared homologous to those in mammals and other amniotes, the most abundant avian class is largely absent in the neocortex. These data suggest that songbird vocal circuits and the mammalian neocortex have distinct developmental origins yet contain transcriptionally similar neurons.
Collapse
Affiliation(s)
- Bradley M Colquitt
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Devin P Merullo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Todd F Roberts
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michael S Brainard
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. .,Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
Garcia-Oscos F, Koch TMI, Pancholi H, Trusel M, Daliparthi V, Co M, Park SE, Ayhan F, Alam DH, Holdway JE, Konopka G, Roberts TF. Autism-linked gene FoxP1 selectively regulates the cultural transmission of learned vocalizations. SCIENCE ADVANCES 2021; 7:eabd2827. [PMID: 33536209 PMCID: PMC7857683 DOI: 10.1126/sciadv.abd2827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/17/2020] [Indexed: 05/08/2023]
Abstract
Autism spectrum disorders (ASDs) are characterized by impaired learning of social skills and language. Memories of how parents and other social models behave are used to guide behavioral learning. How ASD-linked genes affect the intertwined aspects of observational learning and behavioral imitation is not known. Here, we examine how disrupted expression of the ASD gene FOXP1, which causes severe impairments in speech and language learning, affects the cultural transmission of birdsong between adult and juvenile zebra finches. FoxP1 is widely expressed in striatal-projecting forebrain mirror neurons. Knockdown of FoxP1 in this circuit prevents juvenile birds from forming memories of an adult song model but does not interrupt learning how to vocally imitate a previously memorized song. This selective learning deficit is associated with potent disruptions to experience-dependent structural and synaptic plasticity in mirror neurons. Thus, FoxP1 regulates the ability to form memories essential to the cultural transmission of behavior.
Collapse
Affiliation(s)
- F Garcia-Oscos
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - T M I Koch
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - H Pancholi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Trusel
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - V Daliparthi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Co
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - S E Park
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - F Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - D H Alam
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - J E Holdway
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - G Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - T F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Kozlenkov A, Vermunt MW, Apontes P, Li J, Hao K, Sherwood CC, Hof PR, Ely JJ, Wegner M, Mukamel EA, Creyghton MP, Koonin EV, Dracheva S. Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proc Natl Acad Sci U S A 2020; 117:28422-28432. [PMID: 33109720 PMCID: PMC7668098 DOI: 10.1073/pnas.2011884117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type-specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype-specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type-dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Marit W Vermunt
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Pasha Apontes
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468
| | - Junhao Li
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John J Ely
- Alamogordo Primate Facility, Holloman Air Force Base, Alamogordo, NM 88330
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92037
| | - Menno P Creyghton
- Hubrecht Institute, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands;
- Department of Developmental Biology, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894
| | - Stella Dracheva
- Research & Development, James J. Peters VA Medical Center, Bronx, NY 10468;
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
23
|
di Porzio U. A bigger brain for a more complex environment. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0041/revneuro-2020-0041.xml. [PMID: 32924383 DOI: 10.1515/revneuro-2020-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
The environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned "on" and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.
Collapse
Affiliation(s)
- Umberto di Porzio
- Developmental Neurobiology Laboratory, Institute of Genetics and Biophysics, CNR, Via Pietro Castellino 111, 80128 Naples, Italy
| |
Collapse
|
24
|
Co M, Hickey SL, Kulkarni A, Harper M, Konopka G. Cortical Foxp2 Supports Behavioral Flexibility and Developmental Dopamine D1 Receptor Expression. Cereb Cortex 2020; 30:1855-1870. [PMID: 31711176 PMCID: PMC7132914 DOI: 10.1093/cercor/bhz209] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic studies have associated FOXP2 variation with speech and language disorders and other neurodevelopmental disorders (NDDs) involving pathology of the cortex. In this brain region, FoxP2 is expressed from development into adulthood, but little is known about its downstream molecular and behavioral functions. Here, we characterized cortex-specific Foxp2 conditional knockout mice and found a major deficit in reversal learning, a form of behavioral flexibility. In contrast, they showed normal activity levels, anxiety, and vocalizations, save for a slight decrease in neonatal call loudness. These behavioral phenotypes were accompanied by decreased cortical dopamine D1 receptor (D1R) expression at neonatal and adult stages, while general cortical development remained unaffected. Finally, using single-cell transcriptomics, we identified at least five excitatory and three inhibitory D1R-expressing cell types in neonatal frontal cortex, and we found changes in D1R cell type composition and gene expression upon cortical Foxp2 deletion. Strikingly, these alterations included non-cell-autonomous changes in upper layer neurons and interneurons. Together, these data support a role for Foxp2 in the development of dopamine-modulated cortical circuits and behaviors relevant to NDDs.
Collapse
Affiliation(s)
- Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephanie L Hickey
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
25
|
Parola A, Simonsen A, Bliksted V, Fusaroli R. Voice patterns in schizophrenia: A systematic review and Bayesian meta-analysis. Schizophr Res 2020; 216:24-40. [PMID: 31839552 DOI: 10.1016/j.schres.2019.11.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/13/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022]
Abstract
Voice atypicalities have been a characteristic feature of schizophrenia since its first definitions. They are often associated with core negative symptoms such as flat affect and alogia, and with the social impairments seen in the disorder. This suggests that voice atypicalities may represent a marker of clinical features and social functioning in schizophrenia. We systematically reviewed and meta-analyzed the evidence for distinctive acoustic patterns in schizophrenia, as well as their relation to clinical features. We identified 46 articles, including 55 studies with a total of 1254 patients with schizophrenia and 699 healthy controls. Summary effect sizes (Hedges'g and Pearson's r) estimates were calculated using multilevel Bayesian modeling. We identified weak atypicalities in pitch variability (g = -0.55) related to flat affect, and stronger atypicalities in proportion of spoken time, speech rate, and pauses (g's between -0.75 and -1.89) related to alogia and flat affect. However, the effects were mostly modest (with the important exception of pause duration) compared to perceptual and clinical judgments, and characterized by large heterogeneity between studies. Moderator analyses revealed that tasks with a more demanding cognitive and social component showed larger effects both in contrasting patients and controls and in assessing symptomatology. In conclusion, studies of acoustic patterns are a promising but, yet unsystematic avenue for establishing markers of schizophrenia. We outline recommendations towards more cumulative, open, and theory-driven research.
Collapse
Affiliation(s)
| | - Arndis Simonsen
- Psychosis Research Unit - Department of Clinical Medicine, Aarhus University, Denmark; The Interacting Minds Center - School of Culture and Society, Aarhus University, Denmark
| | - Vibeke Bliksted
- Psychosis Research Unit - Department of Clinical Medicine, Aarhus University, Denmark; The Interacting Minds Center - School of Culture and Society, Aarhus University, Denmark
| | - Riccardo Fusaroli
- The Interacting Minds Center - School of Culture and Society, Aarhus University, Denmark; Department of Linguistics, Semiotics and Cognitive Science - School of Communication and Culture, Aarhus University, Denmark
| |
Collapse
|
26
|
Kong XZ, Tzourio-Mazoyer N, Joliot M, Fedorenko E, Liu J, Fisher SE, Francks C. Gene Expression Correlates of the Cortical Network Underlying Sentence Processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:77-103. [PMID: 36794006 PMCID: PMC9923707 DOI: 10.1162/nol_a_00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/19/2019] [Indexed: 04/16/2023]
Abstract
A pivotal question in modern neuroscience is which genes regulate brain circuits that underlie cognitive functions. However, the field is still in its infancy. Here we report an integrated investigation of the high-level language network (i.e., sentence-processing network) in the human cerebral cortex, combining regional gene expression profiles, task fMRI, large-scale neuroimaging meta-analysis, and resting-state functional network approaches. We revealed reliable gene expression-functional network correlations using three different network definition strategies, and identified a consensus set of genes related to connectivity within the sentence-processing network. The genes involved showed enrichment for neural development and actin-related functions, as well as association signals with autism, which can involve disrupted language functioning. Our findings help elucidate the molecular basis of the brain's infrastructure for language. The integrative approach described here will be useful for studying other complex cognitive traits.
Collapse
Affiliation(s)
| | - Nathalie Tzourio-Mazoyer
- University of Bordeaux, GIN, IMN, UMR 5293, Bordeaux, France
- CNRS, GIN, IMN, UMR 5293, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, Bordeaux, France
| | - Marc Joliot
- University of Bordeaux, GIN, IMN, UMR 5293, Bordeaux, France
- CNRS, GIN, IMN, UMR 5293, Bordeaux, France
- CEA, GIN, IMN, UMR 5293, Bordeaux, France
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA
| | - Jia Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
27
|
New Insights into the Avian Song System and Neuronal Control of Learned Vocalizations. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Abstract
Vocal communication is critical for social interactions across a diversity of animals. A subset of those animals, including humans and songbirds, must learn how to produce their vocal communication signals. In this issue of PLOS Biology, Wang and colleagues use genome-wide investigations of gene expression in species hybrids to uncover transcriptional networks that could influence species differences in song learning and production. We provide an overview of birdsong learning and discuss how the study by Wang and colleagues advances our understanding of mechanisms of song learning and evolution. This Primer explores vocal learning in songbirds, focusing on the use of cross-fostering and species hybrids methods employed in a recent study to uncover transcriptional networks important for between-species differences in song learning and production.
Collapse
|
29
|
Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. INSECTS 2019; 10:insects10100348. [PMID: 31623209 PMCID: PMC6835989 DOI: 10.3390/insects10100348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.
Collapse
|
30
|
Hughes S, Celikel T. Prominent Inhibitory Projections Guide Sensorimotor Computation: An Invertebrate Perspective. Bioessays 2019; 41:e1900088. [DOI: 10.1002/bies.201900088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samantha Hughes
- HAN BioCentreHAN University of Applied Sciences Nijmegen 6525EM The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain Cognition and BehaviourRadboud University Nijmegen 6525AJ The Netherlands
| |
Collapse
|
31
|
Lieberman P. The antiquity and evolution of the neural bases of rhythmic activity. Ann N Y Acad Sci 2019; 1453:114-124. [PMID: 31368158 DOI: 10.1111/nyas.14199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 11/30/2022]
Abstract
The evolution of the anatomy and neural circuits that regulate the rhythm of speech can be traced back to the Devonian age, 400 million years ago. Epigenetic processes 100 million years later modified these circuits. Natural selection on similar genetic processes occurred during the evolution of archaic hominins and humans. The lungs and larynx-anatomy that produces the rhythmic fundamental frequency patterns of speech-have a deep evolutionary history. Neural circuits linking the cortex, basal ganglia, and other subcortical structures plan, sequence, and execute motor as well as cognitive acts. These neural circuits generate the rhythm of speech, singing, and chanting. The human form of the transcription factor FOXP2 increased synaptic connectivity and plasticity in basal ganglia circuits, enhancing motor control and cognitive and linguistic capabilities in humans as well as Neanderthals. The archeological record also suggests that Neanderthals passed spoken language. Homologous circuits existed in amphibians. In songbirds, the avian form of FOXP2 acted on similar neural circuits allowing birds to learn and produce new songs. Current studies point to natural selection on genetic events enhancing these and other neural circuits to yield fully human rhythmic speech, and motor, cognitive, and linguistic capabilities, rather than the saltation proposed by Noam Chomsky.
Collapse
Affiliation(s)
- Philip Lieberman
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
32
|
Kuo HY, Liu FC. Synaptic Wiring of Corticostriatal Circuits in Basal Ganglia: Insights into the Pathogenesis of Neuropsychiatric Disorders. eNeuro 2019; 6:ENEURO.0076-19.2019. [PMID: 31097624 PMCID: PMC6553570 DOI: 10.1523/eneuro.0076-19.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
The striatum is a key hub in the basal ganglia for processing neural information from the sensory, motor, and limbic cortices. The massive and diverse cortical inputs entering the striatum allow the basal ganglia to perform a repertoire of neurological functions ranging from basic level of motor control to high level of cognition. The heterogeneity of the corticostriatal circuits, however, also renders the system susceptible to a repertoire of neurological diseases. Clinical and animal model studies have indicated that defective development of the corticostriatal circuits is linked to various neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD), Tourette syndrome, obsessive-compulsive disorder (OCD), autism spectrum disorder (ASD), and schizophrenia. Importantly, many neuropsychiatric disease-risk genes have been found to form the molecular building blocks of the circuit wiring at the synaptic level. It is therefore imperative to understand how corticostriatal connectivity is established during development. Here, we review the construction during development of these corticostriatal circuits at the synaptic level, which should provide important insights into the pathogenesis of neuropsychiatric disorders related to the basal ganglia and help the development of appropriate therapies for these diseases.
Collapse
Affiliation(s)
- Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
33
|
Argyropoulos GPD, Watkins KE, Belton-Pagnamenta E, Liégeois F, Saleem KS, Mishkin M, Vargha-Khadem F. Neocerebellar Crus I Abnormalities Associated with a Speech and Language Disorder Due to a Mutation in FOXP2. CEREBELLUM (LONDON, ENGLAND) 2019; 18:309-319. [PMID: 30460543 PMCID: PMC6517346 DOI: 10.1007/s12311-018-0989-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bilateral volume reduction in the caudate nucleus has been established as a prominent brain abnormality associated with a FOXP2 mutation in affected members of the 'KE family', who present with developmental orofacial and verbal dyspraxia in conjunction with pervasive language deficits. Despite the gene's early and prominent expression in the cerebellum and the evidence for reciprocal cerebellum-basal ganglia connectivity, very little is known about cerebellar abnormalities in affected KE members. Using cerebellum-specific voxel-based morphometry (VBM) and volumetry, we provide converging evidence from subsets of affected KE members scanned at three time points for grey matter (GM) volume reduction bilaterally in neocerebellar lobule VIIa Crus I compared with unaffected members and unrelated controls. We also show that right Crus I volume correlates with left and total caudate nucleus volumes in affected KE members, and that right and total Crus I volumes predict the performance of affected members in non-word repetition and non-verbal orofacial praxis. Crus I also shows bilateral hypo-activation in functional MRI in the affected KE members relative to controls during non-word repetition. The association of Crus I with key aspects of the behavioural phenotype of this FOXP2 point mutation is consistent with recent evidence of cerebellar involvement in complex motor sequencing. For the first time, specific cerebello-basal ganglia loops are implicated in the execution of complex oromotor sequences needed for human speech.
Collapse
Affiliation(s)
- G P D Argyropoulos
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - K E Watkins
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - E Belton-Pagnamenta
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - F Liégeois
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - K S Saleem
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA
| | - M Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, USA
| | - F Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
- Great Ormond Street Hospital for Children National Health Foundation Trust, London, UK.
| |
Collapse
|
34
|
Hickey SL, Berto S, Konopka G. Chromatin Decondensation by FOXP2 Promotes Human Neuron Maturation and Expression of Neurodevelopmental Disease Genes. Cell Rep 2019; 27:1699-1711.e9. [PMID: 31067457 PMCID: PMC6794152 DOI: 10.1016/j.celrep.2019.04.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 03/08/2019] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Forkhead box P2 (FOXP2) is a transcription factor expressed in the human brain that peaks during fetal development, and disruption in its ability to regulate downstream target genes leads to vulnerability to neurodevelopmental disorders. However, the mechanisms by which FOXP2 exerts regulatory control over targets during neuronal maturation have not been fully elucidated. Here, we use genome-wide chromatin accessibility assays and transcriptome-wide expression analyses in differentiating human neurons to show that FOXP2 represses proliferation-promoting genes in a DNA-binding-dependent manner. In contrast, FOXP2 and its cofactors, NFIA and NFIB, activate neuronal maturation genes in a manner that does not require FOXP2 to interact with DNA directly. Moreover, comparisons with expression data from the developing human brain suggest that FOXP2 and NFIA- or NFIB-dependent chromatin alterations drive maturation of excitatory cortical neurons. Thus, FOXP2 and its NFI cofactors may be specifically important for the development of cortical circuits underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Stephanie L Hickey
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stefano Berto
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
35
|
Ayhan F, Konopka G. Regulatory genes and pathways disrupted in autism spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:57-64. [PMID: 30165121 PMCID: PMC6249101 DOI: 10.1016/j.pnpbp.2018.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent and complex genetic disorder. The complex genetic make-up of ASD has been extensively studied and both common and rare genetic variants in up to 1000 genes have been linked to increased ASD risk. While these studies highlight the genetic complexity and begin to provide a window for delineating pathways at risk in ASD, the pathogenicity and specific contribution of many mutations to the disorder are poorly understood. Defining the convergent pathways disrupted by this large number of ASD-associated genetic variants will help to understand disease pathogenesis and direct future therapeutic efforts for the groups of patients with distinct etiologies. Here, we review some of the common regulatory pathways including chromatin remodeling, transcription, and alternative splicing that have emerged as common features from genetic and transcriptomic profiling of ASD. For each category, we focus on one gene (CHD8, FOXP1, and RBFOX1) that is significantly linked to ASD and functionally characterized in recent years. Finally, we discuss genetic and transcriptomic overlap between ASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas 75390-9111, USA.
| |
Collapse
|
36
|
Lombardo MV, Pramparo T, Gazestani V, Warrier V, Bethlehem RAI, Carter Barnes C, Lopez L, Lewis NE, Eyler L, Pierce K, Courchesne E. Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes. Nat Neurosci 2018; 21:1680-1688. [PMID: 30482947 PMCID: PMC6445349 DOI: 10.1038/s41593-018-0281-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022]
Abstract
Heterogeneity in early language development in autism spectrum disorders (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here we identify a large-scale association between multiple coordinated blood leukocyte gene co-expression modules and multivariate functional neuroimaging (fMRI) response to speech. Gene co-expression modules associated with multivariate fMRI response to speech are different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and either poor versus good early language outcome. Associated co-expression modules are enriched in genes that are broadly expressed in the brain and many other tissues. These co-expression modules are also enriched for ASD, prenatal, human-specific and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in-vivo window into identifying brain-relevant molecular mechanisms in ASD.
Collapse
Affiliation(s)
- Michael V Lombardo
- Department of Psychology, University of Cyprus, Nicosia, Cyprus. .,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | - Tiziano Pramparo
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Vahid Gazestani
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Richard A I Bethlehem
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Linda Lopez
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, La Jolla, CA, USA
| | - Lisa Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Karen Pierce
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Department of Neuroscience, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Schatton A, Agoro J, Mardink J, Leboulle G, Scharff C. Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. BMC Neurosci 2018; 19:69. [PMID: 30400853 PMCID: PMC6219247 DOI: 10.1186/s12868-018-0469-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND FoxP transcription factors play crucial roles for the development and function of vertebrate brains. In humans the neurally expressed FOXPs, FOXP1, FOXP2, and FOXP4 are implicated in cognition, including language. Neural FoxP expression is specific to particular brain regions but FoxP1, FoxP2 and FoxP4 are not limited to a particular neuron or neurotransmitter type. Motor- or sensory activity can regulate FoxP2 expression, e.g. in the striatal nucleus Area X of songbirds and in the auditory thalamus of mice. The DNA-binding domain of FoxP proteins is highly conserved within metazoa, raising the possibility that cellular functions were preserved across deep evolutionary time. We have previously shown in bee brains that FoxP is expressed in eleven specific neuron populations, seven tightly packed clusters and four loosely arranged groups. RESULTS The present study examined the co-expression of honeybee FoxP (AmFoxP) with markers for glutamatergic, GABAergic, cholinergic and monoaminergic transmission. We found that AmFoxP could co-occur with any one of those markers. Interestingly, AmFoxP clusters and AmFoxP groups differed with respect to homogeneity of marker co-expression; within a cluster, all neurons co-expressed the same neurotransmitter marker, within a group co-expression varied. We also assessed qualitatively whether age or housing conditions providing different sensory and motor experiences affected the AmFoxP neuron populations, but found no differences. CONCLUSIONS Based on the neurotransmitter homogeneity we conclude that AmFoxP neurons within the clusters might have a common projection and function whereas the AmFoxP groups are more diverse and could be further sub-divided. The obtained information about the neurotransmitters co-expressed in the AmFoxP neuron populations facilitated the search of similar neurons described in the literature. These comparisons revealed e.g. a possible function of AmFoxP neurons in the central complex. Our findings provide opportunities to focus future functional studies on invertebrate FoxP expressing neurons. In a broader context, our data will contribute to the ongoing efforts to discern in which cases relationships between molecular and phenotypic signatures are linked evolutionary.
Collapse
Affiliation(s)
- Adriana Schatton
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Julia Agoro
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Janis Mardink
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Gérard Leboulle
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| |
Collapse
|
38
|
Castellucci GA, Calbick D, McCormick D. The temporal organization of mouse ultrasonic vocalizations. PLoS One 2018; 13:e0199929. [PMID: 30376572 PMCID: PMC6207298 DOI: 10.1371/journal.pone.0199929] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
House mice, like many tetrapods, produce multielement calls consisting of individual vocalizations repeated in rhythmic series. In this study, we examine the multielement ultrasonic vocalizations (USVs) of adult male C57Bl/6J mice and specifically assess their temporal properties and organization. We found that male mice produce two classes of USVs which display unique temporal features and arise from discrete respiratory patterns. We also observed that nearly all USVs were produced in repetitive series exhibiting a hierarchical organization and a stereotyped rhythmic structure. Furthermore, series rhythmicity alone was determined to be sufficient for the mathematical discrimination of USVs produced by adult males, adult females, and pups, underscoring the known importance of call timing in USV perception. Finally, the gross spectrotemporal features of male USVs were found to develop continuously from birth and stabilize by P50, suggesting that USV production in infants and adults relies on common biological mechanisms. In conclusion, we demonstrate that the temporal organization of multielement mouse USVs is both stable and informative, and we propose that call timing be explicitly assessed when examining mouse USV production. Furthermore, this is the first report of putative USV classes arising from distinct articulatory patterns in mice, and is the first to empirically define multielement USV series and provide a detailed description of their temporal structure and development. This study therefore represents an important point of reference for the analysis of mouse USVs, a commonly used metric of social behavior in mouse models of human disease, and furthers the understanding of vocalization production in an accessible mammalian species.
Collapse
Affiliation(s)
- Gregg A. Castellucci
- Neuroscience Institute, New York University School of Medicine, New York, NY, United States of America
- Haskins Laboratories, New Haven, CT, United States of America
- Department of Genetics, Yale University of Medicine, New Haven, CT, United States of America
| | - Daniel Calbick
- Department of Genetics, Yale University of Medicine, New Haven, CT, United States of America
| | - David McCormick
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
- Department of Biology, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
39
|
Zhang S, Zhao J, Guo Z, Jones JA, Liu P, Liu H. The Association Between Genetic Variation in FOXP2 and Sensorimotor Control of Speech Production. Front Neurosci 2018; 12:666. [PMID: 30294257 PMCID: PMC6158330 DOI: 10.3389/fnins.2018.00666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Significant advances have been made in understanding the role of auditory feedback in sensorimotor integration for speech production. The neurogenetic basis of this feedback-based control process, however, remains largely unknown. Mutations of FOXP2 gene in humans are associated with severe deficits in speech motor behavior. The present study examined the associations between a FOXP2 common variant, rs6980093 (A/G), and the behavioral and event-related potential (ERP) responses to -50 and -200 cents pitch perturbations during vocal production in a sample of 133 Chinese adults. Behaviorally, the GG genotype was associated with significantly smaller vocal compensations for -200 cents perturbations relative to the AA and AG genotypes. Furthermore, both the AA and AG genotypes exhibited significant positive correlations between the degree of vocal compensation for -50 and -200 cents perturbations and the variability of normal voice fundamental frequency, whereas no such correlation existed for the GG genotype. At the cortical level, significantly larger P2 responses to -200 cents perturbations were associated with the GG genotype as compared to the AA and AG genotypes due to increased left-lateralized activity in the superior, middle, and inferior frontal gyrus, precentral gyrus, anterior cingulate cortex, middle temporal gyrus, and insula. The neurobehavioral responses to -50 cents perturbations, however, did not vary as a function of genotype. These findings present the first neurobehavioral evidence for an association between FOXP2 genetic variant and auditory-motor integration for vocal pitch regulation. The differential effects of FOXP2 genotypes at rs6980093 may reflect their influences on the weighting of feedback and feedforward control of speech production.
Collapse
Affiliation(s)
- Siyun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Guo
- Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai, China
| | - Jeffery A Jones
- Department of Psychology, Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proc Natl Acad Sci U S A 2018; 115:8799-8804. [PMID: 30104377 DOI: 10.1073/pnas.1721820115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fundamental human traits, such as language and bipedalism, are associated with a range of anatomical adaptations in craniofacial shaping and skeletal remodeling. However, it is unclear how such morphological features arose during hominin evolution. FOXP2 is a brain-expressed transcription factor implicated in a rare disorder involving speech apraxia and language impairments. Analysis of its evolutionary history suggests that this gene may have contributed to the emergence of proficient spoken language. In the present study, through analyses of skeleton-specific knockout mice, we identified roles of Foxp2 in skull shaping and bone remodeling. Selective ablation of Foxp2 in cartilage disrupted pup vocalizations in a similar way to that of global Foxp2 mutants, which may be due to pleiotropic effects on craniofacial morphogenesis. Our findings also indicate that Foxp2 helps to regulate strength and length of hind limbs and maintenance of joint cartilage and intervertebral discs, which are all anatomical features that are susceptible to adaptations for bipedal locomotion. In light of the known roles of Foxp2 in brain circuits that are important for motor skills and spoken language, we suggest that this gene may have been well placed to contribute to coevolution of neural and anatomical adaptations related to speech and bipedal locomotion.
Collapse
|
41
|
Dolgova O, Lao O. Evolutionary and Medical Consequences of Archaic Introgression into Modern Human Genomes. Genes (Basel) 2018; 9:E358. [PMID: 30022013 PMCID: PMC6070777 DOI: 10.3390/genes9070358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 01/13/2023] Open
Abstract
The demographic history of anatomically modern humans (AMH) involves multiple migration events, population extinctions and genetic adaptations. As genome-wide data from complete genome sequencing becomes increasingly abundant and available even from extinct hominins, new insights of the evolutionary history of our species are discovered. It is currently known that AMH interbred with archaic hominins once they left the African continent. Current non-African human genomes carry fragments of archaic origin. This review focuses on the fitness consequences of archaic interbreeding in current human populations. We discuss new insights and challenges that researchers face when interpreting the potential impact of introgression on fitness and testing hypotheses about the role of selection within the context of health and disease.
Collapse
Affiliation(s)
- Olga Dolgova
- Population Genomics Group, Centre Nacional d'Anàlisi Genòmica, Centre de Regulació Genòmica (CRG-CNAG), Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain.
| | - Oscar Lao
- Population Genomics Group, Centre Nacional d'Anàlisi Genòmica, Centre de Regulació Genòmica (CRG-CNAG), Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
42
|
Schatton A, Scharff C. FoxP expression identifies a Kenyon cell subtype in the honeybee mushroom bodies linking them to fruit fly αβ c neurons. Eur J Neurosci 2018; 46:2534-2541. [PMID: 28921711 DOI: 10.1111/ejn.13713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/27/2023]
Abstract
The arthropod mushroom bodies (MB) are a higher order sensory integration centre. In insects, they play a central role in associative olfactory learning and memory. In Drosophila melanogaster (Dm), the highly ordered connectivity of heterogeneous MB neuron populations has been mapped using sophisticated molecular genetic and anatomical techniques. The MB-core subpopulation was recently shown to express the transcription factor FoxP with relevance for decision-making. Here, we report the development and adult distribution of a FoxP-expressing neuron population in the MB of honeybees (Apis mellifera, Am) using in situ hybridisation and a custom-made antiserum. We found the same expression pattern in adult bumblebees (Bombus terrestris, Bt). We also designed a new Dm transgenic line that reports FoxP transcriptional activity in the MB-core region, clarifying previously conflicting data of two other reporter lines. Considering developmental, anatomical and molecular similarities, our data are consistent with the concept of deep homology of FoxP expression in neuron populations coding reinforcement-based learning and habit formation.
Collapse
Affiliation(s)
- Adriana Schatton
- Department of Animal Behavior, Institute of Biology, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
| | - Constance Scharff
- Department of Animal Behavior, Institute of Biology, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
| |
Collapse
|
43
|
Soteros BM, Cong Q, Palmer CR, Sia GM. Sociability and synapse subtype-specific defects in mice lacking SRPX2, a language-associated gene. PLoS One 2018; 13:e0199399. [PMID: 29920554 PMCID: PMC6007900 DOI: 10.1371/journal.pone.0199399] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023] Open
Abstract
The FoxP2 transcription factor and its target genes have been implicated in developmental brain diseases with a prominent language component, such as developmental verbal dyspraxia and specific language impairment. How FoxP2 affects neural circuitry development remains poorly understood. The sushi domain protein SRPX2 is a target of FoxP2, and mutations in SRPX2 are associated with language defects in humans. We have previously shown that SRPX2 is a synaptogenic protein that increases excitatory synapse density. Here we provide the first characterization of mice lacking the SRPX2 gene, and show that these mice exhibit defects in both neural circuitry and communication and social behaviors. Specifically, we show that mice lacking SRPX2 show a specific reduction in excitatory VGlut2 synapses in the cerebral cortex, while VGlut1 and inhibitory synapses were largely unaffected. SRPX2 KO mice also exhibit an abnormal ultrasonic vocalization ontogenetic profile in neonatal pups, and reduced preference for social novelty. These data demonstrate a functional role for SRPX2 during brain development, and further implicate FoxP2 and its targets in regulating the development of vocalization and social circuits.
Collapse
Affiliation(s)
- Breeanne M. Soteros
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Qifei Cong
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Christian R. Palmer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Gek-Ming Sia
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
44
|
Nicholson DA, Roberts TF, Sober SJ. Thalamostriatal and cerebellothalamic pathways in a songbird, the Bengalese finch. J Comp Neurol 2018; 526:1550-1570. [PMID: 29520771 PMCID: PMC5899675 DOI: 10.1002/cne.24428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
Abstract
The thalamostriatal system is a major network in the mammalian brain, originating principally from the intralaminar nuclei of thalamus. Its functions remain unclear, but a subset of these projections provides a pathway through which the cerebellum communicates with the basal ganglia. Both the cerebellum and basal ganglia play crucial roles in motor control. Although songbirds have yielded key insights into the neural basis of vocal learning, it is unknown whether a thalamostriatal system exists in the songbird brain. Thalamic nucleus DLM is an important part of the song system, the network of nuclei required for learning and producing song. DLM receives output from song system basal ganglia nucleus Area X and sits within dorsal thalamus, the proposed avian homolog of the mammalian intralaminar nuclei that also receives projections from the cerebellar nuclei. Using a viral vector that specifically labels presynaptic axon segments, we show in Bengalese finches that dorsal thalamus projects to Area X, the basal ganglia nucleus of the song system, and to surrounding medial striatum. To identify the sources of thalamic input to Area X, we map DLM and cerebellar-recipient dorsal thalamus (DTCbN ). Surprisingly, we find both DLM and dorsal anterior DTCbN adjacent to DLM project to Area X. In contrast, the ventral medial subregion of DTCbN projects to medial striatum outside Area X. Our results suggest the basal ganglia in the song system, like the mammalian basal ganglia, integrate feedback from the thalamic region to which they project as well as thalamic regions that receive cerebellar output.
Collapse
Affiliation(s)
- David A Nicholson
- Graduate Program in Neuroscience, Emory University, Atlanta, 30322, Georgia
- Department of Biology, Emory University, Atlanta, 30322, Georgia
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, 75390-9111
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, 30322, Georgia
| |
Collapse
|
45
|
Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol 2018. [PMID: 29536541 DOI: 10.1002/cne.24430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the transcription factors FOXP1, FOXP2, and FOXP4 affect human cognition, including language. The FoxP gene locus is evolutionarily ancient and highly conserved in its DNA-binding domain. In Drosophila melanogaster FoxP has been implicated in courtship behavior, decision making, and specific types of motor-learning. Because honeybees (Apis mellifera, Am) excel at navigation and symbolic dance communication, they are a particularly suitable insect species to investigate a potential link between neural FoxP expression and cognition. We characterized two AmFoxP isoforms and mapped their expression in the brain during development and in adult foragers. Using a custom-made antiserum and in situ hybridization, we describe 11 AmFoxP expressing neuron populations. FoxP was expressed in equivalent patterns in two other representatives of Apidae; a closely related dwarf bee and a bumblebee species. Neural tracing revealed that the largest FoxP expressing neuron cluster in honeybees projects into a posterior tract that connects the optic lobe to the posterior lateral protocerebrum, predicting a function in visual processing. Our data provide an entry point for future experiments assessing the function of FoxP in eusocial Hymenoptera.
Collapse
Affiliation(s)
- Adriana Schatton
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Ezequiel Mendoza
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Kathrin Grube
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| | - Constance Scharff
- Institute for Animal Behavior, Freie Universität Berlin, Berlin, 14195, Germany
| |
Collapse
|
46
|
Xiao L, Chattree G, Oscos FG, Cao M, Wanat MJ, Roberts TF. A Basal Ganglia Circuit Sufficient to Guide Birdsong Learning. Neuron 2018; 98:208-221.e5. [PMID: 29551492 DOI: 10.1016/j.neuron.2018.02.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/28/2018] [Accepted: 02/20/2018] [Indexed: 11/28/2022]
Abstract
Learning vocal behaviors, like speech and birdsong, is thought to rely on continued performance evaluation. Whether candidate performance evaluation circuits in the brain are sufficient to guide vocal learning is not known. Here, we test the sufficiency of VTA projections to the vocal basal ganglia in singing zebra finches, a songbird species that learns to produce a complex and stereotyped multi-syllabic courtship song during development. We optogenetically manipulate VTA axon terminals in singing birds contingent on how the pitch of an individual song syllable is naturally performed. We find that optical inhibition and excitation of VTA terminals are each sufficient to reliably guide learned changes in song. Inhibition and excitation have opponent effects on future performances of targeted song syllables, consistent with positive and negative reinforcement of performance outcomes. These findings define a central role for reinforcement mechanisms in learning vocalizations and demonstrate minimal circuit elements for learning vocal behaviors. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaurav Chattree
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francisco Garcia Oscos
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mou Cao
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew J Wanat
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Todd F Roberts
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Abstract
Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future.
Collapse
Affiliation(s)
- Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University Munich, Grosshaderner Str. 2, D-82152 Martinsried, Germany.
| |
Collapse
|
48
|
FOXP2 variation in great ape populations offers insight into the evolution of communication skills. Sci Rep 2017; 7:16866. [PMID: 29203828 PMCID: PMC5715162 DOI: 10.1038/s41598-017-16844-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
The gene coding for the forkhead box protein P2 (FOXP2) is associated with human language disorders. Evolutionary changes in this gene are hypothesized to have contributed to the emergence of speech and language in the human lineage. Although FOXP2 is highly conserved across most mammals, humans differ at two functional amino acid substitutions from chimpanzees, bonobos and gorillas, with an additional fixed substitution found in orangutans. However, FOXP2 has been characterized in only a small number of apes and no publication to date has examined the degree of natural variation in large samples of unrelated great apes. Here, we analyzed the genetic variation in the FOXP2 coding sequence in 63 chimpanzees, 11 bonobos, 48 gorillas, 37 orangutans and 2 gibbons and observed undescribed variation in great apes. We identified two variable polyglutamine microsatellites in chimpanzees and orangutans and found three nonsynonymous single nucleotide polymorphisms, one in chimpanzees, one in gorillas and one in orangutans with derived allele frequencies of 0.01, 0.26 and 0.29, respectively. Structural and functional protein modeling indicate a biochemical effect of the substitution in orangutans, and because of its presence solely in the Sumatran orangutan species, the mutation may be associated with reported population differences in vocalizations.
Collapse
|
49
|
Usui N, Araujo DJ, Kulkarni A, Co M, Ellegood J, Harper M, Toriumi K, Lerch JP, Konopka G. Foxp1 regulation of neonatal vocalizations via cortical development. Genes Dev 2017; 31:2039-2055. [PMID: 29138280 PMCID: PMC5733496 DOI: 10.1101/gad.305037.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
Usui et al. show that deletion of Foxp1 in the developing forebrain leads to impairments in neonatal vocalizations as well as neocortical cytoarchitectonic alterations via neuronal positioning and migration. Sumoylation of Foxp1 affects neuronal differentiation and migration in the developing neocortex. The molecular mechanisms driving brain development at risk in autism spectrum disorders (ASDs) remain mostly unknown. Previous studies have implicated the transcription factor FOXP1 in both brain development and ASD pathophysiology. However, the specific molecular pathways both upstream of and downstream from FOXP1 are not fully understood. To elucidate the contribution of FOXP1-mediated signaling to brain development and, in particular, neocortical development, we generated forebrain-specific Foxp1 conditional knockout mice. We show that deletion of Foxp1 in the developing forebrain leads to impairments in neonatal vocalizations as well as neocortical cytoarchitectonic alterations via neuronal positioning and migration. Using a genomics approach, we identified the transcriptional networks regulated by Foxp1 in the developing neocortex and found that such networks are enriched for downstream targets involved in neurogenesis and neuronal migration. We also uncovered mechanistic insight into Foxp1 function by demonstrating that sumoylation of Foxp1 during embryonic brain development is necessary for mediating proper interactions between Foxp1 and the NuRD complex. Furthermore, we demonstrated that sumoylation of Foxp1 affects neuronal differentiation and migration in the developing neocortex. Together, these data provide critical mechanistic insights into the function of FOXP1 in the developing neocortex and may reveal molecular pathways at risk in ASD.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.,Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Daniel J Araujo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario M5S 1A1, Canada
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kazuya Toriumi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Project for Schizophrenia Research, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario M5S 1A1, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
50
|
Stegmayer K, Stettler M, Strik W, Federspiel A, Wiest R, Bohlhalter S, Walther S. Resting state perfusion in the language network is linked to formal thought disorder and poor functional outcome in schizophrenia. Acta Psychiatr Scand 2017; 136:506-516. [PMID: 28865406 PMCID: PMC5656821 DOI: 10.1111/acps.12790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Formal thought disorder (FTD) is a core symptom in schizophrenia. Here, we focus on resting state cerebral blood flow (rCBF) linked to dimensions of FTD. METHODS We included 47 schizophrenia spectrum patients and 30 age- and gender-matched healthy controls. We assessed FTD with the assessment of thought, language, and communication (TLC) and imaging on a 3T MRI scanner. Within patients, we tested the association of FTD dimensions and in a subgroup (n = 27) the association of functional outcome after 6 months with whole brain rCBF. RESULTS Negative FTD was most prominently associated with perfusion within the superior temporal gyrus, while positive FTD was associated with perfusion within the supplementary motor area, and inferior frontal gyrus. Perfusion within the left supramarginal gyrus was associated with social functioning after 6 months. CONCLUSIONS Distinguishable associations of rCBF with FTD dimensions point to distinct underlying pathophysiology. The location of aberrant perfusion patterns suggests that negative FTD might reflect defective access to semantic memory while positive FTD likely reflects defective suppression of irrelevant information during increased speech production. Finally, the neural correlates of thought block were also predictive of poor functional outcome. Thus, functional outcome and distinct FTD dimensions may share some pathophysiology.
Collapse
Affiliation(s)
- K. Stegmayer
- Translational Research CenterUniversity Hospital of PsychiatryUniversity of BernBernSwitzerland
| | - M. Stettler
- Translational Research CenterUniversity Hospital of PsychiatryUniversity of BernBernSwitzerland
| | - W. Strik
- Translational Research CenterUniversity Hospital of PsychiatryUniversity of BernBernSwitzerland
| | - A. Federspiel
- Translational Research CenterUniversity Hospital of PsychiatryUniversity of BernBernSwitzerland
| | - R. Wiest
- Support Center of Advanced Neuroimaging (SCAN)University Institute of Diagnostic and Interventional NeuroradiologyInselspitalBernSwitzerland
| | - S. Bohlhalter
- Neurology and Neurorehabilitation CenterKantonsspital LuzernLucerneSwitzerland
| | - S. Walther
- Translational Research CenterUniversity Hospital of PsychiatryUniversity of BernBernSwitzerland
| |
Collapse
|