1
|
Liang JL, Cao Y, Lv K, Xiao B, Sun J. Amplifying Ca 2+ overload by engineered biomaterials for synergistic cancer therapy. Biomaterials 2025; 316:123027. [PMID: 39700532 DOI: 10.1016/j.biomaterials.2024.123027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Ca2+ overload is one of the most widely causes of inducing apoptosis, pyroptosis, immunogenic cell death, autophagy, paraptosis, necroptosis, and calcification of tumor cells, and has become the most valuable therapeutic strategy in the field of cancer treatment. Nevertheless, several challenges remain in translating Ca2+ overload-mediated therapeutic strategies into clinical applications, such as the precise control of Ca2+ dynamics, specificity of Ca2+ homeostasis dysregulation, as well as comprehensive mechanisms of Ca2+ regulation. Given this, we comprehensively reviewed the Ca2+-driven intracellular signaling pathways and the application of Ca2+-based biomaterials (such as CaCO3-, CaP-, CaO2-, CaSi-, CaF2-, and CaH2-) in mediating cancer diagnosis, treatment, and immunotherapy. Meanwhile, the latest researches on Ca2+ overload-mediated therapeutic strategies, as well as those combined with multiple-model therapies in mediating cancer immunotherapy are further highlighted. More importantly, the critical challenges and the future prospects of the Ca2+ overload-mediated therapeutic strategies are also discussed. By consolidating recent findings and identifying future research directions, this review aimed to advance the field of oncology therapy and contribute to the development of more effective and targeted treatment modalities.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yangyang Cao
- Hangzhou Ultra-theranostics Biopharmaceuticals Technology Co., Ltd., Hangzhou, 311231, China
| | - Kaiwei Lv
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Bing Xiao
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Wang JQ, Liu XM, Zhu ZS, Li Z, Xie CZ, Qiao X, Feng YK, Xu JY. Fluoxetine-Conjugated Platinum(IV) Prodrugs Targeting eEF2K and Conquering Multidrug Resistance against Triple-Negative Breast Cancer. J Med Chem 2025. [PMID: 40265570 DOI: 10.1021/acs.jmedchem.5c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Triple-negative breast cancer (TNBC) poses formidable challenges in the clinic owing to its particularly malignant and aggressive properties. Overexpression of eukaryotic elongation factor-2 kinase (eEF2K) is highly correlated with the poor prognosis of TNBC, representing a promising therapeutic target. Herein, Fluoxetine as eEF2K-inhibitor and chemosensitizer was conjugated with cisplatin/oxaliplatin to present two-in-one prodrugs 8-19. Multievaluation indicated that monosubstituted 8 and disubstituted 12 exhibited 407- and 174-fold higher cytotoxicity than cisplatin against MDA-MB-231 cells by elevating DNA damage-induced apoptosis and eEF2K-triggered autophagy. Moreover, 8 and 12 significantly overcame chemoresistance in A549cisR cells, evidenced by downregulating resistance-related key proteins P-gp, GST-π, ATM, and RAD51. Syngeneic and xenograft mouse models demonstrated that 8 and 12 could effectively inhibit tumor growth and metastasis, and reduce toxicity compared to cisplatin in vivo. Additionally, 8 and 12 stimulated immunomodulation including T-cell proliferation and Th1 cytokine production. All results hold the promise of 8 and 12 as multifunctional chemotherapeutic agents.
Collapse
Affiliation(s)
- Jia-Qian Wang
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Meng Liu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zi-Shuo Zhu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Cheng-Zhi Xie
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Kuan Feng
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jing-Yuan Xu
- Department of Chemical Biology and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
3
|
Jia H, Wang C, Fu Y, Wang Y, Zhang X, Tang Y, Ding J, He K, Wang J, Shen Y. Visualization of mitochondrial molecular dynamics during mitophagy process by label-free surface-enhanced Raman scattering spectroscopy. Anal Chim Acta 2025; 1345:343748. [PMID: 40015786 DOI: 10.1016/j.aca.2025.343748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Mitophagy is a selective way to eliminate dysfunctional mitochondria and recycle their constituents, which plays an important role in regulating and maintaining intracellular homeostasis. Real-time monitoring mitophagy process is of great importance for cellular physiological and pathological processes related to mitochondria. Howbeit, most of the current methods only focus on single-parameter detection of mitochondrial microenvironmental changes such as pH, viscosity and polarity. The mitochondrial molecular responses under mitophagy are not clear. Therefore, developing a new and simple method for molecular profiling is of great importance for accurately and comprehensively visualizing mitophagy. RESULTS In this work, Au NPs-based mitochondria-targeting nanoprobe was developed and the nanoprobe-based label-free surface enhanced Raman spectroscopy (SERS) method was proposed to track starvation induced mitophagy process at molecular level. The nanoprobe displayed good SERS performance and low cytotoxicity. Based on the developed strategy, the molecular response within mitochondria under mitophagy was validated. Meanwhile, the protein denaturation, conformational change, lipid degradation and DNA fragmentation within mitochondria under mitophagy were revealed for the first time, which provides molecular evidence for mitophagy. The changes in reactive oxygen species level and mitochondrial membrane potential further confirmed the damage of mitochondria. Moreover, the developed label-free SERS strategy was used to detect mitophagy in drug (cisplatin)-induced liver injury (DILI) cell model, and obvious mitophagy in DILI cells was observed. SIGNIFICANCE The molecular biochemical signature dynamic changes within mitochondria during mitophagy process were revealed by SERS for the first time. Moreover, compared with the current research, our study can provide new insights into mitophagy and mitophagy-involved diseases at molecular level. This study will provide new insights into the molecular mechanism of mitophagy and offer a simple and effective method for mitochondrial molecular event monitoring in mitophagy-involved cellular processes.
Collapse
Affiliation(s)
- Hailan Jia
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Chi Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yalin Wang
- The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoyu Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuezhou Tang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jiahao Ding
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Kun He
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China.
| | - Yanting Shen
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
4
|
Pan W, Han Y, Zhang M, Zhu K, Yang Z, Qiu M, Guo Y, Dong Z, Hao J, Zhang X, Gao M, Zhang H. Effects of microplastics on chemo-resistance and tumorigenesis of colorectal cancer. Apoptosis 2025; 30:1005-1020. [PMID: 39924586 DOI: 10.1007/s10495-025-02085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
Microplastics (MPs) are widely distributed environmental pollutants around the world. Although studies have demonstrated that MPs have adverse effects on human health, the relationship between MPs and tumors remains unclear. The gut is the main site of microplastics absorption, and the function of MPs in the chemoresistance and progression of colorectal cancer (CRC) needs more investigation. Here, we show that MPs exist in human CRC tissues for the first time by using a laser direct infrared chemical imaging system. MPs can cause an increase in CRC incidence in animal models and promote resistance to oxaliplatin. It is illustrated that the uptake of MPs enhances levels of autophagy by activating the mTOR pathway. MPs can also promote the disorder of intestinal flora and intestinal inflammation, serving as an essential component in the onset and advancement of CRC. These results indicated that microplastic pollutants in colorectal cancer could mediate protective autophagy through the mTOR/ULK1 axis, which is one of the new reasons for chemo-resistance in CRC under the background of increasingly serious microplastics pollution. This study identified the adverse effects of MPs on colorectal cancer progression and chemotherapy prognosis, and attempted to block the intake of MPs to propose a novel approach for clinical precision treatment.
Collapse
Affiliation(s)
- Wen Pan
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China
| | - Yueting Han
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China
| | - Mingqing Zhang
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China
| | - Kegan Zhu
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China
| | - Zhen Yang
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China
| | - Minghan Qiu
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China
| | - Yaoyang Guo
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical ResearchCenter for Cancer, Tianjin, China, 300060
| | - Ziyi Dong
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical ResearchCenter for Cancer, Tianjin, China, 300060
| | - Jie Hao
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China.
| | - Xipeng Zhang
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China.
| | - Ming Gao
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China.
| | - Haiyang Zhang
- Tianjin Institute of Coloproctology,Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300121, China.
| |
Collapse
|
5
|
Huang X, Yan H, Xu Z, Yang B, Luo P, He Q. The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun Signal 2025; 23:151. [PMID: 40140912 PMCID: PMC11948861 DOI: 10.1186/s12964-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway for recycling intracellular materials and removing damaged organelles, and it is usually considered a prosurvival process in response to stress stimuli. However, increasing evidence suggests that autophagy can also drive cell death in a context-dependent manner. The bulk degradation of cell contents and the accumulation of autophagosomes are recognized as the mechanisms of cell death induced by autophagy alone. However, autophagy can also drive other forms of regulated cell death (RCD) whose mechanisms are not related to excessive autophagic vacuolization. Notably, few reviews address studies on the transformation from autophagy to RCD, and the underlying molecular mechanisms are still vague. AIM OF REVIEW This review aims to summarize the existing studies on autophagy-mediated RCD, to elucidate the mechanism by which autophagy initiates RCD, and to comprehensively understand the role of autophagy in determining cell fate. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the prodeath effect of autophagy, which is distinct from the generally perceived cytoprotective role, and its mechanisms are mainly associated with the selective degradation of proteins or organelles essential for cell survival and the direct involvement of the autophagy machinery in cell death. Additionally, this review highlights the need for better manipulation of autophagy activation or inhibition in different pathological contexts, depending on clinical purpose.
Collapse
Affiliation(s)
- Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Yang Y, Cao L, Xu X, Li D, Deng Y, Li L, Zeng B, Jiang H, Shan L, Huang Y, Xu Y, Ma L. NSUN2/ALYREF axis-driven m 5C methylation enhances PD-L1 expression and facilitates immune evasion in non-small-cell lung cancer. Cancer Immunol Immunother 2025; 74:132. [PMID: 40029463 PMCID: PMC11876480 DOI: 10.1007/s00262-025-03986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
Non-small-cell lung cancer (NSCLC) represents a highly prevalent form of malignancy. 5-methylcytosine (m5C) methylation functions as a key post-transcriptional regulatory mechanism linked to cancer progression. The persistent expression of PD-L1 in tumor cells plays a pivotal role in facilitating immune evasion and promoting T-cell exhaustion. However, the involvement of m5C in NSCLC immune evasion remains inadequately understood. This study seeks to explore the function of the m5C methyltransferase NSUN2 in modulating PD-L1 expression and facilitating immune evasion in NSCLC. Our findings indicate elevated levels of NSUN2 and ALYREF in NSCLC, and both promote the growth of NSCLC cells and the progression of lung cancer. Moreover, the expression of PD-L1 in NSCLC tissues positively correlates with NSUN2 and ALYREF expression. We then discovered that PD-L1 acts as a downstream target of NSUN2-mediated m5C modification in NSCLC cells. Knocking down NSUN2 significantly reduces m5C modification of PD-L1 mRNA, thereby decreasing its stability via the m5C reader ALYREF-dependent manner. Furthermore, inhibiting NSUN2 enhanced CD8+ T-cell activation and infiltration mediated by PD-L1, thereby boosting antitumor immunity, as confirmed in both in vitro and in vivo experiments. Collectively, these results suggested that NSUN2/ALYREF/PD-L1 axis plays a critical role in promoting NSCLC progression and tumor cell immune suppression, highlighting its potential as a novel therapeutic strategy for NSCLC immunotherapy.
Collapse
Affiliation(s)
- Yiran Yang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Leiqun Cao
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Xin Xu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Yiran Deng
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Lan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Bingjie Zeng
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Haixia Jiang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Liang Shan
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Yiwen Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China
| | - Yunhua Xu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China.
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 West Huaihai Road, Shanghai, 200030, China.
| |
Collapse
|
7
|
Wang Z, Chen H, Xiong S, Chen X, Gao X, Huang P, Zou J, Cao H. Lactobacillus plantarum SMUM211204 Exopolysaccharides Have Tumor-Suppressive Effects on Colorectal Cancer by Regulating Autophagy via the mTOR Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40017402 DOI: 10.1021/acs.jafc.4c09818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Probiotics have demonstrated their ability to suppress tumors in cell lines and mouse models. However, the precise molecules responsible for these effects remain unidentified. We focused on isolating and analyzing the exopolysaccharides (EPSs) produced by Lactobacillus plantarum (L. plantarum) SMUM211204. Our findings confirm that EPSs impair the growth of HCT116 cells and induce autophagy and apoptosis. Moreover, further experimental evidence demonstrates that EPSs diminish the expression of phosphorylation levels of PI3K, AKT, and mTOR. In contrast, they boost the expression of AMPKa, elevate the ULK1 level, and increase the protein LC3-II/I ratio. Furthermore, when rapamycin is employed to impede EPS-induced autophagy, it results in an enhancement of apoptosis and cell death in HCT116 cells. To validate these findings in vivo, we conducted an animal study using a colorectal cancer xenograft model. The results showed a significant reduction in tumor volume and weight in the EPS-treated group compared with the control group. Immunohistochemical analysis of tumors indicated increased expressions of LC3 and caspase-3, along with decreased levels of phospho-PI3Kinase, phospho-AKT, and P62, consistent with in vitro findings. Our study proved that EPSs have an inhibitory effect on colorectal cancer and can be used as a preventive and therapeutic drug for cancer.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hengqiu Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Shasha Xiong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoliang Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xuefeng Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Pengwei Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jinhu Zou
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Ferdousmakan S, Mansourian D, Seyedi Asl FS, Fathi Z, Maleki-Sheikhabadi F, Afjadi MN, Zalpoor H. Autophagy induced by metabolic processes leads to solid tumor cell metastatic dormancy and recurrence. Med Oncol 2025; 42:62. [PMID: 39899220 DOI: 10.1007/s12032-025-02607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
A crucial cellular mechanism that has a complex impact on the biology of cancer, particularly in solid tumors, is autophagy. This review explores how metabolic processes trigger autophagy, which helps metastatic tumor cells go dormant and recur. During metastasis, tumor cells frequently encounter severe stressors, such as low oxygen levels and nutritional deprivation, which causes them to activate autophagy as a survival tactic. This process allows cancer stem cells (CSCs) to withstand severe conditions while also preserving their features. After years of dormancy, dormant disseminated tumor cells (DTCs) may reappear as aggressive metastatic cancers. The capacity of autophagy to promote resistance to treatments and avoid immune detection is intimately related to this phenomenon. According to recent research, autophagy promotes processes, such as the epithelial-to-mesenchymal transition (EMT) and helps build a pre-metastatic niche, which makes treatment strategies more challenging. Autophagy may be a promising therapeutic target because of its dual function as a tumor suppressor in early-stage cancer and a survival promoter in advanced stages. To effectively treat metastatic diseases, it is crucial to comprehend how metabolic processes interact with autophagy and affect tumor behavior. In order to find novel therapeutic approaches that can interfere with these processes and improve patient outcomes, this study highlights the critical need for additional investigation into the mechanisms by which autophagy controls tumor dormancy and recurrence.
Collapse
Affiliation(s)
- Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | - Dorrin Mansourian
- Faculty of Pharmacy, Eastern Mediterranean University, Gazimagusa TRNC via Mersin 10, Mersin, Turkey
| | | | - Zeinab Fathi
- Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Khalil RG, Mohammed DA, Hamdalla HM, Ahmed OM. The possible anti-tumor effects of regulatory T cells plasticity / IL-35 in the tumor microenvironment of the major three cancer types. Cytokine 2025; 186:156834. [PMID: 39693872 DOI: 10.1016/j.cyto.2024.156834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
T lymphocytes are among the immunological cells that make up the tumor microenvironment (TME), and they are essential in the growth of tumors and anti-tumor reactions. Regulatory T cells (Treg cells) are a subset of CD4+ T cells in the immune system that suppress the immune system. They are distinguished by their expression of the master transcription factor forkhead box protein P3 (FOXP3). Furthermore, Treg cells are essential for maintaining immunological homeostasis, inhibiting inflammation, and maintaining self-tolerance. In a variety of malignancies within the TME, Treg cells demonstrate notable flexibility and functional diversity. Highly plastic Treg cells can change into Th-like Treg cells in specific circumstances, which allow them to secrete particular pro-inflammatory cytokines. Interleukin 35 (IL-35) is a part of the immunosuppressive cytokines that belong to the IL-12 family. Treg cells release IL-35, which was elevated in the peripheral blood and TME of numerous cancer patients, implying that IL-35 in the TME may be an intriguing target for cancer therapy. In cancer, IL-35 is a two-edged sword; it promotes tumorigenicity in cancer cells while shielding them from apoptosis. Nonetheless, other investigations have mentioned its conflicting effects on cancer prevention. Herein, we provide an updated understanding of the critical mechanisms behind the anticancer immunity mediated by Treg cells plasticity, the role of IL-35, and tactics to strengthen the immune response against malignancies, outlining major clinical trials that used Treg cells/IL-35 therapies in the three main cancer types (lung, breast, and colorectal cancers).
Collapse
Affiliation(s)
- Rehab G Khalil
- Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| | - Dina A Mohammed
- Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hadeer M Hamdalla
- Cell Biology, Histology and Genetics Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| |
Collapse
|
10
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
11
|
Gupta S, Cassel SL, Sutterwala FS, Dagvadorj J. Regulation of the NLRP3 inflammasome by autophagy and mitophagy. Immunol Rev 2025; 329:e13410. [PMID: 39417249 DOI: 10.1111/imr.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that upon activation by the innate immune system drives a broad inflammatory response. The primary initial mediators of this response are pro-IL-1β and pro-IL-18, both of which are in an inactive form. Formation and activation of the NLRP3 inflammasome activates caspase-1, which cleaves pro-IL-1β and pro-IL-18 and triggers the formation of gasdermin D pores. Gasdermin D pores allow for the secretion of active IL-1β and IL-18 initiating the organism-wide inflammatory response. The NLRP3 inflammasome response can be beneficial to the host; however, if the NLRP3 inflammasome is inappropriately activated it can lead to significant pathology. While the primary components of the NLRP3 inflammasome are known, the precise details of assembly and activation are less well defined and conflicting. Here, we discuss several of the proposed pathways of activation of the NLRP3 inflammasome. We examine the role of subcellular localization and the reciprocal regulation of the NLRP3 inflammasome by autophagy. We focus on the roles of mitochondria and mitophagy in activating and regulating the NLRP3 inflammasome. Finally, we detail the impact of pathologic NLRP3 responses in the development and manifestations of pulmonary disease.
Collapse
Affiliation(s)
- Suman Gupta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suzanne L Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jargalsaikhan Dagvadorj
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
12
|
Meng F, Yan Y, Zhou L, Zhao S, Sun L, Yu H. Targeting autophagy promotes the antitumor effect of radiotherapy on cervical cancer cells. Cancer Biol Ther 2024; 25:2431136. [PMID: 39635971 PMCID: PMC11622585 DOI: 10.1080/15384047.2024.2431136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Radiotherapy is the mainstay of cancer treatment, and reducing radioresistance is still a poorly explored issue in radiotherapy. Our study was designed to explore the possible functions and mechanisms of autophagy in cervical cancer cells treated with radiotherapy. We discovered that autophagy was activated in C33a and HeLa cervical cancer cells in parallel with increased apoptosis and formation of polyploid giant carcinoma cells (PGCCs) after radiation. Inhibition of autophagy significantly enhances radiation-induced cytotoxicity and apoptosis in cervical cancer cells and reduces PGCCs formation. Immunoblot analysis, as part of the mechanistic experiments, showed that the phosphorylation levels of Akt, mTOR, and P70S6K were downregulated. Thus, our research demonstrated that inhibiting autophagy enhances the antitumor effects of radiation on cervical cancer cells.
Collapse
Affiliation(s)
- Fanjie Meng
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Yan
- Country Department of Radiotherapy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li Zhou
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Song Zhao
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Basic Medical Laboratory, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
13
|
Duan Q, Yang W, Zhu X, Feng Z, Song J, Xu X, Kong M, Mao J, Shen J, Deng Y, Tao R, Xu H, Chen W, Li W, Dong A, Han J. Deptor protects against myocardial ischemia-reperfusion injury by regulating the mTOR signaling and autophagy. Cell Death Discov 2024; 10:508. [PMID: 39702468 PMCID: PMC11659626 DOI: 10.1038/s41420-024-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Deptor knockout mice were constructed by crossing Deptor Floxp3 mice with myh6 Cre mice, establishing a myocardial ischemia-reperfusion (I/R) model. Deptor knockout mice exhibited significantly increased myocardial infarction size and increased myocardial apoptosis in vivo. ELISA analysis indicated that the expression of CK-MB, LDH, and CtnT/I was significantly higher in the Deptor knockout mice. Deptor siRNA significantly reduced cell activity and increased myocardial apoptosis after I/R-induced in vitro. Deptor siRNA also significantly up-regulated the expression of p-mTOR, p-4EBP1, and p62, and down-regulated the expression of LC3 after I/R induction. Immunofluorescence indicated that LC3 dual fluorescence was weakened by Deptor knockout, and was enhanced after transfection with Deptor-overexpression plasmids. Treatment with OSI027, a co-inhibitor of mTORC1 and mTORC2, in either Deptor knockout mice or Deptor knockout H9C2 cells, resulted in a significant reduction in infarction size and apoptotic cardiomyocytes. ELISA analysis also showed that the expression of CK-MB, LDH, and CtnT/I were significantly down-regulated by treatment with OSI027. CCK-8 cell viability indicated that cell viability was enhanced, and the number of apoptotic cells was decreased in vitro following treatment with OSI027. These results revealed that OSI027 exerts a protective effect on myocardial ischemia/reperfusion injury in both an in vivo and in an in vitro model of I/R. These findings demonstrate that Deptor protects against I/R-induced myocardial injury by inhibiting the mTOR pathway and by increasing autophagy.
Collapse
Affiliation(s)
- Qunjun Duan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weijun Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xian Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhanzeng Feng
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangwei Song
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaobin Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minjian Kong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiayan Mao
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Shen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuqin Deng
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rujia Tao
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Weidong Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Aiqiang Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jie Han
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Deng T, Chen D, Chen F, Xu C, Zhang Q, Li M, Wang Y, He Z, Li M, He Q. Synergizing autophagic cell death and oxaliplatin-induced immunogenic death by a self-delivery micelle for enhanced tumor immunotherapy. Acta Biomater 2024; 190:548-559. [PMID: 39426655 DOI: 10.1016/j.actbio.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Chemotherapy has become an emerging strategy to activate cytotoxic T cell responses by inducing immunogenic cell death (ICD), but the level of antitumor immunity induced by chemotherapeutic agents, such as oxaliplatin (OXA), is limited due to inadequate tumor antigen presentation and T cell activation. Inducing autophagic cell death (ACD) promotes the release of tumor antigen and the recruitment of dendritic cells, therefore strengthening antitumor immune responses. Here we simultaneously activate ICD and ACD with tumor targeting micelle to achieve enhanced antitumor chemo-immunotherapy. A self-delivery micelle is formulated by conjugating OXA prodrug with tocopherol succinate (TOS) as a hydrophobic segment and further encapsulates autophagy activator SMER28 to afford TOPR/SMER28, which specifically targets αvβ3 on tumor cells with c(RGDfK). Upon cellular internalization, OXA is released from the prodrug in response to the high concentration of reduced glutathione (GSH) in tumor cells, triggering ICD and releasing associated molecular patterns (DAMPs) signaling molecules to stimulate immunity. Meanwhile, SMER28 over-activates autophagy to induce autophagic cell death, which further leads to the maturation of dendritic cells and ultimately activates anti-tumor immune response. In the 4T1 tumor-bearing mice, the combination of OXA and SMER28 effectively inhibits tumor growth and activates antitumor immune responses. The tumor targeted micelle releases OXA and SMER28 in an on-demand profile and strengthens tumor chemo-immunotherapy by synergizing ICD and ACD, providing an alternative for antitumor immunotherapy. STATEMENT OF SIGNIFICANCE: Chemotherapy induces immunogenic cell death (ICD) to activate anti-tumor immunity. However, the efficacy is limited by low levels of antigen presentation and T cell activation. To strengthen the antitumor immune responses induced by ICD, we first combine autophagic cell death (ACD) with ICD by formulating a glutathione-responsive oxaliplatin prodrug micelle co-encapsulating the autophagy activator SMER28. The activated autophagic level by SMER28 enhances the release of antigen and the recruitment of APCs, and ultimately bolsters T cell-mediated antitumor immune responses. We provide a potential strategy to amplify antitumor immune effects by combining autophagy activation with chemotherapy.
Collapse
Affiliation(s)
- Tao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Fang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chaoqun Xu
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, PR China
| | - Qiang Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Min Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhidi He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
15
|
Liang M, Wang Q, Zhang S, Lan Q, Wang R, Tan E, Zhou L, Wang C, Wang H, Cheng Y. Polypyridiniums with Inherent Autophagy-Inducing Activity for Atherosclerosis Treatment by Intracellularly Co-Delivering Two Antioxidant Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409015. [PMID: 39328054 DOI: 10.1002/adma.202409015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/18/2024] [Indexed: 09/28/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial intima and is becoming the leading cause of morbidity and mortality worldwide. There is considerable evidence that defective autophagy and overproduction of reactive oxygen species (ROS) are closely involved in the development and progression of atherosclerosis. Here, a polymer is developed with the inherent autophagy-inducing activity to treat atherosclerosis by co-delivering antioxidant enzymes. The lead material P5c screened from a library of polypyridiniums shows robust efficacy in cytosolic protein delivery, and efficiently delivers superoxide dismutase (SOD) and catalase (CAT) into macrophages to down-regulate intracellular ROS. Moreover, P5c activates autophagy in macrophages and sufficiently inhibits foam cell formation. The P5c nanoparticle loaded with both SOD and CAT is further coated with neutrophil membranes to treat atherosclerosis in an ApoE-/- mice model. The treatment exhibits potent anti-atherosclerosis effect via activating autophagy, decreasing the infiltration of senescent cells in atherosclerotic plaques, regulating the M2 polarization of macrophages, and restoring the structure and function of splenic corpuscles. The polymer offers a multifaceted approach to combat atherosclerosis, addressing both cellular dysfunction and the need for targeted protein delivery within affected cells.
Collapse
Affiliation(s)
- Mengxiao Liang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Qian Wang
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Qi Lan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Ruijue Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Echuan Tan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Changping Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
16
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
17
|
Pangilinan C, Klionsky DJ, Liang C. Emerging dimensions of autophagy in melanoma. Autophagy 2024; 20:1700-1711. [PMID: 38497492 PMCID: PMC11262229 DOI: 10.1080/15548627.2024.2330261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Macroautophagy/autophagy has previously been regarded as simply a way for cells to deal with nutrient emergency. But explosive work in the last 15 years has given increasingly new knowledge to our understanding of this process. Many of the functions of autophagy that are unveiled from recent studies, however, cannot be reconciled with this conventional view of cell survival but, instead, point to autophagy being integrally involved at a deeper level of cell biology, playing a critical role in maintaining homeostasis and promoting an integrated stress/immune response. The new appreciation of the role of autophagy in the evolutionary trajectory of cancer and cancer interaction with the immune system provides a mechanistic framework for understanding the clinical benefits of autophagy-based therapies. Here, we examine current knowledge of the mechanisms and functions of autophagy in highly plastic and aggressive melanoma as a model disease of human malignancy, while highlighting emerging dimensions indicating that autophagy is at play beyond its classical face.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ATF4: activating transcription factor 4; ATG: autophagy related; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAFs: cancer-associated fibroblasts; CCL5: C-C motif chemokine ligand 5; CQ: chloroquine; CRISPR: clustered regularly interspaced short palindromic repeats; CTLA4: cytotoxic T-lymphocyte associated protein 4; CTL: cytotoxic T lymphocyte; DAMPs: danger/damage-associated molecular patterns; EGFR: epidermal growth factor receptor; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; FITM2: fat storage inducing transmembrane protein 2; HCQ: hydroxychloroquine; ICB: immune checkpoint blockade; ICD: immunogenic cell death; LDH: lactate dehydrogenase; MAPK: mitogen-activated protein kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; NDP52: nuclear dot protein 52; NFKB/NF-κ B: nuclear factor kappa B; NBR1: the neighbor of BRCA1; NK: natural killer; NRF1: nuclear respiratory factor 1; NSCLC: non-small-cell lung cancer; OPTN: optineurin; PDAC: pancreatic ductal adenocarcinoma; PDCD1/PD-1: programmed cell death 1; PPT1: palmitoyl-protein thioesterase 1; PTEN: phosphatase and tensin homolog; PTK2/FAK1: protein tyrosine kinase 2; RAS: rat sarcoma; SQSTM1/p62: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGFB/TGF-β: transforming growth factor beta; TMB: tumor mutational burden; TME: tumor microenvironment; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated.
Collapse
Affiliation(s)
- Christian Pangilinan
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Chengyu Liang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
18
|
Cheng YH, Wu HI, Chen YY, Lee YH, Wang BJ, Wang YJ. Adverse outcome pathway-based approach to reveal the mechanisms of skin sensitization and long-term aging effects of chlorothalonil. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135176. [PMID: 39029193 DOI: 10.1016/j.jhazmat.2024.135176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Chlorothalonil (CHT) is a widely used antifungal agent and is reported to be a sensitizer that can cause allergic contact dermatitis (ACD). ACD initiation is associated with various innate immune cell contributions and is usually accompanied by persistent inflammation, which is a potential contributing factor to skin damage. However, detailed information on the mechanisms by which CHT induces skin sensitization and damage is still insufficient. This study focused on investigating the possible sensitization process and mechanism of CHT and the adverse effects of repeated CHT exposure. CHT activates dendritic cells and promotes the proliferation of lymph cells in the skin sensitization phase, causing severe inflammation. Keratinocytes activate the NLRP3 inflammasome pathway to cause inflammation during CHT treatment, and macrophages also secrete inflammatory cytokines. In addition, CHT-induced inflammation triggered skin wrinkles, decreased epidermal thickness and decreased collagen. Cell experiments also showed that repeated exposure to CHT led to cell proliferation inhibition and senescence, and CHT-induced autophagy dysfunction was not only the reason for inflammation but also for senescence. This study defined the possible process through which CHT is involved in the skin sensitization phase and elucidated the mechanism of CHT-induced inflammation in innate immune responses. We also determined that repeated CHT exposure caused persistent inflammation, ultimately leading to skin aging.
Collapse
Affiliation(s)
- Yung-Hsuan Cheng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan, ROC
| | - Hsuan-I Wu
- Department of Food Safety, Hygiene and Risk Management, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan, ROC
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan, ROC
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan, ROC
| | - Bour-Jr Wang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC; Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan, ROC.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC.
| |
Collapse
|
19
|
He L, Chen Q, Lu Q, Yang M, Xie B, Chen T, Wang X. Autophagy-Inducing MoO 3-x Nanowires Boost Photothermal-Triggered Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202404822. [PMID: 38687056 DOI: 10.1002/anie.202404822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Autophagy could play suppressing role in cancer therapy by facilitating release of tumor antigens from dying cells and inducing immunogenic cell death (ICD). Therefore, discovery and rational design of more effective inducers of cytotoxic autophagy is expected to develop new strategies for finding innovative drugs for precise and successful cancer treatment. Herein, we develop MoO3-x nanowires (MoO3-x NWs) with high oxygen vacancy and strong photothermal responsivity to ablate tumors through hyperthermia, thus promote the induction of cytotoxic autophagy and severe ICD. As expected, the combination of MoO3-x NWs and photothermal therapy (PTT) effectively induces autophagy to promote the release of tumor antigens from the ablated cells, and induces the maturation and antigen presentation of dendritic cells (DCs), subsequently activates cytotoxic T lymphocytes (CTLs)-mediated adaptive immunity. Furthermore, the combination treatment of MoO3-x NWs with immune checkpoint blockade of PD-1 could promote the tumor-associated macrophages (TAMs) polarization into tumor-killing M1 macrophages, inhibit infiltration of Treg cells at tumor sites, and alleviate immunosuppression in the tumor microenvironment, finally intensify the anti-tumor activity in vivo. This study provides a strategy and preliminary elucidation of the mechanism of using MoO3-x nanowires with high oxygen vacancy to induce autophagy and thus enhance photothermal immunotherapy.
Collapse
Affiliation(s)
- Lizhen He
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Qi Chen
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Qichen Lu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Meijin Yang
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Bin Xie
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Chen M, Zhou Y, Fu Y, Wang Q, Wu C, Pan X, Quan G. Biomaterials-assisted cancer vaccine delivery: preclinical landscape, challenges, and opportunities. Expert Opin Drug Deliv 2024; 21:1143-1154. [PMID: 39096307 DOI: 10.1080/17425247.2024.2388832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Cancer vaccines (protein and peptide, DNA, mRNA, and tumor cell) have achieved remarkable success in the treatment of cancer. In particular, advances in the design and manufacture of biomaterials have made it possible to control the presentation and delivery of vaccine components to immune cells. AREAS COVERED This review summarizes findings from major databases, including PubMed, Scopus, and Web of Science, focusing on articles published between 2005 and 2024 that discuss biomaterials in cancer vaccine delivery. EXPERT OPINION The development of cancer vaccines is hindered by several bottlenecks, including low immunogenicity, instability of vaccine components, and challenges in evaluating their clinical efficacy. To transform preclinical successes into viable treatments, it is essential to pursue continued innovation, collaborative research, and address issues related to scalability, regulatory pathways, and clinical validation, ultimately improving outcomes against cancer.
Collapse
Affiliation(s)
- Minglong Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yue Zhou
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanping Fu
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Kurganovs NJ, Engedal N. To eat or not to eat: a critical review on the role of autophagy in prostate carcinogenesis and prostate cancer therapeutics. Front Pharmacol 2024; 15:1419806. [PMID: 38910881 PMCID: PMC11190189 DOI: 10.3389/fphar.2024.1419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Around 1 in 7 men will be diagnosed with prostate cancer during their lifetime. Many strides have been made in the understanding and treatment of this malignancy over the years, however, despite this; treatment resistance and disease progression remain major clinical concerns. Recent evidence indicate that autophagy can affect cancer formation, progression, and therapeutic resistance. Autophagy is an evolutionarily conserved process that can remove unnecessary or dysfunctional components of the cell as a response to metabolic or environmental stress. Due to the emerging importance of autophagy in cancer, targeting autophagy should be considered as a potential option in disease management. In this review, along with exploring the advances made on understanding the role of autophagy in prostate carcinogenesis and therapeutics, we will critically consider the conflicting evidence observed in the literature and suggest how to obtain stronger experimental evidence, as the application of current findings in clinical practice is presently not viable.
Collapse
Affiliation(s)
- Natalie Jayne Kurganovs
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Nikolai Engedal
- Autophagy in Cancer Lab, Institute for Cancer Research, Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Kim Y, Choi J, Kim EH, Park W, Jang H, Jang Y, Chi S, Kweon D, Lee K, Kim SH, Yang Y. Design of PD-L1-Targeted Lipid Nanoparticles to Turn on PTEN for Efficient Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309917. [PMID: 38520717 PMCID: PMC11165541 DOI: 10.1002/advs.202309917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Lipid nanoparticles (LNPs) exhibit remarkable mRNA delivery efficiency, yet their majority accumulate in the liver or spleen after injection. Tissue-specific mRNA delivery can be achieved through modulating LNP properties, such as tuning PEGylation or varying lipid components systematically. In this paper, a streamlined method is used for incorporating tumor-targeting peptides into the LNPs; the programmed death ligand 1 (PD-L1) binding peptides are conjugated to PEGylated lipids via a copper-free click reaction, and directly incorporated into the LNP composition (Pep LNPs). Notably, Pep LNPs display robust interaction with PD-L1 proteins, which leads to the uptake of LNPs into PD-L1 overexpressing cancer cells both in vitro and in vivo. To evaluate anticancer immunotherapy mediated by restoring tumor suppressor, mRNA encoding phosphatase and tensin homolog (PTEN) is delivered via Pep LNPs to PTEN-deficient triple-negative breast cancers (TNBCs). Pep LNPs loaded with PTEN mRNA specifically promotes autophagy-mediated immunogenic cell death in 4T1 tumors, resulting in effective anticancer immune responses. This study highlights the potential of tumor-targeted LNPs for mRNA-based cancer therapy.
Collapse
Affiliation(s)
- Yelee Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jiwoong Choi
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Eun Hye Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Wonbeom Park
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hochung Jang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Yeongji Jang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Sung‐Gil Chi
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Dae‐Hyuk Kweon
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical SciencesGyeongsang National UniversityJinju52828Republic of Korea
| | - Sun Hwa Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Yoosoo Yang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
23
|
Li W, Li Y, Zhao J, Liao J, Wen W, Chen Y, Cui H. Release of damaged mitochondrial DNA: A novel factor in stimulating inflammatory response. Pathol Res Pract 2024; 258:155330. [PMID: 38733868 DOI: 10.1016/j.prp.2024.155330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Mitochondrial DNA (mtDNA) is a circular double-stranded genome that exists independently of the nucleus. In recent years, research on mtDNA has significantly increased, leading to a gradual increase in understanding of its physiological and pathological characteristics. Reactive oxygen species (ROS) and other factors can damage mtDNA. This damaged mtDNA can escape from the mitochondria to the cytoplasm or extracellular space, subsequently activating immune signaling pathways, such as NLR family pyrin domain protein 3 (NLRP3), and triggering inflammatory responses. Numerous studies have demonstrated the involvement of mtDNA damage and leakage in the pathological mechanisms underlying various diseases including infectious diseases, metabolic inflammation, and immune disorders. Consequently, comprehensive investigation of mtDNA can elucidate the pathological mechanisms underlying numerous diseases. The prevention of mtDNA damage and leakage has emerged as a novel approach to disease treatment, and mtDNA has emerged as a promising target for drug development. This article provides a comprehensive review of the mechanisms underlying mtDNA-induced inflammation, its association with various diseases, and the methods used for its detection.
Collapse
Affiliation(s)
- Wenting Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Yuting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jie Zhao
- Department of TCM Endocrinology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China
| | - Jiabao Liao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China
| | - Weibo Wen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| | - Yao Chen
- Department of TCM Encephalopathy, Yunnan Provincial Hospital of Traditional Chinese Medicine, Yunnan 650021, China.
| | - Huantian Cui
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Yunnan 650500, China.
| |
Collapse
|
24
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
25
|
Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 2024; 22:285. [PMID: 38790068 PMCID: PMC11118732 DOI: 10.1186/s12964-024-01663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a complex and multifaceted process involving a variety of interrelated molecular mechanisms and cellular systems. Phenotypically, the biological aging process is accompanied by a gradual loss of cellular function and the systemic deterioration of multiple tissues, resulting in susceptibility to aging-related diseases. Emerging evidence suggests that aging is closely associated with telomere attrition, DNA damage, mitochondrial dysfunction, loss of nicotinamide adenine dinucleotide levels, impaired macro-autophagy, stem cell exhaustion, inflammation, loss of protein balance, deregulated nutrient sensing, altered intercellular communication, and dysbiosis. These age-related changes may be alleviated by intervention strategies, such as calorie restriction, improved sleep quality, enhanced physical activity, and targeted longevity genes. In this review, we summarise the key historical progress in the exploration of important causes of aging and anti-aging strategies in recent decades, which provides a basis for further understanding of the reversibility of aging phenotypes, the application prospect of synthetic biotechnology in anti-aging therapy is also prospected.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Juyue Luo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
26
|
Arimoto KI, Miyauchi S, Liu M, Zhang DE. Emerging role of immunogenic cell death in cancer immunotherapy. Front Immunol 2024; 15:1390263. [PMID: 38799433 PMCID: PMC11116615 DOI: 10.3389/fimmu.2024.1390263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer immunotherapy, such as immune checkpoint blockade (ICB), has emerged as a groundbreaking approach for effective cancer treatment. Despite its considerable potential, clinical studies have indicated that the current response rate to cancer immunotherapy is suboptimal, primarily attributed to low immunogenicity in certain types of malignant tumors. Immunogenic cell death (ICD) represents a form of regulated cell death (RCD) capable of enhancing tumor immunogenicity and activating tumor-specific innate and adaptive immune responses in immunocompetent hosts. Therefore, gaining a deeper understanding of ICD and its evolution is crucial for developing more effective cancer therapeutic strategies. This review focuses exclusively on both historical and recent discoveries related to ICD modes and their mechanistic insights, particularly within the context of cancer immunotherapy. Our recent findings are also highlighted, revealing a mode of ICD induction facilitated by atypical interferon (IFN)-stimulated genes (ISGs), including polo-like kinase 2 (PLK2), during hyperactive type I IFN signaling. The review concludes by discussing the therapeutic potential of ICD, with special attention to its relevance in both preclinical and clinical settings within the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kei-ichiro Arimoto
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Sayuri Miyauchi
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Mengdan Liu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- School of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Dong-Er Zhang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- School of Biological Sciences, University of California San Diego, La Jolla, CA, United States
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
27
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
28
|
Saadh MJ, Mahdi MS, Allela OQB, Alazzawi TS, Ubaid M, Rakhimov NM, Athab ZH, Ramaiah P, Chinnasamy L, Alsaikhan F, Farhood B. Critical role of miR-21/exosomal miR-21 in autophagy pathway. Pathol Res Pract 2024; 257:155275. [PMID: 38643552 DOI: 10.1016/j.prp.2024.155275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Nodir M Rakhimov
- Department of Oncology, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Oncology, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia jSchool of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
29
|
Chen Z, Feng L, Wu P, Jiang WD, Jiang J, Zhou XQ, Liu Y. From growth promotion to intestinal inflammation alleviation: Unraveling the potential role of Lactobacillus rhamnosus GCC-3 in juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109511. [PMID: 38499215 DOI: 10.1016/j.fsi.2024.109511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Lactobacillus rhamnosus is a probiotic, which not only promotes the growth of animals, but also has anti-inflammatory effects. However, the mechanism by which Lactobacillus rhamnosus regulates intestinal immunity is not well comprehended. Hence, the study aimed to research how Lactobacillus rhamnosus affects the intestinal immunity using juvenile grass carp (Ctenopharyngodon idella) as a model. We selected 1800 juvenile grass carp for testing. They were divided into six treatments and fed with six gradients of Lactobacillus rhamnosus GCC-3 (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 g/kg) for 70 days. Enteritis was subsequently induced with dextroside sodium sulfate. Results indicated that dietary Lactobacillus rhamnosus GCC-3 addition improved growth performance. Meanwhile, appropriate levels of Lactobacillus rhamnosus GCC-3 alleviated excessive inflammatory response by down-regulating the expression of TLR4 and NOD receptors, up-regulating the expression of TOR, and then down-regulating the expression of NF-κB. Additionally, appropriate Lactobacillus rhamnosus GCC-3 improved intestinal immunity by reducing pyroptosis triggered by NLRP3 inflammasome and mediated by GSDME. Furthermore, 16 S rRNA sequencing showing appropriate levels of Lactobacillus rhamnosus GCC-3 increased Lactobacillus and Bifidobacterium abundance and decreased Aeromonas abundance. These results suggest that Lactobacillus rhamnosus GCC-3 can alleviate intestinal inflammation through down-regulating NF-κB and up-regulating TOR signaling pathways, as well as by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Zhen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
30
|
Wang Y, Pattarayan D, Huang H, Zhao Y, Li S, Wang Y, Zhang M, Li S, Yang D. Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer. Nat Commun 2024; 15:3178. [PMID: 38609378 PMCID: PMC11015024 DOI: 10.1038/s41467-024-47433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Chemo-immunotherapy combinations have been regarded as one of the most practical ways to improve immunotherapy response in cancer patients. In this study, we integrate the transcriptomics data from anti-PD-1-treated tumors and compound-treated cancer cell lines to systematically screen for chemo-immunotherapy synergisms in silico. Through analyzing anti-PD-1 induced expression changes in patient tumors, we develop a shift ability score to measure if a chemotherapy or a small molecule inhibitor treatment can shift anti-PD-1 resistance in tumor cells. By applying shift ability analysis to 41,321 compounds and 16,853 shRNA treated cancer cell lines transcriptomic data, we characterize the landscape of chemo-immunotherapy synergism and experimentally validated a mitochondrial RNA-dependent mechanism for drug-induced immune activation in tumor. Our study represents an effort to mechanistically characterize chemo-immunotherapy synergism and will facilitate future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dhamotharan Pattarayan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yueshan Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
31
|
Zhang X, Xiao Q, Zhang C, Zhou Q, Xu T. Construction of a prognostic model with CAFs for predicting the prognosis and immunotherapeutic response of lung squamous cell carcinoma. J Cell Mol Med 2024; 28:e18262. [PMID: 38520221 PMCID: PMC10960179 DOI: 10.1111/jcmm.18262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
Lung squamous cell carcinoma (LUSC) is one of the subtypes of lung cancer (LC) that contributes to approximately 25%-30% of its prevalence. Cancer-associated fibroblasts (CAFs) are key cellular components of the TME, and the large number of CAFs in tumour tissues creates a favourable environment for tumour development. However, the function of CAFs in the LUSC is complex and uncertain. First, we processed the scRNA-seq data and classified distinct types of CAFs. We also identified prognostic CAFRGs using univariate Cox analysis and conducted survival analysis. Additionally, we assessed immune cell infiltration in CAF clusters using ssGSEA. We developed a model with a significant prognostic correlation and verified the prognostic model. Furthermore, we explored the immune landscape of LUSC and further investigated the correlation between malignant features and LUSC. We identified CAFs and classified them into three categories: iCAFs, mCAFs and apCAFs. The survival analysis showed a significant correlation between apCAFs and iCAFs and LUSC patient prognosis. Kaplan-Meier analysis showed that patients in CAF cluster C showed a better survival probability compared to clusters A and B. In addition, we identified nine significant prognostic CAFRGs (CLDN1, TMX4, ALPL, PTX3, BHLHE40, TNFRSF12A, VKORC1, CST3 and ADD3) and subsequently employed multivariate Cox analysis to develop a signature and validate the model. Lastly, the correlation between CAFRG and malignant features indicates the potential role of CAFRG in promoting tumour angiogenesis, EMT and cell cycle alterations. We constructed a CAF prognostic signature for identifying potential prognostic CAFRGs and predicting the prognosis and immunotherapeutic response for LUSC. Our study may provide a more accurate prognostic assessment and immunotherapy targeting strategies for LUSC.
Collapse
Affiliation(s)
- Xiang Zhang
- Lung cancer center, West China hospitalSichuan universityChengduChina
| | - Qingqing Xiao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Cong Zhang
- Department of Thoracic surgeryChengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College)ChengduChina
| | - Qinghua Zhou
- Lung cancer center, West China hospitalSichuan universityChengduChina
| | - Tao Xu
- Department of Thoracic SurgeryThe Affiliated Hospital, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
32
|
Xu S, Miao Y, Dong J, Cui L, Liu K, Li J, Meng X, Zhu G, Wang H. Selenomethionine Inhibits NF-κB-mediated Inflammatory Responses of Bovine Mammary Epithelial Cells Caused by Klebsiella pneumoniae by Increasing Autophagic Flux. Biol Trace Elem Res 2024; 202:1568-1581. [PMID: 37407885 DOI: 10.1007/s12011-023-03757-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Klebsiella pneumoniae (K. pneumoniae) is one of the major pathogens causing bovine clinical mastitis. Autophagy maintains cellular homeostasis and resists excessive inflammation in eukaryotic organisms. Selenomethionine (Se-Met) is commonly used as a source of selenium supplementation for dairy cows. This study aimed to investigate the effects of Se-Met on inflammatory responses mediated by nuclear factor-kappa B (NF-κB) through autophagy. We infected bovine mammary epithelial cell line (MAC-T) with K. pneumoniae and examined the expression of autophagy-related proteins and changes in autophagic vesicles, LC3 puncta, and autophagic flux at various intervals. The results showed that K. pneumoniae activated the early-stage autophagy of MAC-T cells. The levels of LC3-II, Beclin1, and ATG5, as well as the number of LC3 puncta and autophagic vesicles, increased after 2 h post-treatment. However, the late-stage autophagic flux was blocked. Furthermore, the effect of autophagy on NF-κB-mediated inflammation was investigated with different autophagy levels. The findings showed that enhanced autophagy inhibited the K. pneumoniae-induced inflammatory responses of MAC-T cells. The opposite results were found with the inhibition of autophagy. Finally, we examined the effect of Se-Met on NF-κB-mediated inflammation based on autophagy. The results indicated that Se-Met alleviated K. pneumoniae-induced autophagic flux blockage, inhibited NF-κB-mediated inflammation, and decreased the adhesion of K. pneumoniae to MAC-T cells. The inhibitory effect of Se-Met on NF-κB-mediated inflammation could be partially blocked by the autophagy inhibitor chloroquine (CQ). Overall, Se-Met attenuated K. pneumoniae-induced NF-κB-mediated inflammatory responses by enhancing autophagic flux.
Collapse
Affiliation(s)
- Siyan Xu
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Yixue Miao
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, 225009, Jiangsu, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, 225009, Yangzhou, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
33
|
Yin Y, Wang B, Yang M, Chen J, Li T. Gastric cancer prognosis: unveiling autophagy-related signatures and immune infiltrates. Transl Cancer Res 2024; 13:1479-1492. [PMID: 38617515 PMCID: PMC11009815 DOI: 10.21037/tcr-23-1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/23/2024] [Indexed: 04/16/2024]
Abstract
Background Autophagy played a crucial regulatory role in tumor initiation and progression. Therefore, we aimed to comprehensively analyze autophagy-related genes (ARGs) in gastric cancer, focusing on their expression, prognostic value, and potential functions. Methods The gastric cancer gene chip datasets (GSE79973 and GSE54129) were collected from the Gene Expression Omnibus (GEO) database. Subsequently, the Limma package was employed to identify differentially expressed genes (DEGs) between the normal and disease groups. The selected ARGs were further authenticated using the Human Protein Atlas (HPA) database, The Cancer Genome Atlas (TCGA) database, and GSE19826 database. Results A total of 15 autophagy-related DEGs, eight of which were upregulated [FKBP1A, IL24, PEA15, HSP90AB1, cathepsin B (CTSB), ITGB1, SPHK1, HIF1A], while seven were downregulated (DAPK2, EIF2AK3, FKBP1B, PTK6, NKX2-3, NFE2L2, PRKCD). Analysis revealed that CTSB was specifically associated with the prognosis of gastric cancer patients. Gene set enrichment analysis (GSEA) showcased a significant enrichment of CTSB-related genes within immune-related pathways. Moreover, correlation analysis demonstrated a clear association between the expression of CTSB and immune infiltration. The upregulation of CTSB in gastric cancer was linked to poor survival and increased immune infiltration. Conclusions We conjectured that CTSB likely played a critical role in regulating immunity and autophagy in gastric cancer.
Collapse
Affiliation(s)
- Yichen Yin
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan, China
| | - Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan, China
| | - Mingzhe Yang
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jing Chen
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, Yinchuan, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Tao Li
- Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
34
|
Pandey S, Anang V, Schumacher MM. Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:223-247. [PMID: 38782500 DOI: 10.1016/bs.ircmb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
35
|
Deng W, Shang H, Tong Y, Liu X, Huang Q, He Y, Wu J, Ba X, Chen Z, Chen Y, Tang K. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology 2024; 22:97. [PMID: 38454419 PMCID: PMC10921615 DOI: 10.1186/s12951-024-02297-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
36
|
Yang J, Zheng L, Yang Z, Wei Z, Shao J, Zhang Y, Yao J, Li M, Wang X, Zheng M. 5-FU promotes HBV replication through oxidative stress-induced autophagy dysfunction. Free Radic Biol Med 2024; 213:233-247. [PMID: 38215891 DOI: 10.1016/j.freeradbiomed.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) reactivation is a major problem that must be overcome during chemotherapy for HBV-related hepatocellular carcinoma (HCC). However, the mechanism underlying chemotherapy-associated HBV reactivation is still not fully understood, hindering the development of improved HBV-related HCC treatments. METHODS A meta-analysis was performed to assess the HBV reactivation risk during transcatheter arterial chemoembolization (TACE). To investigate the regulatory effects and mechanisms of 5-FU on HBV replication, an HBV mouse model was established by pAAV-HBV1.2 hydrodynamic injection followed by intraperitoneal 5-FU injection, and different in vitro models (HepG2.2.15 or Huh7 cells) were established. Realtime RT‒qPCR, western blotting, luciferase assays, and immunofluorescence were used to determine viral parameters. We also explored the underlying mechanisms by RNA-seq, oxidative stress evaluation and autophagy assessment. RESULTS The pooled estimated rate of HBV reactivation in patients receiving TACE was 30.3 % (95 % CI, 23.1%-37.4 %). 5-FU, which is a chemotherapeutic agent commonly used in TACE, promoted HBV replication in vitro and in vivo. Mechanistically, 5-FU treatment obviously increased autophagosome formation, as shown by increased LC3-II levels. Additionally, 5-FU impaired autophagic degradation, as shown by marked p62 and mCherry-GFP-LC3 upregulation, ultimately promoting HBV replication and secretion. Autophagy inhibition by 3-methyladenine or chloroquine significantly altered 5-FU-induced HBV replication. Furthermore, 5-FU-induced autophagy and HBV replication were markedly attenuated with a reactive oxygen species (ROS) scavenger. CONCLUSIONS Together, our results indicate that ROS-induced autophagosome formation and autophagic degradation play a critical role in 5-FU-induced HBV reactivation.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Luyan Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhenggang Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhiqiang Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yina Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Minwei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xueyu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
37
|
Wang P, Sun Y, Xu T. USP13 Cooperates with MARCH8 to Inhibit Antiviral Signaling by Targeting MAVS for Autophagic Degradation in Teleost. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:801-812. [PMID: 38214605 DOI: 10.4049/jimmunol.2300493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Mitochondrial antiviral signaling protein (MAVS), as a central adapter protein in retinoic acid-inducible gene I-like receptor signaling, is indispensable for innate antiviral immunity. Yet, the molecular mechanisms modulating the stability of MAVS are not fully understood in low vertebrates. In this study, we report that the deubiquitinase ubiquitin-specific protease 13 (USP13) acts as a negative regulator of antiviral immunity by targeting MAVS for selective autophagic degradation in teleost fish. USP13 is induced by RNA virus or polyinosinic:polycytidylic acid stimulation and acts as a negative regulator to potentiate viral replication in fish cells. Mechanistically, USP13 functions as a scaffold to enhance the interaction between MAVS and the E3 ubiquitin ligase MARCH8, thus promoting MARCH8 to catalyze MAVS through K27-linked polyubiquitination for selective autophagic degradation. Taken together, to our knowledge, our study demonstrates a novel mechanism by which viruses evade host antiviral immunity via USP13 in fish and provides a new idea for mammalian innate antiviral immunity.
Collapse
Affiliation(s)
- Pengfei Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
38
|
Hu M, Fan JX, He ZY, Zeng J. The regulatory role of autophagy between TAMs and tumor cells. Cell Biochem Funct 2024; 42:e3984. [PMID: 38494666 DOI: 10.1002/cbf.3984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Cancer has become a global public health problem and its harmful effects have received widespread attention. Conventional treatments such as surgical resection, radiotherapy and other techniques are applicable to clinical practice, but new drugs are constantly being developed and other therapeutic approaches, such as immunotherapy are being applied. In addition to studying the effects on individual tumor cells, it is important to explore the role of tumor microenvironment on tumor cell development since tumor cells do not exist alone but in the tumor microenvironment. In the tumor microenvironment, tumor cells are interconnected with other stromal cells and influence each other, among which tumor-associated macrophages (TAMs) are the most numerous immune cells. At the same time, it was found that cancer cells have different levels of autophagy from normal cells. In cancer therapy, the occurrence of autophagy plays an important role in promoting tumor cell death or inhibiting tumor cell death, and is closely related to the environment. Therefore, elucidating the regulatory role of autophagy between TAMs and tumor cells may be an important breakthrough, providing new perspectives for further research on antitumor immune mechanisms and improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Min Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jiao-Xiu Fan
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zi-Yue He
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jun Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
- Animal Biology Key Laboratory of Chongqing Education Commission of China
| |
Collapse
|
39
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
40
|
Chen Y, Zeng D, Wei G, Liao Z, Liang R, Huang X, Lu WW, Chen Y. Pyroptosis in Osteoarthritis: Molecular Mechanisms and Therapeutic Implications. J Inflamm Res 2024; 17:791-803. [PMID: 38348279 PMCID: PMC10860821 DOI: 10.2147/jir.s445573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/20/2024] [Indexed: 02/15/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and functional impairment by affecting joint tissue. Its global impact is noteworthy, causing significant economic losses and property damage. Despite extensive research, the underlying pathogenesis of OA remain an area of ongoing investigation. It has recently been discovered that the OA progression is significantly influenced by pyroptosis. Pyroptosis is a complex process that involves three pathways culminating in the assembly of Gasdermin-D (GSDMD)-N-terminal (GSDMD-NT) into pores through aggregation on the plasma membrane. The aggregation of GSDMD-NT proteins stimulates the release of inflammatory mediators, such as Interleukin-1β (IL-1β), Interleukin-18 (IL-18), and Matrix Metallopeptidase 13 (MMP13), ultimately leading to cellular lysis. The pyroptosis process in specific cells, including synovial macrophages, fibroblast-like synoviocytes (FLS), chondrocytes, and subchondral osteoblasts, contributs factor to the development of OA. Currently, the specific cells that undergo pyroptosis first are not yet fully understood, and it remains unknown whether pyroptosis in one cell can trigger the same process in other cells. Therefore, targeting pyroptosis could potentially offer a novel treatment approach for OA patients. We present a comprehensive analysis of the molecular mechanisms and key features of pyroptosis. We also outline the current research progress on various aspects, including synovial tissue, articular cartilage, extracellular matrix (ECM), and subchondral bone, with a focus on pyroptosis. The aim is to provide theoretical references for the effective management of OA.
Collapse
Affiliation(s)
- Yeping Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Daofu Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhidong Liao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Rongyuan Liang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiajie Huang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - William W Lu
- Department of Orthopedics and Traumatology, the University of Hong Kong, Hong Kong, People’s Republic of China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
41
|
Yang L, Fu M, Yu L, Wang H, Chen X, Sun H. Value of markers of systemic inflammation for the prediction of postoperative progression in patients with pancreatic neuroendocrine tumors. Front Endocrinol (Lausanne) 2024; 15:1293842. [PMID: 38370351 PMCID: PMC10870645 DOI: 10.3389/fendo.2024.1293842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background Non-invasive prognostic predictors for rare pancreatic neuroendocrine tumors (PNETs) are lacking. We aimed to approach the prognostic value of preoperative systemic inflammatory markers in patients with PNETs. Methods The clinical data of 174 patients with PNETs undergoing surgical treatment were retrospectively analyzed to explore the correlation of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR), and platelet to white blood cell ratio (PWR) with clinicopathological parameters and the progression of tumor after the operation. The optimal cutoff values for predictors and the area under the curve (AUC) of the receiver operating characteristic (ROC) were estimated. Univariate and multivariate Cox proportional hazards models were used to assess the relation between NLR, LMR, PLR, and progression-free survival (PFS), examined by the Kaplan-Meier and log-rank tests. Results The scores of the NLR (P = 0.039) and PLR (P = 0.011) in the progression group were significantly higher than those in the progression-free group, and the LMR was significantly lower than those in the progression-free group (P = 0.001). The best cutoff values of NLR, LMR, and PLR before operation were 2.28, 4.36, and 120.91. The proportions of tumor progression in the high NLR group (P = 0.007) and high PLR group (P = 0.013) obviously increased, and the proportion of tumor development in the low LMR group was higher than that in the high LMR group (P < 0.001). The K-M survival curve showed that the progression-free survival rate was lower in the high NLR group (P = 0.004), the low LMR group (P < 0.001), and the high PLR group (P = 0.018). The results of the multivariate Cox proportional hazards model suggested that preoperative LMR (HR = 3.128, 95% CI: 1.107~8.836, P = 0.031) was an independent predictor of PFS. Conclusion The markers of systemic inflammation, especially LMR, can predict the postoperative progression of PNETs.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Mengfei Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Li Yu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanyu Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Xiao Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| |
Collapse
|
42
|
Hu S, Liu TCY. Mechanism of action of photobiomodulation with light-emitting diode on the glutamine-dependent CT26 cell. JOURNAL OF BIOPHOTONICS 2024; 17:e202300353. [PMID: 37824572 DOI: 10.1002/jbio.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
We investigated the mechanism of action of photobiomodulation (PBM) with light-emitting diode (led) 640 nm of glutamine-dependent CT26 cells. Cells were exposed to 0.147-10.979 mW/cm2 of 640 ± 15 nm laser light for 15 min/day for 10 days. Cell proliferation and apoptosis were detected by MTT (3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide) and annexin V-FITC assays. mRNA and protein levels of cell proliferation-related genes were measured by RT-PCR and western blotting, respectively. With Gln 7.94 mM, on Day 8 and 10, genes GLUT1, MEK1, ERK2, BCL2, E2F1, HO-1, Ctnnb1, and Per2 was significantly upregulated (p < 0.01) of glutamine addiction. In PBM therapy, compared with the non-illuminated group, 2.17 mW/cm2 can significantly reduce cell apoptosis, the mRNA level of gene mTOR1 was significantly upregulated, and the protein level of raptor of GLUT1 and mTOR1, MEK1/2, and ERK1/2 were upregulated. LED 640 nm inhibits cell apoptosis without increasing cell proliferation by regulating GLUT1, MEK/ERK, and PI3K/AKT/mTOR signals.
Collapse
Affiliation(s)
- Shaojuan Hu
- College of Physical Education and Sports Science, HengYang Normal University, Hengyang, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
43
|
Kandathil SA, Akhondi A, Kadletz-Wanke L, Heiduschka G, Engedal N, Brkic FF. The dual role of autophagy in HPV-positive head and neck squamous cell carcinoma: a systematic review. J Cancer Res Clin Oncol 2024; 150:56. [PMID: 38291202 PMCID: PMC10827959 DOI: 10.1007/s00432-023-05514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE Human papilloma virus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) displays distinct epidemiological, clinical, and molecular characteristics compared to the negative counterpart. Alterations in autophagy play an important role in cancer, and emerging evidence indicates an interplay of autophagy in HNSCC carcinogenesis and tumor promotion. However, the influence of HPV infection on autophagy in HNSCC has received less attention and has not been previously reviewed. Therefore, we here aimed to systematically review the role of autophagy explicitly in HPV+ HNSCC. METHODS Studies accessible in PubMed, Embase, Scopus, and Web of Science investigating HNSCC, highlighting the molecular biological differences between HPV- and HPV+ HNSCC and its influences on autophagy in HNSCC were analyzed according to the PRISMA statement. A total of 10 articles were identified, included, and summarized. RESULTS The HPV16 E7 oncoprotein was reported to be involved in the degradation of AMBRA1 and STING, and to enhance chemotherapy-induced cell death via lethal mitophagy in HNSCC cells. Autophagy-associated gene signatures correlated with HPV-subtype and overall survival. Additionally, immunohistochemical (IHC) analyses indicate that high LC3B expression correlates with poor overall survival in oropharyngeal HNSCC patients. CONCLUSION HPV may dampen general bulk autophagic flux via degradation of AMBRA1 but may promote selective autophagic degradation of STING and mitochondria. Interpretations of correlations between autophagy-associated gene expressions or IHC analyses of autophagy-related (ATG) proteins in paraffin embedded tissue with clinicopathological features without biological validation need to be taken with caution.
Collapse
Affiliation(s)
- Sam Augustine Kandathil
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Arian Akhondi
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lorenz Kadletz-Wanke
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Nikolai Engedal
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Faris F Brkic
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
44
|
Wei R, Teng Y, Han C, Wei S, Li L, Liu H, Hu S, Kang B, Xu H. Multi-omics reveals goose fatty liver formation from metabolic reprogramming. Front Vet Sci 2024; 11:1122904. [PMID: 38348107 PMCID: PMC10859500 DOI: 10.3389/fvets.2024.1122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
To comprehensively provide insight into goose fatty liver formation, we performed an integrative analysis of the liver transcriptome, lipidome, and amino acid metabolome, as well as peripheral adipose tissue transcriptome analysis using samples collected from the overfed geese and normally fed geese. Transcriptome analysis showed that liver metabolism pathways were mainly enriched in glucolipid metabolism, amino acid metabolism, inflammation response, and cell cycle; peripheral adipose tissue and the liver cooperatively regulated liver lipid accumulation during overfeeding. Liver lipidome patterns obviously changed after overfeeding, and 157 different lipids were yielded. In the liver amino acid metabolome, the level of Lys increased after overfeeding. In summary, this is the first study describing goose fatty liver formation from an integrative analysis of transcriptome, lipidome, and amino acid metabolome, which will provide a whole new dimension to understanding the mechanism of goose fatty liver formation.
Collapse
Affiliation(s)
- Rongxue Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yongqiang Teng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shouhai Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
45
|
Li HF, Zhu N, Wu JJ, Shi YN, Gu J, Qin L. Celastrol Elicits Antitumor Effects through Inducing Immunogenic Cell Death and Downregulating PD-L1 in ccRCC. Curr Pharm Des 2024; 30:1265-1278. [PMID: 38584553 DOI: 10.2174/0113816128288970240321073436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Targeting immunogenic cell death (ICD) is considered a promising therapeutic strategy for cancer. However, the commonly identified ICD inducers promote the expression of programmed cell death ligand 1 (PD-L1) in tumor cells, thus aiding them to evade the recognition and killing by the immune system. Therefore, the finding of novel ICD inducers to avoid enhanced PD-L1 expression is of vital significance for cancer therapy. Celastrol (CeT), a triterpene isolated from Tripterygium wilfordii Hook. F induces various forms of cell death to exert anti-cancer effects, which may make celastrol an attractive candidate as an inducer of ICD. METHODS In the present study, bioinformatics analysis was combined with experimental validation to explore the underlying mechanism by which CeT induces ICD and regulates PD-L1 expression in clear cell renal cell carcinoma (ccRCC). RESULTS The results showed that EGFR, IKBKB, PRKCQ and MAPK1 were the crucial targets for CeT-induced ICD, and only MAPK1 was an independent prognostic factor for the overall survival (OS) of ccRCC patients. In addition, CeT triggered autophagy and up-regulated the expressions of HMGB1 and CRT to induce ICD in 786-O cells in vitro. Importantly, CeT can down-regulate PD-L1 expression through activating autophagy. At the molecular level, CeT suppressed PD-L1 via the inhibition of MAPK1 expression. Immunologically, the core target of celastrol, MAPK1, was tightly correlated with CD8+ T cells and CD4+ T cells in ccRCC. CONCLUSION These findings indicate that CeT not only induces ICD but also suppresses PD-L1 by down-regulating MAPK1 expression, which will provide an attractive strategy for ccRCC immunotherapy.
Collapse
Affiliation(s)
- Hong-Fang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Department of Clinical Pharmacy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Jia-Jun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Department of Clinical Pharmacy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ya-Ning Shi
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Department of Clinical Pharmacy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Department of Clinical Pharmacy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| |
Collapse
|
46
|
Li Y, Guo Y, Zhang K, Zhu R, Chen X, Zhang Z, Yang W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306580. [PMID: 37984863 PMCID: PMC10797449 DOI: 10.1002/advs.202306580] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cancer immunotherapy has become a mainstream cancer treatment over traditional therapeutic modes. Cancer cells can undergo programmed cell death including ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis which are find to have intrinsic relationships with host antitumor immune response. However, direct use of cell death inducers or regulators may bring about severe side effects that can also be rapidly excreted and degraded with low therapeutic efficacy. Nanomaterials are able to carry them for long circulation time, high tumor accumulation and controlled release to achieve satisfactory therapeutic effect. Nowadays, a large number of studies have focused on nanomedicines-based strategies through modulating cell death modalities to potentiate antitumor immunity. Herein, immune cell types and their function are first summarized, and state-of-the-art research progresses in nanomedicines mediated cell death pathways (e.g., ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis) with immune response provocation are highlighted. Subsequently, the conclusion and outlook of potential research focus are discussed.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450001China
- The center of Infection and ImmunityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Yichen Guo
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Kaixin Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Rongrong Zhu
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineering, and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Weijing Yang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
47
|
Cheng X, Xia T, Sun X, Liang G, Liu X, Liang G. Atg4B and Cathepsin B-Triggered in Situ Luciferin Formation for Precise Cancer Autophagy Bioluminescence Imaging. ACS CENTRAL SCIENCE 2023; 9:2251-2256. [PMID: 38161373 PMCID: PMC10755845 DOI: 10.1021/acscentsci.3c00696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/10/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Autophagy plays a crucial role in tumorigenesis and progression, but current approaches to visualize it in vivo show limited precision due to their single-analyte-responsive mode. Hence, by simultaneously employing dual autophagy enzymes Atg4B and cathepsin B to trigger the in situ formation of luciferin, we herein propose a strategy for precise autophagy bioluminescence imaging. An Atg4B-responsive peptide Ac-Thr-Phe-Gly-d-Cys (TFGC) and a cathepsin B-activatable compound Ac-Lys-Gly-Arg-Arg-CBT (KGRR-CBT) were rationally designed. During tumor autophagy, these two compounds were uptaken by cancer cells and cleaved by their corresponding enzymes to yield d-cysteine and 2-cyano-6-aminobenzothiazole, respectively, which underwent a CBT-Cys click reaction to yield d-aminoluciferin, turning the bioluminescence "on". The responsiveness of these two compounds toward the two enzymes was tested in vitro, and the ability to turn bioluminescence "on" was validated in living cancer cells and in vivo. We anticipate that our precise autophagy imaging strategy could be further applied for the diagnosis of autophagy-related diseases in the near future.
Collapse
Affiliation(s)
| | | | - Xianbao Sun
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guowei Liang
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical
Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
48
|
Zhang XF, Zhang XL, Wang YJ, Fang Y, Li ML, Liu XY, Luo HY, Tian Y. The regulatory network of the chemokine CCL5 in colorectal cancer. Ann Med 2023; 55:2205168. [PMID: 37141250 PMCID: PMC10161960 DOI: 10.1080/07853890.2023.2205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The chemokine CCL5 plays a potential role in the occurrence and development of colorectal cancer (CRC). Previous studies have shown that CCL5 directly acts on tumor cells to change tumor metastatic rates. In addition, CCL5 recruits immune cells and immunosuppressive cells into the tumor microenvironment (TME) and reshapes the TME to adapt to tumor growth or increase antitumor immune efficacy, depending on the type of secretory cells releasing CCL5, the cellular function of CCL5 recruitment, and the underlying mechanisms. However, at present, research on the role played by CCL5 in the occurrence and development of CRC is still limited, and whether CCL5 promotes the occurrence and development of CRC and its role remain controversial. This paper discusses the cells recruited by CCL5 in patients with CRC and the specific mechanism of this recruitment, as well as recent clinical studies of CCL5 in patients with CRC.Key MessagesCCL5 plays dual roles in colorectal cancer progression.CCL5 remodels the tumor microenvironment to adapt to colorectal cancer tumor growth by recruiting immunosuppressive cells or by direct action.CCL5 inhibits colorectal cancer tumor growth by recruiting immune cells or by direct action.
Collapse
Affiliation(s)
- Xin-Feng Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Li Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ya-Jing Wang
- Department of General Surgery, Third Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Fang
- Organ Transplant Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng-Li Li
- Honghui Hospital affiliated to Yunnan University, Kunming, China
| | - Xing-Yu Liu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
49
|
Li J, Han Y, Zhou M, Liu N, Li H, Huang G, Yu Z, Luo D, Zhang H, Zheng X, Liang F, Chen R. Electroacupuncture ameliorates AOM/DSS-induced mice colorectal cancer by inhibiting inflammation and promoting autophagy via the SIRT1/miR-215/Atg14 axis. Aging (Albany NY) 2023; 15:13194-13212. [PMID: 38006398 DOI: 10.18632/aging.205236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 11/27/2023]
Abstract
Colorectal cancer (CRC) is one of the most common tumors of the digestive tract, with the third-highest incidence and the second-highest mortality rate among all malignant tumors worldwide. However, treatment options for CRC remain limited. As a complementary therapy, acupuncture or electro-acupuncture (EA) has been widely applied in the treatment of various inflammation-related diseases, such as obesity, ulcerative colitis and tumors. Although numerous pre-clinical and clinical studies have investigated the beneficial effects of acupuncture on CRC, the mechanism underlying the therapeutic action of EA is largely unknown. Evidence from previous studies has revealed that SIRT1 participates in CRC progression by activating autophagy-related miRNAs. Using azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colorectal cancer model in mice, we explored whether EA treatment can inhibit inflammation and promote autophagy via the SIRT1/miR-215/Atg14 axis. Our results showed that EA notably alleviated the CRC in mice, by decreasing the tumor number and DAI scores, inflammation, and increasing body weight of mice. Besides, EA increased the expression of SIRT1 and autophagy. Further experiments showed that SIRT1 overexpression downregulated miR-215, and promoted the expression of Atg14, whereas SIRT1 knockdown induced opposite results. In conclusion, EA can ameliorate AOM/DSS-induced CRC through regulating the SIRT1-mediated miR-215/Atg14 axis by suppressing inflammation and promoting autophagy in mice. These findings reveal a potential molecular mechanism underlying the anti-CRC effect of EA indicating that EA is a promising therapeutic candidate for CRC.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ying Han
- Hong Kong Baptist University, Hong Kong, China
| | - Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Na Liu
- Rehabilitation Department of Traditional Chinese Medicine, Union Red Cross Hospital, Wuhan 430015, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guichen Huang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhaomin Yu
- Department of Oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430071, China
| | - Dan Luo
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Haiming Zhang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Xiangyi Zheng
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Fengxia Liang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
50
|
Babalola JA, Lang M, George M, Stracke A, Tam-Amersdorfer C, Itxaso I, Lucija D, Tadic J, Schilcher I, Loeffler T, Flunkert S, Prokesch M, Leitinger G, Lass A, Hutter-Paier B, Panzenboeck U, Hoefler G. Astaxanthin enhances autophagy, amyloid beta clearance and exerts anti-inflammatory effects in in vitro models of Alzheimer's disease-related blood brain barrier dysfunction and inflammation. Brain Res 2023; 1819:148518. [PMID: 37579986 DOI: 10.1016/j.brainres.2023.148518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Defective degradation and clearance of amyloid-β as well as inflammation per se are crucial players in the pathology of Alzheimer's disease (AD). A defective transport across the blood-brain barrier is causative for amyloid-β (Aβ) accumulation in the brain, provoking amyloid plaque formation. Using primary porcine brain capillary endothelial cells and murine organotypic hippocampal slice cultures as in vitro models of AD, we investigated the effects of the antioxidant astaxanthin (ASX) on Aβ clearance and neuroinflammation. We report that ASX enhanced the clearance of misfolded proteins in primary porcine brain capillary endothelial cells by inducing autophagy and altered the Aβ processing pathway. We observed a reduction in the expression levels of intracellular and secreted amyloid precursor protein/Aβ accompanied by an increase in ABC transporters ABCA1, ABCG1 as well as low density lipoprotein receptor-related protein 1 mRNA levels. Furthermore, ASX treatment increased autophagic flux as evidenced by increased lipidation of LC3B-II as well as reduced protein expression of phosphorylated S6 ribosomal protein and mTOR. In LPS-stimulated brain slices, ASX exerted anti-inflammatory effects by reducing the secretion of inflammatory cytokines while shifting microglia polarization from M1 to M2 phenotype. Our data suggest ASX as potential therapeutic compound ameliorating AD-related blood brain barrier impairment and inflammation.
Collapse
Affiliation(s)
| | - Magdalena Lang
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Austria
| | - Meekha George
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Anika Stracke
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Austria
| | | | | | | | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | | | | | | | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Ute Panzenboeck
- Otto Loewi Research Center, Division of Immunology, Medical University of Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria.
| |
Collapse
|