1
|
Rocha P, Bach R, Masfarré L, Hernandez S, Navarro-Gorro N, Rossell A, Villanueva X, Giner M, Sanchéz I, Galindo M, Del Rey-Vergara R, Iñañez A, Sanchéz-Espiridion B, Lu W, Acedo-Terrades A, Berenguer-Molins P, Sánchez-Font A, Chalela R, Curull V, Taus Á, Hardy-Werbin M, Sausen M, Georgiadis A, White J, Jackson JB, Moliner L, Clavé S, Bellosillo B, Rovira A, Wistuba I, Soto LMS, Perera-Bel J, Arriola E. Molecular and immunological features associated with long-term benefits in metastatic NSCLC patients undergoing immune checkpoint blockade. Oncoimmunology 2025; 14:2469377. [PMID: 39991958 PMCID: PMC11853546 DOI: 10.1080/2162402x.2025.2469377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
INTRODUCTION Immunotherapy is firmly established as a treatment regimen in various solid tumors, driven by its exceptional benefits in a selected group of patients. Despite widespread adoption of immune checkpoint blockade (ICB) across diverse solid tumors, the quest for a clinically informative biomarker for long-term benefit remains unmet. METHODS A total of 49 patients with metastatic NSCLC treated with ICB were included. Long-term (LTR) and short-term responders (STR) were defined as those with a response to ICB lasting more than 24 months or less than 6 months, respectively. Longitudinal blood specimens were collected before ICB treatment initiation and early-on treatment. Plasma ctDNA next-generation sequencing panel (NGS) and serum proteomics were performed. GeoMx DSP on baseline tumor tissue was performed in a subset of patients. RESULTS Our analysis revealed specific characteristics of LTR compared with STR, namely higher PD-L1 in tumor cells (p = 0.005) and higher incidence of irAEs (p = 0.001). Genomic features associated with lack of benefit from ICB included co-occurring mutations in KRAS/STK11 and TP53/KMT2D (p < 0.05). At a baseline, LTR patients exhibited higher serum levels of proteins related with apoptosis (CASP8, PRKRA), chemotaxis, immune proteasome, processing of MHC class I (S100A4, PSMD9, RNF41) and immune homeostasis (HAVCR1, ARG1) (p < 0.05). Protein spatial profiling of tumor samples showed higher levels of proteins linked with the presence of immune cells (CD45), T cells (CD8), antigen presentation (HLA-DR) and immune regulation proteins (PD-L1, IDO1) within the tumor and tumor stroma component (p < 0.05) in LTR patients. Serum longitudinal analysis identified a set of proteins that presented distinct dynamics in LTR compared to STR, making them interesting candidates to evaluate as early predictors of treatment efficacy. CONCLUSIONS Our multimodal analysis of patients with metastatic NSCLC treated with ICB identified clinicopathological and immunological features associated with long-term benefits. The presence of preexisting antitumor immunity emerged as a strong predictor of long-term benefits, providing insights for potential biomarkers and therapeutic strategies for enhancing ICB outcomes in metastatic NSCLC.
Collapse
Affiliation(s)
- Pedro Rocha
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Rafael Bach
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Laura Masfarré
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Adrià Rossell
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | | | - Mario Giner
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Miguel Galindo
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Albert Iñañez
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Beatriz Sanchéz-Espiridion
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | - Victor Curull
- Pulmonology Department, Hospital del Mar, Barcelona, Spain
| | - Álvaro Taus
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | | | | | | | | | | | | | - Sergi Clavé
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Beatriz Bellosillo
- Pathology Department, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ana Rovira
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Edurne Arriola
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
2
|
Karimova AF, Khalitova AR, Suezov R, Markov N, Mukhamedshina Y, Rizvanov AA, Huber M, Simon HU, Brichkina A. Immunometabolism of tumor-associated macrophages: A therapeutic perspective. Eur J Cancer 2025; 220:115332. [PMID: 40048925 DOI: 10.1016/j.ejca.2025.115332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 04/26/2025]
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in the tumor microenvironment (TME), actively contributing to the formation of an immunosuppressive niche that fosters tumor progression. Consequently, there has been a growing interest in targeting TAMs as a promising avenue for cancer therapy. Recent advances in the field of immunometabolism have shed light on the influence of metabolic adaptations on macrophage physiology in the context of cancer. Here, we discuss the key metabolic pathways that shape the phenotypic diversity of macrophages. We place special emphasis on how metabolic reprogramming impacts the activation status of TAMs and their functions within the TME. Additionally, we explore alterations in TAM metabolism and their effects on phagocytosis, production of cytokines/chemokines and interaction with cytotoxic T and NK immune cells. Moreover, we examine the application of nanomedical approaches to target TAMs and assess the clinical significance of modulating the metabolism of TAMs as a strategy to develop new anti-cancer therapies. Taken together, in this comprehensive review article focusing on TAMs, we provide invaluable insights for the development of effective immunotherapeutic strategies and the enhancement of clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Adelya F Karimova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya R Khalitova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Roman Suezov
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Yana Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, Russia
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany
| | - Hans-Uwe Simon
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Center for Tumor and Immune Biology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Mazzilli SA, Rahal Z, Rouhani MJ, Janes SM, Kadara H, Dubinett SM, Spira AE. Translating premalignant biology to accelerate non-small-cell lung cancer interception. Nat Rev Cancer 2025; 25:379-392. [PMID: 39994467 DOI: 10.1038/s41568-025-00791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/26/2025]
Abstract
Over the past decade, substantial progress has been made in the development of targeted and immune-based therapies for patients with advanced non-small-cell lung cancer. To further improve outcomes for patients with lung cancer, identifying and intercepting disease at the earliest and most curable stages are crucial next steps. With the recent implementation of low-dose computed tomography scan screening in populations at high risk, there is an emerging unmet need for new diagnostic, prognostic and therapeutic tools to help treat patients suspected of harbouring premalignant lesions and minimally invasive non-small-cell lung cancer. Continued advances in the identification of the earliest drivers of lung carcinogenesis are poised to address these unmet needs. Employing multimodal approaches to chart the temporal and spatial maps of the molecular events driving lung premalignant lesion progression will refine our understanding of early carcinogenesis. Elucidating the molecular drivers of premalignancy is critical to the development of biomarkers to detect those incubating a premalignant lesion, to stratify risk for progression to invasive cancer and to identify novel therapeutic targets to intercept that process. In this Review, we summarize emerging insights into the earliest cellular and molecular events associated with lung squamous and adenocarcinoma carcinogenesis and highlight the growing opportunity for translating these insights into clinical tools for early detection and disease interception to transform the outcomes for those at risk for lung cancer.
Collapse
Affiliation(s)
- Sarah A Mazzilli
- Sectional Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Zahraa Rahal
- Division of Pathology-Lab Medicine, Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Maral J Rouhani
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Humam Kadara
- Division of Pathology-Lab Medicine, Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Steven M Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, and Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Avrum E Spira
- Sectional Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Johnson & Johnson Innovative Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Li C, Liao J, Chen B, Wang Q. Heterogeneity of the tumor immune cell microenvironment revealed by single-cell sequencing in head and neck cancer. Crit Rev Oncol Hematol 2025; 209:104677. [PMID: 40023465 DOI: 10.1016/j.critrevonc.2025.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025] Open
Abstract
Head and neck cancer (HNC) is the sixth most common disease in the world. The recurrence rate of patients is relatively high, and the heterogeneity of tumor immune microenvironment (TIME) cells may be an important reason for this. Single-cell sequencing (SCS) is currently the most promising and mature application in cancer research. It can identify unique genes expressed in cells and study tumor heterogeneity. According to current research, the heterogeneity of immune cells has become an important factor affecting the occurrence and development of HNC. SCSs can provide effective therapeutic targets and prognostic factors for HNC patients through analyses of gene expression levels and cell heterogeneity. Therefore, this study analyzes the basic theory of HNC and the development of SCS technology, elaborating on the application of SCS technology in HNC and its potential value in identifying HNC therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Jia Liao
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Bo Chen
- Department of Oncology, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan 629000, China.
| |
Collapse
|
5
|
He A, Huang Z, Chen X, Qi K, Zhang S, Li F, Lu H, Wang J, Peng J, Song C. Decoding the role of lipid metabolism in NSCLC: From macrophage subtype identification to prognostic model development. FASEB J 2025; 39:e70467. [PMID: 40277347 DOI: 10.1096/fj.202500124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/07/2025] [Indexed: 04/26/2025]
Abstract
Lipid metabolism plays a pivotal role in shaping the tumor microenvironment, particularly by influencing macrophage function. This study aimed to identify lipid-associated macrophage (LAM) marker genes involved in the onset and progression of non-small cell lung cancer (NSCLC) through integrated single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq) analyses. Mutation and RNA-seq data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed to explore the relationship between lipid metabolism pathways and NSCLC progression. scRNA-seq analysis revealed macrophage subtypes closely associated with lipid metabolism, with three key marker genes-S100A10, HLA-DMB, and CTSL-identified as predictive factors for patient prognosis. A prognostic risk scoring model was constructed and validated using survival analysis and ROC curves, demonstrating high accuracy in stratifying NSCLC patients by risk. Further in vivo experiments using subcutaneous tumor xenografts and lung metastasis models showed that S100A10 and CTSL promoted tumor growth and metastasis, while HLA-DMB inhibited these processes. Immune infiltration analysis highlighted the immunological relevance of the identified marker genes, providing insights into their functional roles. This study underscores the critical influence of LAMs in NSCLC progression and highlights a robust prognostic model that offers potential therapeutic targets for improving patient outcomes.
Collapse
Affiliation(s)
- Aoxiao He
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xianglai Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Qi
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shan Zhang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fan Li
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiakun Wang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jinhua Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Song
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Li SK, Song NC, Liu Q, Zheng ZK, Li JS. Risk Factors for Lymph Node Metastasis in Stage pT1 Invasive Lung Adenocarcinoma. Curr Med Sci 2025:10.1007/s11596-025-00016-4. [PMID: 40244514 DOI: 10.1007/s11596-025-00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE To analyze the risk factors for lymph node metastasis (LNM) in patients with stage pT1 lung adenocarcinoma to select a more appropriate surgical option. METHODS In this retrospective study, 294 patients with postoperative pathologically confirmed stage pT1 invasive lung adenocarcinoma were collected and divided into two groups according to whether they had mediastinal or hilar LNM. Patient tumor imaging, pathological features and gene mutations were analyzed, and risk factors that might predict LNM were derived via univariate and multivariate logistic analyses. LNM-related variables were screened by Boruta and least absolute shrinkage and selection operator regression analysis. RESULTS Among the 294 patients, 45 (15.3%) had positive mediastinal or hilar lymph nodes. There were no significant differences between the two groups in terms of sex, age, or underlying disease. The difference in the percentage of solidity between the two groups was significant, with the higer percentage group showing a more significant difference. The results of multivariate logistic analysis revealed that a high percentage of solid components and wild-type epidermal growth factor receptor (EGFR) were risk factors for LNM. The nomogram for predicting LNM included the consolidation tumor ratio, tumor size, micropapillary and EGFR, with an area under the curve of 93.4% (95% CI: 88.7-99.1) in the derivation cohort and 92.3% (95% CI: 84.6-99.9) in the validation cohort. CONCLUSIONS A high proportion of solid components and wild-type EGFR were risk factors for pT1 stage lung adenocarcinoma, suggesting that the choice of lung segmentectomy needs to be evaluated and selected more cautiously.
Collapse
Affiliation(s)
- Shou-Kang Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nai-Cheng Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quan Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi-Kun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jin-Song Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Guo X, Chang M, Li W, Qian Z, Guo H, Xie C, Bi WL, Xing B, Zhang F, Huang Y. Immune atlas of pituitary neuroendocrine tumors highlights endocrine-driven immune signature and therapeutic implication. Cell Rep 2025; 44:115584. [PMID: 40244846 DOI: 10.1016/j.celrep.2025.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
Whether the tumor microenvironment is shaped by endocrine hormone secretion, as well as its cellular heterogeneity and therapeutic implications in pituitary neuroendocrine tumors (pitNETs), remains poorly understood. We demonstrate that pitNETs exhibit a sparse immune infiltration. Mass cytometry of 97,418 immune cells from 56 pitNETs establishes a high-resolution atlas, with macrophages and T cells comprising the predominant populations. Hormone secretion status dictates the immune composition and cellular phenotype. Functioning pitNETs are enriched with T cells, with robust expression of immune-suppressive markers CD38, programmed death (PD)-1, and PD-L1. The lymphoid-enriched microenvironment is associated with shorter progression-free survival in patients with pitNETs. Integrating PD-1 blockade with tumor-targeted therapy in functioning pitNETs demonstrates synergistic efficacy with enhanced apoptosis, induces cell-cycle arrest, and suppresses hormone secretion using patient-derived primary cell cultures. Altogether, our findings provide an extended resource on the cellular and functional heterogeneity of the pitNET immune microenvironment and offer a conceptual framework for rational therapeutic strategies.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Mengqi Chang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhua Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhihong Qian
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Guo
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Chufei Xie
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Wenya Linda Bi
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Bing Xing
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fan Zhang
- Gastroenterology ICU, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yongsheng Huang
- Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
8
|
Li H, Li G, Gao X, Chen C, Cui Z, Cao X, Su J. Development of a reliable risk prognostic model for lung adenocarcinoma based on the genes related to endotheliocyte senescence. Sci Rep 2025; 15:12604. [PMID: 40221448 PMCID: PMC11993614 DOI: 10.1038/s41598-025-95551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Cellular senescence is a hallmark for cancers, particularly in lung adenocarcinoma (LUAD). This study developed a risk model using senescence signature genes for LUAD patients. Based on the RNA-seq, clinical information and mutation data of LUAD patients collected from the TCGA and GEO database, we obtained 102 endotheliocyte senescence-related genes. The "ConsensusClusterPlus" R package was employed for unsupervised cluster analysis, and the "limma" was used for the differentially expressed gene (DEG) analysis. A prognosis model was created by univariate and multivariate Cox regression analysis combined with Lasso regression utilizing the "survival" and "glmnet" packages. KM survival and receiver operator characteristic curve analyses were conducted applying the "survival" and "timeROC" packages. "MCPcounter" package was used for immune infiltration analysis. Immunotherapy response analysis was performed based on the IMvigor210 and GSE78220 cohort, and drug sensitivity was predicted by the "pRRophetic" package. Cell invasion and migration were tested by carrying out Transwell and wound healing assays. According to the results, a total of 32 genes related to endotheliocyte senescence were screened to assign patients into C1 and C2 subtypes. The C2 subtype showed a significantly worse prognosis and an overall higher somatic mutation frequency, which was associated with increased activation of cancer pathways, including Myc_targets2 and angiogenesis. Then, based on the DEGs between the two subtypes, we constructed a five-gene RiskScore model with a strong classification effectiveness for short- and long-term OS prediction. High- and low-risk groups of LUAD patients were classified by the RiskScore. High-risk patients, characterized by lower immune infiltration, had poorer outcomes in both training and validation datasets. The RiskScore was associated with the immunotherapy response in LUAD. Finally, we found that potential drugs such as Cisplatin can benefit high-risk LUAD patients. In-vitro experiments demonstrated that silencing of Angiopoietin-like 4 (ANGPTL4), Gap Junction Protein Beta 3 (GJB3), Family with sequence similarity 83-member A (FAM83A), and Anillin (ANLN) reduced the number of invasive cells and the wound healing rate, while silencing of solute carrier family 34 member 2 (SLC34A2) had the opposite effect. This study, collectively speaking, developed a prognosis model with senescence signature genes to facilitate the diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Hongzhi Li
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China.
| | - Guangming Li
- Department of Infectious Diseases and Hepatology, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Xian Gao
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Chengde Chen
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Zhongfeng Cui
- Department of Clinical Laboratory, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Xiaojiu Cao
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| | - Jing Su
- Department of Tuberculosis Diseases, The Sixth People's Hospital of Zhengzhou, Zhengzhou, 450000, China
| |
Collapse
|
9
|
Yan X, Gao X, Dong J, Wang F, Jiang X, Hu X, Zhang J, Wang N, Xu L, Liu Z, Hu S, Zhao H. Integration of Single-Cell and Bulk RNA-seq Data to Identify the Cancer-Associated Fibroblast Subtypes and Risk Model in Glioma. Biochem Genet 2025; 63:1275-1297. [PMID: 38536568 DOI: 10.1007/s10528-024-10751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the stroma. Studies showed that CAFs were pivotally in glioma progression which have long been considered a promising therapeutic target. Therefore, the identification of prognostic CAF markers might facilitate the development of novel diagnostic and therapeutic approaches. A total of 1333 glioma samples were obtained from the TCGA and CGGA datasets. The EPIC, MCP-counter, and xCell algorithms were used to evaluate the relative proportion of CAFs in glioma. CAF markers were identified by the single-cell RNA-seq datasets (GSE141383) from the Tumor Immune Single-Cell Hub database. Unsupervised consensus clustering was used to divide the glioma patients into different distinct subgroups. The least absolute shrinkage and selection operator regression model was utilized to establish a CAF-related signature (CRS). Finally, the prognostic CAF markers were further validated in clinical specimens by RT‒qPCR. Combined single-cell RNA-seq analysis and differential expression analysis of samples with high and low proportions of CAFs revealed 23 prognostic CAF markers. By using unsupervised consensus clustering, glioma patients were divided into two distinct subtypes. Subsequently, based on 18 differentially expressed prognostic CAF markers between the two CAF subtypes, we developed and validated a new CRS model (including PCOLCE, TIMP1, and CLIC1). The nomogram and calibration curves indicated that the CRS was an accurate prognostic marker for glioma. In addition, patients in the high-CRS score group had higher immune infiltration and tumor mutation burden levels. Moreover, the CRS score had the potential to predict the response to immune checkpoint blockade (ICB) therapy and chemotherapy. Finally, the expression profiles of three CAF markers were verified by RT‒qPCR. In general, our study classified glioma patients into distinct subgroups based on CAF markers, which will facilitate the development of individualized therapy. We also provided insights into the role of the CRS in predicting the response to ICB and chemotherapy in glioma patients.
Collapse
Affiliation(s)
- Xiuwei Yan
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Dong
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fang Wang
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyan Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueyan Hu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Jiheng Zhang
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wang
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Xu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Zhihui Liu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China.
| | - Shaoshan Hu
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Hangzhou Medical College, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Moon CY, Belabed M, Park MD, Mattiuz R, Puleston D, Merad M. Dendritic cell maturation in cancer. Nat Rev Cancer 2025; 25:225-248. [PMID: 39920276 PMCID: PMC11954679 DOI: 10.1038/s41568-024-00787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are present at low abundance in the circulation and tissues; they serve as crucial immune sentinels by continually sampling their environment, migrating to secondary lymphoid organs and shaping adaptive immune responses through antigen presentation. Owing to their ability to orchestrate tolerogenic or immunogenic responses to a specific antigen, DCs have a pivotal role in antitumour immunity and the response to immune checkpoint blockade and other immunotherapeutic approaches. The multifaceted functions of DCs are acquired through a complex, multistage process called maturation. Although the role of inflammatory triggers in driving DC maturation was established decades ago, less is known about DC maturation in non-inflammatory contexts, such as during homeostasis and in cancer. The advent of single-cell technologies has enabled an unbiased, high-dimensional characterization of various DC states, including mature DCs. This approach has clarified the molecular programmes associated with DC maturation and also revealed how cancers exploit these pathways to subvert immune surveillance. In this Review, we discuss the mechanisms by which cancer disrupts DC maturation and highlight emerging therapeutic opportunities to modulate DC states. These insights could inform the development of DC-centric immunotherapies, expanding the arsenal of strategies to enhance antitumour immunity.
Collapse
Affiliation(s)
- Chang Yoon Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Tang FH, Wong HYT, Tsang PSW, Yau M, Tam SY, Law L, Yau K, Wong J, Farah FHM, Wong J. Recent advancements in lung cancer research: a narrative review. Transl Lung Cancer Res 2025; 14:975-990. [PMID: 40248731 PMCID: PMC12000946 DOI: 10.21037/tlcr-24-979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 04/19/2025]
Abstract
Background and Objective Lung cancer remains the leading cause of cancer-related mortality worldwide, with a 5-year survival rate ranging from 10% to 20%. The majority of cases are categorized as non-small cell lung cancer (NSCLC) (80%) and small cell lung cancer (SCLC) (20%), with NSCLC being the more prevalent type. Tobacco use, particularly cigarette smoking, is a significant contributor to over 80% of lung cancer cases. Early diagnosis is challenging due to limitations in screening methods, resulting in many cases being identified only in advanced stages. Moreover, current treatment options often exhibit low efficacy, partly due to an inadequate understanding of the disease's pathogenesis. This narrative review aims to summarize recent discoveries and advancements in lung cancer research, focusing on improvements in diagnosis, treatment, and understanding of the disease. Methods A comprehensive literature review was performed utilizing the PubMed Central database to identify recent studies relevant to lung cancer. This review synthesizes findings from various research articles to provide a cohesive summary of advancements in the field. Key Content and Findings In the past decade, notable progress has been achieved in lung cancer research, particularly concerning diagnostics and treatment strategies. Novel therapeutic approaches, including immunotherapy and genomic-targeted therapies, have demonstrated promising results. Understanding the tumor microenvironment (TME) and the role of T lymphocytes has become crucial for developing effective treatments. Additionally, advancements in immune checkpoint inhibitors (ICIs) have shown potential in enhancing patient outcomes. Improvements in tumor detection technologies are also anticipated to facilitate earlier diagnosis, ultimately contributing to better survival rates. Conclusions Significant strides have been made in lung cancer research over the last ten years, particularly in diagnostics and treatment methodologies. Future research should prioritize exploring the TME, the function of T lymphocytes, and the efficacy of ICIs while continuing to innovate in tumor detection technologies. Such efforts are essential for enhancing treatment outcomes and improving the overall quality of life for lung cancer patients.
Collapse
Affiliation(s)
- Fuk Hay Tang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Heylie Y. T. Wong
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | | | - Mabel Yau
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Shing Yau Tam
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Lawla Law
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Katherine Yau
- School of Nursing, Tung Wah College, Hong Kong, China
| | - Jade Wong
- Library, Tung Wah College, Hong Kong, China
| | | | - Jacky Wong
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| |
Collapse
|
12
|
Wang J, Yang H, Chen J, Sun Y, Pei H, Li L. DNA Origami Scaffold-Based Peptide-Major Histocompatibility Complex Multimers for Spatial Imaging of T Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18116-18123. [PMID: 40079396 DOI: 10.1021/acsami.5c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Visualizing the spatial distribution of antigen-specific T cells is essential for understanding immune responses and improving therapeutic strategies. However, detecting low-affinity antigen-specific T cells and enhancing signals from low-abundance populations remain challenging due to limitations in sensitivity. Here, we report DNA origami scaffold-based peptide-major histocompatibility complex multimers (DOS-pMHCs) with precise spatial organization of pMHC and signaling molecules on the nanoscale for enhanced in situ visualization of antigen-specific T cells. The two-dimensional triangular DNA origami precisely organizes pMHCs and signaling molecules with high valency, significantly improving binding to antigen-specific T cells and signal amplification. These DOS-pMHCs facilitate enhanced visualization of antigen-specific T cells in lymphoid tissues compared to traditional tetramers. Moreover, we show that DOS-pMHCs enable the in situ detection of autoimmune T cells with lower affinity T cell receptors (TCRs), which are difficult to identify using traditional tetramers. This in situ detection strategy provides a powerful tool for mapping the spatial distribution of antigen-specific T cells, thus holding great potential for advancing our understanding of immune responses and guiding personalized immunotherapy.
Collapse
Affiliation(s)
- Jianing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Han Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Jing Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
13
|
Rodriguez LIL, Amadio R, Piperno GM, Benvenuti F. Tissue-specific properties of type 1 dendritic cells in lung cancer: implications for immunotherapy. J Immunother Cancer 2025; 13:e010547. [PMID: 40132908 PMCID: PMC11938230 DOI: 10.1136/jitc-2024-010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Checkpoint inhibitors have led to remarkable benefits in non-small cell lung cancer (NSCLC), yet response rates remain below expectations. High-dimensional analysis and mechanistic experiments in clinical samples and relevant NSCLC models uncovered the immune composition of lung cancer tissues, providing invaluable insights into the functional properties of tumor-infiltrating T cells and myeloid cells. Among myeloid cells, type 1 conventional dendritic cells (cDC1s) stand out for their unique ability to induce effector CD8 T cells against neoantigens and coordinate antitumoral immunity. Notably, lung resident cDC1 are particularly abundant and long-lived and express a unique tissue-specific gene program, underscoring their central role in lung immunity. Here, we discuss recent insights on the induction and regulation of antitumoral T cell responses in lung cancer, separating it from the tissue-agnostic knowledge generated from heterogeneous tumor models. We focus on the most recent studies dissecting functional states and spatial distribution of lung cDC1 across tumor stages and their impact on T cell responses to neoantigens. Finally, we highlight relevant gaps and emerging strategies to harness lung cDC1 immunostimulatory potential.
Collapse
Affiliation(s)
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
14
|
Liu X, Ji Z, Zhang L, Li L, Xu W, Su Q. Prediction of pathological complete response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer using 18F-FDG PET radiomics features of primary tumour and lymph nodes. BMC Cancer 2025; 25:520. [PMID: 40119358 PMCID: PMC11929329 DOI: 10.1186/s12885-025-13905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Predicting the response to neoadjuvant chemoimmunotherapy in patients with resectable non-small cell lung cancer (NSCLC) facilitates clinical treatment decisions. Our study aimed to establish a machine learning model that accurately predicts the pathological complete response (pCR) using 18F-FDG PET radiomics features. METHODS We retrospectively included 210 patients with NSCLC who completed neoadjuvant chemoimmunotherapy and subsequently underwent surgery with pathological results, categorising them into a training set of 147 patients and a test set of 63 patients. Radiomic features were extracted from the primary tumour and lymph nodes. Using 10-fold cross-validation with the least absolute shrinkage and selection operator method, we identified the most impactful radiomic features. The clinical features were screened using univariate and multivariate analyses. Machine learning models were developed using the random forest method, leading to the establishment of one clinical feature model, one primary tumour radiomics model, and two fusion radiomics models. The performance of these models was evaluated based on the area under the curve (AUC). RESULTS In the training set, the three radiomic models showed comparable AUC values, ranging from 0.901 to 0.925. The clinical model underperformed, with an AUC of 0.677. In the test set, the Fusion_LN1LN2 model achieved the highest AUC (0.823), closely followed by the Fusion_Lnall model with an AUC of 0.729. The primary tumour model achieved a moderate AUC of 0.666, whereas the clinical model had the lowest AUC at 0.631. Additionally, the Fusion_LN1LN2 model demonstrated positive net reclassification improvement and integrated discrimination improvement values compared with the other models, and we employed the SHapley Additive exPlanations methodology to interpret the results of our optimal model. CONCLUSIONS Our fusion radiomics model, based on 18F-FDG-PET, will assist clinicians in predicting pCR before neoadjuvant chemoimmunotherapy for patients with resectable NSCLC.
Collapse
Affiliation(s)
- Xingbiao Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhilin Ji
- Department of Radiology, Tianjin Hospital, Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Libo Zhang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Linlin Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
15
|
Hao W, Chen S, Chao H, Li Z, Yang H, Chen D, Li S, Zhang S, Zhang J, Wang J, Li Z, Li X, Zhan Z, Guan T, Zhang Y, Li W, Liu H. IL-33-Induced TREM2 + Macrophages Promote Pathological New Bone Formation Through CREG1-IGF2R Axis in Ankylosing Spondylitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500952. [PMID: 40091508 DOI: 10.1002/advs.202500952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 03/19/2025]
Abstract
Pathological new bone formation is the main cause of disability in ankylosing spondylitis (AS), and so far, it lacks a targeted therapy. Macrophages are central orchestrators of inflammation progression and tissue remodeling, but their contribution to pathological new bone formation has largely not been explored. Here, it is identified that TREM2+ macrophages predominated within the sites of new bone formation and adjacent to osteogenic precursor cells. In vivo, both depletion of macrophages and knockout of Trem2 significantly reduced pathological new bone formation in a collagen antibody-induced arthritis (CAIA) model. Specifically, TREM2+ macrophages promoted osteogenic differentiation of ligament-derived progenitor cells (LDPCs) by secreting CREG1, a secretory glycoprotein involved in cell differentiation and normal physiology. CREG1-IGF2R-PI3K-AKT signaling pathway is involved in TREM2+ macrophage-mediated pathological new bone formation. In addition, it is found that IL-33 promoted TREM2+ macrophage differentiation through phosphorylation of STAT6. Targeting the above signalings alleviated new bone formation in the CAIA model. The findings highlight the critical role of IL-33-induced TREM2+ macrophages in pathological new bone formation and provide potential therapeutic targets for halting spinal ankylosis in AS.
Collapse
Affiliation(s)
- Wenjun Hao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Siwen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Hua Chao
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Zihao Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Hao Yang
- Pediatric Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 102200, China
| | - Dongying Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Sifang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Shuai Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Jingyu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| | - Zhongping Zhan
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tangming Guan
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510000, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, 510000, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, China
| |
Collapse
|
16
|
Zhang W, Huang X. Targeting cGAS-STING pathway for reprogramming tumor-associated macrophages to enhance anti-tumor immunotherapy. Biomark Res 2025; 13:43. [PMID: 40075527 PMCID: PMC11905658 DOI: 10.1186/s40364-025-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator interferon genes (STING) signaling pathway plays a crucial role in activating innate and specific immunity in anti-tumor immunotherapy. As the major infiltrating cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) could be polarized into either anti-tumor M1 or pro-tumor M2 types based on various stimuli. Accordingly, targeted reprogramming TAMs to restore immune balance shows promise as an effective anti-tumor strategy. In this review, we aim to target cGAS-STING pathway for reprogramming TAMs to enhance anti-tumor immunotherapy. We investigated the double-edged sword effects of cGAS-STING in regulating TME. The regulative roles of cGAS-STING pathway in TAMs and its impact on the TME were further revealed. More importantly, several strategies of targeting cGAS-STING for reprogramming TAMs were designed for enhancing anti-tumor immunotherapy. Taken together, targeting cGAS-STING pathway for reprogramming TAMs in TME might be a promising strategy to enhance anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
18
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
19
|
Ma M, Jin C, Dong Q. Intratumoral Heterogeneity and Immune Microenvironment in Hepatoblastoma Revealed by Single-Cell RNA Sequencing. J Cell Mol Med 2025; 29:e70482. [PMID: 40099956 PMCID: PMC11915626 DOI: 10.1111/jcmm.70482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
Hepatoblastoma (HB) is a common paediatric liver malignancy characterised by significant intratumoral heterogeneity and a complex tumour microenvironment (TME). Using single-cell RNA sequencing (scRNA-seq), we analysed 43,592 cells from three tumour regions and adjacent normal tissue of an HB patient. Our study revealed distinct cellular compositions and varying degrees of malignancy across different tumour regions, with the T1 region showing the highest malignancy and overexpression of HMGB2 and TOP2A. Survival analysis demonstrated that high HMGB2 expression is associated with poor prognosis and increased recurrence, suggesting its potential as a prognostic marker. Additionally, we identified a diverse immune microenvironment enriched with regulatory T cells (Tregs) and CD8+ effector memory T cells (Tem), indicating potential immune evasion mechanisms. Notably, CTLA-4 and PD-1 were highly expressed in Tregs and Tem cells, highlighting their potential as immunotherapy targets. Myeloid cells, including Kupffer cells and dendritic cells, also exhibited distinct functional roles in different tumour regions. This study provides the first comprehensive single-cell atlas of HB, revealing critical insights into its intratumoral heterogeneity and immune microenvironment. Our findings not only advance the understanding of HB biology but also offer new directions for precision medicine, including the development of targeted therapies and immunotherapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Mingdi Ma
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chen Jin
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Qian Dong
- Department of Pediatric SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Shandong Key Laboratory of Digital Medicine and Computer Assisted SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
20
|
Liu J, Zhao T, Sun Z, Wang J, Chai Z, Chen G. Single-cell profiling and clinical characteristics analysis of lung squamous carcinoma. Funct Integr Genomics 2025; 25:45. [PMID: 40014154 DOI: 10.1007/s10142-025-01556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Lung squamous carcinoma (LUSC) is a highly heterogeneous disease. However, the tumor microenvironment (TME) landscape and clinical characteristics for LUSC have not yet been elucidated. To map the TME and clinical characteristics of LUSC, we performed single-cell RNA sequencing for 504 LUSC samples on basis of TCGA and Gene Expression Omnibus. We introduced the computational algorithms "ESTIMATE" and "CIBERSORT" to analyze immune cell infiltration and immune-checkpoint-related gene signatures in various LUSC clusters. Weighted gene co-expression network analysis was used to explore the connections between molecular characteristics and clinical traits in LUSC. A prognostic model was constructed by performing multivariate COX. Two gene clusters exhibiting disparate immune and clinical characteristics were identified. Our findings indicate that patients in cluster 2, who have a more favorable prognosis, exhibit immune characteristics such as elevated levels of immunosuppression-associated M2 macrophages, resting memory CD4 T cells, resting dendritic cells (DC), and TNFRSF4, alongside reduced infiltration of activated DC and lower expression of TNFRSF18.Whereafter, the Risk Score model was built on basis of 3-DEGs signature consisted of cystatin C (CST3), transglutaminase type 2 (TGM2), JUN, which were proved by q-PCR and immunofluorescence. Besides, high-Risk Score may be responsible for poor prognosis in LUSC patients. Our study identified that tumor-infiltrating immune cell subtypes and the Risk Score model might shed light on the heterogeneity in LUSC patients. The TME, three DEGs and Risk Score can effectively serve as biomarkers to elucidate the immune landscape and predict prognosis in LUSC patients. They may provide insights to the investigations on therapeutic strategies for LUSC.
Collapse
Affiliation(s)
- Jie Liu
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P.R. China.
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P.R. China.
| | - Tian Zhao
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P.R. China
| | - Zhengliang Sun
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P.R. China
| | - Jinyi Wang
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P.R. China
| | - Zhengjun Chai
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P.R. China
| | - Guohan Chen
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P.R. China.
| |
Collapse
|
21
|
Iemwimangsa N, Anantaya D, Oranratnachai S, Thamrongjirapat T, Lumjiaktase P, Teoh VH, Khiewngam K, Monnamo N, Sanvarinda P, Incharoen P, Charoenyingwattan A, Sensorn I, Dejthevaporn T, Sirachainan E, Chantratita W, Reungwetwattana T, Trachu N. Dynamic changes in immune repertoire profiles in patients with stage III unresectable non-small cell lung cancer during consolidation treatment with immunotherapy. BMC Cancer 2025; 25:333. [PMID: 39994571 PMCID: PMC11853222 DOI: 10.1186/s12885-025-13716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND One-year of immune checkpoint inhibitor (ICI) treatment after concurrent chemoradiation (CCRT) in unresectable stage III non-small cell lung cancer (NSCLC) is a standard of care. The precise predictive biomarkers are under investigations either immunological markers or clinical characteristics. Here, we explored immune repertoire of T cell receptor β-chain (TCRβ) during ICI treatment. METHODS During August 2019 and September 2021, stage III NSCLC, post CCRT patients from Ramathibodi Hospital was enrolled. All patients were treated by durvalumab after CCRT. Blood samples were collected together with clinical data and tumor assessment every 3-4 months until disease progression or discontinuation of treatment due to adverse events. CDR3 region and TCRΒ polymorphisms was explored by RNA sequencing using Next-Generation Sequencing (NGS) TCR beta short-read assay. Bioinformatic analysis was performed to analyze clonal diversity, TCR convergence frequency and the Shannon diversity from each timepoint. Immune repertoire and clinical correlation were explored using Spearman's correlation and Pearson's correlation. RStudio software version 2021 build 372 was used for analyses. A significance level was at P < 0.05. RESULTS Forty-four blood samples from 12 patients were analyzed. Mean duration of durvalumab treatment was 284 days. After durvalumab treatment, increasing of TCR convergence frequency was found compared to baseline (R = 0.36). Interestingly, it was also significantly higher in non-progressive disease (non-PD) patients compared with progressive disease (PD) patients (P = 0.011). Furthermore, Shannon diversity was higher increasing in PD patients compared with non-PD patients. Taken together, our study found that increasing of TCR convergence with less T-cell diversity in non-PD patients probably demonstrated a T cell-specific clonal expansion response to durvalumab treatment in this population. CONCLUSIONS TCRβ repertoire is the potential biomarker for predicting durvalumab treatment response in post CCRT stage III NSCLC patients. However, a larger cohort with long-read assay should be explored.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Male
- Female
- Middle Aged
- Aged
- Neoplasm Staging
- Immunotherapy/methods
- Immune Checkpoint Inhibitors/therapeutic use
- Chemoradiotherapy/methods
- Antibodies, Monoclonal/therapeutic use
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Biomarkers, Tumor/blood
- Adult
- High-Throughput Nucleotide Sequencing
Collapse
Affiliation(s)
- Nareenart Iemwimangsa
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Dulyathat Anantaya
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Ramathibodi Hospital, Ramathibodi Lung Cancer Consortium (RLC), Mahidol University, Bangkok, Thailand
| | - Songporn Oranratnachai
- Oncology Unit Sriphat Medical Center, Faculty of Medicine, Chiangmai University, Chiangmai, Thailand
| | - Thanaporn Thamrongjirapat
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Ramathibodi Hospital, Ramathibodi Lung Cancer Consortium (RLC), Mahidol University, Bangkok, Thailand
| | - Putthapoom Lumjiaktase
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Khantong Khiewngam
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nanamon Monnamo
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Tungpayathai, Rajathewee, Bangkok, 10400, Thailand
| | | | - Pimpin Incharoen
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Angkana Charoenyingwattan
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Insee Sensorn
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thitiya Dejthevaporn
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Ramathibodi Hospital, Ramathibodi Lung Cancer Consortium (RLC), Mahidol University, Bangkok, Thailand
| | - Ekaphop Sirachainan
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Ramathibodi Hospital, Ramathibodi Lung Cancer Consortium (RLC), Mahidol University, Bangkok, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Ramathibodi Hospital, Ramathibodi Lung Cancer Consortium (RLC), Mahidol University, Bangkok, Thailand
| | - Narumol Trachu
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Tungpayathai, Rajathewee, Bangkok, 10400, Thailand.
| |
Collapse
|
22
|
Kowli S, Minocherhomji S, Martinez OM, Busque S, Lebrec H, Maecker HT. Characterization of immune phenotypes in peripheral blood of adult renal transplant recipients using mass cytometry (CyTOF). Immunohorizons 2025; 9:vlae013. [PMID: 39965168 PMCID: PMC11841977 DOI: 10.1093/immhor/vlae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 02/20/2025] Open
Abstract
Chronic immunosuppressive therapies are crucial in organ transplantation but can increase the risk of opportunistic infections and cancer over time. We investigated immune status changes in 10 kidney transplant patients and 11 age-matched healthy adults using broad in vitro stimulation of subject-derived peripheral blood mononuclear cells followed by mass cytometry by time of flight over 6 mo. Overall, the immune cells of transplant patients exhibited increased CD8+ T cell activation and differentiation compared with healthy donors, with elevated CD8+ CD57+, MIP-1β, and interferon γ production (P < 0.05, P < 0.05, and P < 0.01, respectively). CD107a and granzyme B expression were increased in CD8+ T cells and CD56bright natural killer cells (P < 0.05 and P < 0.01, respectively), while T regulatory cells had decreased interleukin-10 production (P < 0.05). These changes indicated a proinflammatory environment influenced by induction therapy and ongoing maintenance drugs. Additionally, transplant recipients displayed signs of immune modulation, including decreased tumor necrosis factor α, interferon γ, and MIP-1β expression in γδT cells (P < 0.05 and P < 0.01), and reduced interleukin-17 and granulocyte-macrophage colony-stimulating factor expression in CD8+ T memory cell subsets (P < 0.05). The diverse functional changes underscore the importance of comprehensive immune status profiling for optimizing individual treatment strategies and developing better immunosuppressants that specifically target activated cell populations.
Collapse
Affiliation(s)
- Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sheroy Minocherhomji
- Amgen Inc., Thousand Oaks, CA, United States
- Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - Olivia M Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Stephan Busque
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Herve Lebrec
- Amgen Inc., Thousand Oaks, CA, United States
- Sonoma Biotherapeutics, South San Francisco, CA 94080, United States
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
23
|
Yang D, Sun X, Wang H, Wistuba II, Wang H, Maitra A, Chen Y. TREM2 Depletion in Pancreatic Cancer Elicits Pathogenic Inflammation and Accelerates Tumor Progression via Enriching IL-1β + Macrophages. Gastroenterology 2025:S0016-5085(25)00368-3. [PMID: 39956331 DOI: 10.1053/j.gastro.2025.01.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) has a complex tumor microenvironment enriched with tumor-associated macrophages. Triggering receptor expressed on myeloid cells 2 (TREM2) is highly expressed by a subset of macrophages in PDAC. However, the functional role of TREM2 in PDAC progression remains elusive. METHODS We generated a novel transgenic mouse model (KPPC;Trem2-/-) that enables the genetic depletion of TREM2 in the context of spontaneous PDAC development. Single-cell RNA-sequencing analysis was used to identify changes in the tumor immune microenvironment on TREM2 depletion. We evaluated the impacts of TREM2 depletion on the tumor immune microenvironment to elucidate the functions of TREM2 in macrophages and PDAC development. RESULTS Unexpectedly, genetic depletion of TREM2 significantly accelerated spontaneous PDAC progression and shortened the survival of KPPC;Trem2-/- mice. Single-cell analysis revealed that TREM2 depletion enhanced proinflammatory macrophages and exacerbated pathogenic inflammation in PDAC. Specifically, TREM2 functions as a key braking mechanism for the NLRP3/nuclear factor-κB/interleukin (IL)-1β inflammasome pathway, opposing to microbial lipopolysaccharide as the key activator of this pathway. TREM2 deficiency orchestrated with microbial lipopolysaccharide to trigger IL-1β upregulation and pathogenic inflammation, thereby fueling PDAC development. Notably, IL-1β inhibition or microbiome ablation not only reversed the accelerated PDAC progression caused by TREM2 depletion, but also further inhibited PDAC progression in the TREM2-depleted context. CONCLUSIONS TREM2 depletion accelerates tumor progression by enhancing proinflammatory macrophages and IL-1β-mediated pathogenic inflammation in PDAC. The accelerated tumor progression by TREM2 depletion can be reversed by blocking IL-1β-associated pathogenic inflammation.
Collapse
Affiliation(s)
- Daowei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinlei Sun
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hua Wang
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
24
|
Xia W, Feng Z, Wang Y, Lei R, Zhou Y, Zhuo Y, Xie R, Dong H, Zhao X, Guan X, Wu J. Orthogonally Engineered Bacteria Capture Metabolically Labeled Tumor Antigens to Improve the Systemic Immune Response in Irradiated Tumors. ACS NANO 2025; 19:5376-5391. [PMID: 39889238 DOI: 10.1021/acsnano.4c13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
In situ vaccination is considered a promising cancer immunotherapy strategy to elicit a tumor-specific T cell response. Live bacteria effectively enhanced the immune response in irradiated tumors as it can activate multiple immune cells. However, the adaptive immune response remains low since bacteria lack the efficient delivery of antigen to dendritic cells (DCs). Here, we show that tumor antigens can be metabolically labeled with azido groups in situ, allowing for their specific capture by orthogonally engineered Salmonella via bioorthogonal chemistry. Subsequently, these antigens are efficiently delivered to DCs through the active movement of the bacteria. Intratumorally injected engineered bacteria captured the labeled antigens and improved their presentation by DCs. This increased the proportion of antigen-specific CD8+ T cells in tumors, further resulting in systemic antitumor effects in the bilateral melanoma mouse model. The antitumor effects were abrogated in Batf3-/- mice or after CD8+ T cell depletion, indicating that systemic antitumor effects were dependent on adaptive immune responses. Overall, our work presents a strategy combining bacterial engineering and antigen labeling, which may guide the development of in situ vaccines in the future.
Collapse
Affiliation(s)
- Wen Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Institute of Drug Research and Development & Jiangsu Engineering Center of Biointelligent Materials, Nanjing University, Nanjing 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi 214101, China
| | - Zhuo Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Yuchen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Ruiqi Lei
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Yao Zhou
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yujia Zhuo
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Ran Xie
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing 210008, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing 210093, China
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
- Institute of Drug Research and Development & Jiangsu Engineering Center of Biointelligent Materials, Nanjing University, Nanjing 210093, China
- Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi 214101, China
| |
Collapse
|
25
|
Jiang Y, Sun X, Yang C, Song D, Zhou C, Chen X, Huang C, Wang Z, Li J. Dynamic monocyte changes as prognostic indicators in operable gastric cancer: a retrospective cohort analysis. Front Oncol 2025; 15:1514281. [PMID: 39990694 PMCID: PMC11842267 DOI: 10.3389/fonc.2025.1514281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Objective This study aims to elucidate the relationship between postoperative monocyte count and gastric cancer prognosis. We introduce a standardized monocyte ratio (MMR) to predict postoperative survival rates in gastric cancer patients effectively. Methods A test cohort was created to develop and evaluate the pre- and postoperative MMR as a mortality predictor in gastric cancer patients. We used Kaplan-Meier survival analysis, complemented by univariate and multivariate analyses. The predictive utility of MMR was assessed via time-dependent ROC curves and decision-curve analysis. Results The sample distributions in both cohorts were similar. The MMR showed high predictive value and significant clinical benefits in 1, 3, and 5-year overall survival (OS) assessments. These findings enhance understanding of prognosis and aid in developing more precise treatment plans. Conclusions MMR is confirmed as an independent factor in predicting overall survival in gastric cancer patients, proving to be a reliable and cost-effective prognostic indicator.
Collapse
Affiliation(s)
- Yiwei Jiang
- Department of Gastrointestinal Surgery, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianwei Sun
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Yang
- Department of Anorectal Surgery, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dandan Song
- Department of Anorectal Surgery, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chongjun Zhou
- Department of Anorectal Surgery, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinxin Chen
- Department of Gastrointestinal Surgery, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chongquan Huang
- Department of Radioimaging, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Zhonglin Wang
- Department of Anorectal Surgery, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiante Li
- Department of Anorectal Surgery, The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
26
|
Gentile M, Goerlich N, Lo IJ, Olson NE, McConnell M, Pospiech J, Bohnenpoll T, Skroblin P, Radresa O, Andag U, Campbell KN, Meliambro K, Sanchez-Russo L, Verlato A, Fiaccadori E, Kim-Schulze S, Lanau M, Fernandez-Lorente ML, Fribourg M, Manrique J, Cravedi P. Patients With Immunoglobulin A Nephropathy Show Abnormal Frequencies of B Cell Subsets, Unconventional T Cells, and High Levels of Galactose-Deficient IgA1-Coated Gut Bacteria. Kidney Int Rep 2025; 10:475-488. [PMID: 39990906 PMCID: PMC11843297 DOI: 10.1016/j.ekir.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 02/25/2025] Open
Abstract
Introduction Mucosal inflammation is involved in the pathophysiology of immunoglobulin-A nephropathy (IgAN); however, peripheral immune phenotype analyses of patients with IgAN often do not include unconventional T cells, the major subset in mucosal immunity. Methods We measured serum total IgA, galactose-deficient IgA1 (gd-IgA1), secretory IgA (SIgA), B cell-activating factor (BAFF), and A proliferation-inducing ligand (APRIL) in 66 patients with IgAN and 30 healthy controls (HCs). We also quantified the total IgA and gd-IgA1 in stool supernatant along with the same coated on bacteria. In 35 patients and 14 controls, we performed extensive phenotyping using cytometry by Time-of-Flight (CyTOF) of circulating immune cells, including unconventional T cells (mucosal associated invariant T [MAIT] cells, γδ T, and natural killer [NK] T cells). The results were validated using RNAseq data from a larger cohort of 179 patients with IgAN, 140 patients with minimal change disease, and 91 HCs. Results Patients with IgAN had higher circulating levels of total IgA, gd-IgA1, and APRIL, and higher IgA and gd-IgA1-coated gut bacteria than controls, whereas serum levels of SIgA and BAFF did not differ between groups. Patients with IgAN showed more class-switched memory (CSM) and double negative (DN) B cells than controls. MAIT cells and γδ T cells were significantly lower, and CD4-CD8- NK T cells were significantly higher in patients with IgAN than in HCs. We validated the significant decrease in MAIT cells in an independent cohort of patients with IgAN. Conclusion The data indicate that patients with IgAN have increased circulating CSM and DN B cells associated with abnormal T cell immunity, involving defects in unconventional T cell frequency. This may suggest putative alterations at mucosal sites because of cell migration leading to altered IgA production.
Collapse
Affiliation(s)
- Micaela Gentile
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Nina Goerlich
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - I-Ju Lo
- Evotec International GmbH, Göttingen, Germany
| | | | | | | | | | | | | | - Uwe Andag
- Evotec International GmbH, Göttingen, Germany
| | - Kirk N. Campbell
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristin Meliambro
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luis Sanchez-Russo
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alberto Verlato
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Enrico Fiaccadori
- UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Lanau
- Servicio de Nefrología, Unidad de Hemodiálisis, Hospital de Navarra, Pamplona, Spain
| | | | - Miguel Fribourg
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joaquin Manrique
- Servicio de Nefrología, Unidad de Hemodiálisis, Hospital de Navarra, Pamplona, Spain
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
27
|
Fan Y, Wu L, Qiu X, Shi H, Wu L, Lin J, Lin J, Teng T. Single-cell RNA-seq analysis reveals microenvironmental infiltration of myeloid cells and pancreatic prognostic markers in PDAC. Discov Oncol 2025; 16:81. [PMID: 39847195 PMCID: PMC11757659 DOI: 10.1007/s12672-025-01830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous make-up of myeloid cells that influences the therapeutic response and prognosis. However, understanding the myeloid cell at both a genetic and cellular level remains a significant challenge. METHODS Single-cell RNA sequencing (scRNA-seq) data were downloaded from t the Tumor Immune Single-cell Hub and gene expression data were retrieved from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Gene set variation analysis (GSVA) was used to estimate the relative proportions of each cell type based on the signatures identified by scRNA-seq or previous literature. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was performed to evaluate the abundance of immune infiltrating cells. For further analysis, LASSO and Cox analyses were used to construct a risk model using univariate Cox regression. RESULTS Using the scRNA-seq dataset, we identified 7 clusters of myeloid cells, and these clusters were assigned a cell type based on their marker genes. In addition, the results of the CellChat analysis and SCENIC analysis indicate that TAM-spp1 cells may promote the migration of pancreatic tumor cells on different levels. Moreover, the TAM-spp1 cell is most closely related to poor prognoses. An 8-gene risk model was constructed by using univariate Cox and LASSO analyses. In the GEO cohorts, this risk model demonstrated excellent predictive abilities for prognosis. Further, patients with high-risk scores had a lower likelihood of benefiting from immunotherapy. CONCLUSION Using bulk RNA-seq and single-cell RNA-seq, we analyzed myeloid heterogeneity at the single-cell level, and we developed an 8-gene model that predicts survival outcomes and immunotherapy response in PADC.
Collapse
Affiliation(s)
- Yanying Fan
- Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, China
| | - Lili Wu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
- Department of Surgical Nursing, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xinyu Qiu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Han Shi
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Longhang Wu
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Juan Lin
- Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, China
| | - Jie Lin
- Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, China.
| | - Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
28
|
Adler KM, Xu H, Gladstein AC, Irizarry-Negron VM, Robertson MR, Doerig KR, Petrov DA, Winslow MM, Feldser DM. Tumor suppressor genotype influences the extent and mode of immunosurveillance in lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633175. [PMID: 39868307 PMCID: PMC11761042 DOI: 10.1101/2025.01.15.633175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The impact of cancer driving mutations in regulating immunosurveillance throughout tumor development remains poorly understood. To better understand the contribution of tumor genotype to immunosurveillance, we generated and validated lentiviral vectors that create an epi-allelic series of increasingly immunogenic neoantigens. This vector system is compatible with autochthonous Cre-regulated cancer models, CRISPR/Cas9-mediated somatic genome editing, and tumor barcoding. Here, we show that in the context of KRAS-driven lung cancer and strong neoantigen expression, tumor suppressor genotype dictates the degree of immune cell recruitment, positive selection of tumors with neoantigen silencing, and tumor outgrowth. By quantifying the impact of 11 commonly inactivated tumor suppressor genes on tumor growth across neoantigenic contexts, we show that the growth promoting effects of tumor suppressor gene inactivation correlate with increasing sensitivity to immunosurveillance. Importantly, specific genotypes dramatically increase or decrease sensitivity to immunosurveillance independently of their growth promoting effects. We propose a model of immunoediting in which tumor suppressor gene inactivation works in tandem with neoantigen expression to shape tumor immunosurveillance and immunoediting such that the same neoantigens uniquely modulate tumor immunoediting depending on the genetic context. One Sentence Summary Here we uncover an under-appreciated role for tumor suppressor gene inactivation in shaping immunoediting upon neoantigen expression.
Collapse
|
29
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
30
|
Wang B, Yin Y, Wang A, Liu W, Chen J, Li T. SMR-guided molecular subtyping and machine learning model reveals novel prognostic biomarkers and therapeutic targets in non-small cell lung adenocarcinoma. Sci Rep 2025; 15:1640. [PMID: 39794414 PMCID: PMC11723915 DOI: 10.1038/s41598-025-85471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Non-small cell lung adenocarcinoma (LUAD) is a markedly heterogeneous disease, with its underlying molecular mechanisms and prognosis prediction presenting ongoing challenges. In this study, we integrated data from multiple public datasets, including TCGA, GSE31210, and GSE13213, encompassing a total of 867 tumor samples. By employing Mendelian randomization (MR) analysis, machine learning techniques, and comprehensive bioinformatics approaches, we conducted an in-depth investigation into the molecular characteristics, prognostic markers, and potential therapeutic targets of LUAD. Our analysis identified 321 genes significantly associated with LUAD, with CENP-A, MCM7, and DLGAP5 emerging as highly connected nodes in network analyses. By performing correlation analysis and Cox regression analysis, we identified 26 prognostic genes and classified LUAD samples into two molecular subtypes with significantly distinct survival outcomes. The Random Survival Forest (RSF) model exhibited robust prognostic predictive capabilities across multiple independent cohorts (AUC > 0.75). Beyond merely predicting patient outcomes, this model also captures key features of the tumor immune microenvironment and potential therapeutic responses. Functional enrichment analysis revealed the complex interplay of cell cycle regulation, DNA repair, immune response, and metabolic reprogramming in the progression of LUAD. Furthermore, we observed a strong correlation between risk scores and the expression of specific cytokines, such as CCL17, CCR2, and CCL20, suggesting novel avenues for developing cytokine network-based therapeutic strategies. This study offers fresh insights into the molecular subtyping, prognostic prediction, and personalized therapeutic decision-making in LUAD, laying a critical foundation for future clinical applications and targeted therapy research.
Collapse
Affiliation(s)
- Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Department of Surgical Oncology II, The General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, 750004, China
| | - Yichen Yin
- School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Department of Surgical Oncology II, The General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, 750004, China
| | - Anqi Wang
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
| | - Weidi Liu
- School of Clinical Medicine, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China
- Department of Surgical Oncology II, The General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, 750004, China
| | - Jing Chen
- Key Laboratory of Fertility Preservation and Maintenance (Ningxia Medical University), Ministry of Education, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China.
- School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, China.
| | - Tao Li
- Department of Surgical Oncology II, The General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
31
|
Hu F, Hu C, He Y, Sun Y, Han C, Zhang X, Yu L, Shi D, Sun Y, Zhang J, Jiang D, Yang S, Yang K. TLR7: A Key Prognostic Biomarker and Immunotherapeutic Target in Lung Adenocarcinoma. Biomedicines 2025; 13:151. [PMID: 39857735 PMCID: PMC11761590 DOI: 10.3390/biomedicines13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background: The tumor microenvironment (TME) plays a crucial role in the progression of lung adenocarcinoma (LUAD). However, understanding its dynamic immune and stromal modulation remains a complex challenge. Methods: We utilized the ESTIMATE algorithm to evaluate the immune and stromal components of the LUAD TME from the TCGA database. Correlations between these components and clinical characteristics and patient prognosis were analyzed. Toll-like receptor 7 (TLR7) was identified as a key prognostic biomarker through PPI network and COX regression analysis. Validation of TLR7 expression was conducted using GEO data, qPCR, WB, and IHC. A prognostic model was developed using a nomogram, incorporating TLR7 expression. Enrichment analysis, the Tumor Immune Estimation Resource database, and single-sample gene set enrichment analysis were used to explore TLR7's potential function. The response of the TLR7 subgroup to immunotherapy and drug sensitivity was observed. Results: We found significant associations between the immune and stromal components of LUAD TME and clinical features and prognosis. Specifically, TLR7 was identified as a prognostic biomarker, where lower expression in tumor tissues was linked to worse outcomes. This finding was further confirmed by comparing TLR7 expression in LUAD cells to normal bronchial epithelial cells, revealing lower expression in the tumor cells. Incorporating TLR7 into a nomogram prognostic model resulted in a good predictor of patient survival. Additionally, TLR7 was associated with immune function and positively correlated with various immune cells. Importantly, patients with high TLR7 expression were more likely to benefit from anti-PD-1 checkpoint blockade therapy. We also identified four treatment candidates for patients with high TLR7 expression. Conclusion: TLR7 is a powerful clinical feature that predicts patient prognosis, immunotherapeutic response, and drug candidates, providing additional insights for the treatment of LUAD.
Collapse
Affiliation(s)
- Feiming Hu
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
| | - Chenchen Hu
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
| | - Yuanli He
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an 716000, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
| | - Chenying Han
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
| | - Xiyang Zhang
- Military Medical Innovation Center, The Fourth Military Medical University, Xi’an 710032, China;
| | - Lingying Yu
- School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China; (L.Y.); (D.S.)
| | - Daimei Shi
- School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China; (L.Y.); (D.S.)
| | - Yubo Sun
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
| | - Junqi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (F.H.); (C.H.); (Y.H.); (Y.S.); (C.H.); (Y.S.); (J.Z.); (D.J.)
| |
Collapse
|
32
|
Kudelka MR, Lavin Y, Sun S, Fuchs E. Molecular and cellular dynamics of squamous cell carcinomas across tissues. Genes Dev 2025; 39:18-35. [PMID: 39455281 PMCID: PMC11789493 DOI: 10.1101/gad.351990.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Squamous cell carcinomas (SCCs), arising from the skin, head and neck, lungs, esophagus, and cervix, are collectively among the most common cancers and a frequent cause of cancer morbidity and mortality. Despite distinct stratified epithelial tissues of origin, converging evidence points toward shared biologic pathways across SCCs. With recent breakthroughs in molecular technologies have come novel SCC treatment paradigms, including immunotherapies and targeted therapy. This review compares commonalities and differences across SCCs from different anatomical sites, including risk factors and genetics, as well as cellular and molecular programs driving tumorigenesis. We review landmark discoveries of the "cancer stem cells" (CSCs) that initiate and propagate SCCs and their gene and translational regulation programs. This has led to an appreciation that interactions between CSCs and the immune system play key roles in invasion and therapeutic resistance. Here, we review the unifying principles of SCCs that have emerged from these exciting advances in our understanding of these epithelial cancers.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yonit Lavin
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Siman Sun
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
33
|
Song X, Zhu Y, Geng W, Jiao J, Liu H, Chen R, He Q, Wang L, Sun X, Qin W, Geng J, Chen Z. Spatial and single-cell transcriptomics reveal cellular heterogeneity and a novel cancer-promoting Treg cell subset in human clear-cell renal cell carcinoma. J Immunother Cancer 2025; 13:e010183. [PMID: 39755578 PMCID: PMC11748785 DOI: 10.1136/jitc-2024-010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated. METHODS To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue. On the basis, the findings were investigated in vitro using tissue and blood samples from 15 patients with ccRCC and validated in the broader samples on tissue microarrays. RESULTS In this study, we revealed previously unreported subsets of both stromal and immune cells, as well as mapped their spatial location at finer resolution. In addition, we validated the clusters of tumor cells after removing batch effects according to six characterized gene sets, including epithelial-mesenchymal transitionhigh clusters, metastatic clusters and proximal tubulehigh clusters. Importantly, we identified a special regulatory T (Treg) cell subpopulation that has the molecular characteristics of terminal effector Treg cells but expresses multiple cytokines, such as interleukin (IL)-1β and IL-18. This group of Treg cells has stronger immunosuppressive function and was associated with a worse prognosis in ccRCC cohorts. They were colocalized with MRC1 + FOLR2 + tumor-associated macrophages (TAMs) at the tumor-normal interface to form a positive feedback loop, maintaining a synergistic procarcinogenic effect. In addition, we traced the origin of IL-1β+ Treg cells and revealed that IL-18 can induce the expression of IL-1β in Treg cells via the ERK/NF-κB pathway. CONCLUSIONS We demonstrated a novel cancer-promoting Treg cell subset and its interactions with MRC1 + FOLR2 +TAMs, which provides new insight into Treg cell heterogeneity and potential therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Xiyu Song
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yumeng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenwen Geng
- Department of Breast Surgery, Shandong University, Jinan, Shandong, China
| | - Jianhua Jiao
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Urology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongjiao Liu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qian He
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijuan Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuxuan Sun
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weijun Qin
- Department of Urology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiejie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xian, Shaanxi, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xian, Shaanxi, China
| |
Collapse
|
34
|
Zhang W, Zhang X, Teng F, Yang Q, Wang J, Sun B, Liu J, Zhang J, Sun X, Zhao H, Xie Y, Liao K, Wang X. Research progress and the prospect of using single-cell sequencing technology to explore the characteristics of the tumor microenvironment. Genes Dis 2025; 12:101239. [PMID: 39552788 PMCID: PMC11566696 DOI: 10.1016/j.gendis.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 11/19/2024] Open
Abstract
In precision cancer therapy, addressing intra-tumor heterogeneity poses a significant obstacle. Due to the heterogeneity of each cell subtype and between cells within the tumor, the sensitivity and resistance of different patients to targeted drugs, chemotherapy, etc., are inconsistent. Concerning a specific tumor type, many feasible treatments or combinations can be used by specifically targeting the tumor microenvironment. To solve this problem, it is necessary to further study the tumor microenvironment. Single-cell sequencing techniques can dissect distinct tumor cell populations by isolating cells and using statistical computational methods. This technology may assist in the selection of targeted combination therapy, and the obtained cell subset information is crucial for the rational application of targeted therapy. In this review, we summarized the research and application advances of single-cell sequencing technology in the tumor microenvironment, including the most commonly used single-cell genomic and transcriptomic sequencing, and their future development direction was proposed. The application of single-cell sequencing technology has been expanded to include epigenomics, proteomics, metabolomics, and microbiome analysis. The integration of these different omics approaches has significantly advanced the development of single-cell multiomics sequencing technology. This innovative approach holds immense potential for various fields, such as biological research and medical investigations. Finally, we discussed the advantages and disadvantages of using single-cell sequencing to explore the tumor microenvironment.
Collapse
Affiliation(s)
- Wenyige Zhang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xue Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Feifei Teng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qijun Yang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiayi Wang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bing Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jie Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingyan Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaomeng Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hanqing Zhao
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuxuan Xie
- The Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kaili Liao
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
35
|
Li L, He S. Programmed cell death pathways in lung adenocarcinoma: illuminating tumor drug resistance and therapeutic opportunities through single-cell analysis. Discov Oncol 2024; 15:828. [PMID: 39714518 DOI: 10.1007/s12672-024-01736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a major contributor to cancer-related deaths, distinguished by its pronounced tumor heterogeneity and persistent challenges in overcoming drug resistance. In this study, we utilized single-cell RNA sequencing (scRNA-seq) to dissect the roles of programmed cell death (PCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, in shaping LUAD heterogeneity, immune infiltration, and prognosis. Among these, ferroptosis and pyroptosis were most significantly associated with favorable survival outcomes, highlighting their potential roles in enhancing anti-tumor immunity. Distinct PCD-related LUAD subtypes were identified, characterized by differential pathway activation and immune cell composition. Subtypes enriched with cytotoxic lymphocytes and dendritic cells demonstrated improved survival outcomes and increased potential responsiveness to immunotherapy. Drug sensitivity analysis revealed that these subtypes exhibited heightened sensitivity to targeted therapies and immune checkpoint inhibitors, suggesting opportunities for personalized treatment strategies. Our findings emphasize the interplay between PCD pathways and the tumor microenvironment, providing insights into the mechanisms underlying tumor drug resistance and immune evasion. By linking molecular and immune features to clinical outcomes, this study highlights the potential of targeting PCD pathways to enhance therapeutic efficacy and overcome resistance in LUAD. These results contribute to a growing framework for developing precise and adaptable cancer therapies tailored to specific tumor characteristics.
Collapse
Affiliation(s)
- Long Li
- Department of Critical Care Medicine, The Fifth People's Hospital of Ganzhou City, Ganzhou, 341000, China
- Ganzhou Key Laboratory of Respiratory Diseases, Ganzhou, 341000, China
- Ganzhou Institute for the Prevention and Treatment of Respiratory Diseases, Ganzhou, 341000, China
| | - Shancheng He
- Department of Critical Care Medicine, The Fifth People's Hospital of Ganzhou City, Ganzhou, 341000, China.
- Ganzhou Key Laboratory of Respiratory Diseases, Ganzhou, 341000, China.
- Ganzhou Institute for the Prevention and Treatment of Respiratory Diseases, Ganzhou, 341000, China.
| |
Collapse
|
36
|
Hashimoto A, Hashimoto S. Plasticity and Tumor Microenvironment in Pancreatic Cancer: Genetic, Metabolic, and Immune Perspectives. Cancers (Basel) 2024; 16:4094. [PMID: 39682280 DOI: 10.3390/cancers16234094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer has long been believed to be a genetic disease caused by the accumulation of mutations in key genes involved in cellular processes. However, recent advances in sequencing technology have demonstrated that cells with cancer driver mutations are also present in normal tissues in response to aging, environmental damage, and chronic inflammation, suggesting that not only intrinsic factors within cancer cells, but also environmental alterations are important key factors in cancer development and progression. Pancreatic cancer tissue is mostly comprised of stromal cells and immune cells. The desmoplasmic microenvironment characteristic of pancreatic cancer is hypoxic and hypotrophic. Pancreatic cancer cells may adapt to this environment by rewiring their metabolism through epigenomic changes, enhancing intrinsic plasticity, creating an acidic and immunosuppressive tumor microenvironment, and inducing noncancerous cells to become tumor-promoting. In addition, pancreatic cancer has often metastasized to local and distant sites by the time of diagnosis, suggesting that a similar mechanism is operating from the precancerous stage. Here, we review key recent findings on how pancreatic cancers acquire plasticity, undergo metabolic reprogramming, and promote immunosuppressive microenvironment formation during their evolution. Furthermore, we present the following two signaling pathways that we have identified: one based on the small G-protein ARF6 driven by KRAS/TP53 mutations, and the other based on the RNA-binding protein Arid5a mediated by inflammatory cytokines, which promote both metabolic reprogramming and immune evasion in pancreatic cancer. Finally, the striking diversity among pancreatic cancers in the relative importance of mutational burden and the tumor microenvironment, their clinical relevance, and the potential for novel therapeutic strategies will be discussed.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
37
|
Fan H, Wang R, Wen B, Xiong J. Biomarkers and potential therapeutic targets driving progression of non-alcoholic steatohepatitis to hepatocellular carcinoma predicted through transcriptomic analysis. Front Immunol 2024; 15:1502263. [PMID: 39697329 PMCID: PMC11652351 DOI: 10.3389/fimmu.2024.1502263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is the most prevalent chronic liver condition globally, with potential progression to cirrhosis, and even hepatocellular carcinoma (HCC). The increasing prevalence of NASH underscores the urgent need for advanced diagnostic and therapeutic strategies. Despite its widespread impact, effective treatments to prevent the progression of NASH remain elusive, highlighting the critical importance of innovative molecular techniques in both the diagnosis and management of this disease. Methods Six microarray datasets available in GEO were used to perform Robust Rank Aggregation (RRA) to identify differentially expressed genes (DEGs).We identified 62 robust upregulated genes and 24 robust downregulated genes. These genes were undergone Gene Ontology enrichment analysis and further examination for expression correlation with NAS score. Molecular subtypes were generated using "ConsensusClusterPlus" on identified genes, which were further assessed for tumor stage relevance, expression differences in adjacent and tumor tissues, and impact on survival in TCGA liver cancer patients. Single-cell analysis was then used to explore the genes across different cell types and subgroups as well as cell-type interactions. The clinical utility of predicted core genes was highlighted through decision curve analysis, with emphasis on HCC prognosis. The GDSC database was used to evaluate the relationship between the predicted core genes and drug sensitivity, while the TIDE database was used to evaluate their relationship with immunotherapy. Results Four core genes, TREM2, GDF15, TTC39A, and ANXA2, were identified as key to influencing HCC prognosis and therapy responsiveness, especially immune treatment efficacy in NASH-associated HCC. Conclusion The core genes may act as critical biomarkers driving the progression of NASH to HCC. They are potential novel targets for the diagnosis and treatment of NASH progression, offering innovative perspectives for its clinical management.
Collapse
Affiliation(s)
- Hui Fan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Bin Wen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
38
|
Zou T, Huang Y, Zhou Z, He S, Liu J, Chen Y, Liu H, Luo Z, Liu M, Wei H, Yu C. A minimalist multifunctional nano-prodrug for drug resistance reverse and integration with PD-L1 mAb for enhanced immunotherapy of hepatocellular carcinoma. J Nanobiotechnology 2024; 22:750. [PMID: 39627819 PMCID: PMC11613529 DOI: 10.1186/s12951-024-03027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
Clinical treatment of hepatocellular carcinoma (HCC) with 5-fluorouracil (5-FU), the primary anticancer agent, remains unsatisfactory due to the glutathione (GSH)-associated drug resistance and immunosuppressive microenvironment of HCC. To develop a facile yet robust strategy to overcome 5-FU resistance for enhanced immunotherapy treatment of HCC via all dimensional GSH exhaustion, we report in this study construction of a minimalist prodrug consisting of 5-FU linked to an indoleamine-(2,3)-dioxygenase (IDO) inhibitor (IND) via a disulfide bridge, FU-SS-IND that can further self-assemble into stabilized nanoparticles, FU-SS-IND NPs. Specifically, besides the disulfide linker-induced GSH exhaustion, IND inhibits GSH biosynthesis and enhances the effector function of T cells for turning a "cold" tumor to a "hot" one, which synergistically achieving a tumor inhibition rate (TIR) of 92.5% in a 5-FU resistant mice model. Most importantly, FU-SS-IND NPs could upregulate programmed death ligand 1 (PD-L1) expression on the surface of tumor cells, which enables facile combination with immune checkpoint blockade (ICB) for a ultimate prolonged survival lifetime of 5-FU-resistant tumors-bearing mice. Overall, the minimalist bioreducible nano-prodrug developed herein demonstrates great translatable potential for efficiently reversing drug resistance and enhancing immunotherapy of HCC.
Collapse
Affiliation(s)
- Ting Zou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yun Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zongtao Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuangyan He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jia Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yalan Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hongdu Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhonghui Luo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Miaoxin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - CuiYun Yu
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China.
| |
Collapse
|
39
|
Li T, Guo S, Xu C, Zhang M, Lyu C, Xu H, Hou Z, Zhang M, Li X, Ren J, Liu C, Kong D, Hao D, Wang G. Integrated single-cell transcriptome and TCR profiles of hepatocellular carcinoma highlight the convergence on interferon signaling during immunotherapy. J Immunother Cancer 2024; 12:e010534. [PMID: 39581706 PMCID: PMC11590841 DOI: 10.1136/jitc-2024-010534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Despite the success of immune checkpoint inhibitor (ICI)-based combination therapies in hepatocellular carcinoma (HCC), its effectiveness remains confined to a subset of patients. The development of reliable, predictive markers is important for accurate patient stratification and further mechanistic understanding of therapy response. METHODS We comprehensively analyzed paired single-cell RNA transcriptome and T-cell repertoire profiles from 14 HCC ascites samples, collected from 7 patients before and after treatment with the combination of sintilimab (anti-PD-1) and bevacizumab (anti-VEGF). RESULTS We identify a widespread convergence on interferon (IFN) signaling across various immune cell lineages in treatment-responsive patients with HCC, indicating a common transcriptional state transition in the immune microenvironment linked to immunotherapy response in HCC. Strong IFN signaling marks CD8+ T cells with larger clonal expansion and enhanced cytotoxicity, macrophages toward M1-like polarization and strong T-cell recruitment ability, dendritic cells with increased antigen presentation capacity, as well as highly cytotoxic natural killer cells and activated B cells. By translating our finding to cohorts of patients with HCC, we demonstrate the specificity of IFN-signaling in the prognosis of patients with HCC and its ability to predict immunotherapy response. CONCLUSIONS This study provides a unique single-cell resource with clonal and longitudinal resolution during ICI therapy and reveals IFN signaling as a biomarker of immunotherapy response in HCC, suggesting a beneficial effect by combining IFN inducers with ICIs for patients with HCC.
Collapse
Affiliation(s)
- Tianhao Li
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Shengnan Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Chang Xu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Mingjie Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Cheng Lyu
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Huanhuan Xu
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Zepeng Hou
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Mingshuo Zhang
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Xiaobo Li
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Jing Ren
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Changqing Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Dan Kong
- Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Dapeng Hao
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
- School of Basic Medical Sciences, Harbin Medical University, Harbin, People's Republic of China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| |
Collapse
|
40
|
Arleo A, Montagner A, Giovannini C, Suzzi F, Piscaglia F, Gramantieri L. Multifaceted Aspects of Dysfunctional Myelopoiesis in Cancer and Therapeutic Perspectives with Focus on HCC. Biomolecules 2024; 14:1496. [PMID: 39766202 PMCID: PMC11673139 DOI: 10.3390/biom14121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Myelopoiesis provides for the formation and continued renewal of cells belonging primarily to the innate immune system. It is a highly plastic process that secures the response to external and internal stimuli to face acute and changing needs. Infections and chronic diseases including cancer can modulate it by producing several factors, impacting proliferation and differentiation programs. While the lymphocytic compartment has attracted major attention due to the role of adaptive immunity in anticancer immune response, in recent years, research has found convincing evidence that confirms the importance of innate immunity and the key function played by emergency myelopoiesis. Due to cancer's ability to manipulate myelopoiesis to its own advantage, the purpose of this review is to outline myelopoiesis processes within the tumor microenvironment and suggest possible therapeutic lines of research to restore the physiological functioning of the host's immune system, with a special outlook on hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.M.); (C.G.); (F.S.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
41
|
Chan S, Liu Z, Chen Y, Chen S, Liang Y, Yang Z, Zhang Z, Li M, Zhang X, Liu X. The JAK-STAT signaling-related signature serves as a prognostic and predictive biomarker for renal cell carcinoma immunotherapy. Gene 2024; 927:148719. [PMID: 38917875 DOI: 10.1016/j.gene.2024.148719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Renal cell carcinoma (RCC) represents a significant portion of genitourinary cancers, marked by challenging prognosis and high metastasis rates. Immunotherapy has been applied in managing advanced renal cell carcinoma, but the therapeutic outcomes are unsatisfactory. In this study, we order to construct a Janus kinase/signal transduction and activator transcriptional (JAK/STAT)-related signature linked to kidney patient outcomes for better predicting the efficacy to immune checkpoint inhibitors (ICIs) and to provide guidance for effective combination therapy. We screened 25 differentially expressed genes (DEGs) that exhibited high expression in RCC samples and were enriched in the JAK-STAT signaling pathway. Among these genes, 11 key genes were identified and correlated with the expectation of Kidney Clear Cell Carcinoma (KIRC) patients and all these genes was significantly elevated in RCC tumor tissues and cancer cells compared to para-cancer tissues and normal renal cells. Utilizing these 11 genes, we divided RCC patients into high-risk and low-risk groups. We found a clear correlation between the clinicopathologic factors of KIRC patients and the JAK-STAT-related risk score. And the IHC results shown that the JAK3 and STAT4 expression of tumor was significantly higher than normal tissue in RCC patients, the level of JAK3 and STAT4 was positively related to the T stage of RCC patients. In addition, high-risk patients had a poorer prognosis and greater protumor immune cell infiltration, and benefitted less from immunotherapy than did low-risk patients. Furthermore, the JAK-STAT-related risk score can predict disease-free survival (DFS) in RCC patients according to the nomogram, which constructed in combination with other clinical features such as age, TNM-staging and stage. Our study demonstrated the JAK-STAT signaling pathway's important regulatory function in RCC tumor immunity. This insight not only enhances our ability to accurately predict the survival rate of RCC patients, but also underscores a potential therapeutic alternative for RCC, involving the combined targeting of the JAK-STAT pathway and immune checkpoints.
Collapse
Affiliation(s)
- Szehoi Chan
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zixuan Liu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Yingying Chen
- College of Stomatology, Jinan University, Guangzhou 510632, China
| | - Shuna Chen
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Yuelan Liang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Ziyi Yang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zixuan Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Miao Li
- Department of Dermatovenereology, The Seveneth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518106, China.
| | - Xingding Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| | - Xueqi Liu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
42
|
Li L, Liu Z, Tian L, Yao S, Feng L, Lai F, Wang K, Zhang Y, Li Y, Wang J, Ren W. Single-cell proteomics delineates murine systemic immune response to blast lung injury. Commun Biol 2024; 7:1429. [PMID: 39489806 PMCID: PMC11532540 DOI: 10.1038/s42003-024-07151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Victims of explosive events frequently suffer from blast lung injuries. Immune system has been implicated in the pathogenesis of this disease. However, systemic immune responses underlying the progression and recovery of injury repair remain poorly understood. Here, we depict the systemic landscape of immune dysregulation during blast lung injury and uncover immune recovery patterns. Single-cell analyses reveal dramatic changes in neutrophils, macrophages, monocytes, dendritic cells, and eosinophils after a gas explosion, along with early involvement of CD4 T, CD8 T, and Th17 cells. We demonstrate that myeloid cells primarily exert functions during the acute phase, while the spleen serves as an alternative source of granulocytes. Granulopoiesis is initiated in the bone marrow at a later stage during blast lung injury recovery, rather than at the acute stage. These findings contribute to a better understanding of the pathogenesis and provide valuable insights for potential immune interventions in blast lung injury.
Collapse
Affiliation(s)
- Long Li
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhongrui Liu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Linqiang Tian
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Lili Feng
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Feng Lai
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Kunxi Wang
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yue Zhang
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanyan Li
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jinheng Wang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China.
- Henan Medical Key Laboratory for Research of Trauma and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Clinical Medical Centre of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
43
|
Mantovani A, Marchesi F, Di Mitri D, Garlanda C. Macrophage diversity in cancer dissemination and metastasis. Cell Mol Immunol 2024; 21:1201-1214. [PMID: 39402303 PMCID: PMC11528009 DOI: 10.1038/s41423-024-01216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 11/02/2024] Open
Abstract
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.
- William Harvey Research Institute, Queen Mary University, London, UK.
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diletta Di Mitri
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
44
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic tumor microenvironment. EMBO Rep 2024; 25:5080-5112. [PMID: 39415049 PMCID: PMC11549407 DOI: 10.1038/s44319-024-00288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are prime therapeutic targets due to their pro-tumorigenic functions, but varying efficacy of macrophage-targeting therapies highlights our incomplete understanding of how macrophages are regulated within the tumor microenvironment (TME). The circadian clock is a key regulator of macrophage function, but how circadian rhythms of macrophages are influenced by the TME remains unknown. Here, we show that conditions associated with the TME such as polarizing stimuli, acidic pH, and lactate can alter circadian rhythms in macrophages. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate pH-driven changes in circadian rhythms are not mediated solely by cAMP signaling. Remarkably, circadian disorder of TAMs was revealed by clock correlation distance analysis. Our data suggest that heterogeneity in circadian rhythms within the TAM population level may underlie this circadian disorder. Finally, we report that circadian regulation of macrophages suppresses tumor growth in a murine model of pancreatic cancer. Our work demonstrates a novel mechanism by which the TME influences macrophage biology through modulation of circadian rhythms.
Collapse
Affiliation(s)
- Amelia M Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Kristina Morris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Cameron Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
45
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 PMCID: PMC11887860 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
46
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
47
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Luo YH, Shen CI, Chiang CL, Chen YM. Immune signatures of patients with advanced non-small-cell lung cancer for efficacy prediction after immunotherapy. Ther Adv Med Oncol 2024; 16:17588359241284946. [PMID: 39391353 PMCID: PMC11465298 DOI: 10.1177/17588359241284946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Background Programmed cell death protein 1 ligand 1 (PD-L1) expression alone may not be the optimal predictor of immunotherapy (IO) efficacy in advanced non-small cell lung cancer (NSCLC). Evaluation of circulating immune signatures using mass cytometry is a promising technique for predicting IO response and prognosis. The utility of circulating immune signatures for efficacy prediction after IO in advanced NSCLC remains to be elucidated. Objectives To assess the feasibility of circulating immune cells and cytokines in predicting tumor response to IO in advanced NSCLC. Design A prospective observational study. Methods To investigate dynamic changes in immune signatures, blood specimens were prospectively collected from patients with NSCLC at baseline and following chemotherapy (C/T) and/or IO. Mass cytometry and enzyme-linked immunosorbent assay were used to characterize immune signatures and cytokine patterns to identify correlations between immune profiles and treatment efficacy. Results The study enrolled 45 patients. The proportion of circulating natural killer (NK) cells and CD8+ T cells significantly increased after IO alone treatment. Cell levels of PD-1+CD8+ T cells, PD-1+CD4+ T cells, TIM-3+CD8+ T cells, LAG-3+ NK cells, and LAG-3+CD8+ T cells significantly decreased in patients with treatment response to IO alone. Tumor necrosis factor-alpha (TNF-α) levels significantly increased after IO alone treatment. Patients with high PD-1+CD8+ T cells before IO alone treatment had lower overall survival (OS) compared to those with low levels. Patients with high LAG-3+CD8+ T cells before chemotherapy plus immunotherapy treatment had lower OS compared to those with low levels. Conclusion Responses to IO in NSCLC were correlated with declines in specific exhausted T cells, suggesting that IO may exert therapeutical efficacy by decreasing circulating exhausted T cells, which were associated with poorer survival, while also increasing TNF-α. These results highlight the prognostic value of monitoring changes in circulating exhausted T cells to predict IO response and survival outcomes in advanced lung cancer.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-I Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Lu Chiang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
49
|
Orive D, Echepare M, Bernasconi-Bisio F, Sanmamed MF, Pineda-Lucena A, de la Calle-Arroyo C, Detterbeck F, Hung RJ, Johansson M, Robbins HA, Seijo LM, Montuenga LM, Valencia K. Protein Biomarkers in Lung Cancer Screening: Technical Considerations and Feasibility Assessment. Arch Bronconeumol 2024; 60 Suppl 2:S67-S76. [PMID: 39079848 DOI: 10.1016/j.arbres.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/25/2024]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide, mainly due to late diagnosis and the presence of metastases. Several countries around the world have adopted nation-wide LDCT-based lung cancer screening that will benefit patients, shifting the stage at diagnosis to earlier stages with more therapeutic options. Biomarkers can help to optimize the screening process, as well as refine the TNM stratification of lung cancer patients, providing information regarding prognostics and recommending management strategies. Moreover, novel adjuvant strategies will clearly benefit from previous knowledge of the potential aggressiveness and biological traits of a given early-stage surgically resected tumor. This review focuses on proteins as promising biomarkers in the context of lung cancer screening. Despite great efforts, there are still no successful examples of biomarkers in lung cancer that have reached the clinics to be used in early detection and early management. Thus, the field of biomarkers in early lung cancer remains an evident unmet need. A more specific objective of this review is to present an up-to-date technical assessment of the potential use of protein biomarkers in early lung cancer detection and management. We provide an overview regarding the benefits, challenges, pitfalls and constraints in the development process of protein-based biomarkers. Additionally, we examine how a number of emerging protein analytical technologies may contribute to the optimization of novel robust biomarkers for screening and effective management of lung cancer.
Collapse
Affiliation(s)
- Daniel Orive
- Solid Tumors Program, CIMA-University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mirari Echepare
- Solid Tumors Program, CIMA-University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Health Research Institute (IDISNA), Pamplona, Spain
| | - Franco Bernasconi-Bisio
- Molecular Therapeutics Program, CIMA-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Miguel Fernández Sanmamed
- Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Program of Immunology and Immunotherapy, CIMA-University of Navarra, Pamplona, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Antonio Pineda-Lucena
- Navarra Health Research Institute (IDISNA), Pamplona, Spain; Molecular Therapeutics Program, CIMA-University of Navarra, Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Carlos de la Calle-Arroyo
- Instituto de Ciencia de los Datos e Inteligencia Artificial (DATAI), Universidad de Navarra, Pamplona, Spain
| | - Frank Detterbeck
- Division of Thoracic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | | | | | - Luis M Seijo
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Pulmonary Department, Clínica Universidad de Navarra, Madrid, Spain
| | - Luis M Montuenga
- Solid Tumors Program, CIMA-University of Navarra, Pamplona, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Health Research Institute (IDISNA), Pamplona, Spain.
| | - Karmele Valencia
- Solid Tumors Program, CIMA-University of Navarra, Pamplona, Spain; Consorcio de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Health Research Institute (IDISNA), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
50
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|