1
|
Macdonald JR, Arnold MS, Luth MR, Cihalova D, Quinn RJ, Winzeler EA, Lee MC, van Dooren GG, Maier AG, Skinner-Adams TS, Andrews KT, Fisher GM. Inner-mitochondrial membrane protein PfMPV17 is linked to P. falciparum in vitro resistance to the indoloquinolizidine alkaloid alstonine. J Antimicrob Chemother 2025:dkaf141. [PMID: 40432501 DOI: 10.1093/jac/dkaf141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND There are an estimated 260 million malaria cases and ∼600 000 deaths annually. Challenges to malaria eradication include the lack of highly effective and broadly applicable vaccines and parasite drug resistance. This is driving the need for new tools, including novel drugs and drug targets. The indoloquinolizidine alkaloid alstonine was previously shown to have in vitro activity against Plasmodium falciparum malaria parasites and a slow-action activity that is different from other slow-action antiplasmodial compounds such as clindamycin. OBJECTIVES To investigate the action of the antiplasmodial compound alstonine by validating a putative resistance mutation and determining whether the activity of alstonine is linked to the mitochondrial electron transport chain. MATERIALS AND METHODS In vitro evolution of resistance was used to generate alstonine-resistant P. falciparum, followed by whole-genome sequencing and CRISPR/Cas9 gene editing of wildtype parasites to validate a putative resistance-associated mutation. Links to mitochondrial function were assessed using oxygen consumption rate measurements and activity of alstonine in P. falciparum expressing the yeast dihydroorotate dehydrogenase. RESULTS P. falciparum parasites were selected with ∼20-fold reduced sensitivity to alstonine compared to wild-type parasites. Whole-genome sequencing of alstonine-resistant P. falciparum sub-clones identified several mutations including a copy number variation and point mutation (A318P) in a gene encoding a putative inner-mitochondrial membrane protein (PfMPV17). Introduction of the A318P mutation into the PfMPV17 gene in wild-type P. falciparum yielded parasites with reduced alstonine sensitivity. While a direct link between alstonine action and mitochondrial respiratory function was not found, a transgenic P. falciparum line resistant to the cytochrome bc1 inhibitor atovaquone and pyrimidine synthesis inhibitor DSM265 had reduced sensitivity to alstonine. CONCLUSIONS These data demonstrate that PfMPV17 is linked to alstonine resistance and suggest that alstonine action is linked to the mitochondria and/or pyrimidine biosynthesis pathways.
Collapse
Affiliation(s)
- J R Macdonald
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - M S Arnold
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - M R Luth
- Department of Pediatrics, University of California, San Diego, USA
| | - D Cihalova
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - R J Quinn
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - E A Winzeler
- Department of Pediatrics, School of Medicine, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, USA
| | - M C Lee
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, UK
| | - G G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - A G Maier
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - T S Skinner-Adams
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - K T Andrews
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| | - G M Fisher
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Balakrishnan A, Hunziker M, Tiwary P, Pandey V, Drew D, Billker O. A CRISPR homing screen finds a chloroquine resistance transporter-like protein of the Plasmodium oocyst essential for mosquito transmission of malaria. Nat Commun 2025; 16:3895. [PMID: 40274854 PMCID: PMC12022033 DOI: 10.1038/s41467-025-59099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Genetic screens with barcoded PlasmoGEM vectors have identified thousands of Plasmodium berghei gene functions in haploid blood stages, gametocytes and liver stages. However, the formation of diploid cells by fertilisation has hindered similar research on the parasites' mosquito stages. In this study, we develop a scalable genetic system that uses barcoded gene targeting vectors equipped with a CRISPR-mediated homing mechanism to generate homozygous loss-of-function mutants after one parent introduces a modified allele into the zygote. To achieve this, we use vectors additionally expressing a target gene specific gRNA. When integrated into one of the parental alleles it directs Cas9 to the intact allele after fertilisation, leading to its disruption. This homing strategy is 90% effective at generating homozygous gene editing of a fluorescence-tagged reporter locus in the oocyst. A pilot screen identifies PBANKA_0916000 as a chloroquine resistance transporter-like protein (CRTL) essential for oocyst growth and sporogony, pointing to an unexpected importance for malaria transmission of the poorly understood digestive vacuole of the oocyst that contains hemozoin granules. Homing screens provide a method for the systematic discovery of malaria transmission genes whose first essential functions are after fertilisation in the bloodmeal, enabling their potential as targets for transmission-blocking interventions to be assessed.
Collapse
Affiliation(s)
- Arjun Balakrishnan
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mirjam Hunziker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Puja Tiwary
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Vikash Pandey
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Oliver Billker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umea Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of Cytochromes c and c1 in the Electron Transport Chain of Malaria Parasites. ACS Infect Dis 2025; 11:813-826. [PMID: 39481007 PMCID: PMC11991887 DOI: 10.1021/acsinfecdis.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and is a key antimalarial drug target. ETC function requires cytochromes c and c1, which are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate the biogenesis of the mature cytochrome c or c1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologues thought to be specific for heme attachment to cyt c (HCCS) or cyt c1 (HCC1S). To test the function and specificity of Plasmodium falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c1 biogenesis and caused lethal ETC dysfunction that was not reversed by the overexpression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in Escherichia coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologues are essential for mitochondrial ETC function and have distinct specificities for the biogenesis of cyt c and c1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
Affiliation(s)
- Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| |
Collapse
|
4
|
Hirai M, Arai M, Hayamichi S, Uchida A, Sudo M, Kubota R, Shinzawa N, Mita T. Deletion of the chloroquine resistance transporter gene confers reduced piperaquine susceptibility to the rodent malaria parasite Plasmodium berghei. Antimicrob Agents Chemother 2025; 69:e0158924. [PMID: 39992104 PMCID: PMC11963562 DOI: 10.1128/aac.01589-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Malaria parasites acquire drug resistance through genetic changes, the mechanisms of which remain incompletely understood. Understanding the mechanisms of drug resistance is crucial for the development of effective treatments against malaria, and for this purpose, new genetic tools are needed. In a previous study, as a forward genetic tool, we developed the rodent malaria parasite Plasmodium berghei mutator (PbMut) line, which has a greatly increased rate of mutation accumulation and from which we isolated a mutant with reduced susceptibility to piperaquine (PPQ). We identified a mutation in the chloroquine resistance transporter (PbCRT N331I) as responsible for this phenotype. In the current study, we generated a marker-free PbMut to enable further genetic manipulation of the isolated mutants. Here, we screened again for PPQ-resistant mutants in marker-free PbMut and obtained a parasite population with reduced susceptibility to PPQ. Of five isolated clones, none had the mutation PbCRT N331I; rather, they possessed a nonsense mutation at amino acid 119 (PbCRT Y119*), which would truncate the protein before eight of its ten predicted transmembrane domains. The PbCRT orthologue in the human malaria parasite Plasmodium falciparum, PfCRT, is an essential membrane transporter. To address the essentiality of PbCRT, we successfully deleted the full PbCRT gene [PbCRT(-)] from wild-type parasites. PbCRT(-) parasites exhibited reduced susceptibility to PPQ, along with compromised fitness in mice and following transmission to mosquitoes. Taken together, our findings provide the first evidence that P. berghei can acquire reduced PPQ susceptibility through complete loss of PbCRT function.
Collapse
Affiliation(s)
- Makoto Hirai
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| | - Meiji Arai
- Department of International Medical Zoology, School of Medicine, Kagawa University, Kida, Kagawa, Japan
| | - Soki Hayamichi
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| | - Ayako Uchida
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| | - Megumi Sudo
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| | - Rie Kubota
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyo-ku Yushima, Tokyo, Japan
| | - Naoaki Shinzawa
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Bunkyo-ku Yushima, Tokyo, Japan
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Bunkyo-ku Hongo, Tokyo, Japan
| |
Collapse
|
5
|
Muriithi B, Chepngetich J, Gachie B, Thiong'o K, Gathirwa J, Kimani F, Mwitari P, Kiboi D. Structural and functional implications of MIT2 and NT2 mutations in amodiaquine and piperaquine resistant Plasmodium berghei parasites. Exp Parasitol 2025; 271:108923. [PMID: 40032183 DOI: 10.1016/j.exppara.2025.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/27/2024] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Long-acting drugs, amodiaquine (AQ), lumefantrine (LM), and piperaquine (PQ), are vital components of artemisinin-based combination therapies (ACTs) for malaria treatment. However, the emergence of partial artemisinin-resistant parasites poses significant challenges, particularly in malaria-endemic regions. Despite extensive research, parasite's resistance mechanisms to these drugs still need complete elucidation. This study investigated the genetic basis of resistance to AQ, LM, and PQ using Plasmodium berghei, focusing on selected genes encoding transport proteins in Plasmodium species. In silico bioinformatics tools were used to map genes encoding transport proteins, their ligand-binding sites, and their conservation across different Plasmodium species. PCR amplification and sequence analysis were employed to examine single nucleotide polymorphisms (SNPs) in the genes encoding the selected transporters in AQ, LM, and PQ-resistant P. berghei. The structural impacts of the mutations were evaluated using AlphaFold, ITASSER, UCSF Chimera, and MOTIF Finder. Genes encoding CorA-like Mg2+ transporter protein (MIT2), nucleoside transporter 2 (NT2), ABC Transporter G family member 2 (ABCG2), and novel putative transporter 1 (NPT1) transport proteins with notable conserved motifs and ligand-binding motifs in Plasmodium species were selected and examined. In AQ-resistant (AQR) parasites, a non-synonymous mutation (I433∗) was found in MIT2. PQ-resistant (PQR) parasites possessed a non-synonymous mutation (D511H) in NT2 and a silent mutation in the NPT1 protein. No mutations were observed in the targeted regions of the transporters in LM-resistant (LMR) parasites, nor in the ligand-binding motifs of ABCG2 across all resistant strains. These findings suggest that selection pressure from AQ and PQ leads to mutations in MIT2 and NT2. Further investigation is required to understand how these mutations affect drug susceptibility on a functional level.
Collapse
Affiliation(s)
- Brenda Muriithi
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya; Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200 Nairobi, Kenya
| | - Jean Chepngetich
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya; Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200 Nairobi, Kenya; PanAfrican University Institute for Basic Sciences, Technology and Innovation is 62000, 00200, Nairobi, Kenya
| | - Beatrice Gachie
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya; PanAfrican University Institute for Basic Sciences, Technology and Innovation is 62000, 00200, Nairobi, Kenya
| | - Kevin Thiong'o
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya
| | - Jeremiah Gathirwa
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, 54840, 00200, Nairobi, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, P.O. Box 54840, 00200 Nairobi, Kenya
| | - Peter Mwitari
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute, 54840, 00200, Nairobi, Kenya
| | - Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200 Nairobi, Kenya.
| |
Collapse
|
6
|
Sundararaman SA, Miller JJ, Daley EC, O’Brien KA, Kasak P, Daniels AM, Edwards RL, Heidel KM, Bague DA, Wilson MA, Koelper AJ, Kourtoglou EC, White AD, August SA, Apple GA, Rouamba RW, Durand AJ, Esteb JJ, Muller FL, Johnson RJ, Hoops GC, Dowd CS, Odom John AR. Prodrug activation in malaria parasites mediated by an imported erythrocyte esterase, acylpeptide hydrolase (APEH). Proc Natl Acad Sci U S A 2025; 122:e2417682122. [PMID: 40035755 PMCID: PMC11912422 DOI: 10.1073/pnas.2417682122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The continued emergence of antimalarial drug resistance highlights the need to develop new antimalarial therapies. Unfortunately, new drug development is often hampered by undesirable drug-like properties of lead compounds. Prodrug approaches temporarily mask undesirable compound features, improving bioavailability and target penetration. We have found that lipophilic diester prodrugs of phosphonic acid antibiotics, such as fosmidomycin (Fsm), exhibit significantly higher antimalarial potency than their parent compounds [R.L. Edwards et al., Sci. Rep. 7, 8400 (2017)]. However, the activating enzymes for these prodrugs were unknown. Here, we show that an erythrocyte enzyme, acylpeptide hydrolase (APEH), is the major activating enzyme of multiple lipophilic ester prodrugs. Surprisingly, this enzyme is taken up by the malaria parasite, Plasmodium falciparum, where it localizes to the parasite cytoplasm and retains enzymatic activity. Using a fluorogenic ester library, we characterize the structure-activity relationship of APEH and compare it to that of P. falciparum esterases. We show that parasite-internalized APEH plays an important role in the activation of substrates with branching at the alpha carbon, in keeping with its exopeptidase activity. Our findings highlight a mechanism for antimicrobial prodrug activation, relying on a host-derived enzyme to yield activation at a microbial target. Mutations in prodrug-activating enzymes are a common mechanism for antimicrobial drug resistance [E. S. Istvan et al., Nat. Commun. 8, 14240 (2017); K. M. V. Sindhe et al., mBio 11, e02640-19 (2020); J. H. Butler et al., Acs Infect Dis. 6, 2994-3003 (2020)]. Leveraging an internalized host enzyme would circumvent this, enabling the design of prodrugs with higher barriers to drug resistance.
Collapse
Affiliation(s)
- Sesh A. Sundararaman
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Justin J. Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA19104
| | - Ellora C. Daley
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kelsey A. O’Brien
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Paulina Kasak
- College of Health Professions, Thomas Jefferson University, Philadelphia, PA19107
| | - Abigail M. Daniels
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Rachel L. Edwards
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO63110
- Omniose, Saint Louis, MO63110
| | - Kenneth M. Heidel
- Department of Chemistry, George Washington University, Washington, DC20052
| | - Darean A. Bague
- Department of Chemistry, George Washington University, Washington, DC20052
| | - Madeleine A. Wilson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Andrew J. Koelper
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Elexi C. Kourtoglou
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Alex D. White
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Sloan A. August
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Georgia A. Apple
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Regis W. Rouamba
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Anthony J. Durand
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - John J. Esteb
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | | | - R. Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Geoffrey C. Hoops
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC20052
| | - Audrey R. Odom John
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
7
|
Windle ST, Neal ML, Mast FD, Kappe SHI, Aitchison JD. A Conditional Cas9 System for Stage-Specific Gene Editing in P. falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.09.642268. [PMID: 40161752 PMCID: PMC11952345 DOI: 10.1101/2025.03.09.642268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The malaria parasite has a complex lifecycle involving various host cell environments in both human and mosquito hosts. The parasite must tightly regulate gene expression at each stage in order to adapt to its current environment while continuing development. However, it is challenging to study gene function and regulation of essential genes across the parasite's multi-host lifecycle. Thus, we adapted a recently developed a single-plasmid dimerizable Cre recombinase system for rapamycin-controllable expression of Cas9, allowing for conditional introduction of mutations. We explored rates of gene deletion using varying repair template lengths, showing functionality of donor templates under 250bp for homology-directed repair. As a proof of concept, we conditionally disrupted two uncharacterized genes in blood and gametocyte stages, identifying new stage-specific phenotypes. Importance As progress towards eliminating malaria has stalled, there is a pressing need for new antimalarials and vaccines. Genes essential to multiple stages of development represent ideal candidates for both antimalarials and vaccines. However, much of the parasite genome remains uncharacterized. Conditional gene perturbation approaches are needed in order to study gene function across the lifecycle. Currently available tools are limited in their ability to perturb genes at the scale required for large screens. We describe a tool that allows for conditional introduction of desired mutations by controlling Cas9 with the DiCre-loxP system. We demonstrate the accessibility of this approach by designing gRNA-donor pairs that can be commercially synthesized. This toolkit provides a scalable system for identifying new drug and vaccine candidates targeting multiple stages of the parasite lifecycle.
Collapse
Affiliation(s)
- Sean T. Windle
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Stefan H. I. Kappe
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - John D. Aitchison
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Yang S, Wei Y, Quansah E, Zhang Z, Da W, Wang B, Wang K, Sun D, Tao Z, Zhang C. Cas12a is competitive for gene editing in the malaria parasites. Microb Pathog 2025; 200:107340. [PMID: 39880137 DOI: 10.1016/j.micpath.2025.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Malaria, caused by the Plasmodium parasites, has always been one of the worst infectious diseases that threaten human health, making it necessary for us to study the genetic function and physiological mechanisms of Plasmodium parasites from the molecular level to find more effective ways of addressing the increasingly pressing threat. The CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) is an RNA-guided adaptive immune system, which has been extensively developed and used as a genome editing tool in many organisms, including Plasmodium parasites. However, due to the physiological characteristics and special genomic characteristics of Plasmodium parasites, most of the tools currently used for genome editing of Plasmodium parasites have not met expectations. CRISPR-Cas12a (also known as Cpf1), one of the CRISPR-Cas systems, has attracted considerable attention because of its characteristics of being used for biological diagnosis and multiple genome editing. Recent studies have shown that its unique properties fit the genetic makeup of Plasmodium parasites making it a promising tool for gene editing in these parasites. In this review, we have summarized the relevant content of the Cas12 family, especially the frequently used Cas12a, its advantages for gene editing, and the application prospects in Plasmodium parasites.
Collapse
Affiliation(s)
- Shijie Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yiming Wei
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Elvis Quansah
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Ziyu Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Weiran Da
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Bingjie Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Kaige Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Danhong Sun
- The Second Clinical Medical College, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Zhiyong Tao
- Key Laboratory of Infection and Immunity of Anhui Higher Education Institutes, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233030, People's Republic of China.
| | - Chao Zhang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
9
|
Huang G, Liu X, Huang X, Gao C, Wang Z, Li J, Wei X, Yu WH, Wu Y, Liu Y, Feng J, Li Y, Wei F. Adaptive evolution of traits for parasitism and pathogen transmission potential in bat flies. Natl Sci Rev 2025; 12:nwae245. [PMID: 40115433 PMCID: PMC11925017 DOI: 10.1093/nsr/nwae245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 03/23/2025] Open
Abstract
Deciphering the mechanisms underlying the transmission and spillover of zoonoses from reservoir hosts is essential in preventing future global pandemics. Bat flies-obligate blood-feeding ectoparasites of bats-are known carriers of diverse viruses. Here, we conducted a de novo assembly of a chromosome-level genome for the bat fly species Phthiridium sp. Comparative genomic analysis unveiled genes associated with specialized traits, such as the loss of eyes and wings, as well as elongated legs, which have adapted to parasitism on the dense fur of bats. Utilizing small RNA sequencing, we identified a spectrum of known and previously unclassified viruses in bat flies. Notably, experimental evidence indicated that bat flies can also feed on mammalian hosts other than bats, suggesting the potential for the spillover of bat-borne viruses. Furthermore, we demonstrated the role of the bat fly's RNA interference pathway in influencing the diversity and evolution of viruses. In summary, this study not only presents a new genome catalog to unveil the evolutionary mechanisms underpinning bat fly parasitism, but also provides a novel research system that can be used to investigate the mechanisms of cross-species transmission of bat-borne viruses and the co-evolution of bats and viruses.
Collapse
Affiliation(s)
- Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xing Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Gao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilin Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxia Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaocui Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Hua Yu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yi Wu
- Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130024, China
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangxi Provincial Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Suryavanshi A, Chandrashekarmath A, Pandey N, Balaram H. Metabolic Flexibility and Essentiality of the Tricarboxylic Acid Cycle in Plasmodium. ACS Infect Dis 2025; 11:335-349. [PMID: 39869313 DOI: 10.1021/acsinfecdis.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complete tricarboxylic acid (TCA) cycle, comprising a series of 8 oxidative reactions, occurs in most eukaryotes in the mitochondria and in many prokaryotes. The net outcome of these 8 chemical reactions is the release of the reduced electron carriers NADH and FADH2, water, and carbon dioxide. The parasites of the Plasmodium spp., belonging to the phylum Apicomplexa, have all the genes for a complete TCA cycle. The parasite completes its life cycle across two hosts, the insect vector mosquito and a range of vertebrate hosts including humans. As the niches that the parasite invades and occupies in the two hosts vary dramatically in their biochemical nature and availability of nutrients, the parasite's energy metabolism has been accordingly adapted to its host environment. One such pathway that shows extensive metabolic plasticity in parasites of the Plasmodium spp. is the TCA cycle. Recent studies using isotope-tracing targeted-metabolomics have highlighted conserved and parasite-specific features in the TCA cycle. This Review provides a comprehensive summary of what is known of this central pathway in the Plasmodium spp.
Collapse
Affiliation(s)
- Arpitha Suryavanshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Nivedita Pandey
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
11
|
Hentzschel F, Binder AM, Dorner LP, Herzel L, Nuglisch F, Sema M, Röver K, He B, Aguirre-Botero MC, Cyrklaff M, Funaya C, Frischknecht F. Microtubule inner proteins of Plasmodium are essential for transmission of malaria parasites. Proc Natl Acad Sci U S A 2025; 122:e2421737122. [PMID: 39908102 PMCID: PMC11831158 DOI: 10.1073/pnas.2421737122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 02/07/2025] Open
Abstract
Microtubule inner proteins (MIPs) are microtubule-associated proteins that bind to tubulin from the luminal side. MIPs can be found in axonemes to stabilize flagellar beat or within cytoplasmic microtubules. Plasmodium spp. are the causative agents of malaria that feature different parasite forms across a complex life cycle with both unique and divergent microtubule-based arrays. Here, we investigate four MIPs in a rodent malaria parasite for their role in transmission to and from the mosquito. We show by single and double gene deletions that SPM1 and TrxL1, MIPs associated with subpellicular microtubules, are dispensable for transmission from the vertebrate host to the mosquito and back. In contrast, FAP20 and FAP52, MIPs associated with the axonemes of gametes, are essential for transmission to mosquitoes but only if both genes are deleted. In the absence of both FAP20 and FAP52, the B-tubule of the axoneme partly detaches from the A-tubule, resulting in the deficiency of axonemal beating and hence gamete formation and egress. Our data suggest that a high level of redundancy ensures microtubule stability in the transmissive stages of Plasmodium, which is important for parasite transmission.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
- German Center for Infection Research, Deutsches Zentrum for Infektionsforschung (DZIF), Partner Site Heidelberg69120, Germany
| | - Annika M. Binder
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
| | - Lilian P. Dorner
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
| | - Lea Herzel
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
| | - Fenja Nuglisch
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
| | - Meslo Sema
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
- Department of Medical Laboratory Sciences, Debre Tabor University, Debre Tabor6300, Ethiopia
| | - Katharina Röver
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
| | - Buyuan He
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
| | - Manuela C. Aguirre-Botero
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
- Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity, BioSPC, Paris75015, France
| | - Marek Cyrklaff
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg69120, Germany
| | - Friedrich Frischknecht
- Heidelberg University Medical Faculty, Center for Infectious Diseases, Parasitology, Heidelberg69120, Germany
- German Center for Infection Research, Deutsches Zentrum for Infektionsforschung (DZIF), Partner Site Heidelberg69120, Germany
| |
Collapse
|
12
|
Ramaprasad A, Blackman MJ. A scaleable inducible knockout system for studying essential gene function in the malaria parasite. Nucleic Acids Res 2025; 53:gkae1274. [PMID: 39739757 PMCID: PMC11879119 DOI: 10.1093/nar/gkae1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
The malaria parasite needs nearly half of its genes to propagate normally within red blood cells. Inducible ways to interfere with gene expression like the DiCre-lox system are necessary to study the function of these essential genes. However, existing DiCre-lox strategies are not well-suited to be deployed at scale to study several genes simultaneously. To overcome this, we have developed SHIFTiKO (frameshift-based trackable inducible knockout), a novel scaleable strategy that uses short, easy-to-construct, barcoded repair templates to insert loxP sites around short regions in target genes. Induced DiCre-mediated excision of the flanked region causes a frameshift mutation resulting in genetic ablation of gene function. Dual DNA barcodes inserted into each mutant enables verification of successful modification and induced excision at each locus and collective phenotyping of the mutants, not only across multiple replication cycles to assess growth fitness but also within a single cycle to identify specific phenotypic impairments. As a proof of concept, we have applied SHIFTiKO to screen the functions of malarial rhomboid proteases, successfully identifying their blood stage-specific essentiality. SHIFTiKO thus offers a powerful platform to conduct inducible phenotypic screens to study essential gene function at scale in the malaria parasite.
Collapse
Affiliation(s)
- Abhinay Ramaprasad
- Malaria Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT London, UK
| |
Collapse
|
13
|
Moon RW, Bushell ESC. Not just monkey business. Science 2025; 387:582-583. [PMID: 39913602 DOI: 10.1126/science.adv2328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Functional genomics in malaria unlocks comparative biology across the family tree.
Collapse
Affiliation(s)
- Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ellen S C Bushell
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Elsworth B, Ye S, Dass S, Tennessen JA, Sultana Q, Thommen BT, Paul AS, Kanjee U, Grüring C, Ferreira MU, Gubbels MJ, Zarringhalam K, Duraisingh MT. The essential genome of Plasmodium knowlesi reveals determinants of antimalarial susceptibility. Science 2025; 387:eadq6241. [PMID: 39913579 PMCID: PMC12104972 DOI: 10.1126/science.adq6241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/05/2024] [Indexed: 02/09/2025]
Abstract
Measures to combat the parasites that cause malaria have become compromised because of reliance on a small arsenal of drugs and emerging drug resistance. We conducted a transposon mutagenesis screen in the primate malaria parasite Plasmodium knowlesi, producing the most complete classification of gene essentiality in any Plasmodium spp. to date, with the resolution to define truncatable genes. We found conservation in the druggable genome between Plasmodium spp. and divergences in mitochondrial metabolism. Perturbation analyses with the frontline antimalarial artemisinin revealed modulators that both increase and decrease drug susceptibility. Our findings aid prioritization of drug and vaccine targets for the Plasmodium vivax clade and reveal mechanisms of resistance that can inform therapeutic development.
Collapse
Affiliation(s)
- Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health: Boston, MA
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration: Silver Spring, MD, USA
| | - Sida Ye
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health: Boston, MA
- Department of Mathematics, University of Massachusetts Boston: Boston, MA, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston: Boston, MA, USA
| | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health: Boston, MA
| | - Jacob A. Tennessen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health: Boston, MA
| | - Qudseen Sultana
- Center for Personalized Cancer Therapy, University of Massachusetts Boston: Boston, MA, USA
- Department of Computer Science, University of Massachusetts Boston: Boston, MA, USA
| | - Basil T. Thommen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health: Boston, MA
| | - Aditya S. Paul
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health: Boston, MA
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health: Boston, MA
| | - Christof Grüring
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health: Boston, MA
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo: São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon: Lisbon, Portugal
| | | | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts Boston: Boston, MA, USA
- Center for Personalized Cancer Therapy, University of Massachusetts Boston: Boston, MA, USA
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health: Boston, MA
| |
Collapse
|
15
|
Oberstaller J, Xu S, Naskar D, Zhang M, Wang C, Gibbons J, Pires CV, Mayho M, Otto TD, Rayner JC, Adams JH. Supersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasites. Science 2025; 387:eadq7347. [PMID: 39913589 DOI: 10.1126/science.adq7347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/05/2024] [Indexed: 03/27/2025]
Abstract
Malaria parasites are highly divergent from model eukaryotes. Large-scale genome engineering methods effective in model organisms are frequently inapplicable, and systematic studies of gene function are few. We generated more than 175,000 transposon insertions in the Plasmodium knowlesi genome, averaging an insertion every 138 base pairs, and used this "supersaturation" mutagenesis to score essentiality for 98% of genes. The density of mutations allowed mapping of putative essential domains within genes, providing a completely new level of genome annotation for any Plasmodium species. Although gene essentiality was largely conserved across P. knowlesi, Plasmodium falciparum, and rodent malaria model Plasmodium berghei, a large number of shared genes are differentially essential, revealing species-specific adaptations. Our results indicated that Plasmodium essential gene evolution was conditionally linked to adaptive rewiring of metabolic networks for different hosts.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Shulin Xu
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Deboki Naskar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Min Zhang
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Chengqi Wang
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Justin Gibbons
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Camilla Valente Pires
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Matthew Mayho
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Thomas D Otto
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Laboratory of Pathogens and Host Immunity, Centre National de la Recherche Scientifique, and Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John H Adams
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Trickey ML, Chowdury M, Bramwell G, Counihan NA, de Koning-Ward TF. Utilisation of an in vivo malaria model to provide functional proof for RhopH1/CLAG essentiality and conserved orthology with P. falciparum. J Biomed Sci 2025; 32:13. [PMID: 39894870 PMCID: PMC11789411 DOI: 10.1186/s12929-024-01105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Malaria parasites establish new permeation pathways (NPPs) at the red blood cell membrane to facilitate the transport of essential nutrients from the blood plasma into the infected host cell. The NPPs are critical to parasite survival and, therefore, in the pursuit of novel therapeutics are an attractive drug target. The NPPs of the human parasite, P. falciparum, have been linked to the RhopH complex, with the monoallelic paralogues clag3.1 and clag3.2 encoding the protein RhopH1/CLAG3 that likely forms the NPP channel-forming component. Yet curiously, the combined knockout of both clag3 genes does not completely eliminate NPP function. The essentiality of the clag3 genes is, however, complicated by three additional clag paralogs (clag2, clag8 and clag9) in P. falciparum that could also be contributing to NPP formation. METHODS Here, the rodent malaria species, P. berghei, was utilised to investigate clag essentiality since it contains only two clag genes, clagX and clag9. Allelic replacement of the regions encompassing the functional components of P. berghei clagX with either P. berghei clag9 or P. falciparum clag3.1 examined the relationship between the two P. berghei clag genes as well as functional orthology across the two species. An inducible P. berghei clagX knockout was created to examine the essentiality of the clag3 ortholog to both survival and NPP functionality. RESULTS It was revealed P. berghei CLAGX and CLAG9, which belong to two distinct phylogenetic clades, have separate non-complementary functions, and that clagX is the functional orthologue of P. falciparum clag3. The inducible clagX knockout in conjunction with a guanidinium chloride induced-haemolysis assay to assess NPP function provided the first evidence of CLAG essentiality to Plasmodium survival and NPP function in an in vivo model of infection. CONCLUSIONS This work provides valuable insight regarding the essentiality of the RhopH1 clag genes to the NPPs functionality and validates the continued investigation of the RhopH complex as a therapeutic target to treat malaria infections.
Collapse
Affiliation(s)
- Mitchell L Trickey
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Mrittika Chowdury
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Natalie A Counihan
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Australia.
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia.
| |
Collapse
|
17
|
Rawat M, Padalino G, Adika E, Okombo J, Yeo T, Brancale A, Fidock DA, Hoffmann KF, Lee MCS. Quinoxaline-based anti-schistosomal compounds have potent anti-plasmodial activity. PLoS Pathog 2025; 21:e1012216. [PMID: 39899599 PMCID: PMC11809919 DOI: 10.1371/journal.ppat.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 02/10/2025] [Accepted: 01/14/2025] [Indexed: 02/05/2025] Open
Abstract
The human pathogens Plasmodium and Schistosoma are each responsible for over 200 million infections annually, especially in low- and middle-income countries. There is a pressing need for new drug targets for these diseases, driven by emergence of drug-resistance in Plasmodium and an overall dearth of drug targets against Schistosoma. Here, we explored the opportunity for pathogen-hopping by evaluating a series of quinoxaline-based anti-schistosomal compounds for their activity against P. falciparum. We identified compounds with low nanomolar potency against 3D7 and multidrug-resistant strains. In vitro resistance selections using wildtype and mutator P. falciparum lines revealed a low propensity for resistance. Only one of the series, compound 22, yielded resistance mutations, including point mutations in a non-essential putative hydrolase pfqrp1, as well as copy number amplification of a phospholipid-translocating ATPase, pfatp2, a potential target. Notably, independently generated CRISPR-edited mutants in pfqrp1 also showed resistance to compound 22 and a related analogue. Moreover, previous lines with pfatp2 copy number variations were similarly less susceptible to challenge with the new compounds. Finally, we examined whether the predicted hydrolase activity of PfQRP1 underlies its mechanism of resistance, showing that both mutation of the putative catalytic triad and a more severe loss of function mutation elicited resistance. Collectively, we describe a compound series with potent activity against two important pathogens and their potential target in P. falciparum.
Collapse
Affiliation(s)
- Mukul Rawat
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gilda Padalino
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| | - Edem Adika
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrea Brancale
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Karl F. Hoffmann
- Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Marcus C. S. Lee
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
18
|
Hildebrandt F, N Matias A, Treeck M. A CRISPR view on genetic screens in Toxoplasma gondii. Curr Opin Microbiol 2025; 83:102577. [PMID: 39778479 DOI: 10.1016/j.mib.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Genome editing technologies, such as CRISPR-Cas9, have revolutionised the study of genes in a variety of organisms, including unicellular parasites. Today, the CRISPR-Cas9 technology is vastly applied in high-throughput screens to investigate interactions between the Apicomplexan parasite Toxoplasma gondii and its hosts. In vitro and in vivo T. gondii screens performed in naive and restrictive conditions have led to the discovery of essential and fitness-conferring T. gondii genes, as well as factors important for virulence and dissemination. Recent studies have adapted the CRISPR-Cas9 screening technology to study T. gondii genes based on phenotypes unrelated to parasite survival. These advances were achieved by using conditional systems coupled with imaging, as well as single-cell RNA sequencing and phenotypic selection. Here, we review the state-of-the-art of CRISPR-Cas9 screening technologies with a focus on T. gondii, highlighting strengths, current limitations and future avenues for its development, including its application to other Apicomplexan species.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Ana N Matias
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Moritz Treeck
- Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal.
| |
Collapse
|
19
|
Rachuri S, Nepal B, Shukla A, Ramanathan A, Morrisey JM, Daly T, Mather MW, Bergman LW, Kortagere S, Vaidya AB. Mutational analysis of an antimalarial drug target, PfATP4. Proc Natl Acad Sci U S A 2025; 122:e2403689122. [PMID: 39773028 PMCID: PMC11745376 DOI: 10.1073/pnas.2403689122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target Plasmodium falciparum P-type ATPase (PfATP4). This essential protein is a Na+ pump responsible for the maintenance of Na+ homeostasis. PfATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined. To gain better insight into the structure/function relationship of this validated drug target, we generated a homology model of PfATP4 based on sarco/endoplasmic reticulum Ca2+ ATPase, a P2A-type ATPase, and refined the model using molecular dynamics in its explicit membrane environment. This model predicted several residues in PfATP4 critical for its function, as well as those that impart resistance to various PfATP4 inhibitors. To validate our model, we developed a genetic system involving merodiploid states of PfATP4 in which the endogenous gene was conditionally expressed, and the second allele was mutated to assess its effect on the parasite. Our model predicted residues involved in Na+ coordination as well as the phosphorylation cycle of PfATP4. Phenotypic characterization of these mutants involved assessment of parasite growth, localization of mutated PfATP4, response to treatment with known PfATP4 inhibitors, and evaluation of the downstream consequences of Na+ influx. Our results were consistent with modeled predictions of the essentiality of the critical residues. Additionally, our approach confirmed the phenotypic consequences of resistance-associated mutations as well as a potential structural basis for the fitness cost associated with some mutations. Taken together, our approach provides a means to explore the structure/function relationship of essential genes in haploid organisms.
Collapse
Affiliation(s)
- Swaksha Rachuri
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Binod Nepal
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Anurag Shukla
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Aarti Ramanathan
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Joanne M. Morrisey
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Thomas Daly
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Michael W. Mather
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Lawrence W. Bergman
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| | - Akhil B. Vaidya
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA19129
| |
Collapse
|
20
|
Jonsdottir T, Paoletta M, Ishizaki T, Hernandez S, Ivanova M, Herrera Curbelo A, Saiki P, Selinger M, Das D, Henriksson J, Bushell EC. A scalable CRISPR-Cas9 gene editing system facilitates CRISPR screens in the malaria parasite Plasmodium berghei. Nucleic Acids Res 2025; 53:gkaf005. [PMID: 39844455 PMCID: PMC11754126 DOI: 10.1093/nar/gkaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/30/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Many Plasmodium genes remain uncharacterized due to low genetic tractability. Previous large-scale knockout screens have only been able to target about half of the genome in the more genetically tractable rodent malaria parasite Plasmodium berghei. To overcome this limitation, we have developed a scalable CRISPR system called P. berghei high-throughput (PbHiT), which uses a single cloning step to generate targeting vectors with 100-bp homology arms physically linked to a guide RNA (gRNA) that effectively integrate into the target locus. We show that PbHiT coupled with gRNA sequencing robustly recapitulates known knockout mutant phenotypes in pooled transfections. Furthermore, we provide an online resource of knockout and tagging designs to target the entire P. berghei genome and scale-up vector production using a pooled ligation approach. This work presents for the first time a tool for high-throughput CRISPR screens in Plasmodium for studying the parasite's biology at scale.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Martina S Paoletta
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA–CONICET, de Los Reseros y Dr. Nicolás Repetto s/n, P.O. Box 25 (B1712WAA), Hurlingham, Buenos Aires, Argentina
| | - Takahiro Ishizaki
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Parasitology and Zoology Unit, Department of Infection and Pathology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-midorimachi, Ebetsu, Hokkaido, 069-8501, Japan
| | - Sophia Hernandez
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Maria Ivanova
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Alicia Herrera Curbelo
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Paulina A Saiki
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Martin Selinger
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
| | - Debojyoti Das
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Division of Children’s and Women’s Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Sjukhusvägen Building 511, 581 83 Linköping, Sweden
| | - Johan Henriksson
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Universitetstorget 4, 901 87 Umeå, Sweden
- IceLab, Umeå University, Naturvetarhuset, Universitetsvägen, 901 87 Umeå, Sweden
| | - Ellen S C Bushell
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Försörjningsvägen 2A, 901 87 Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Universitetstorget 4, 901 87 Umeå, Sweden
| |
Collapse
|
21
|
Liu Y, Cheng S, He G, He D, Wang D, Wang S, Chen L, Zhu L, Feng Y, Cui L, Cao Y, Zhu X. An inner membrane complex protein IMC1g in Plasmodium berghei is involved in asexual stage schizogony and parasite transmission. mBio 2025; 16:e0265224. [PMID: 39576115 PMCID: PMC11708024 DOI: 10.1128/mbio.02652-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
The inner membrane complex (IMC), a double-membrane organelle underneath the plasma membrane in apicomplexan parasites, plays a significant role in motility and invasion and confers shape to the cell. We characterized the function of PbIMC1g, a component of the IMC1 family member in Plasmodium berghei. PbIMC1g is recruited to the IMC in late schizonts, activated gametocytes, and ookinetes. Pairwise yeast two-hybrid assays demonstrate that PbIMC1g interacts with IMC1c, a component of the PHIL1 complex, and the core sub-repeat motif "EKI(V)V(I)EVP" in PbIMC1g is essential for this interaction. Localization of PbIMC1g to the IMC was dependent on its IMCp domain, while its C-terminus and palmitoylation sites were required for the full efficiency of proper IMC targeting. PbIMC1g is required for asexual stage development, and its conditional knockdown resulted in a defect in schizogony. Additionally, PbIMC1g was also important for male gametogenesis and ookinete development. As an IMC component that assists in anchoring the glideosome to the subpellicular network, PbIMC1g was also involved in ookinete motility and mosquito midgut invasion. IMC1g from the human parasite Plasmodium vivax could functionally replace PbIMC1g in P. berghei, confirming the evolutionary conservation of IMC1g proteins in Plasmodium spp. Together, this work reveals an essential role of IMC1g in the parasite life cycle and suggests that IMC1 family members likely contribute to parasite gliding and invasion. IMPORTANCE The malaria parasite's inner membrane complex is critical to maintain its structural integrity and motility. Here, we identified the function of the IMC1g protein, a member of the IMC1 family, in invasive and proliferative stages of P. berghei. We found that the IMCp domain of PbIMC1g is critical for proper IMC targeting, and PbIMC1g interacts with PbIMC1c. Conditional knockdown of PbIMC1g expression affects schizogony, gametogenesis, and ookinete conversion. PbIMC1g interacts with IMC1c to firmly anchor the glideosome to the subpellicular network. Additionally, we confirmed that IMC1g is functionally conserved in Plasmodium spp. These data reveal the function of IMC1g protein in anchoring the glideosome, providing further insight into the mechanism of the glideosome function.
Collapse
Affiliation(s)
- Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shitong Cheng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dawei He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Duo Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Sicong Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Blauwkamp J, Ambekar SV, Hussain T, Mair GR, Beck JR, Absalon S. Nuclear pore complexes undergo Nup221 exchange during blood-stage asexual replication of Plasmodium parasites. mSphere 2024; 9:e0075024. [PMID: 39526784 DOI: 10.1128/msphere.00750-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Plasmodium parasites, the causative agents of malaria, undergo closed mitosis without breakdown of the nuclear envelope. Unlike closed mitosis in yeast, Plasmodium berghei parasites undergo multiple rounds of asynchronous nuclear divisions in a shared cytoplasm. This results in a multinucleated organism prior to the formation of daughter cells within an infected red blood cell. During this replication process, intact nuclear pore complexes (NPCs) and their component nucleoporins play critical roles in parasite growth, facilitating selective bi-directional nucleocytoplasmic transport and genome organization. Here, we utilize ultrastructure expansion microscopy to investigate P. berghei nucleoporins at the single nucleus level throughout the 24-hour blood-stage replication cycle. Our findings reveal that these nucleoporins are distributed around the nuclei and organized in a rosette structure previously undescribed around the centriolar plaque, responsible for intranuclear microtubule nucleation during mitosis. By adapting the recombination-induced tag exchange system to P. berghei through a single plasmid tagging system, which includes the tagging plasmid as well as the Cre recombinase, we provide evidence of NPC formation dynamics, demonstrating Nup221 turnover during parasite asexual replication. Our data shed light on the distribution of NPCs and their homeostasis during the blood-stage replication of P. berghei parasites. IMPORTANCE Malaria, caused by Plasmodium species, remains a critical global health challenge, with an estimated 249 million cases and over 600,000 deaths in 2022, primarily affecting children under five. Understanding the nuclear dynamics of Plasmodium parasites, particularly during their unique mitotic processes, is crucial for developing novel therapeutic strategies. Our study leverages advanced microscopy techniques, such as ultrastructure expansion microscopy, to reveal the organization and turnover of nuclear pore complexes (NPCs) during the parasite's asexual replication. By elucidating these previously unknown aspects of NPC distribution and homeostasis, we provide valuable insights into the molecular mechanisms governing parasite mitosis. These findings deepen our understanding of parasite biology and may inform future research aimed at identifying new targets for anti-malarial drug development.
Collapse
Affiliation(s)
- James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sushma V Ambekar
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Gunnar R Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Josh R Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
23
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Manuel Martinez Caaveiro J, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. eLife 2024; 13:RP100256. [PMID: 39660822 PMCID: PMC11634067 DOI: 10.7554/elife.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
- Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | - Armiyaw S Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
- Department of Bioengineering, University of TokyoTokyoJapan
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | | | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
24
|
Kehrer J, Pietsch E, Ricken D, Strauss L, Heinze JM, Gilberger T, Frischknecht F. APEX-based proximity labeling in Plasmodium identifies a membrane protein with dual functions during mosquito infection. PLoS Pathog 2024; 20:e1012788. [PMID: 39693377 DOI: 10.1371/journal.ppat.1012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/02/2025] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito. To identify new transmission blocking vaccine candidates, we aimed to define the microneme content from ookinetes of the rodent model organism Plasmodium berghei using APEX2-mediated rapid proximity-dependent biotinylation. Besides known proteins of ookinete micronemes, this identified over 50 novel candidates and sharpened the list of a previous survey based on subcellular fractionation. Functional analysis of a first candidate uncovered a dual role for this membrane protein in male gametogenesis and ookinete midgut traversal. Mutation of a putative trafficking motif in the C-terminus affected ookinete to oocyst transition but not gamete formation. This suggests the existence of distinct functional and transport requirements for Plasmodium proteins in different parasite stages.
Collapse
Affiliation(s)
- Jessica Kehrer
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| | - Emma Pietsch
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dominik Ricken
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Léanne Strauss
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M Heinze
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Tim Gilberger
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Friedrich Frischknecht
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Fernandes Silva S, Hollunder Klippel A, Sigurdardóttir S, Mahdizadeh SJ, Tiukova I, Bourgard C, Salazar-Alvarez LC, do Amaral Prado HM, de Araujo RV, Costa FTM, Bilsland E, King RD, Brauer Massirer K, Eriksson LA, Bengtson MH, Zanelli CF, Sunnerhagen P. An experimental target-based platform in yeast for screening Plasmodium vivax deoxyhypusine synthase inhibitors. PLoS Negl Trop Dis 2024; 18:e0012690. [PMID: 39621767 PMCID: PMC11637365 DOI: 10.1371/journal.pntd.0012690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/12/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
The enzyme deoxyhypusine synthase (DHS) catalyzes the first step in the post-translational modification of the eukaryotic translation factor 5A (eIF5A). This is the only protein known to contain the amino acid hypusine, which results from this modification. Both eIF5A and DHS are essential for cell viability in eukaryotes, and inhibiting DHS is a promising strategy to develop new therapeutic alternatives. DHS proteins from many are sufficiently different from their human orthologs for selective targeting against infectious diseases; however, no DHS inhibitor selective for parasite orthologs has previously been reported. Here, we established a yeast surrogate genetics platform to identify inhibitors of DHS from Plasmodium vivax, one of the major causative agents of malaria. We constructed genetically modified Saccharomyces cerevisiae strains expressing DHS genes from Homo sapiens (HsDHS) or P. vivax (PvDHS) in place of the endogenous DHS gene from S. cerevisiae. Compared with a HsDHS complemented strain with a different genetic background that we previously generated, this new strain background was ~60-fold more sensitive to an inhibitor of human DHS. Initially, a virtual screen using the ChEMBL-NTD database was performed. Candidate ligands were tested in growth assays using the newly generated yeast strains expressing heterologous DHS genes. Among these, two showed promise by preferentially reducing the growth of the PvDHS-expressing strain. Further, in a robotized assay, we screened 400 compounds from the Pathogen Box library using the same S. cerevisiae strains, and one compound preferentially reduced the growth of the PvDHS-expressing yeast strain. Western blot revealed that these compounds significantly reduced eIF5A hypusination in yeast. The compounds showed antiplasmodial activity in the asexual erythrocyte stage; EC50 in high nM to low μM range, and low cytotoxicity. Our study demonstrates that this yeast-based platform is suitable for identifying and verifying candidate small molecule DHS inhibitors, selective for the parasite over the human ortholog.
Collapse
Affiliation(s)
- Suélen Fernandes Silva
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Chemistry Institute, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
- Center for Medicinal Chemistry - CQMED, Center for Molecular Biology and Genetic Engineering - CBMEG, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Angélica Hollunder Klippel
- Center for Medicinal Chemistry - CQMED, Center for Molecular Biology and Genetic Engineering - CBMEG, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara, São Paulo, Brazil
| | - Sunniva Sigurdardóttir
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | | | | | - Catarina Bourgard
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Laboratory of Tropical Diseases, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Luis Carlos Salazar-Alvarez
- Laboratory of Tropical Diseases, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Heloísa Monteiro do Amaral Prado
- Center for Medicinal Chemistry - CQMED, Center for Molecular Biology and Genetic Engineering - CBMEG, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Renan Vinicius de Araujo
- Center for Medicinal Chemistry - CQMED, Center for Molecular Biology and Genetic Engineering - CBMEG, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Elizabeth Bilsland
- Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Ross D. King
- Department of Life Sciences, Chalmers, Göteborg, Sweden
| | - Katlin Brauer Massirer
- Center for Medicinal Chemistry - CQMED, Center for Molecular Biology and Genetic Engineering - CBMEG, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Leif A. Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Mário Henrique Bengtson
- Center for Medicinal Chemistry - CQMED, Center for Molecular Biology and Genetic Engineering - CBMEG, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Cleslei Fernando Zanelli
- Chemistry Institute, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
- School of Pharmaceutical Sciences, São Paulo State University—UNESP, Araraquara, São Paulo, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
26
|
Wyss M, Kanyal A, Niederwieser I, Bartfai R, Voss TS. The Plasmodium falciparum histone methyltransferase PfSET10 is dispensable for the regulation of antigenic variation and gene expression in blood-stage parasites. mSphere 2024; 9:e0054624. [PMID: 39445826 PMCID: PMC11580404 DOI: 10.1128/msphere.00546-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024] Open
Abstract
The malaria parasite Plasmodium falciparum employs antigenic variation of the virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1) to escape adaptive immune responses during blood infection. Antigenic variation of PfEMP1 occurs through epigenetic switches in the mutually exclusive expression of individual members of the multi-copy var gene family. var genes are located in perinuclear clusters of transcriptionally inactive heterochromatin. Singular var gene activation is linked to locus repositioning into a dedicated zone at the nuclear periphery and deposition of histone 3 lysine 4 di-/trimethylation (H3K4me2/3) and H3K9 acetylation marks in the promoter region. While previous work identified the putative H3K4-specific methyltransferase PfSET10 as an essential enzyme and positive regulator of var gene expression, a recent study reported conflicting data. Here, we used iterative genome editing to engineer a conditional PfSET10 knockout line tailored to study the function of PfSET10 in var gene regulation. We demonstrate that PfSET10 is not required for mutually exclusive var gene expression and switching. We also show that PfSET10 is dispensable not only for asexual parasite proliferation but also for sexual conversion and gametocyte differentiation. Furthermore, comparative RNA-seq experiments revealed that PfSET10 plays no obvious role in regulating gene expression during asexual parasite development and gametocytogenesis. Interestingly, however, PfSET10 shows different subnuclear localization patterns in asexual and sexual stage parasites and female-specific expression in mature gametocytes. In summary, our work confirms in detail that PfSET10 is not involved in regulating var gene expression and is not required for blood-stage parasite viability, indicating PfSET10 may be important for life cycle progression in the mosquito vector or during liver stage development.IMPORTANCEThe malaria parasite Plasmodium falciparum infects hundreds of millions of people every year. To survive and proliferate in the human bloodstream, the parasites need to escape recognition by the host's immune system. To achieve this, P. falciparum can change the expression of surface antigens via a process called antigenic variation. This fascinating survival strategy is based on infrequent switches in the expression of single members of the var multigene family. Previous research reported conflicting results on the role of the epigenetic regulator PfSET10 in controlling mutually exclusive var gene expression and switching. Here, we unequivocally demonstrate that PfSET10 is neither required for antigenic variation nor the expression of any other proteins during blood-stage infection. This information is critical in directing our attention toward exploring alternative molecular mechanisms underlying the control of antigenic variation and investigating the function of PfSET10 in other life cycle stages.
Collapse
Affiliation(s)
- Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Abhishek Kanyal
- Department of Molecular Biology, Radboud University, Nijmegen, the Netherlands
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Richard Bartfai
- Department of Molecular Biology, Radboud University, Nijmegen, the Netherlands
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
27
|
Sayers C, Pandey V, Balakrishnan A, Michie K, Svedberg D, Hunziker M, Pardo M, Choudhary J, Berntsson R, Billker O. Systematic screens for fertility genes essential for malaria parasite transmission reveal conserved aspects of sex in a divergent eukaryote. Cell Syst 2024; 15:1075-1091.e6. [PMID: 39541984 DOI: 10.1016/j.cels.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/06/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Sexual reproduction in malaria parasites is essential for their transmission to mosquitoes and offers a divergent eukaryote model to understand the evolution of sex. Through a panel of genetic screens in Plasmodium berghei, we identify 348 sex and transmission-related genes and define roles for unstudied genes as putative targets for transmission-blocking interventions. The functional data provide a deeper understanding of female metabolic reprogramming, meiosis, and the axoneme. We identify a complex of a SUN domain protein (SUN1) and a putative allantoicase (ALLC1) that is essential for male fertility by linking the microtubule organizing center to the nuclear envelope and enabling mitotic spindle formation during male gametogenesis. Both proteins have orthologs in mouse testis, and the data raise the possibility of an ancient role for atypical SUN domain proteins in coupling the nucleus and axoneme. Altogether, our data provide an unbiased picture of the molecular processes that underpin malaria parasite transmission. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Claire Sayers
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vikash Pandey
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Arjun Balakrishnan
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Katharine Michie
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Dennis Svedberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mirjam Hunziker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Mercedes Pardo
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Jyoti Choudhary
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Ronnie Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Oliver Billker
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden.
| |
Collapse
|
28
|
Wunderlich J, Kotov V, Votborg-Novél L, Ntalla C, Geffken M, Peine S, Portugal S, Strauss J. Iron transport pathways in the human malaria parasite Plasmodium falciparum revealed by RNA-sequencing. Front Cell Infect Microbiol 2024; 14:1480076. [PMID: 39575308 PMCID: PMC11578967 DOI: 10.3389/fcimb.2024.1480076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Host iron deficiency is protective against severe malaria as the human malaria parasite Plasmodium falciparum depends on bioavailable iron from its host to proliferate. The essential pathways of iron acquisition, storage, export, and detoxification in the parasite differ from those in humans, as orthologs of the mammalian transferrin receptor, ferritin, or ferroportin, and a functional heme oxygenase are absent in P. falciparum. Thus, the proteins involved in these processes may be excellent targets for therapeutic development, yet remain largely unknown. Here, we show that parasites cultured in erythrocytes from an iron-deficient donor displayed significantly reduced growth rates compared to those grown in red blood cells from healthy controls. Sequencing of parasite RNA revealed diminished expression of genes involved in overall metabolism, hemoglobin digestion, and metabolite transport under low-iron versus control conditions. Supplementation with hepcidin, a specific ferroportin inhibitor, resulted in increased labile iron levels in erythrocytes, enhanced parasite replication, and transcriptional upregulation of genes responsible for merozoite motility and host cell invasion. Through endogenous GFP tagging of differentially expressed putative transporter genes followed by confocal live-cell imaging, proliferation assays with knockout and knockdown lines, and protein structure predictions, we identified six proteins that are likely required for ferrous iron transport in P. falciparum. Of these, we localized PfVIT and PfZIPCO to cytoplasmic vesicles, PfMRS3 to the mitochondrion, and the novel putative iron transporter PfE140 to the plasma membrane for the first time in P. falciparum. PfNRAMP/PfDMT1 and PfCRT were previously reported to efflux Fe2+ from the digestive vacuole. Our data support a new model for parasite iron homeostasis, in which PfE140 is involved in iron uptake across the plasma membrane, PfMRS3 ensures non-redundant Fe2+ supply to the mitochondrion as the main site of iron utilization, PfVIT transports excess iron into cytoplasmic vesicles, and PfZIPCO exports Fe2+ from these organelles in case of iron scarcity. These results provide new insights into the parasite's response to differential iron availability in its environment and into the mechanisms of iron transport in P. falciparum as promising candidate targets for future antimalarial drugs.
Collapse
Affiliation(s)
- Juliane Wunderlich
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
- Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Vadim Kotov
- Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Lasse Votborg-Novél
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
| | - Christina Ntalla
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
| | - Maria Geffken
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Silvia Portugal
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
| | - Jan Strauss
- Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
29
|
Singhal R, Prata IO, Bonnell VA, Llinás M. Unraveling the complexities of ApiAP2 regulation in Plasmodium falciparum. Trends Parasitol 2024; 40:987-999. [PMID: 39419713 DOI: 10.1016/j.pt.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The regulation of gene expression in Plasmodium spp., the causative agents of malaria, relies on precise transcriptional control. Malaria parasites encode a limited repertoire of sequence-specific transcriptional regulators dominated by the apicomplexan APETALA 2 (ApiAP2) protein family. ApiAP2 DNA-binding proteins play critical roles at all stages of the parasite life cycle. Recent studies have provided mechanistic insight into the functional roles of many ApiAP2 proteins. Two major areas that have advanced significantly are the identification of ApiAP2-containing protein complexes and the role of ApiAP2 proteins in malaria parasite sexual development. In this review, we present recent advances on the functional biology of ApiAP2 proteins and their role in regulating gene expression across the blood stages of the parasite life cycle.
Collapse
Affiliation(s)
- Ritwik Singhal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Isadora O Prata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
30
|
García-Guerrero AE, Marvin RG, Blackwell AM, Sigala PA. Biogenesis of cytochromes c and c 1 in the electron transport chain of malaria parasites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.575742. [PMID: 38352463 PMCID: PMC10862854 DOI: 10.1101/2024.02.01.575742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plasmodium malaria parasites retain an essential mitochondrional electron transport chain (ETC) that is critical for growth within humans and mosquitoes and a key antimalarial drug target. ETC function requires cytochromes c and c 1 that are unusual among heme proteins due to their covalent binding to heme via conserved CXXCH sequence motifs. Heme attachment to these proteins in most eukaryotes requires the mitochondrial enzyme holocytochrome c synthase (HCCS) that binds heme and the apo cytochrome to facilitate biogenesis of the mature cytochrome c or c 1. Although humans encode a single bifunctional HCCS that attaches heme to both proteins, Plasmodium parasites are like yeast and encode two separate HCCS homologs thought to be specific for heme attachment to cyt c (HCCS) or cyt c 1 (HCC1S). To test the function and specificity of P. falciparum HCCS and HCC1S, we used CRISPR/Cas9 to tag both genes for conditional expression. HCC1S knockdown selectively impaired cyt c 1 biogenesis and caused lethal ETC dysfunction that was not reversed by over-expression of HCCS. Knockdown of HCCS caused a more modest growth defect but strongly sensitized parasites to mitochondrial depolarization by proguanil, revealing key defects in ETC function. These results and prior heterologous studies in E. coli of cyt c hemylation by P. falciparum HCCS and HCC1S strongly suggest that both homologs are essential for mitochondrial ETC function and have distinct specificities for biogenesis of cyt c and c 1, respectively, in parasites. This study lays a foundation to develop novel strategies to selectively block ETC function in malaria parasites.
Collapse
Affiliation(s)
- Aldo E. García-Guerrero
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Rebecca G. Marvin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| |
Collapse
|
31
|
Rashpa R, Smith C, Artavanis-Tsakonas K, Brochet M. A multistage Plasmodium CRL4 WIG1 ubiquitin ligase is critical for the formation of functional microtubule organization centers in microgametocytes. mBio 2024; 15:e0167224. [PMID: 39207167 PMCID: PMC11481892 DOI: 10.1128/mbio.01672-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Malaria is a mosquito-borne infectious disease caused by unicellular eukaryotic parasites of the Plasmodium genus. Protein ubiquitination by E3 ligases is a critical post-translational modification required for various cellular processes during the lifecycle of Plasmodium parasites. However, little is known about the repertoire and function of these enzymes in Plasmodium. Here, we show that Plasmodium expresses a conserved cullin RING E3 ligase (CRL) complex that is functionally related to CRL4 in other eukaryotes. In P. falciparum asexual blood stages, a cullin-4 scaffold interacts with the RING protein RBX1, the adaptor protein DDB1, and a set of putative receptor proteins that may determine substrate specificity for ubiquitination. These receptor proteins contain WD40-repeat domains and include WD-repeat protein important for gametogenesis 1 (WIG1). This CRL4-related complex is also expressed in P. berghei gametocytes, with WIG1 being the only putative receptor detected in both the schizont and gametocyte stages. WIG1 disruption leads to a complete block in microgamete formation. Proteomic analyses indicate that WIG1 disruption alters proteostasis of ciliary proteins and components of the DNA replication machinery during gametocytogenesis. Further analysis by ultrastructure expansion microscopy (U-ExM) indicates that WIG1-dependent depletion of ciliary proteins is associated with impaired the formation of the microtubule organization centers that coordinate mitosis with axoneme formation and altered DNA replication during microgametogenesis. This work identifies a CRL4-related ubiquitin ligase in Plasmodium that is critical for the formation of microgametes by regulating proteostasis of ciliary and DNA replication proteins.IMPORTANCEPlasmodium parasites undergo fascinating lifecycles with multiple developmental steps, converting into morphologically distinct forms in both their mammalian and mosquito hosts. Protein ubiquitination by ubiquitin ligases emerges as an important post-translational modification required to control multiple developmental stages in Plasmodium. Here, we identify a cullin RING E3 ubiquitin ligase (CRL) complex expressed in the replicating asexual blood stages and in the gametocyte stages that mediate transmission to the mosquito. WIG1, a putative substrate recognition protein of this ligase complex, is essential for the maturation of microgametocytes into microgametes upon ingestion by a mosquito. More specifically, WIG1 is required for proteostasis of ciliary proteins and components of the DNA replication machinery during gametocytogenesis. This requirement is linked to DNA replication and microtubule organization center formation, both critical to the development of flagellated microgametes.
Collapse
Affiliation(s)
- Ravish Rashpa
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cameron Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Singh MK, Bonnell VA, Tojal Da Silva I, Santiago VF, Moraes MS, Adderley J, Doerig C, Palmisano G, Llinas M, Garcia CRS. A Plasmodium falciparum MORC protein complex modulates epigenetic control of gene expression through interaction with heterochromatin. eLife 2024; 12:RP92201. [PMID: 39412522 PMCID: PMC11483127 DOI: 10.7554/elife.92201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.
Collapse
Affiliation(s)
- Maneesh Kumar Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Victoria Ann Bonnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
| | | | | | - Miriam Santos Moraes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Jack Adderley
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Science, University of São PauloSão PauloBrazil
| | - Manuel Llinas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
- Department of Chemistry, Pennsylvania State University, University ParkHarrisburgUnited States
| | - Celia RS Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| |
Collapse
|
33
|
Bansal A, Sharma M, Choudhury H. Generation of a new DiCre expressing parasite strain for functional characterization of Plasmodium falciparum genes in blood stages. Sci Rep 2024; 14:24076. [PMID: 39402380 PMCID: PMC11473785 DOI: 10.1038/s41598-024-75657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Conditional regulation is a highly beneficial system for studying the function of essential genes in Plasmodium falciparum and dimerizable Cre recombinase (DiCre) is a recently adapted conditional regulation system suitable for this purpose. In the DiCre system, two inactive fragments of Cre are reconstituted to form a functionally active enzyme in the presence of rapamycin. Different loci have been targeted to generate parasite lines that express the DiCre enzyme. Here, we have used marker-free CRISPR-Cas9 gene editing to integrate the DiCre cassette in a redundant cg6 locus. We have shown the utility of the newly generated ∆cg6DC4 parasites in mediating robust, rapid, and highly specific excision of exogenously encoded gfp sequence. The ∆cg6DC4 parasites are also capable of conditional excision of an endogenous parasite gene, PF3D7_1246000. Conditional deletion of PF3D7_1246000 did not cause any inhibition in the asexual proliferation of the parasites. Furthermore, the health and morphology of the mutant parasites were comparable to that of the control parasites in Giemsa smears. The availability of another stable DiCre parasite strain competent for conditional excision of target genes will expedite functional characterization and validation of novel drug and vaccine targets against malaria.
Collapse
Affiliation(s)
- Abhisheka Bansal
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manish Sharma
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Himashree Choudhury
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
34
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Caaveiro JMM, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596652. [PMID: 38853871 PMCID: PMC11160694 DOI: 10.1101/2024.05.30.596652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
| | | | - Armiyaw S. Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | | | - Jose M. M. Caaveiro
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
35
|
Kanai M, Mok S, Yeo T, Shears MJ, Ross LS, Jeon JH, Narwal S, Haile MT, Tripathi AK, Mlambo G, Kim J, Gil-Iturbe E, Okombo J, Fairhurst KJ, Bloxham T, Bridgford JL, Sheth T, Ward KE, Park H, Rozenberg FD, Quick M, Mancia F, Lee MC, Small-Saunders JL, Uhlemann AC, Sinnis P, Fidock DA. Identification of the drug/metabolite transporter 1 as a marker of quinine resistance in a NF54×Cam3.II P. falciparum genetic cross. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615529. [PMID: 39386571 PMCID: PMC11463348 DOI: 10.1101/2024.09.27.615529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The genetic basis of Plasmodium falciparum resistance to quinine (QN), a drug used to treat severe malaria, has long been enigmatic. To gain further insight, we used FRG-NOD human liver-chimeric mice to conduct a P. falciparum genetic cross between QN-sensitive and QN-resistant parasites, which also differ in their susceptibility to chloroquine (CQ). By applying different selective conditions to progeny pools prior to cloning, we recovered 120 unique recombinant progeny. These progeny were subjected to drug profiling and QTL analyses with QN, CQ, and monodesethyl-CQ (md-CQ, the active metabolite of CQ), which revealed predominant peaks on chromosomes 7 and 12, consistent with a multifactorial mechanism of resistance. A shared chromosome 12 region mapped to resistance to all three antimalarials and was preferentially co-inherited with pfcrt. We identified an ATP-dependent zinc metalloprotease (FtsH1) as one of the top candidates and observed using CRISPR/Cas9 SNP-edited lines that ftsh1 is a potential mediator of QN resistance and a modulator of md-CQ resistance. As expected, CQ and md-CQ resistance mapped to a chromosome 7 region harboring pfcrt. However, for QN, high-grade resistance mapped to a chromosome 7 peak centered 295kb downstream of pfcrt. We identified the drug/metabolite transporter 1 (DMT1) as the top candidate due to its structural similarity to PfCRT and proximity to the peak. Deleting DMT1 in QN-resistant Cam3.II parasites significantly sensitized the parasite to QN but not to the other drugs tested, suggesting that DMT1 mediates QN response specifically. We localized DMT1 to structures associated with vesicular trafficking, as well as the parasitophorous vacuolar membrane, lipid bodies, and the digestive vacuole. We also observed that mutant DMT1 transports more QN than the wild-type isoform in vitro. Our study demonstrates that DMT1 is a novel marker of QN resistance and a new chromosome 12 locus associates with CQ and QN response, with ftsh1 is a potential candidate, suggesting these genes should be genotyped in surveillance and clinical settings.
Collapse
Affiliation(s)
- Mariko Kanai
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Leila S. Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Jin H. Jeon
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Sunil Narwal
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Meseret T. Haile
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
| | - John Okombo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kate J. Fairhurst
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Talia Bloxham
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Tanaya Sheth
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Kurt E. Ward
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Matthias Quick
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY, USA
| | - Marcus C.S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Jennifer L. Small-Saunders
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, MD, USA
| | - David A. Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, NY, USA
| |
Collapse
|
36
|
Saha D, Pramanik A, Freville A, Siddiqui AA, Pal U, Banerjee C, Nag S, Debsharma S, Pramanik S, Mazumder S, Maiti NC, Datta S, van Ooij C, Bandyopadhyay U. Structure-function analysis of nucleotide housekeeping protein HAM1 from human malaria parasite Plasmodium falciparum. FEBS J 2024; 291:4349-4371. [PMID: 39003571 DOI: 10.1111/febs.17216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Non-canonical nucleotides, generated as oxidative metabolic by-products, significantly threaten the genome integrity of Plasmodium falciparum and thereby, their survival, owing to their mutagenic effects. PfHAM1, an evolutionarily conserved inosine/xanthosine triphosphate pyrophosphohydrolase, maintains nucleotide homeostasis in the malaria parasite by removing non-canonical nucleotides, although structure-function intricacies are hitherto poorly reported. Here, we report the X-ray crystal structure of PfHAM1, which revealed a homodimeric structure, additionally validated by size-exclusion chromatography-multi-angle light scattering analysis. The two monomeric units in the dimer were aligned in a parallel fashion, and critical residues associated with substrate and metal binding were identified, wherein a notable structural difference was observed in the β-sheet main frame compared to human inosine triphosphate pyrophosphatase. PfHAM1 exhibited Mg++-dependent pyrophosphohydrolase activity and the highest binding affinity to dITP compared to other non-canonical nucleotides as measured by isothermal titration calorimetry. Modifying the pfham1 genomic locus followed by live-cell imaging of expressed mNeonGreen-tagged PfHAM1 demonstrated its ubiquitous presence in the cytoplasm across erythrocytic stages with greater expression in trophozoites and schizonts. Interestingly, CRISPR-Cas9/DiCre recombinase-guided pfham1-null P. falciparum survived in culture under standard growth conditions, indicating its assistive role in non-canonical nucleotide clearance during intra-erythrocytic stages. This is the first comprehensive structural and functional report of PfHAM1, an atypical nucleotide-cleansing enzyme in P. falciparum.
Collapse
Affiliation(s)
- Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Atanu Pramanik
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Aline Freville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Uttam Pal
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, Uttarpara, India
| | - Nakul C Maiti
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saumen Datta
- Division of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, UK
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
37
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
38
|
Wyss M, Thommen BT, Kofler J, Carrington E, Brancucci NMB, Voss TS. The three Plasmodium falciparum Aurora-related kinases display distinct temporal and spatial associations with mitotic structures in asexual blood stage parasites and gametocytes. mSphere 2024; 9:e0046524. [PMID: 39235260 PMCID: PMC11423587 DOI: 10.1128/msphere.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Aurora kinases are crucial regulators of mitotic cell cycle progression in eukaryotes. The protozoan malaria parasite Plasmodium falciparum replicates via schizogony, a specialized mode of cell division characterized by consecutive asynchronous rounds of nuclear division by closed mitosis followed by a single cytokinesis event producing dozens of daughter cells. P. falciparum encodes three Aurora-related kinases (PfARKs) that have been reported essential for parasite proliferation, but their roles in regulating schizogony have not yet been explored in great detail. Here, we engineered transgenic parasite lines expressing GFP-tagged PfARK1-3 to provide a systematic analysis of their expression timing and subcellular localization throughout schizogony as well as in the non-dividing gametocyte stages, which are essential for malaria transmission. We demonstrate that all three PfARKs display distinct and highly specific and exclusive spatiotemporal associations with the mitotic machinery. In gametocytes, PfARK3 is undetectable, and PfARK1 and PfARK2 show male-specific expression in late-stage gametocytes, consistent with their requirement for endomitosis during male gametogenesis in the mosquito vector. Our combined data suggest that PfARK1 and PfARK2 have non-overlapping roles in centriolar plaque maturation, assembly of the mitotic spindle, kinetochore-spindle attachment and chromosome segregation, while PfARK3 seems to be exquisitely involved in daughter cell cytoskeleton assembly and cytokinesis. These important new insights provide a reliable foundation for future research aiming at the functional investigation of these divergent and possibly drug-targetable Aurora-related kinases in mitotic cell division of P. falciparum and related apicomplexan parasites.IMPORTANCEMalaria parasites replicate via non-conventional modes of mitotic cell division, such as schizogony, employed by the disease-causing stages in the human blood or endomitosis during male gametogenesis in the mosquito vector. Understanding the molecular mechanisms regulating cell division in these divergent unicellular eukaryotes is not only of scientific interest but also relevant to identify potential new antimalarial drug targets. Here, we carefully examined the subcellular localization of all three Plasmodium falciparum Aurora-related kinases (ARKs), distantly related homologs of Aurora kinases that coordinate mitosis in model eukaryotes. Detailed fluorescence microscopy-based analyses revealed distinct, specific, and exclusive spatial associations for each parasite ARK with different components of the mitotic machinery and at different phases of the cell cycle during schizogony and gametocytogenesis. This comprehensive set of results closes important gaps in our fragmentary knowledge on this important group of kinases and offers a valuable source of information for future functional studies.
Collapse
Affiliation(s)
- Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Basil T. Thommen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Jacob Kofler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Eilidh Carrington
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Nicolas M. B. Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- />University of Basel, Basel, Switzerland
| |
Collapse
|
39
|
Li M, Yang F, Hou T, Gong X, Li N, Sibley LD, Feng Y, Xiao L, Guo Y. Variant surface protein GP60 contributes to host infectivity of Cryptosporidium parvum. Commun Biol 2024; 7:1175. [PMID: 39294220 PMCID: PMC11411101 DOI: 10.1038/s42003-024-06885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
Biological studies of the determinants of Cryptosporidium infectivity are lacking despite the fact that cryptosporidiosis is a major public health problem. Recently, the 60-kDa glycoprotein (GP60) has received attention because of its high sequence polymorphism and association with host infectivity of isolates and protection against reinfection. However, studies of GP60 function have been hampered by its heavy O-linked glycosylation. Here, we used advanced genetic tools to investigate the processing, fate, and function of GP60. Endogenous gene tagging showed that the GP60 cleavage products, GP40 and GP15, are both highly expressed on the surface of sporozoites, merozoites and male gametes. During invasion, GP40 translocates to the apical end of the zoites and remains detectable at the parasite-host interface. Deletion of the signal peptide, GPI anchor, and GP15 sequences affects the membrane localization of GP40. Deletion of the GP60 gene significantly reduces parasite growth and severity of infection, and replacement of the GP60 gene with sequence from an avirulent isolate reduces the pathogenicity of a highly infective isolate. These results have revealed dynamic changes in GP60 expression during parasite development. They further suggest that GP60 is a key protein mediating host infectivity and pathogenicity.
Collapse
Affiliation(s)
- Muxiao Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqing Gong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
40
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. CRISPR-based functional profiling of the Toxoplasma gondii genome during acute murine infection. Nat Microbiol 2024; 9:2323-2343. [PMID: 38977907 PMCID: PMC11811839 DOI: 10.1038/s41564-024-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
Examining host-pathogen interactions in animals can capture aspects of infection that are obscured in cell culture. Using CRISPR-based screens, we functionally profile the entire genome of the apicomplexan parasite Toxoplasma gondii during murine infection. Barcoded gRNAs enabled bottleneck detection and mapping of population structures within parasite lineages. Over 300 genes with previously unknown roles in infection were found to modulate parasite fitness in mice. Candidates span multiple axes of host-parasite interaction. Rhoptry Apical Surface Protein 1 was characterized as a mediator of host-cell tropism that facilitates repeated invasion attempts. GTP cyclohydrolase I was also required for fitness in mice and druggable through a repurposed compound, 2,4-diamino-6-hydroxypyrimidine. This compound synergized with pyrimethamine against T. gondii and malaria-causing Plasmodium falciparum parasites. This work represents a complete survey of an apicomplexan genome during infection of an animal host and points to novel interfaces of host-parasite interaction.
Collapse
Affiliation(s)
| | - Kenneth J Wei
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Benjamin S Waldman
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Madeline A Farringer
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Raina W Thomas
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | - Alice L Herneisen
- Whitehead Institute, Cambridge, MA, USA
- Biology Department, MIT, Cambridge, MA, USA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA, USA.
- Biology Department, MIT, Cambridge, MA, USA.
| |
Collapse
|
41
|
Shrivastava D, Abboud E, Ramchandra JP, Jha A, Marq JB, Chaurasia A, Mitra K, Sadik M, Siddiqi MI, Soldati-Favre D, Kloehn J, Habib S. ATM1, an essential conserved transporter in Apicomplexa, bridges mitochondrial and cytosolic [Fe-S] biogenesis. PLoS Pathog 2024; 20:e1012593. [PMID: 39348385 PMCID: PMC11476691 DOI: 10.1371/journal.ppat.1012593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
The Apicomplexa phylum encompasses numerous obligate intracellular parasites, some associated with severe implications for human health, including Plasmodium, Cryptosporidium, and Toxoplasma gondii. The iron-sulfur cluster [Fe-S] biogenesis ISC pathway, localized within the mitochondrion or mitosome of these parasites, is vital for parasite survival and development. Previous work on T. gondii and Plasmodium falciparum provided insights into the mechanisms of [Fe-S] biogenesis within this phylum, while the transporter linking mitochondria-generated [Fe-S] with the cytosolic [Fe-S] assembly (CIA) pathway remained elusive. This critical step is catalyzed by a well-conserved ABC transporter, termed ATM1 in yeast, ATM3 in plants and ABCB7 in mammals. Here, we identify and characterize this transporter in two clinically relevant Apicomplexa. We demonstrate that depletion of TgATM1 does not specifically impair mitochondrial metabolism. Instead, proteomic analyses reveal that TgATM1 expression levels inversely correlate with the abundance of proteins that participate in the transfer of [Fe-S] to cytosolic proteins at the outer mitochondrial membrane. Further insights into the role of TgATM1 are gained through functional complementation with the well-characterized yeast homolog. Biochemical characterization of PfATM1 confirms its role as a functional ABC transporter, modulated by oxidized glutathione (GSSG) and [4Fe-4S].
Collapse
Affiliation(s)
- Deepti Shrivastava
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ernest Abboud
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Jadhav Prasad Ramchandra
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Akanksha Jha
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Animesh Chaurasia
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Sadik
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
42
|
Cabral G, Moss WJ, Brown KM. Proteomic approaches for protein kinase substrate identification in Apicomplexa. Mol Biochem Parasitol 2024; 259:111633. [PMID: 38821187 PMCID: PMC11194964 DOI: 10.1016/j.molbiopara.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Apicomplexa is a phylum of protist parasites, notable for causing life-threatening diseases including malaria, toxoplasmosis, cryptosporidiosis, and babesiosis. Apicomplexan pathogenesis is generally a function of lytic replication, dissemination, persistence, host cell modification, and immune subversion. Decades of research have revealed essential roles for apicomplexan protein kinases in establishing infections and promoting pathogenesis. Protein kinases modify their substrates by phosphorylating serine, threonine, tyrosine, or other residues, resulting in rapid functional changes in the target protein. Post-translational modification by phosphorylation can activate or inhibit a substrate, alter its localization, or promote interactions with other proteins or ligands. Deciphering direct kinase substrates is crucial to understand mechanisms of kinase signaling, yet can be challenging due to the transient nature of kinase phosphorylation and potential for downstream indirect phosphorylation events. However, with recent advances in proteomic approaches, our understanding of kinase function in Apicomplexa has improved dramatically. Here, we discuss methods that have been used to identify kinase substrates in apicomplexan parasites, classifying them into three main categories: i) kinase interactome, ii) indirect phosphoproteomics and iii) direct labeling. We briefly discuss each approach, including their advantages and limitations, and highlight representative examples from the Apicomplexa literature. Finally, we conclude each main category by introducing prospective approaches from other fields that would benefit kinase substrate identification in Apicomplexa.
Collapse
Affiliation(s)
- Gabriel Cabral
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William J Moss
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
43
|
Sattler JM, Keiber L, Abdelrahim A, Zheng X, Jäcklin M, Zechel L, Moreau CA, Steinbrück S, Fischer M, Janse CJ, Hoffmann A, Hentzschel F, Frischknecht F. Experimental vaccination by single dose sporozoite injection of blood-stage attenuated malaria parasites. EMBO Mol Med 2024; 16:2060-2079. [PMID: 39103697 PMCID: PMC11392930 DOI: 10.1038/s44321-024-00101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Malaria vaccination approaches using live Plasmodium parasites are currently explored, with either attenuated mosquito-derived sporozoites or attenuated blood-stage parasites. Both approaches would profit from the availability of attenuated and avirulent parasites with a reduced blood-stage multiplication rate. Here we screened gene-deletion mutants of the rodent parasite P. berghei and the human parasite P. falciparum for slow growth. Furthermore, we tested the P. berghei mutants for avirulence and resolving blood-stage infections, while preserving sporozoite formation and liver infection. Targeting 51 genes yielded 18 P. berghei gene-deletion mutants with several mutants causing mild infections. Infections with the two most attenuated mutants either by blood stages or by sporozoites were cleared by the immune response. Immunization of mice led to protection from disease after challenge with wild-type sporozoites. Two of six generated P. falciparum gene-deletion mutants showed a slow growth rate. Slow-growing, avirulent P. falciparum mutants will constitute valuable tools to inform on the induction of immune responses and will aid in developing new as well as safeguarding existing attenuated parasite vaccines.
Collapse
Affiliation(s)
- Julia M Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Lukas Keiber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Aiman Abdelrahim
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Xinyu Zheng
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Jäcklin
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Luisa Zechel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Catherine A Moreau
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Smilla Steinbrück
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Medical School, 69120, Heidelberg, Germany
- Department of Neuroradiology, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, 3010, Bern, Switzerland
| | - Franziska Hentzschel
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, 69120, Heidelberg, Germany.
- German Center for Infection Research, DZIF, Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
44
|
Sundararaman SA, Miller JJ, Daley EC, O'Brien KA, Kasak P, Daniels AM, Edwards RL, Heidel KM, Bague DA, Wilson MA, Koelper AJ, Kourtoglou EC, White AD, August SA, Apple GA, Rouamba RW, Durand AJ, Esteb JJ, Muller FL, Johnson RJ, Hoops GC, Dowd CS, Odom John AR. Prodrug activation in malaria parasites mediated by an imported erythrocyte esterase, acylpeptide hydrolase (APEH). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610542. [PMID: 39257815 PMCID: PMC11383709 DOI: 10.1101/2024.08.30.610542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The continued emergence of antimalarial drug resistance highlights the need to develop new antimalarial therapies. Unfortunately, new drug development is often hampered by poor drug-like properties of lead compounds. Prodrugging temporarily masks undesirable compound features, improving bioavailability and target penetration. We have found that lipophilic diester prodrugs of phosphonic acid antibiotics, such as fosmidomycin, exhibit significantly higher antimalarial potency than their parent compounds (1). However, the activating enzymes for these prodrugs were unknown. Here, we show that an erythrocyte enzyme, acylpeptide hydrolase (APEH) is the major activating enzyme of multiple lipophilic ester prodrugs. Surprisingly, this enzyme is taken up by the malaria parasite, Plasmodium falciparum, where it localizes to the parasite cytoplasm and retains enzymatic activity. Using a novel fluorogenic ester library, we characterize the structure activity relationship of APEH, and compare it to that of P. falciparum esterases. We show that parasite-internalized APEH plays an important role in the activation of substrates with branching at the alpha carbon, in keeping with its exopeptidase activity. Our findings highlight a novel mechanism for antimicrobial prodrug activation, relying on a host-derived enzyme to yield activation at a microbial target. Mutations in prodrug activating enzymes are a common mechanism for antimicrobial drug resistance (2-4). Leveraging an internalized host enzyme would circumvent this, enabling the design of prodrugs with higher barriers to drug resistance.
Collapse
Affiliation(s)
- S A Sundararaman
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J J Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - E C Daley
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - K A O'Brien
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - P Kasak
- College of Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - A M Daniels
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, USA
| | - R L Edwards
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, Missouri, USA
- Omniose, Saint Louis, MO, USA
| | - K M Heidel
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington DC, USA
| | - D A Bague
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington DC, USA
| | - M A Wilson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - A J Koelper
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - E C Kourtoglou
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - A D White
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - S A August
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - G A Apple
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - R W Rouamba
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - A J Durand
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - J J Esteb
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - F L Muller
- Lindonlight Collective, Houston, TX, USA
| | - R J Johnson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - G C Hoops
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave, Indianapolis, IN, USA
| | - C S Dowd
- Department of Chemistry, George Washington University, 800 22nd Street NW, Washington DC, USA
| | - A R Odom John
- Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Frischknecht F, Rayner JC, Waters AP. 20 years of BioMalPar: Building a collaborative malaria research network. Trends Parasitol 2024; 40:657-659. [PMID: 39025766 DOI: 10.1016/j.pt.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
In 2004 the first annual BioMalPar meeting was held at EMBL Heidelberg, bringing together researchers from around the world with the goal of building connections between malaria research groups in Europe. Twenty years on it is time to reflect on what was achieved and to look ahead to the future.
Collapse
Affiliation(s)
- Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany; German Center for Infection Research, partner site Heidelberg, Heidelberg, Germany
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Andrew P Waters
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
46
|
Chatterjee T, Tiwari A, Gupta R, Shukla H, Varshney A, Mishra S, Habib S. A Plasmodium apicoplast-targeted unique exonuclease/FEN exhibits interspecies functional differences attributable to an insertion that alters DNA-binding. Nucleic Acids Res 2024; 52:7843-7862. [PMID: 38888125 PMCID: PMC11260460 DOI: 10.1093/nar/gkae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The human malaria parasite Plasmodium falciparum genome is among the most A + T rich, with low complexity regions (LCRs) inserted in coding sequences including those for proteins targeted to its essential relict plastid (apicoplast). Replication of the apicoplast genome (plDNA), mediated by the atypical multifunctional DNA polymerase PfPrex, would require additional enzymatic functions for lagging strand processing. We identified an apicoplast-targeted, [4Fe-4S]-containing, FEN/Exo (PfExo) with a long LCR insertion and detected its interaction with PfPrex. Distinct from other known exonucleases across organisms, PfExo recognized a wide substrate range; it hydrolyzed 5'-flaps, processed dsDNA as a 5'-3' exonuclease, and was a bipolar nuclease on ssDNA and RNA-DNA hybrids. Comparison with the rodent P. berghei ortholog PbExo, which lacked the insertion and [4Fe-4S], revealed interspecies functional differences. The insertion-deleted PfExoΔins behaved like PbExo with a limited substrate repertoire because of compromised DNA binding. Introduction of the PfExo insertion into PbExo led to gain of activities that the latter initially lacked. Knockout of PbExo indicated essentiality of the enzyme for survival. Our results demonstrate the presence of a novel apicoplast exonuclease with a functional LCR that diversifies substrate recognition, and identify it as the candidate flap-endonuclease and RNaseH required for plDNA replication and maintenance.
Collapse
Affiliation(s)
- Tribeni Chatterjee
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anupama Tiwari
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ritika Gupta
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Aastha Varshney
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
47
|
Williams CG, Moreira ML, Asatsuma T, Lee HJ, Li S, Barrera I, Murray E, Soon MSF, Engel JA, Khoury DS, Le S, Wanrooy BJ, Schienstock D, Alexandre YO, Skinner OP, Joseph R, Beattie L, Mueller SN, Chen F, Haque A. Plasmodium infection induces phenotypic, clonal, and spatial diversity among differentiating CD4 + T cells. Cell Rep 2024; 43:114317. [PMID: 38848213 DOI: 10.1016/j.celrep.2024.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Naive CD4+ T cells must differentiate in order to orchestrate immunity to Plasmodium, yet understanding of their emerging phenotypes, clonality, spatial distributions, and cellular interactions remains incomplete. Here, we observe that splenic polyclonal CD4+ T cells differentiate toward T helper 1 (Th1) and T follicular helper (Tfh)-like states and exhibit rarer phenotypes not elicited among T cell receptor (TCR) transgenic counterparts. TCR clones present at higher frequencies exhibit Th1 skewing, suggesting that variation in major histocompatibility complex class II (MHC-II) interaction influences proliferation and Th1 differentiation. To characterize CD4+ T cell interactions, we map splenic microarchitecture, cellular locations, and molecular interactions using spatial transcriptomics at near single-cell resolution. Tfh-like cells co-locate with stromal cells in B cell follicles, while Th1 cells in red pulp co-locate with activated monocytes expressing multiple chemokines and MHC-II. Spatial mapping of individual transcriptomes suggests that proximity to chemokine-expressing monocytes correlates with stronger effector phenotypes in Th1 cells. Finally, CRISPR-Cas9 gene disruption reveals a role for CCR5 in promoting clonal expansion and Th1 differentiation. A database of cellular locations and interactions is presented: https://haquelab.mdhs.unimelb.edu.au/spatial_gui/.
Collapse
Affiliation(s)
- Cameron G Williams
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Marcela L Moreira
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Takahiro Asatsuma
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Irving Barrera
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Jessica A Engel
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Shirley Le
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Brooke J Wanrooy
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Dominick Schienstock
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Oliver P Skinner
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Rainon Joseph
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia.
| |
Collapse
|
48
|
Nirdosh, Shukla H, Mishra S. An ApiAp2 Transcription Factor with a Dispensable Role in Plasmodium berghei Life Cycle. ACS Infect Dis 2024; 10:1904-1913. [PMID: 38752809 DOI: 10.1021/acsinfecdis.4c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Malaria parasites have a complex life cycle and undergo replication and population expansion within vertebrate hosts and mosquito vectors. These developmental transitions rely on changes in gene expression and chromatin reorganization that result in the activation and silencing of stage-specific genes. The ApiAp2 family of DNA-binding proteins plays an important role in regulating gene expression in malaria parasites. Here, we characterized the ApiAp2 protein in Plasmodium berghei, which we termed Ap2-D. In silico analysis revealed that Ap2-D has three beta-sheets followed by a helix at the C-terminus for DNA binding. Using gene tagging with 3XHA-mCherry, we found that Ap2-D is expressed in Plasmodium blood stages and is present in the parasite cytoplasm and nucleus. Surprisingly, our gene deletion study revealed a completely dispensable role for Ap2-D in the entirety of the P. berghei life cycle. Ap2-D KO parasites were found to grow in the blood successfully and progress through the mosquito midgut and salivary glands. Sporozoites isolated from mosquito salivary glands were infective for hepatocytes and achieved similar patency as WT in mice. We emphasize the importance of genetic validation of antimalarial drug targets before progressing them to drug discovery.
Collapse
Affiliation(s)
- Nirdosh
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
49
|
Kanyal A, Deshmukh B, Davies H, Mamatharani DV, Farheen D, Treeck M, Karmodiya K. PfHDAC1 is an essential regulator of P. falciparum asexual proliferation and host cell invasion genes with a dynamic genomic occupancy responsive to artemisinin stress. mBio 2024; 15:e0237723. [PMID: 38709067 PMCID: PMC11237754 DOI: 10.1128/mbio.02377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Plasmodium falciparum, the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of Plasmodium falciparum histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the in vitro catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it. IMPORTANCE Malaria is a major public health problem, with the parasite Plasmodium falciparum causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.
Collapse
Affiliation(s)
- Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - D. V. Mamatharani
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Dilsha Farheen
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| |
Collapse
|
50
|
Nishi T, Kaneko I, Iwanaga S, Yuda M. PbARID-associated chromatin remodeling events are essential for gametocyte development in Plasmodium. Nucleic Acids Res 2024; 52:5624-5642. [PMID: 38554111 PMCID: PMC11162789 DOI: 10.1093/nar/gkae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Gametocyte development of the Plasmodium parasite is a key step for transmission of the parasite. Male and female gametocytes are produced from a subpopulation of asexual blood-stage parasites, but the mechanisms that regulate the differentiation of sexual stages are still under investigation. In this study, we investigated the role of PbARID, a putative subunit of a SWI/SNF chromatin remodeling complex, in transcriptional regulation during the gametocyte development of P. berghei. PbARID expression starts in early gametocytes before the manifestation of male and female-specific features, and disruption of its gene results in the complete loss of gametocytes with detectable male features and the production of abnormal female gametocytes. ChIP-seq analysis of PbARID showed that it forms a complex with gSNF2, an ATPase subunit of the SWI/SNF chromatin remodeling complex, associating with the male cis-regulatory element, TGTCT. Further ChIP-seq of PbARID in gsnf2-knockout parasites revealed an association of PbARID with another cis-regulatory element, TGCACA. RIME and DNA-binding assays suggested that HDP1 is the transcription factor that recruits PbARID to the TGCACA motif. Our results indicated that PbARID could function in two chromatin remodeling events and paly essential roles in both male and female gametocyte development.
Collapse
Affiliation(s)
- Tsubasa Nishi
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| | - Izumi Kaneko
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| | - Shiroh Iwanaga
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| | - Masao Yuda
- Department of Medicine, Mie University, Tsu 514-8507, Japan
| |
Collapse
|