1
|
Bonneux B, Ceconi M, Stobbelaar K, Herschke F, Delputte P. Insights in the RSV L polymerase function and structure. Antiviral Res 2025; 237:106148. [PMID: 40127873 DOI: 10.1016/j.antiviral.2025.106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Respiratory syncytial virus (RSV) continues to have a large medical and economic impact worldwide, mainly in infants, elderly, and immunocompromised patients. While several vaccines and prophylactic antibodies are now available, effective treatment options are still needed. A highly interesting target for treatment is the replication process of the virus, in which the viral polymerase complex is critical. A critical protein of this complex is the RSV large (L) protein, which harbors multiple enzymatic functions that are all interesting targets for antiviral drug discovery. Unfortunately, not all structural parts of this L protein are currently resolved, which makes antiviral drug design and optimization challenging. In this review, an overview is given of current knowledge on the RSV L structure. Furthermore, a comparison is made between the L proteins of RSV and human metapneumovirus (hMPV), which, based on their sequence similarity, could shed light on missing structural gaps. New insights into the RSV and hMPV L protein structures are given, by modeling unresolved domains with AlphaFold2 and Alphafold3. While more structural studies are needed to confirm the modeling data, there is clearly potential for development of treatments targeting the L protein, for RSV and closely related viruses.
Collapse
Affiliation(s)
- Brecht Bonneux
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium; Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse, Belgium
| | - Martina Ceconi
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium
| | - Kim Stobbelaar
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium
| | | | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium; Infla-Med Center of Excellence, University of Antwerp, Belgium.
| |
Collapse
|
2
|
Wang D, Yang G, Liu B. Structure of the measles virus ternary polymerase complex. Nat Commun 2025; 16:3819. [PMID: 40268911 DOI: 10.1038/s41467-025-58985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025] Open
Abstract
Measles virus (MeV) is a highly contagious pathogen that causes significant morbidity worldwide. Its polymerase machinery, composed of the large protein (L) and phosphoprotein (P), is crucial for viral replication and transcription, making it a promising target for antiviral drug development. Here we present cryo-electron microscopy structures of two distinct MeV polymerase complexes: Lcore-P and Lfull-P-C. The Lcore-P complex characterizes the N-terminal domain, RNA-dependent RNA polymerase (RdRp), and GDP poly-ribonucleotidyltransferase of the L protein, along with the tetrameric P of varying lengths. The Lfull-P-C complex reveals that C protein dimer binds at the cleft between RdRp and the flexible domains of the L protein: the connecting domain, methyltransferase domain, and C-terminal domain. This interaction results in the visualization of these domains and creates an extended RNA channel, remodeling the putative nascent replicated RNA exit and potentially regulating RNA synthesis processivity. Our findings reveal the architecture and molecular details of MeV polymerase complexes, providing new insights into their mechanisms and suggesting potential intervention targets for antiviral therapy.
Collapse
Affiliation(s)
- Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ge Yang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
3
|
Izumi F, Makino M, Sasaki M, Nakagawa K, Takahashi T, Nishiyama S, Fujii Y, Okajima M, Masatani T, Igarashi M, Sawa H, Sugiyama M, Ito N. Functional dissection of the C-terminal domain of rabies virus RNA polymerase L protein. J Virol 2025; 99:e0208224. [PMID: 40066989 PMCID: PMC11998541 DOI: 10.1128/jvi.02082-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 04/16/2025] Open
Abstract
The rabies virus large (L) protein interacts with its cofactor phosphoprotein (P protein) to function as an RNA-dependent RNA polymerase (RdRp). The C-terminal domain (CTD) of the L protein plays a critical role in P protein binding. We previously reported that the highly conserved NPYNE sequence in the hydrophilic region of the CTD (positions 1929-1933 of the L protein [L1929-1933]) is important for both P protein binding and RdRp function. To elucidate the functional role of the CTD in detail, we examined the importance of each of the hydrophilic residues in the NPYNE sequence (underlined). A rabies virus mutant with Ala substitutions in these hydrophilic residues showed low replication capacity. Comprehensive analyses of a revertant of the mutant virus and a series of L protein mutants revealed that Asn at L1929 is crucial for both P protein binding and RdRp function. Analyses of the L protein mutants also showed that Asn at L1932 and Glu at L1933 have roles in RdRp function and P protein binding, respectively. Furthermore, we demonstrated that the NPYNE sequence is essential for stabilizing the L protein through the L-P interaction. In a previously determined L protein structure, all of the hydrophilic residues in the NPYNE sequence form the first α-helix in the CTD. Therefore, our findings indicate that this helix is important for P protein-binding ability, RdRp function, and stabilization of the L protein, thereby contributing to efficient viral replication. IMPORTANCE Although RNA-dependent RNA polymerase of rhabdoviruses, which is composed of the large (L) protein and its cofactor phosphoprotein (P protein), has a high potential as a target for therapeutics against the viruses, the relationship between the structure and molecular functions is poorly understood. In this study, we functionally examined the C-terminal domain (CTD) of the rabies virus L protein as a model for the rhabdovirus L protein. We showed that the first α-helix in the CTD is important for the P protein-binding ability, RdRp function, and stability of the L protein. Since in the L-P complex structure, this helix does not form an interface with the P protein, we provide here the first evidence of an indirect contribution of the L protein CTD to the L-P interaction in rhabdoviruses. The findings in this study will be useful for developing therapeutics targeting the L-P interaction.
Collapse
Affiliation(s)
- Fumiki Izumi
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo, Japan
| | - Machiko Makino
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Kento Nakagawa
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Li G, Du T, Wang J, Jie K, Ren Z, Zhang X, Zhang L, Wu S, Ru H. Structural insights into the RNA-dependent RNA polymerase complexes from highly pathogenic Marburg and Ebola viruses. Nat Commun 2025; 16:3080. [PMID: 40164610 PMCID: PMC11958740 DOI: 10.1038/s41467-025-58308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The Ebola and the Marburg viruses belong to the Filoviridae family, a group of filamentous, single-stranded, negative-sensed RNA viruses. Upon infection, uncontrolled propagation of the Ebola and the Marburg viruses causes severe hemorrhagic fevers with high mortality rates. The replication and transcription of viral genomes are mediated by a polymerase complex consisting of two proteins: L and its cofactor VP35. However, the molecular mechanism of filovirus RNA synthesis remains understudied due to the lack of high-resolution structures of L and VP35 complexes from these viruses. Here, we present the cryo-EM structures of the polymerase complexes for the Marburg virus and the Ebola virus at 2.7 Å and 3.1 Å resolutions respectively. Despite the similar assembly and overall structures between these two viruses, we identify virus-specific L-VP35 interactions. Our data show that intergeneric exchange of VP35 would diminish these interactions and prevent the formation of a functional chimeric polymerase complex between L protein and heterologous VP35. Additionally, we identify a contracted conformation of the Ebola virus polymerase structure, revealing the structural dynamics of the polymerase during RNA synthesis. These insights enhance our understanding of filovirus RNA synthesis mechanisms and may facilitate the development of antiviral drugs targeting filovirus polymerase.
Collapse
Affiliation(s)
- Guobao Li
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Molecular Cancer Biology, Zhejiang University, Hangzhou, China
| | - Tianjiao Du
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Molecular Cancer Biology, Zhejiang University, Hangzhou, China
| | - Jiening Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Kaiyue Jie
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Molecular Cancer Biology, Zhejiang University, Hangzhou, China
| | - Zhuolu Ren
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Molecular Cancer Biology, Zhejiang University, Hangzhou, China
| | - Xiaokang Zhang
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Long Zhang
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Molecular Cancer Biology, Zhejiang University, Hangzhou, China
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China.
| | - Heng Ru
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Molecular Cancer Biology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Carney SM, Grosse S, Yin Y, Tran MT, Kalin JH, Jacoby E, Fung A, Simmons N, Xie X, Bhaumik A, Carbajo RJ, Piassek M, Miller R, Hu L, Lemmens C, Lutter FH, Pieters S, Rombouts G, Vetrano I, Oehlrich D, Tomaso S, Lozada K, Garcia MO, Anson B, De Bruyn S, Smith-Monroy C, Neefs JM, Conceição-Neto N, Kesteleyn B, Fino R, Stoops B, van Vlijmen H, Patrick AN, Yu X, Wong V, Krosky DJ, Abeywickrema P, Ortiz-Meoz RF, Mason SW, Jin Z, Sharma S, Jonckers THM. DNA-Encoded Library Screen Identifies Novel Series of Respiratory Syncytial Virus Polymerase Inhibitors. J Med Chem 2025; 68:6407-6430. [PMID: 40042938 DOI: 10.1021/acs.jmedchem.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Respiratory syncytial virus (RSV) remains a public health burden due to unmet therapeutic needs. We recently reported the discovery of a non-nucleoside inhibitor of the RSV polymerase and characterized its binding to a novel pocket within the capping domain of the polymerase. Here, we describe our strategy to diversify the chemical matter targeting this site by screening our DNA-encoded chemical libraries, leading to the discovery of a novel and potent series of molecules that inhibits RSV polymerase's biochemical activity, as well as its viral replication in cells. Structural analysis via cryo-EM revealed novel contacts made within the capping domain binding pocket. By leveraging these structural insights for preliminary SAR exploration, we generated analogues for which potency and metabolic stability were improved more than 60- and 40-fold, respectively, over the initial hit. This work provides a path forward for further advanced SAR exploration and development of therapeutics against RSV.
Collapse
Affiliation(s)
- Sean M Carney
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | | | - Yanting Yin
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Minh T Tran
- Janssen Pharmaceutica N.V., Beerse 2340, Belgium
| | - Jay H Kalin
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Edgar Jacoby
- Janssen Pharmaceutica N.V., Beerse 2340, Belgium
| | - Amy Fung
- Janssen Research & Development, LLC, Johnson & Johnson Company, Brisbane, California 94005, United States
| | - Nicholas Simmons
- Janssen Research & Development, LLC, Johnson & Johnson Company, San Diego, California 92121, United States
| | - Xiaoming Xie
- Janssen Research & Development, LLC, Johnson & Johnson Company, San Diego, California 92121, United States
| | - Anusarka Bhaumik
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | | | - Madison Piassek
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Robyn Miller
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Lili Hu
- Janssen Pharmaceutica N.V., Beerse 2340, Belgium
| | | | | | | | | | | | | | - Sonia Tomaso
- Janssen Research & Development, LLC, Johnson & Johnson Company, Brisbane, California 94005, United States
| | - Kate Lozada
- Janssen Research & Development, LLC, Johnson & Johnson Company, Brisbane, California 94005, United States
| | - Miguel Osorio Garcia
- Janssen Research & Development, LLC, Johnson & Johnson Company, Brisbane, California 94005, United States
| | - Brandon Anson
- Janssen Research & Development, LLC, Johnson & Johnson Company, Brisbane, California 94005, United States
| | | | - Constance Smith-Monroy
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | | | | | | | - Roberto Fino
- Janssen Pharmaceutica N.V., Beerse 2340, Belgium
| | - Bart Stoops
- Janssen Pharmaceutica N.V., Beerse 2340, Belgium
| | | | - Aaron N Patrick
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Xiaodi Yu
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Victoria Wong
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Daniel J Krosky
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Pravien Abeywickrema
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Rodrigo F Ortiz-Meoz
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | - Stephen W Mason
- Janssen Research & Development, LLC, Johnson & Johnson Company, Brisbane, California 94005, United States
| | - Zhinan Jin
- Janssen Research & Development, LLC, Johnson & Johnson Company, Brisbane, California 94005, United States
| | - Sujata Sharma
- Janssen Research & Development, LLC, Johnson & Johnson Company, Spring House, Pennsylvania 19002, United States
| | | |
Collapse
|
6
|
Sala FA, Ditter K, Dybkov O, Urlaub H, Hillen HS. Structural basis of Nipah virus RNA synthesis. Nat Commun 2025; 16:2261. [PMID: 40050611 PMCID: PMC11885841 DOI: 10.1038/s41467-025-57219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
Nipah virus (NiV) is a non-segmented negative-strand RNA virus (nsNSV) with high pandemic potential, as it frequently causes zoonotic outbreaks and can be transmitted from human to human. Its RNA-dependent RNA polymerase (RdRp) complex, consisting of the L and P proteins, carries out viral genome replication and transcription and is therefore an attractive drug target. Here, we report cryo-EM structures of the NiV polymerase complex in the apo and in an early elongation state with RNA and incoming substrate bound. The structure of the apo enzyme reveals the architecture of the NiV L-P complex, which shows a high degree of similarity to other nsNSV polymerase complexes. The structure of the RNA-bound NiV L-P complex shows how the enzyme interacts with template and product RNA during early RNA synthesis and how nucleoside triphosphates are bound in the active site. Comparisons show that RNA binding leads to rearrangements of key elements in the RdRp core and to ordering of the flexible C-terminal domains of NiV L required for RNA capping. Taken together, these results reveal the first structural snapshots of an actively elongating nsNSV L-P complex and provide insights into the mechanisms of genome replication and transcription by NiV and related viruses.
Collapse
Affiliation(s)
- Fernanda A Sala
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katja Ditter
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Göttingen Center for Molecular Biosciences (GZMB), Research Group Structure and Function of Molecular Machines, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
7
|
Basse V, Wang Y, Rodrigues-Machado C, Henry C, Richard CA, Leyrat C, Galloux M. Regulation of respiratory syncytial virus nucleoprotein oligomerization by phosphorylation. J Biol Chem 2025; 301:108256. [PMID: 39909382 PMCID: PMC11910103 DOI: 10.1016/j.jbc.2025.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The negative-sense RNA genome of respiratory syncytial virus (RSV) is encapsidated by the viral nucleoprotein N, forming a left-handed helical nucleocapsid which serves as template for the viral polymerase. Specific oligomerization of N along the viral genome necessitates a switch of conformation of N, from the neosynthesized monomeric and RNA-free N protein, named N0, to N-RNA oligomers. Although the binding of the N-terminal part of RSV phosphoprotein P plays the role of chaperone to impair RNA binding to N, N0-P interaction alone is not sufficient to prevent N oligomerization. Here, we explored the potential role of post translational modifications that could participate in the stability of N0. Among the post translational modifications specifically identified on recombinant monomeric N, we validated the presence of a phosphorylation site on residue Y88 of N which modulates N oligomerization. Our results suggest that RSV N oligomerization depends on the regulation by post translational modifications.
Collapse
Affiliation(s)
- Vincent Basse
- Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Yao Wang
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Céline Henry
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay, INRAE, Jouy-en-Josas, France.
| |
Collapse
|
8
|
Li Z, Dong M, Chen Z, Zhang C, Jiang J, Liu M, Cui Q. Combining virus-based affinity ultrafiltration method with serum pharmacochemistry to identify the antiviral pharmacodynamic substances in licorice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:118978. [PMID: 39433166 DOI: 10.1016/j.jep.2024.118978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liorice (Glycyrrhiza uralensis Fisch.), a widely used Chinese herbal medicine, is frequently employed in clinical practice to treat viral pneumonia. However, the pharmacodynamic substances and mechanisms of action responsible for its antiviral effects against H1N1 and RSV remain unclear. AIM OF THE STUDY To investigate the antiviral effects of licorice against H1N1 and RSV. Building on this, we aimed to more comprehensively and accurately identify the pharmacodynamic substances in licorice responsible for its antiviral activity and mechanisms of action against these two viruses. MATERIALS AND METHODS Firstly, the antiviral effects of licorice against H1N1 and RSV were confirmed through in vivo and in vitro experiments. Then, a combination of virus-based affinity ultrafiltration method (VAUM) and serum pharmacochemistry were used to screen for pharmacological substances in licorice and identify their molecular targets against H1N1 and RSV. RESULTS The in vivo experiments showed that licorice effectively alleviates H1N1 and RSV induced weight loss and lung tissue damage in mice, while also reducing viral loads of H1N1 and RSV in the lungs. Subsequent in vitro experiments confirmed the presence of original compounds in licorice that directly inhibit H1N1 and RSV. By combining both methods, glycyrrhizic acid, glycyrrhetinic acid (GA), isoliquiritigenin (ISL), and glyasperin A (targeting the M2 ion channel) were ultimately identified as the pharmacodynamic substances in licorice responsible for anti-H1N1 activity. Additionally, licochalcone A (LCA) and glyasperin A, which target RSV surface proteins, were identified as the pharmacodynamic substances responsible for anti-RSV activity. CONCLUSIONS Traditional Chinese medicine (TCM) exerts its antiviral effects through a 'multi-component, multi-target' mechanism, which poses challenges for single active compound screening methods to adequately address. By integrating VAUM and serum pharmacochemistry for the first time, one approach focused on identifying compounds in TCM that directly bind to viral surface proteins, while the other targeted compounds that enter the bloodstream in their original form and exhibit antiviral activity. This provides a novel approach for studying the pharmacodynamic substances of antiviral effects in TCM.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Meiyue Dong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250355, China
| | - Zinuo Chen
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chengcheng Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiayu Jiang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Miaomiao Liu
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| | - Qinghua Cui
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| |
Collapse
|
9
|
Hu S, Kim H, Yang P, Yu Z, Ludeke B, Mobilia S, Pan J, Stratton M, Bian Y, Fearns R, Abraham J. Structural and functional analysis of the Nipah virus polymerase complex. Cell 2025; 188:688-703.e18. [PMID: 39837328 PMCID: PMC11813165 DOI: 10.1016/j.cell.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/01/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Nipah virus (NiV) is a bat-borne, zoonotic RNA virus that is highly pathogenic in humans. The NiV polymerase, which mediates viral genome replication and mRNA transcription, is a promising drug target. We determined the cryoelectron microscopy (cryo-EM) structure of the NiV polymerase complex, comprising the large protein (L) and phosphoprotein (P), and performed structural, biophysical, and in-depth functional analyses of the NiV polymerase. The L protein assembles with a long P tetrameric coiled-coil that is capped by a bundle of ⍺-helices that we show are likely dynamic in solution. Docking studies with a known L inhibitor clarify mechanisms of antiviral drug resistance. In addition, we identified L protein features that are required for both transcription and RNA replication and mutations that have a greater impact on RNA replication than on transcription. Our findings have the potential to aid in the rational development of drugs to combat NiV infection.
Collapse
Affiliation(s)
- Side Hu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Heesu Kim
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Pan Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zishuo Yu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Barbara Ludeke
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shawna Mobilia
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Junhua Pan
- Biomedical Research Institute and School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Margaret Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yuemin Bian
- School of Medicine, Shanghai University, Shanghai, China
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Medicine, Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA, USA; Center for Integrated Solutions in Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
10
|
Feng Z, Xie Z, Xu L. Current antiviral therapies and promising drug candidates against respiratory syncytial virus infection. Virol Sin 2025:S1995-820X(25)00003-3. [PMID: 39884359 DOI: 10.1016/j.virs.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common viruses leading to lower respiratory tract infections (LRTIs) in children and elderly individuals worldwide. Although significant progress in the prevention and treatment of RSV infection was made in 2023, with two anti-RSV vaccines and one monoclonal antibody approved by the FDA, there is still a lack of postinfection therapeutic drugs in clinical practice, especially for the pediatric population. In recent years, with an increasing understanding of the pathogenic mechanisms of RSV, drugs and drug candidates, have shown great potential for clinical application. In this review, we categorize and discuss promising anti-RSV drug candidates that have been in preclinical or clinical development over the last five years.
Collapse
Affiliation(s)
- Ziheng Feng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Lili Xu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
11
|
Sugrue RJ, Tan BH. The link between respiratory syncytial virus (RSV) morphogenesis and virus transmission: Towards a paradigm for understanding RSV transmission in the upper airway. Virology 2025; 604:110413. [PMID: 39869971 DOI: 10.1016/j.virol.2025.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
Respiratory syncytial virus (RSV) particle assembly occurs on the surface of infected cells at specialized membrane domain called lipid rafts. The mature RSV particles assemble as filamentous projections called virus filaments, and these structures form on the surface of many permissive cell types indicating that this is a robust feature of the RSV particle assembly. The virus filaments also form on nasal airway organoids systems providing evidence that these structures also have a clinical relevance. Virus filaments also form on cells infected with the closely related human metapneumovirus, suggesting that virus filament formation may be a common feature of assembly process for viruses within the Pneumoviridae family. During RSV infection these virus filaments mediate the localized cell-to-cell spread of virus infection, suggesting that they play an important role in virus transmission. The current understanding of the connection between virus filament formation and virus transmission during RSV infection is presented.
Collapse
Affiliation(s)
- Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| |
Collapse
|
12
|
Balıkçı E, Günl F, Carrique L, Keown JR, Fodor E, Grimes JM. Structure of the Nipah virus polymerase complex. EMBO J 2025; 44:563-586. [PMID: 39739115 PMCID: PMC11730344 DOI: 10.1038/s44318-024-00321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 01/02/2025] Open
Abstract
Nipah virus is a highly virulent zoonotic paramyxovirus causing severe respiratory and neurological disease. Despite its lethality, there is no approved treatment for Nipah virus infection. The viral polymerase complex, composed of the polymerase (L) and phosphoprotein (P), replicates and transcribes the viral RNA genome. Here, we describe structures of the Nipah virus L-P polymerase complex and the L-protein's Connecting Domain (CD). The cryo-electron microscopy L-P complex structure reveals the organization of the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L-protein, and shows how the P-protein, which forms a tetramer, interacts with the RdRp-domain of the L-protein. The crystal structure of the CD-domain alone reveals binding of three Mg ions. Modelling of this domain onto an AlphaFold 3 model of an RNA-L-P complex suggests a catalytic role for one Mg ion in mRNA capping. These findings offer insights into the structural details of the L-P polymerase complex and the molecular interactions between L-protein and P-protein, shedding light on the mechanisms of the replication machinery. This work will underpin efforts to develop antiviral drugs that target the polymerase complex of Nipah virus.
Collapse
Affiliation(s)
- Esra Balıkçı
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Franziska Günl
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Loïc Carrique
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Jeremy R Keown
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
13
|
Wang Y, Zhao L, Zhang Y, Wang Y, Tang J, Liu S, Gao H, Zhang X, Zinzula L, Kornberg RD, Zhang H. Cryo-EM structure of Nipah virus RNA polymerase complex. SCIENCE ADVANCES 2024; 10:eadr7116. [PMID: 39661676 PMCID: PMC11633731 DOI: 10.1126/sciadv.adr7116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Nipah virus, a member of the Paramyxoviridae family, is a highly pathogenic nonsegmented, negative-sense RNA virus (nsNSV) which causes severe neurological and respiratory illnesses in humans. There are no available drugs or vaccines to combat this virus. A complex of large polymerase protein (L) and phosphoprotein (P) of Nipah virus supports replication and transcription and affords a target for antiviral drug development. Structural information required for drug development is lacking. Here we report the 2.9-angstrom cryo-electron microscopy structure of the Nipah virus polymerase-phosphoprotein complex. The structure identifies conserved amino acids likely important for recognition of template RNA by nsNSVs and reveals the locations of mutation-prone sites among Nipah virus strains, which may facilitate the development of therapeutic agents against Nipah virus by targeting regions unaffected by these mutation sites.
Collapse
Affiliation(s)
- Yiru Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Lixia Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yi Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Yuhan Wang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jiao Tang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Simiao Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Huihan Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiaoxiao Zhang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Luca Zinzula
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Roger D. Kornberg
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heqiao Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
14
|
Peng Q, Dong Y, Jia M, Liu Q, Bi Y, Qi J, Shi Y. Cryo-EM structure of Nipah virus L-P polymerase complex. Nat Commun 2024; 15:10524. [PMID: 39627254 PMCID: PMC11615333 DOI: 10.1038/s41467-024-54994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Nipah virus (NiV) is a non-segmented, negative-strand (NNS) RNA virus, belonging to Paramyxoviridae. The RNA polymerase complex, composed of large (L) protein and tetrameric phosphoprotein (P), is responsible for genome transcription and replication by catalyzing NTP polymerization, mRNA capping and cap methylation. Here, we determine the cryo-electron microscopy (cryo-EM) structure of fully bioactive NiV L-P polymerase complex at a resolution of 3.19 Å. The L-P complex displays a conserved architecture like other NNS RNA virus polymerases and L interacts with the oligomerization domain and the extreme C-terminus region of P tetramer. Moreover, we elucidate that NiV is naturally resistant to the allosteric L-targeting inhibitor GHP-88309 due to the conformational change in the drug binding site. We also find that the non-nucleotide drug suramin can inhibit the NiV L-P polymerase activity at both the enzymatic and cellular levels. Our findings have greatly enhanced the molecular understanding of NiV genome replication and transcription and provided the rationale for broad-spectrum polymerase-targeted drug design.
Collapse
Affiliation(s)
- Qi Peng
- Beijing Life Science Academy, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingying Dong
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Shandong First Medical University, Jinan, China
| | - Mingzhu Jia
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qiannv Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- Beijing Life Science Academy, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- Beijing Life Science Academy, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, China.
- Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
15
|
Girma A. Biology of human respiratory syncytial virus: Current perspectives in immune response and mechanisms against the virus. Virus Res 2024; 350:199483. [PMID: 39396572 PMCID: PMC11513633 DOI: 10.1016/j.virusres.2024.199483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Human respiratory syncytial virus (hRSV) remains a leading cause of morbidity and mortality in infants, young children, and older adults. hRSV infection's limited treatment and vaccine options significantly increase bronchiolitis' morbidity rates. The severity and outcome of viral infection hinge on the innate immune response. Developing vaccines and identifying therapeutic interventions suitable for young children, older adults, and pregnant women relies on comprehending the molecular mechanisms of viral PAMP recognition, genetic factors of the inflammatory response, and antiviral defense. This review covers fundamental elements of hRSV biology, diagnosis, pathogenesis, and the immune response, highlighting prospective options for vaccine development.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
| |
Collapse
|
16
|
Hara K, Nantachit N, Watanabe H. Antiviral peptide targeting P protein oligomerization: proof of concept for mononegaviruses. J Gen Virol 2024; 105. [PMID: 39688901 DOI: 10.1099/jgv.0.002062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
In Mononegavirales, phosphoproteins (P) are essential polymerase cofactors, forming oligomers and interacting with viral components to facilitate replication. Previous studies have demonstrated that a P-derived peptide (PFr) from the respiratory syncytial virus (RSV), containing the oligomerization domain (OD) and C-terminal domain (CTD), effectively inhibits RSV replication. Here, we extend this approach to paramyxoviruses, including HPIV3, MeV and MuV. Customized PFrs exhibited potent inhibitory effects against their respective viruses, with IC50 values below 100 nM, while showing minimal cytotoxicity. These findings highlight the potential of targeting P oligomerization as a broad-spectrum antiviral strategy for paramyxoviruses and other mononegaviruses.
Collapse
Affiliation(s)
- Koyu Hara
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Nattika Nantachit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| |
Collapse
|
17
|
Wolf JD, Sirrine MR, Cox RM, Plemper RK. Structural basis of paramyxo- and pneumovirus polymerase inhibition by non-nucleoside small-molecule antivirals. Antimicrob Agents Chemother 2024; 68:e0080024. [PMID: 39162479 PMCID: PMC11459973 DOI: 10.1128/aac.00800-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Small-molecule antivirals can be used as chemical probes to stabilize transitory conformational stages of viral target proteins, facilitating structural analyses. Here, we evaluate allosteric pneumo- and paramyxovirus polymerase inhibitors that have the potential to serve as chemical probes and aid the structural characterization of short-lived intermediate conformations of the polymerase complex. Of multiple inhibitor classes evaluated, we discuss in-depth distinct scaffolds that were selected based on well-understood structure-activity relationships, insight into resistance profiles, biochemical characterization of the mechanism of action, and photoaffinity-based target mapping. Each class is thought to block structural rearrangements of polymerase domains albeit target sites and docking poses are distinct. This review highlights validated druggable targets in the paramyxo- and pneumovirus polymerase proteins and discusses discrete structural stages of the polymerase complexes required for bioactivity.
Collapse
Affiliation(s)
- Josef D. Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Michael R. Sirrine
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Robert M. Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Yang G, Wang D, Liu B. Structure of the Nipah virus polymerase phosphoprotein complex. Nat Commun 2024; 15:8673. [PMID: 39375338 PMCID: PMC11458586 DOI: 10.1038/s41467-024-52701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
The Nipah virus (NiV), a member of the Paramyxoviridae family, is notorious for its high fatality rate in humans. The RNA polymerase machinery of NiV, comprising the large protein L and the phosphoprotein P, is essential for viral replication. This study presents the 2.9-Å cryo-electron microscopy structure of the NiV L-P complex, shedding light on its assembly and functionality. The structure not only demonstrates the molecular details of the conserved N-terminal domain, RNA-dependent RNA polymerase (RdRp), and GDP polyribonucleotidyltransferase of the L protein, but also the intact central oligomerization domain and the C-terminal X domain of the P protein. The P protein interacts extensively with the L protein, forming an antiparallel β-sheet among the P protomers and with the fingers subdomain of RdRp. The flexible linker domain of one P promoter extends its contact with the fingers subdomain to reach near the nascent RNA exit, highlighting the distinct characteristic of the NiV L-P interface. This distinctive tetrameric organization of the P protein and its interaction with the L protein provide crucial molecular insights into the replication and transcription mechanisms of NiV polymerase, ultimately contributing to the development of effective treatments and preventive measures against this Paramyxoviridae family deadly pathogen.
Collapse
Affiliation(s)
- Ge Yang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
19
|
Bonneux B, Jacoby E, Ceconi M, Stobbelaar K, Delputte P, Herschke F. Direct-acting antivirals for RSV treatment, a review. Antiviral Res 2024; 229:105948. [PMID: 38972604 DOI: 10.1016/j.antiviral.2024.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Respiratory syncytial virus (RSV) causes respiratory disease and complications in infants, the elderly and the immunocompromised. While three vaccines and two prophylactic monoclonal antibodies are now available, only one antiviral, ribavirin, is currently approved for treatment. This review aims to summarize the current state of treatments directly targeting RSV. Two major viral processes are attractive for RSV-specific antiviral drug discovery and development as they play essential roles in the viral cycle: the entry/fusion process carried out by the fusion protein and the replication/transcription process carried out by the polymerase complex constituted of the L, P, N and M2-1 proteins. For each viral target resistance mutations to small molecules of different chemotypes seem to delineate definite binding pockets in the fusion proteins and in the large proteins. Elucidating the mechanism of action of these inhibitors thus helps to understand how the fusion and polymerase complexes execute their functions. While many inhibitors have been studied, few are currently in clinical development for RSV treatment: one is in phase III, three in phase II and two in phase I. Progression was halted for many others because of strategic decisions, low enrollment, safety, but also lack of efficacy. Lessons can be learnt from the halted programs to increase the success rate of the treatments currently in development.
Collapse
Affiliation(s)
- Brecht Bonneux
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium; Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Edgar Jacoby
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Martina Ceconi
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium
| | - Kim Stobbelaar
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium.
| | | |
Collapse
|
20
|
Grosse S, Cooymans L, Embrechts W, McGowan D, Jacoby E, Stoops B, Gupta K, Ackermann M, Alnajjar S, Guillemont J, Jin Z, Kesteleyn B, Matcha K, Sriboonyapirat P, Truong A, Van Den Berg J, Yu X, Herschke F, Roymans D, Raboisson P, Rigaux P, Jonckers THM. Discovery of gem-Dimethyl-hydroxymethylpyridine Derivatives as Potent Non-nucleoside RSV Polymerase Inhibitors. J Med Chem 2024; 67:13723-13736. [PMID: 39105710 DOI: 10.1021/acs.jmedchem.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Respiratory syncytial virus (RSV) is an RNA virus infecting the upper and lower respiratory tract and is recognized as a major respiratory health threat, particularly to older adults, immunocompromised individuals, and young children. Around 64 million children and adults are infected every year worldwide. Despite two vaccines and a new generation monoclonal antibody recently approved, no effective antiviral treatment is available. In this manuscript, we present the medicinal chemistry efforts resulting in the identification of compound 28 (JNJ-8003), a novel RSV non-nucleoside inhibitor displaying subnanomolar activity in vitro as well as prominent efficacy in mice and a neonatal lamb models.
Collapse
Affiliation(s)
- Sandrine Grosse
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Ludwig Cooymans
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Werner Embrechts
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | | | - Edgar Jacoby
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Bart Stoops
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kusum Gupta
- Neuron23 Inc. 343 Oyster Point Blvd, South San Francisco, California 94080, United States
| | | | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, U.K
| | | | - Zhinan Jin
- Janssen Pharmaceutica NV, Brisbane, California 94005, United States
| | - Bart Kesteleyn
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kiran Matcha
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | | | - Anh Truong
- Neuron23 Inc. 343 Oyster Point Blvd, South San Francisco, California 94080, United States
| | - Joke Van Den Berg
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Xiaodi Yu
- Janssen Pharmaceutica NV, Spring House, Pennsylvania 19477 United States
| | - Florence Herschke
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Dirk Roymans
- DNS Life Sciences Consulting, Brandhoefstraat 63, 2300 Turnhout, Belgium
| | - Pierre Raboisson
- Galapagos, General De Wittelaan L112, A3, 2800 Mechelen, Belgium
| | - Peter Rigaux
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Tim H M Jonckers
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| |
Collapse
|
21
|
Musa AO, Faber SR, Forrest K, Smith KP, Sengupta S, López CB. Identification of distinct genotypes in circulating RSV A strains based on variants in the virus replication-associated genes. J Virol 2024; 98:e0099024. [PMID: 39007617 PMCID: PMC11334426 DOI: 10.1128/jvi.00990-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of respiratory infection that often leads to hospitalization of infected younger children and older adults. RSV is classified into two strains, A and B, each with several subgroups or genotypes. One issue with the definition of these subgroups is the lack of a unified method of identification or genotyping. We propose that genotyping strategies based on the genes coding for replication-associated proteins could provide critical information on the replication capacity of the distinct subgroups, while clearly distinguishing genotypes. Here, we analyzed the virus replication-associated genes N, P, M2, and L from de novo assembled RSV A sequences obtained from 31 newly sequenced samples from hospitalized patients in Philadelphia and 78 additional publicly available sequences from different geographic locations within the United States. In-depth analysis and annotation of variants in the replication-associated proteins identified the polymerase protein L as a robust target for genotyping RSV subgroups. Importantly, our analysis revealed non-synonymous variations in L that were consistently accompanied by conserved changes in its co-factor P or the M2-2 protein, suggesting associations and interactions between specific domains of these proteins. Similar associations were seen among sequences of the related human metapneumovirus. These results highlight L as an alternative to other RSV genotyping targets and demonstrate the value of in-depth analyses and annotations of RSV sequences as it can serve as a foundation for subsequent in vitro and clinical studies on the efficiency of the polymerase and fitness of different virus isolates.IMPORTANCEGiven the historical heterogeneity of respiratory syncytial virus (RSV) and the disease it causes, there is a need to understand the properties of the circulating RSV strains each season. This information would benefit from an informative and consensus method of genotyping the virus. Here, we carried out a variant analysis that shows a pattern of specific variations among the replication-associated genes of RSV A across different seasons. Interestingly, these variation patterns, which were also seen in human metapneumovirus sequences, point to previously defined interactions of domains within these genes, suggesting co-variation in the replication-associated genes. Our results also suggest a genotyping strategy that can prove to be particularly important in understanding the genotype-phenotype correlation in the era of RSV vaccination, where selective pressure on the virus to evolve is anticipated. More importantly, the categorization of pneumoviruses based on these patterns may be of prognostic value.
Collapse
Affiliation(s)
- Abdulafiz O. Musa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sydney R. Faber
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kaitlyn Forrest
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kenneth P. Smith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Infectious Disease Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shaon Sengupta
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Carolina B. López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
22
|
Kleiner VA, Fearns R. How does the polymerase of non-segmented negative strand RNA viruses commit to transcription or genome replication? J Virol 2024; 98:e0033224. [PMID: 39078194 PMCID: PMC11334523 DOI: 10.1128/jvi.00332-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
The Mononegavirales, or non-segmented negative-sense RNA viruses (nsNSVs), includes significant human pathogens, such as respiratory syncytial virus, parainfluenza virus, measles virus, Ebola virus, and rabies virus. Although these viruses differ widely in their pathogenic properties, they are united by each having a genome consisting of a single strand of negative-sense RNA. Consistent with their shared genome structure, the nsNSVs have evolved similar ways to transcribe their genome into mRNAs and replicate it to produce new genomes. Importantly, both mRNA transcription and genome replication are performed by a single virus-encoded polymerase. A fundamental and intriguing question is: how does the nsNSV polymerase commit to being either an mRNA transcriptase or a replicase? The polymerase must become committed to one process or the other either before it interacts with the genome template or in its initial interactions with the promoter sequence at the 3´ end of the genomic RNA. This review examines the biochemical, molecular biology, and structural biology data regarding the first steps of transcription and RNA replication that have been gathered over several decades for different families of nsNSVs. These findings are discussed in relation to possible models that could explain how an nsNSV polymerase initiates and commits to either transcription or genome replication.
Collapse
Affiliation(s)
- Victoria A. Kleiner
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
25
|
Siegel DS, Hui HC, Pitts J, Vermillion MS, Ishida K, Rautiola D, Keeney M, Irshad H, Zhang L, Chun K, Chin G, Goyal B, Doerffler E, Yang H, Clarke MO, Palmiotti C, Vijjapurapu A, Riola NC, Stray K, Murakami E, Ma B, Wang T, Zhao X, Xu Y, Lee G, Marchand B, Seung M, Nayak A, Tomkinson A, Kadrichu N, Ellis S, Barauskas O, Feng JY, Perry JK, Perron M, Bilello JP, Kuehl PJ, Subramanian R, Cihlar T, Mackman RL. Discovery of GS-7682, a Novel 4'-Cyano-Modified C-Nucleoside Prodrug with Broad Activity against Pneumo- and Picornaviruses and Efficacy in RSV-Infected African Green Monkeys. J Med Chem 2024. [PMID: 39018526 DOI: 10.1021/acs.jmedchem.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Acute respiratory viral infections, such as pneumovirus and respiratory picornavirus infections, exacerbate disease in COPD and asthma patients. A research program targeting respiratory syncytial virus (RSV) led to the discovery of GS-7682 (1), a novel phosphoramidate prodrug of a 4'-CN-4-aza-7,9-dideazaadenosine C-nucleoside GS-646089 (2) with broad antiviral activity against RSV (EC50 = 3-46 nM), human metapneumovirus (EC50 = 210 nM), human rhinovirus (EC50 = 54-61 nM), and enterovirus (EC50 = 83-90 nM). Prodrug optimization for cellular potency and lung cell metabolism identified 5'-methyl [(S)-hydroxy(phenoxy)phosphoryl]-l-alaninate in combination with 2',3'-diisobutyrate promoieties as being optimal for high levels of intracellular triphosphate formation in vitro and in vivo. 1 demonstrated significant reductions of viral loads in the lower respiratory tract of RSV-infected African green monkeys when administered once daily via intratracheal nebulized aerosol. Together, these findings support additional evaluation of 1 and its analogues as potential therapeutics for pneumo- and picornaviruses.
Collapse
Affiliation(s)
- Dustin S Siegel
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hon C Hui
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Jared Pitts
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Meghan S Vermillion
- Gilead Sciences, Inc., Foster City, California 94404, United States
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Kazuya Ishida
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Davin Rautiola
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michael Keeney
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hammad Irshad
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Lijun Zhang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Kwon Chun
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gregory Chin
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bindu Goyal
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Edward Doerffler
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hai Yang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michael O Clarke
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Chris Palmiotti
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Arya Vijjapurapu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Nicholas C Riola
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Kirsten Stray
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Eisuke Murakami
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bin Ma
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Ting Wang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Xiaofeng Zhao
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Yili Xu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gary Lee
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bruno Marchand
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Minji Seung
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Arabinda Nayak
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Adrian Tomkinson
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Nani Kadrichu
- Inspired - Pulmonary Solutions, San Carlos, California 94070, United States
| | - Scott Ellis
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Ona Barauskas
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Jason K Perry
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michel Perron
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - John P Bilello
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Philip J Kuehl
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Raju Subramanian
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Tomas Cihlar
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | | |
Collapse
|
26
|
Sibert BS, Kim JY, Yang JE, Ke Z, Stobart CC, Moore ML, Wright ER. Assembly of respiratory syncytial virus matrix protein lattice and its coordination with fusion glycoprotein trimers. Nat Commun 2024; 15:5923. [PMID: 39004634 PMCID: PMC11247094 DOI: 10.1038/s41467-024-50162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory syncytial virus (RSV) is an enveloped, filamentous, negative-strand RNA virus that causes significant respiratory illness worldwide. RSV vaccines are available, however there is still significant need for research to support the development of vaccines and therapeutics against RSV and related Mononegavirales viruses. Individual virions vary in size, with an average diameter of ~130 nm and ranging from ~500 nm to over 10 µm in length. Though the general arrangement of structural proteins in virions is known, we use cryo-electron tomography and sub-tomogram averaging to determine the molecular organization of RSV structural proteins. We show that the peripheral membrane-associated RSV matrix (M) protein is arranged in a packed helical-like lattice of M-dimers. We report that RSV F glycoprotein is frequently observed as pairs of trimers oriented in an anti-parallel conformation to support potential interactions between trimers. Our sub-tomogram averages indicate the positioning of F-trimer pairs is correlated with the underlying M lattice. These results provide insight into RSV virion organization and may aid in the development of RSV vaccines and anti-viral targets.
Collapse
Affiliation(s)
- Bryan S Sibert
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Joseph Y Kim
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Jie E Yang
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Zunlong Ke
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | | | - Elizabeth R Wright
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
27
|
Bonneux B, Shareef A, Tcherniuk S, Anson B, de Bruyn S, Verheyen N, Thys K, Conceição-Neto N, Van Ginderen M, Kwanten L, Ysebaert N, Vranckx L, Peeters E, Lanckacker E, Gallup JM, Sitthicharoenchai P, Alnajjar S, Ackermann MR, Adhikary S, Bhaumik A, Patrick A, Fung A, Sutto-Ortiz P, Decroly E, Mason SW, Lançois D, Deval J, Jin Z, Eléouët JF, Fearns R, Koul A, Roymans D, Rigaux P, Herschke F. JNJ-7184, a respiratory syncytial virus inhibitor targeting the connector domain of the viral polymerase. Antiviral Res 2024; 227:105907. [PMID: 38772503 DOI: 10.1016/j.antiviral.2024.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains. Resistance selection and hydrogen-deuterium exchange experiments suggest JNJ-7184 binds RSV-L in the connector domain. JNJ-7184 prevents RSV replication and transcription by inhibiting initiation or early elongation. JNJ-7184 is effective in air-liquid interface cultures and therapeutically in neonatal lambs, acting to drastically reverse the appearance of lung pathology.
Collapse
Affiliation(s)
- Brecht Bonneux
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610 Wilrijk, Belgium; Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Afzaal Shareef
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires (VIM, UMR892), INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Brandon Anson
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Suzanne de Bruyn
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Nick Verheyen
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Kim Thys
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | - Leen Kwanten
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Nina Ysebaert
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luc Vranckx
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Elien Peeters
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ellen Lanckacker
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | | | | | - Suraj Adhikary
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Anusarka Bhaumik
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Aaron Patrick
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Amy Fung
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Priscila Sutto-Ortiz
- AFMB, Aix-Marseille University, CNRS UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Etienne Decroly
- AFMB, Aix-Marseille University, CNRS UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Stephen W Mason
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | | | - Jerome Deval
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Zhinan Jin
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (VIM, UMR892), INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anil Koul
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Dirk Roymans
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Peter Rigaux
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | |
Collapse
|
28
|
Oraby A, Bilawchuk L, West FG, Marchant DJ. Structure-Based Discovery of Allosteric Inhibitors Targeting a New Druggable Site in the Respiratory Syncytial Virus Polymerase. ACS OMEGA 2024; 9:22213-22229. [PMID: 38799318 PMCID: PMC11112712 DOI: 10.1021/acsomega.4c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infections for which effective treatment options remain limited. Herein, we employed a computational structure-based design strategy aimed at identifying potential targets for a new class of allosteric inhibitors. Our investigation led to the discovery of a previously undisclosed allosteric binding site within the RSV polymerase, the large (L) protein. This discovery was achieved through a combination of virtual screening and molecular dynamics simulations. Subsequently, we identified two inhibitors, 6a and 10b, which both exhibited promising antiviral activity in the low micromolar range. Resistance profiling revealed a distinctive pattern in how RSV evaded treatment with this class of inhibitors. This pattern strongly suggested that this class of small molecules was targeting a new binding site in the RSV L protein, aligning with the computational predictions made in our study. This study paves the way for the development of more potent inhibitors for combating RSV infections by targeting a new druggable pocket within the RdRp which does not overlap with previously known resistance sites.
Collapse
Affiliation(s)
- Ahmed
K. Oraby
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department
of Pharmaceutical Organic Chemistry, College of Pharmaceutical Sciences
and Drug Manufacturing, Misr University
for Science and Technology, 6th
of October City P.O. Box 77,Egypt
| | - Leanne Bilawchuk
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Frederick G. West
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - David J. Marchant
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
29
|
Palazzotti D, Sguilla M, Manfroni G, Cecchetti V, Astolfi A, Barreca ML. Small Molecule Drugs Targeting Viral Polymerases. Pharmaceuticals (Basel) 2024; 17:661. [PMID: 38794231 PMCID: PMC11124969 DOI: 10.3390/ph17050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Small molecules that specifically target viral polymerases-crucial enzymes governing viral genome transcription and replication-play a pivotal role in combating viral infections. Presently, approved polymerase inhibitors cover nine human viruses, spanning both DNA and RNA viruses. This review provides a comprehensive analysis of these licensed drugs, encompassing nucleoside/nucleotide inhibitors (NIs), non-nucleoside inhibitors (NNIs), and mutagenic agents. For each compound, we describe the specific targeted virus and related polymerase enzyme, the mechanism of action, and the relevant bioactivity data. This wealth of information serves as a valuable resource for researchers actively engaged in antiviral drug discovery efforts, offering a complete overview of established strategies as well as insights for shaping the development of next-generation antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (D.P.); (M.S.); (G.M.); (V.C.); (A.A.)
| |
Collapse
|
30
|
Li T, Liu M, Gu Z, Su X, Liu Y, Lin J, Zhang Y, Shen QT. Structures of the mumps virus polymerase complex via cryo-electron microscopy. Nat Commun 2024; 15:4189. [PMID: 38760379 PMCID: PMC11101452 DOI: 10.1038/s41467-024-48389-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state. The other conformation has the appendage averaged out, which is inaccessible to MTase. In both conformations, parallel P tetramers are revealed around MuV L, which, together with structures of other nsNSVs, demonstrates the diverse origins of the L-binding X domain of P. Our study links varying structures of nsNSV polymerase complexes with genome replication and transcription and points to a sliding model for polymerase complexes to advance along the RNA templates.
Collapse
Affiliation(s)
- Tianhao Li
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mingdong Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhanxi Gu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Su
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yunhui Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qing-Tao Shen
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
31
|
Musa AO, Faber SR, Forrest K, Smith KP, Sengupta S, López CB. Identification of distinct genotypes in circulating RSV A strains based on variants on the virus replication-associated genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590570. [PMID: 38712045 PMCID: PMC11071361 DOI: 10.1101/2024.04.22.590570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Respiratory syncytial virus is a common cause of respiratory infection that often leads to hospitalization of infected younger children and older adults. RSV is classified into two strains, A and B, each with several subgroups or genotypes. One issue with the definition of these subgroups is the lack of a unified method of identification or genotyping. We propose that genotyping strategies based on the genes coding for replication-associated proteins could provide critical information on the replication capacity of the distinct subgroup, while clearly distinguishing genotypes. Here, we analyzed the virus replication-associated genes N, P, M2, and L from de novo assembled RSV A sequences obtained from 31 newly sequenced samples from hospitalized patients in Philadelphia and 78 additional publicly available sequences from different geographic locations within the US. In-depth analysis and annotation of the protein variants in L and the other replication-associated proteins N, P, M2-1, and M2-2 identified the polymerase protein L as a robust target for genotyping RSV subgroups. Importantly, our analysis revealed non-synonymous variations in L that were consistently accompanied by conserved changes in its co-factor P or the M2-2 protein, suggesting associations and interactions between specific domains of these proteins. These results highlight L as an alternative to other RSV genotyping targets and demonstrate the value of in-depth analyses and annotations of RSV sequences as it can serve as a foundation for subsequent in vitro and clinical studies on the efficiency of the polymerase and fitness of different virus isolates.
Collapse
Affiliation(s)
- Abdulafiz O. Musa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sydney R. Faber
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kaitlyn Forrest
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kenneth P. Smith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Infectious Disease Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shaon Sengupta
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Carolina B. López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
32
|
Xie J, Ouizougun-Oubari M, Wang L, Zhai G, Wu D, Lin Z, Wang M, Ludeke B, Yan X, Nilsson T, Gao L, Huang X, Fearns R, Chen S. Structural basis for dimerization of a paramyxovirus polymerase complex. Nat Commun 2024; 15:3163. [PMID: 38605025 PMCID: PMC11009304 DOI: 10.1038/s41467-024-47470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
The transcription and replication processes of non-segmented, negative-strand RNA viruses (nsNSVs) are catalyzed by a multi-functional polymerase complex composed of the large protein (L) and a cofactor protein, such as phosphoprotein (P). Previous studies have shown that the nsNSV polymerase can adopt a dimeric form, however, the structure of the dimer and its function are poorly understood. Here we determine a 2.7 Å cryo-EM structure of human parainfluenza virus type 3 (hPIV3) L-P complex with the connector domain (CD') of a second L built, while reconstruction of the rest of the second L-P obtains a low-resolution map of the ring-like L core region. This study reveals detailed atomic features of nsNSV polymerase active site and distinct conformation of hPIV3 L with a unique β-strand latch. Furthermore, we report the structural basis of L-L dimerization, with CD' located at the putative template entry of the adjoining L. Disruption of the L-L interface causes a defect in RNA replication that can be overcome by complementation, demonstrating that L dimerization is necessary for hPIV3 genome replication. These findings provide further insight into how nsNSV polymerases perform their functions, and suggest a new avenue for rational drug design.
Collapse
Affiliation(s)
- Jin Xie
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Mohamed Ouizougun-Oubari
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Li Wang
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Guanglei Zhai
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Daitze Wu
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Zhaohu Lin
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China
| | - Manfu Wang
- Wuxi Biortus Biosciences Co. Ltd., 214437, Jiangyin, Jiangsu, China
| | - Barbara Ludeke
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Xiaodong Yan
- Wuxi Biortus Biosciences Co. Ltd., 214437, Jiangyin, Jiangsu, China
| | - Tobias Nilsson
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Lu Gao
- Roche Pharma Research and Early Development, Infectious Diseases, Roche Innovation Center Shanghai, 201203, Shanghai, China.
| | - Xinyi Huang
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China.
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
| | - Shuai Chen
- Roche Pharma Research and Early Development, Lead Discovery, Roche Innovation Center Shanghai, 201203, Shanghai, China.
| |
Collapse
|
33
|
Korsun N, Trifonova I, Madzharova I, Alexiev I, Uzunova I, Ivanov I, Velikov P, Tcherveniakova T, Christova I. Resurgence of respiratory syncytial virus with dominance of RSV-B during the 2022-2023 season. Front Microbiol 2024; 15:1376389. [PMID: 38628867 PMCID: PMC11019023 DOI: 10.3389/fmicb.2024.1376389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Background Respiratory syncytial virus (RSV) is a common cause of upper and lower respiratory tract infections. This study aimed to explore the prevalence of respiratory syncytial virus (RSV) and other respiratory viruses in Bulgaria, characterize the genetic diversity of RSV strains, and perform amino acid sequence analyses of RSV surface and internal proteins. Methods Clinical and epidemiological data and nasopharyngeal swabs were prospectively collected from patients with acute respiratory infections between October 2020 and May 2023. Real-time PCR for 13 respiratory viruses, whole-genome sequencing, phylogenetic, and amino acid analyses were performed. Results This study included three epidemic seasons (2020-2021, 2021-2022, and 2022-2023) from week 40 of the previous year to week 20 of the following year. Of the 3,047 patients examined, 1,813 (59.5%) tested positive for at least one viral respiratory pathogen. RSV was the second most detected virus (10.9%) after SARS-CoV-2 (22%). Coinfections between RSV and other respiratory viruses were detected in 68 cases, including 14 with SARS-CoV-2. After two seasons of low circulation, RSV activity increased significantly during the 2022-2023 season. The detection rates of RSV were 3.2, 6.6, and 13.7% in the first, second, and third seasons, respectively. RSV was the most common virus found in children under 5 years old with bronchiolitis (40%) and pneumonia (24.5%). RSV-B drove the 2022-2023 epidemic. Phylogenetic analysis indicated that the sequenced RSV-B strains belonged to the GB5.0.5a and GB5.0.6a genotypes. Amino acid substitutions in the surface and internal proteins, including the F protein antigenic sites were identified compared to the BA prototype strain. Conclusion This study revealed a strong resurgence of RSV in the autumn of 2022 after the lifting of anti-COVID-19 measures, the leading role of RSV as a causative agent of serious respiratory illnesses in early childhood, and relatively low genetic diversity in circulating RSV strains.
Collapse
Affiliation(s)
- Neli Korsun
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivelina Trifonova
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iveta Madzharova
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivaylo Alexiev
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Ivan Ivanov
- Department of Infectious Diseases, Medical University, Sofia, Bulgaria
| | - Petar Velikov
- Department of Infectious Diseases, Medical University, Sofia, Bulgaria
| | | | - Iva Christova
- National Laboratory “Influenza and ARI”, Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
34
|
De Ávila-Arias M, Villarreal-Camacho JL, Cadena-Cruz C, Hurtado-Gómez L, Costello HM, Rodriguez A, Burgos-Florez F, Bettin A, Kararoudi MN, Muñoz A, Peeples ME, San-Juan-Vergara H. Exploring the secrets of virus entry: the first respiratory syncytial virus carrying beta lactamase. Front Microbiol 2024; 15:1339569. [PMID: 38455070 PMCID: PMC10919290 DOI: 10.3389/fmicb.2024.1339569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Background Respiratory Syncytial Virus (RSV) presents a significant health threat, especially to young children. In-depth understanding of RSV entry mechanisms is essential for effective antiviral development. This study introduces an innovative RSV variant, featuring the fusion of the beta-lactamase (BlaM) enzyme with the RSV-P phosphoprotein, providing a versatile tool for dissecting viral entry dynamics. Methods Using the AlphaFold2 algorithm, we modeled the tertiary structure of the P-BlaM chimera, revealing structural similarities with both RSV-P and BlaM. Functional assessments, utilizing flow cytometry, quantified beta-lactamase activity and GFP expression in infected bronchial epithelial cells. Western blot analysis confirmed the integrity of P-BlaM within virions. Results The modeled P-BlaM chimera exhibited structural parallels with RSV-P and BlaM. Functional assays demonstrated robust beta-lactamase activity in recombinant virions, confirming successful P-BlaM incorporation as a structural protein. Quercetin, known for its antiviral properties, impeded viral entry by affecting virion fusion. Additionally, Ulixertinib, an ERK-1/2 inhibitor, significantly curtailed viral entry, implicating ERK-1/2 pathway signaling. Conclusions Our engineered RSV-P-BlaM chimera emerges as a valuable tool, illuminating RSV entry mechanisms. Structural and functional analyses unveil potential therapeutic targets. Quercetin and Ulixertinib, identified as distinct stage inhibitors, show promise for targeted antiviral strategies. Time-of-addition assays pinpoint quercetin's specific interference stage, advancing our comprehension of RSV entry and guiding future antiviral developments.
Collapse
Affiliation(s)
- Marcio De Ávila-Arias
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | - Jose Luis Villarreal-Camacho
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Christian Cadena-Cruz
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Leidy Hurtado-Gómez
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | - Heather M. Costello
- Genomics Services Laboratory, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Alexander Rodriguez
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | - Francisco Burgos-Florez
- Programa de regencia en farmacia, grupo de investigación creatividad e innovación tecnológica, Corporación tecnológica Indoamérica, Barranquilla, Colombia
- Escuela de Pregrado, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede La Paz, Cesar, Colombia
| | - Alfonso Bettin
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Amner Muñoz
- Departamento de Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Mark E. Peeples
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Homero San-Juan-Vergara
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| |
Collapse
|
35
|
Zou G, Cao S, Gao Z, Yie J, Wu JZ. Current state and challenges in respiratory syncytial virus drug discovery and development. Antiviral Res 2024; 221:105791. [PMID: 38160942 DOI: 10.1016/j.antiviral.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections (LRTI) in young children and elderly people worldwide. Recent significant progress in our understanding of the structure and function of RSV proteins has led to the discovery of several clinical candidates targeting RSV fusion and replication. These include both the development of novel small molecule interventions and the isolation of potent monoclonal antibodies. In this review, we summarize the state-of-the-art of RSV drug discovery, with a focus on the characteristics of the candidates that reached the clinical stage of development. We also discuss the lessons learned from failed and discontinued clinical developments and highlight the challenges that remain for development of RSV therapies.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China.
| | - Sushan Cao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhao Gao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Junming Yie
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jim Zhen Wu
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| |
Collapse
|
36
|
Cao D, Gao Y, Chen Z, Gooneratne I, Roesler C, Mera C, D'Cunha P, Antonova A, Katta D, Romanelli S, Wang Q, Rice S, Lemons W, Ramanathan A, Liang B. Structures of the promoter-bound respiratory syncytial virus polymerase. Nature 2024; 625:611-617. [PMID: 38123676 PMCID: PMC10794133 DOI: 10.1038/s41586-023-06867-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
The respiratory syncytial virus (RSV) polymerase is a multifunctional RNA-dependent RNA polymerase composed of the large (L) protein and the phosphoprotein (P). It transcribes the RNA genome into ten viral mRNAs and replicates full-length viral genomic and antigenomic RNAs1. The RSV polymerase initiates RNA synthesis by binding to the conserved 3'-terminal RNA promoters of the genome or antigenome2. However, the lack of a structure of the RSV polymerase bound to the RNA promoter has impeded the mechanistic understanding of RSV RNA synthesis. Here we report cryogenic electron microscopy structures of the RSV polymerase bound to its genomic and antigenomic viral RNA promoters, representing two of the first structures of an RNA-dependent RNA polymerase in complex with its RNA promoters in non-segmented negative-sense RNA viruses. The overall structures of the promoter-bound RSV polymerases are similar to that of the unbound (apo) polymerase. Our structures illustrate the interactions between the RSV polymerase and the RNA promoters and provide the structural basis for the initiation of RNA synthesis at positions 1 and 3 of the RSV promoters. These structures offer a deeper understanding of the pre-initiation state of the RSV polymerase and could aid in antiviral research against RSV.
Collapse
Affiliation(s)
- Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhenhang Chen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Inesh Gooneratne
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Claire Roesler
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Cristopher Mera
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul D'Cunha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Antonova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Deepak Katta
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Romanelli
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Qi Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Samantha Rice
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Wesley Lemons
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Anita Ramanathan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
37
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
38
|
Whitehead JD, Decool H, Leyrat C, Carrique L, Fix J, Eléouët JF, Galloux M, Renner M. Structure of the N-RNA/P interface indicates mode of L/P recruitment to the nucleocapsid of human metapneumovirus. Nat Commun 2023; 14:7627. [PMID: 37993464 PMCID: PMC10665349 DOI: 10.1038/s41467-023-43434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
Human metapneumovirus (HMPV) is a major cause of respiratory illness in young children. The HMPV polymerase (L) binds an obligate cofactor, the phosphoprotein (P). During replication and transcription, the L/P complex traverses the viral RNA genome, which is encapsidated within nucleoproteins (N). An essential interaction between N and a C-terminal region of P tethers the L/P polymerase to the template. This N-P interaction is also involved in the formation of cytoplasmic viral factories in infected cells, called inclusion bodies. To define how the polymerase component P recognizes N-encapsidated RNA (N-RNA) we employed cryogenic electron microscopy (cryo-EM) and molecular dynamics simulations, coupled to activity assays and imaging of inclusion bodies in cells. We report a 2.9 Å resolution structure of a triple-complex between multimeric N, bound to both RNA and the C-terminal region of P. Furthermore, we also present cryo-EM structures of assembled N in different oligomeric states, highlighting the plasticity of N. Combined with our functional assays, these structural data delineate in molecular detail how P attaches to N-RNA whilst retaining substantial conformational dynamics. Moreover, the N-RNA-P triple complex structure provides a molecular blueprint for the design of therapeutics to potentially disrupt the attachment of L/P to its template.
Collapse
Affiliation(s)
- Jack D Whitehead
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Hortense Decool
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Loic Carrique
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenna Fix
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| | - Max Renner
- Department of Chemistry, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
39
|
Merritt TN, Pei J, Leung DW. Pathogenicity and virulence of human respiratory syncytial virus: Multifunctional nonstructural proteins NS1 and NS2. Virulence 2023:2283897. [PMID: 37964591 DOI: 10.1080/21505594.2023.2283897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is a major cause of acute lower respiratory tract infections in children under the age of two as well as in the elderly and immunocompromised worldwide. Despite its discovery over 60 years ago and the global impact on human health, limited specific and effective prophylactic or therapeutic options have been available for hRSV infections. Part of the lack of treatment options is attributed to the legacy of vaccine failure in the 1960s using a formalin-inactivated RSV (FI-RSV), which led to enhancement of disease post exposure to hRSV infection and hampered subsequent development of vaccine candidates. Recent FDA approval of a vaccine for older adults and impending approval for a maternal vaccine are major advancements but leaves children between 6 months and 5 years of age unprotected. Part of this limitation can be attributed to a lack of complete understanding of the factors that contribute to hRSV pathogenesis. The nonstructural proteins NS1 and NS2 are multifunctional virulence factors that are unique to hRSV and that play critical roles during hRSV infection, including antagonizing interferon (IFN) signalling to modulate host responses to hRSV infection. However, the molecular mechanisms by which the nonstructural proteins mediate their IFN inhibitory functions have not been completely defined. Current progress on the characterization of NS1 and NS2 during infection provides deeper insight into their roles. Furthermore, reverse genetics systems for hRSV provide a viable strategy to generate attenuated viruses by introduction of select mutations while maintaining immunogenicity required to elicit a long-term protective response. Here we will review the current state of knowledge of the nonstructural proteins, their contributions to RSV pathogenesis, and their potential as targets for therapeutic development.
Collapse
Affiliation(s)
- Trudy N Merritt
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingjing Pei
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
40
|
Yu X, Abeywickrema P, Bonneux B, Behera I, Anson B, Jacoby E, Fung A, Adhikary S, Bhaumik A, Carbajo RJ, De Bruyn S, Miller R, Patrick A, Pham Q, Piassek M, Verheyen N, Shareef A, Sutto-Ortiz P, Ysebaert N, Van Vlijmen H, Jonckers THM, Herschke F, McLellan JS, Decroly E, Fearns R, Grosse S, Roymans D, Sharma S, Rigaux P, Jin Z. Structural and mechanistic insights into the inhibition of respiratory syncytial virus polymerase by a non-nucleoside inhibitor. Commun Biol 2023; 6:1074. [PMID: 37865687 PMCID: PMC10590419 DOI: 10.1038/s42003-023-05451-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
The respiratory syncytial virus polymerase complex, consisting of the polymerase (L) and phosphoprotein (P), catalyzes nucleotide polymerization, cap addition, and cap methylation via the RNA dependent RNA polymerase, capping, and Methyltransferase domains on L. Several nucleoside and non-nucleoside inhibitors have been reported to inhibit this polymerase complex, but the structural details of the exact inhibitor-polymerase interactions have been lacking. Here, we report a non-nucleoside inhibitor JNJ-8003 with sub-nanomolar inhibition potency in both antiviral and polymerase assays. Our 2.9 Å resolution cryo-EM structure revealed that JNJ-8003 binds to an induced-fit pocket on the capping domain, with multiple interactions consistent with its tight binding and resistance mutation profile. The minigenome and gel-based de novo RNA synthesis and primer extension assays demonstrated that JNJ-8003 inhibited nucleotide polymerization at the early stages of RNA transcription and replication. Our results support that JNJ-8003 binding modulates a functional interplay between the capping and RdRp domains, and this molecular insight could accelerate the design of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Xiaodi Yu
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA.
| | - Pravien Abeywickrema
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Brecht Bonneux
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Ishani Behera
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA
| | - Brandon Anson
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA
| | - Edgar Jacoby
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | - Amy Fung
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA
| | - Suraj Adhikary
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Anusarka Bhaumik
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Rodrigo J Carbajo
- Johnson & Johnson Innovative Medicine, Janssen-Cilag, Discovery Chemistry S.A. Río Jarama, 75A, 45007, Toledo, Spain
| | | | - Robyn Miller
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Aaron Patrick
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Quyen Pham
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA
| | - Madison Piassek
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Nick Verheyen
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
| | - Afzaal Shareef
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | | | - Nina Ysebaert
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
| | | | | | | | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR 7257, Marseille, France
| | - Rachel Fearns
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | | | - Dirk Roymans
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
| | - Sujata Sharma
- Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, PA, 19477, USA
| | - Peter Rigaux
- Janssen Infectious Diseases and Vaccines, 2340, Beerse, Belgium
| | - Zhinan Jin
- Johnson & Johnson Innovative Medicine, Brisbane, CA, 94005, USA.
| |
Collapse
|
41
|
Abduljalil JM, Elfiky AA, Sayed ESTA, AlKhazindar MM. In silico structural elucidation of Nipah virus L protein and targeting RNA-dependent RNA polymerase domain by nucleoside analogs. J Biomol Struct Dyn 2023; 41:8215-8229. [PMID: 36205638 DOI: 10.1080/07391102.2022.2130987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/25/2022] [Indexed: 10/10/2022]
Abstract
The large (L) protein of Mononegavirales is a multi-domain protein that performs transcription and genome replication. One of the important domains in L is the RNA-dependent RNA polymerase (RdRp), a promising target for antiviral drugs. In this work, we employed rigorous computational comparative modeling to predict the structure of L protein of Nipah virus (NiV). The RdRp domain was targeted by a panel of nucleotide analogs, previously reported to inhibit different viral RNA polymerases, using molecular docking. Best binder compounds were subjected to molecular dynamics simulation to validate their binding. Molecular mechanics/generalized-born surface area (MM/GBSA) calculations estimated the binding free energy. The predicted model of NiV L has an excellent quality as judged by physics- and knowledge-based validation tests. Galidesivir, AT-9010 and Norov-29 scored the top nucleotide analogs to bind to the RdRp. Their binding free energies obtained by MM/GBSA (-31.01 ± 3.9 to -38.37 ± 4.8 kcal/mol) ranked Norov-29 as the best potential inhibitor. Purine nucleotide analogs are expected to harbor the scaffold for an effective drug against NiV. Finally, this study is expected to provide a start point for medicinal chemistry and drug discovery campaigns toward identification of effective chemotherapeutic agent(s) against NiV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, Dhamar, Yemen
| | - Abdo A Elfiky
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - El-Sayed T A Sayed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Maha M AlKhazindar
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
42
|
Peng Q, Yuan B, Cheng J, Wang M, Gao S, Bai S, Zhao X, Qi J, Gao GF, Shi Y. Molecular mechanism of de novo replication by the Ebola virus polymerase. Nature 2023; 622:603-610. [PMID: 37699521 DOI: 10.1038/s41586-023-06608-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Non-segmented negative-strand RNA viruses, including Ebola virus (EBOV), rabies virus, human respiratory syncytial virus and pneumoviruses, can cause respiratory infections, haemorrhagic fever and encephalitis in humans and animals, and are considered a substantial health and economic burden worldwide1. Replication and transcription of the viral genome are executed by the large (L) polymerase, which is a promising target for the development of antiviral drugs. Here, using the L polymerase of EBOV as a representative, we show that de novo replication of L polymerase is controlled by the specific 3' leader sequence of the EBOV genome in an enzymatic assay, and that formation of at least three base pairs can effectively drive the elongation process of RNA synthesis independent of the specific RNA sequence. We present the high-resolution structures of the EBOV L-VP35-RNA complex and show that the 3' leader RNA binds in the template entry channel with a distinctive stable bend conformation. Using mutagenesis assays, we confirm that the bend conformation of the RNA is required for the de novo replication activity and reveal the key residues of the L protein that stabilize the RNA conformation. These findings provide a new mechanistic understanding of RNA synthesis for polymerases of non-segmented negative-strand RNA viruses, and reveal important targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Qi Peng
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Yuan
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Cheng
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Siwei Gao
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Suran Bai
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuejin Zhao
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| | - George F Gao
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yi Shi
- International Institute of Vaccine Research and Innovation (iVac), Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
43
|
Abstract
The nonsegmented, negative-strand RNA viruses (nsNSVs), also known as the order Mononegavirales, have a genome consisting of a single strand of negative-sense RNA. Integral to the nsNSV replication cycle is the viral polymerase, which is responsible for transcribing the viral genome, to produce an array of capped and polyadenylated messenger RNAs, and replicating it to produce new genomes. To perform the different steps that are necessary for these processes, the nsNSV polymerases undergo a series of coordinated conformational transitions. While much is still to be learned regarding the intersection of nsNSV polymerase dynamics, structure, and function, recently published polymerase structures, combined with a history of biochemical and molecular biology studies, have provided new insights into how nsNSV polymerases function as dynamic machines. In this review, we consider each of the steps involved in nsNSV transcription and replication and suggest how these relate to solved polymerase structures.
Collapse
Affiliation(s)
- Mohamed Ouizougun-Oubari
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA;
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA;
| |
Collapse
|
44
|
Li H, Wu Y, Li M, Guo L, Gao Y, Wang Q, Zhang J, Lai Z, Zhang X, Zhu L, Lan P, Rao Z, Liu Y, Liang H. An intermediate state allows influenza polymerase to switch smoothly between transcription and replication cycles. Nat Struct Mol Biol 2023; 30:1183-1192. [PMID: 37488357 DOI: 10.1038/s41594-023-01043-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Influenza polymerase (FluPol) transcribes viral mRNA at the beginning of the viral life cycle and initiates genome replication after viral protein synthesis. However, it remains poorly understood how FluPol switches between its transcription and replication states, especially given that the structural bases of these two functions are fundamentally different. Here we propose a mechanism by which FluPol achieves functional switching between these two states through a previously unstudied conformation, termed an 'intermediate state'. Using cryo-electron microscopy, we obtained a structure of the intermediate state of H5N1 FluPol at 3.7 Å, which is characterized by a blocked cap-binding domain and a contracted core region. Structural analysis results suggest that the intermediate state may allow FluPol to transition smoothly into either the transcription or replication state. Furthermore, we show that the formation of the intermediate state is required for both the transcription and replication activities of FluPol, leading us to conclude that the transcription and replication cycles of FluPol are regulated via this intermediate state.
Collapse
Affiliation(s)
- Huanhuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yixi Wu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Minke Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Lu Guo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Gao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Quan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jihua Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zhaohua Lai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Xing Zhang
- Departments of Biophysics and Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Lixin Zhu
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zihe Rao
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Yingfang Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Huanhuan Liang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
45
|
Li Z, Li B, Chen Z, Xu J, El Sabbagh A, Zhao Y, Du R, Rong L, Tian J, Cui Q. Licochalcone A plays dual antiviral roles by inhibiting RSV and protecting against host damage. J Med Virol 2023; 95:e29059. [PMID: 37635463 DOI: 10.1002/jmv.29059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Respiratory syncytial virus (RSV) causes lower respiratory tract diseases and bronchiolitis in children and elderly individuals. There are no effective drugs currently available to treat RSV infection. In this study, we report that Licochalcone A (LCA) can inhibit RSV replication and mitigate RSV-induced cell damage in vitro, and that LCA exerts a protective effect by reducing the viral titer and inflammation in the lungs of infected mice in vivo. We suggest that the mechanism of action occurs through pathways of antioxidant stress and inflammation. Further mechanistic results demonstrate that LCA can induce nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus, activate heme oxygenase 1 (HO-1), and inhibit reactive oxygen species-induced oxidative stress. LCA also works to reverse the decrease in I-kappa-B-alpha (IкBα) levels caused by RSV, which in turn inhibits inflammation through the associated nuclear factor kappa B and tumor necrosis factor-α signaling pathways. The combined action of the two cross-talking pathways protects hosts from RSV-induced damage. To conclude, our study is the first of its kind to establish evidence of LCA as a viable treatment for RSV infection.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baohong Li
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zinuo Chen
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Asma El Sabbagh
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yangang Zhao
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovative Institute of Chinse Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
46
|
Risso-Ballester J, Rameix-Welti MA. Spatial resolution of virus replication: RSV and cytoplasmic inclusion bodies. Adv Virus Res 2023; 116:1-43. [PMID: 37524479 DOI: 10.1016/bs.aivir.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory Syncytial Virus (RSV) is a major cause of respiratory illness in young children, elderly and immunocompromised individuals worldwide representing a severe burden for health systems. The urgent development of vaccines or specific antivirals against RSV is impaired by the lack of knowledge regarding its replication mechanisms. RSV is a negative-sense single-stranded RNA (ssRNA) virus belonging to the Mononegavirales order (MNV) which includes other viruses pathogenic to humans as Rabies (RabV), Ebola (EBOV), or measles (MeV) viruses. Transcription and replication of viral genomes occur within cytoplasmatic virus-induced spherical inclusions, commonly referred as inclusion bodies (IBs). Recently IBs were shown to exhibit properties of membrane-less organelles (MLO) arising by liquid-liquid phase separation (LLPS). Compartmentalization of viral RNA synthesis steps in viral-induced MLO is indeed a common feature of MNV. Strikingly these key compartments still remain mysterious. Most of our current knowledge on IBs relies on the use of fluorescence microscopy. The ability to fluorescently label IBs in cells has been key to uncover their dynamics and nature. The generation of recombinant viruses expressing a fluorescently-labeled viral protein and the immunolabeling or the expression of viral fusion proteins known to be recruited in IBs are some of the tools used to visualize IBs in infected cells. In this chapter, microscope techniques and the most relevant studies that have shed light on RSV IBs fundamental aspects, including biogenesis, organization and dynamics are being discussed and brought to light with the investigations carried out on other MNV.
Collapse
Affiliation(s)
| | - Marie-Anne Rameix-Welti
- Institut Pasteur, Université Paris-Saclay, Université de Versailles St. Quentin, UMR 1173 (2I), INSERM, Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Paris, France.
| |
Collapse
|
47
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
48
|
Kleiner VA, O Fischmann T, Howe JA, Beshore DC, Eddins MJ, Hou Y, Mayhood T, Klein D, Nahas DD, Lucas BJ, Xi H, Murray E, Ma DY, Getty K, Fearns R. Conserved allosteric inhibitory site on the respiratory syncytial virus and human metapneumovirus RNA-dependent RNA polymerases. Commun Biol 2023; 6:649. [PMID: 37337079 DOI: 10.1038/s42003-023-04990-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are related RNA viruses responsible for severe respiratory infections and resulting disease in infants, elderly, and immunocompromised adults1-3. Therapeutic small molecule inhibitors that bind to the RSV polymerase and inhibit viral replication are being developed, but their binding sites and molecular mechanisms of action remain largely unknown4. Here we report a conserved allosteric inhibitory site identified on the L polymerase proteins of RSV and HMPV that can be targeted by a dual-specificity, non-nucleoside inhibitor, termed MRK-1. Cryo-EM structures of the inhibitor in complexes with truncated RSV and full-length HMPV polymerase proteins provide a structural understanding of how MRK-1 is active against both viruses. Functional analyses indicate that MRK-1 inhibits conformational changes necessary for the polymerase to engage in RNA synthesis initiation and to transition into an elongation mode. Competition studies reveal that the MRK-1 binding pocket is distinct from that of a capping inhibitor with an overlapping resistance profile, suggesting that the polymerase conformation bound by MRK-1 may be distinct from that involved in mRNA capping. These findings should facilitate optimization of dual RSV and HMPV replication inhibitors and provide insights into the molecular mechanisms underlying their polymerase activities.
Collapse
Affiliation(s)
- Victoria A Kleiner
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | | | | | | | - Yan Hou
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | | | - He Xi
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
49
|
Visentin A, Demitroff N, Salgueiro M, Borkosky SS, Uversky VN, Camporeale G, de Prat-Gay G. Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M 2-1. Viruses 2023; 15:1329. [PMID: 37376628 DOI: 10.3390/v15061329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
A wide variety of viruses replicate in liquid-like viral factories. Non-segmented negative stranded RNA viruses share a nucleoprotein (N) and a phosphoprotein (P) that together emerge as the main drivers of liquid-liquid phase separation. The respiratory syncytial virus includes the transcription antiterminator M2-1, which binds RNA and maximizes RNA transcriptase processivity. We recapitulate the assembly mechanism of condensates of the three proteins and the role played by RNA. M2-1 displays a strong propensity for condensation by itself and with RNA through the formation of electrostatically driven protein-RNA coacervates based on the amphiphilic behavior of M2-1 and finely tuned by stoichiometry. M2-1 incorporates into tripartite condensates with N and P, modulating their size through an interplay with P, where M2-1 is both client and modulator. RNA is incorporated into the tripartite condensates adopting a heterogeneous distribution, reminiscent of the M2-1-RNA IBAG granules within the viral factories. Ionic strength dependence indicates that M2-1 behaves differently in the protein phase as opposed to the protein-RNA phase, in line with the subcompartmentalization observed in viral factories. This work dissects the biochemical grounds for the formation and fate of the RSV condensates in vitro and provides clues to interrogate the mechanism under the highly complex infection context.
Collapse
Affiliation(s)
- Araceli Visentin
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Nicolás Demitroff
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Mariano Salgueiro
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Silvia Susana Borkosky
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gabriela Camporeale
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
| | - Gonzalo de Prat-Gay
- Instituto Leloir, IIB-BA Conicet, Av. Patricias Argentinas 435, Buenos Aires 1405, Argentina
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| |
Collapse
|
50
|
Cong J, Feng X, Kang H, Fu W, Wang L, Wang C, Li X, Chen Y, Rao Z. Structure of the Newcastle Disease Virus L protein in complex with tetrameric phosphoprotein. Nat Commun 2023; 14:1324. [PMID: 36898997 PMCID: PMC10006412 DOI: 10.1038/s41467-023-37012-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Newcastle disease virus (NDV) belongs to Paramyxoviridae, which contains lethal human and animal pathogens. NDV RNA genome is replicated and transcribed by a multifunctional 250 kDa RNA-dependent RNA polymerase (L protein). To date, high-resolution structure of NDV L protein complexed with P protein remains to be elucidated, limiting our understanding of the molecular mechanisms of Paramyxoviridae replication/transcription. Here, we used cryo-EM and enzymatic assays to investigate the structure-function relationship of L-P complex. We found that C-terminal of CD-MTase-CTD module of the atomic-resolution L-P complex conformationally rearranges, and the priming/intrusion loops are likely in RNA elongation conformations different from previous structures. The P protein adopts a unique tetrameric organization and interacts with L protein. Our findings indicate that NDV L-P complex represents elongation state distinct from previous structures. Our work greatly advances the understanding of Paramyxoviridae RNA synthesis, revealing how initiation/elongation alternates, providing clues for identifying therapeutic targets against Paramyxoviridae.
Collapse
Affiliation(s)
- Jingyuan Cong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiling Kang
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Wangjun Fu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenlong Wang
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|