1
|
Demir S, Tunca Alparslan G. Targeting GPR52 for potential agonists for schizophrenia therapy: A computational drug discovery study. J Mol Graph Model 2025; 137:108994. [PMID: 40024174 DOI: 10.1016/j.jmgm.2025.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/05/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
G Protein-Coupled Receptors (GPCRs) are one of the most attractive therapeutic targets due to their active role in different systems and disease types. The increasing three-dimensional structure information of GPCRs has made them interesting for Structure-Based Drug Design (SBDD) studies. There are various orphan GPCRs whose endogenous molecules have not yet been identified, although their structural information is known. The recent discovery of the three-dimensional structure of GPR52, an orphan GPCR involved in central nervous system diseases, made it stand out as a drug target. In this study, it is aimed to find a lead drug molecule candidate for GPR52 by using structure-based drug design techniques. The study comprises a set of SBDD methods, including preparation of a small molecule library, pharmacophore modeling, molecular docking, consensus scoring, molecular dynamics simulations, calculation of binding free energy, and in silico pharmacokinetic studies for GPR52. It is expected that the molecules obtained as a result of the study may be strong candidates for in vitro and in vivo experiments or could be used as lead drug molecules in new drug discovery and development studies.
Collapse
Affiliation(s)
- Selinay Demir
- Department of Genetics and Bioengineering, Faculty of Engineering, Trakya University, 22030, Edirne, Turkey
| | - Güzin Tunca Alparslan
- Department of Genetics and Bioengineering, Faculty of Engineering, Trakya University, 22030, Edirne, Turkey.
| |
Collapse
|
2
|
Xue C, Liu Z. Unraveling the proton-sensing mechanisms of G protein-coupled receptors: Insights from cryogenic electron microscopy studies. Mol Cell 2025; 85:1479-1481. [PMID: 40250408 DOI: 10.1016/j.molcel.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/20/2025]
Abstract
In this issue, Guo et al.1 and Chen et al.2 resolved the cryo-EM structures of G protein-coupled receptor (GPR) 4 and GPR68, unveiling that histidine protonation initiates conformational rearrangements and dictates G protein coupling bias, illuminating pH-sensing mechanisms.
Collapse
Affiliation(s)
- Chenyang Xue
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhongmin Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Xu P, Sun F, Lin X, Wang L, Jiang L, Chen S, Hu C. An Off-On Fluorescent Probe Reveals Spatiotemporal Signaling of Opioid Receptors In Vivo for Pain Control. Anal Chem 2025; 97:7148-7156. [PMID: 40139901 DOI: 10.1021/acs.analchem.4c06446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Interrogation of the function of neuronal receptors and how they are involved in disease intervention requires spatiotemporally precise imaging in live animal brains. Most activatable fluorescent probes can realize imaging of enzyme biomarkers but face challenges in generating an amplified fluorescence signal on GPCRs. Here, we present the visualization of μ opioid receptor (μOR) activity in zebrafish larvae using P5N3, an antagonist-conjugated pyridinium dye that enables a 25-fold fluorescence increase upon binding in the orthosteric pocket of μOR. This turn-on fluorescence is attributed to the synergistic effects of restricted movement of the pyridinium moiety and its hydrogen bond interactions with amino acid residues in the receptor binding domain, as elucidated by DFT calculations. We observed behaviorally correlated μOR activity in whole-brain recordings of wild-type zebrafish during acetic-acid-induced nociception and identified sinomenine-mediated attenuation with both spatiotemporal and pharmacological precision, highlighting the involvement of the optic tectum region. We propose that leveraging spatiotemporal mapping of μOR binding patterns using the turn-on molecular probe in freely behaving larval zebrafish holds significant promise as an in vivo tool for advancing translational pain research and accelerating the discovery of analgesic drugs.
Collapse
Affiliation(s)
- Pengcheng Xu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Fang Sun
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxuan Lin
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lancheng Wang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Le Jiang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Siyu Chen
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chi Hu
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
- Key Laboratory of Drug Monitoring and Anti-Drug Technology, Ministry of Public Security, Beijing 100741, China
| |
Collapse
|
4
|
Ahn S, Kaipparettu BA. G-protein coupled receptors in metabolic reprogramming and cancer. Pharmacol Ther 2025; 270:108849. [PMID: 40204142 DOI: 10.1016/j.pharmthera.2025.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/09/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
G-protein coupled receptors (GPCR) are one of the frequently investigated drug targets. GPCRs are involved in many human pathophysiologies that lead to various disease conditions, such as cancer, diabetes, and obesity. GPCR receptor activates multiple signaling pathways depending on the ligand and tissue type. However, this review will be limited to the GPCR-mediated metabolic modulations and the activation of relevant signaling pathways in cancer therapy. Cancer cells often have reprogrammed cell metabolism to support tumor growth and metastatic plasticity. Many aggressive cancer cells maintain a hybrid metabolic status, using both glycolysis and mitochondrial metabolism for better metabolic plasticity. In addition to glucose and glutamine pathways, fatty acid is a key mitochondrial energy source in some cancer subtypes. Recently, targeting alternative energy pathways like fatty acid beta-oxidation (FAO) has attracted great interest in cancer therapy. Several in vitro and in vivo experiments in different cancer models reported encouraging responses to FAO inhibitors. However, due to the potential liver toxicity of FAO inhibitors in clinical trials, new approaches to indirectly target metabolic reprogramming are necessary for in vivo targeting of cancer cells. This review specifically focused on free fatty acid receptors (FFAR) and β-adrenergic receptors (β-AR) because of their reported significance in mitochondrial metabolism and cancer. Further understanding the pharmacology of GPCRs and their role in cancer metabolism will help repurpose GPCR-targeting drugs for cancer therapy and develop novel drug discovery strategies to combine them with standard cancer therapy to increase anticancer potential and overcome drug resistance.
Collapse
Affiliation(s)
- Songyeon Ahn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Zhang W, Ji X, Zhao Q, Qi J, Guo W, Zhang G, Guan Y, Li S, Mao Y. Nanoodor Particles Deliver Drugs to Central Nervous System via Olfactory Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408908. [PMID: 39998409 PMCID: PMC12005826 DOI: 10.1002/advs.202408908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/08/2025] [Indexed: 02/26/2025]
Abstract
Central nervous system (CNS) disorders confront significant challenges in drug delivery due to the blood-brain barrier (BBB). Inspired by the rapid and precise binding of odor molecules to olfactory receptors (ORs), this research uses thiolated HPMA to construct odor nanoparticles (nanoodors) capable of delivering drugs to the CNS via the olfacto-cerebral pathway to overcome the delivery obstruction. The nanoodor core is used to encapsulate agomelatine (AGO), a CNS-targeting antidepressant, and the encapsulation efficiency exceeded 80%. A series of thiol-presenting nanoscale structures with different surface densities of thiol groups are constructed, and the effectiveness positively correlated with the density of thiol groups on their surface. Notably, the nanoodors enable precise brain-targeted delivery, outperforming commercially available oral formulations in terms of drug accumulation in the brain and antidepressant effects. The study of the nanoodor transport and action mechanisms revealed that after binding to ORs, the nanoodors are rapidly delivered to the brain via the olfactory pathway. Nanoodors, the first design to deliver CNS drugs via the olfactory pathway by mimicking natural smells for the treatment of CNS disorders, are expected to achieve clinical transformation, benefiting human health.
Collapse
Affiliation(s)
- Wei Zhang
- Department of PharmaceuticsSchool of PharmacyShenyang Pharmaceutical University103 Wenhua RoadShenyangLiaoning110016P. R. China
| | - Xingwang Ji
- Department of PharmaceuticsSchool of PharmacyShenyang Pharmaceutical University103 Wenhua RoadShenyangLiaoning110016P. R. China
| | - Qianyanqiu Zhao
- Department of PharmaceuticsSchool of PharmacyShenyang Pharmaceutical University103 Wenhua RoadShenyangLiaoning110016P. R. China
| | - Jinyao Qi
- Department of PharmaceuticsSchool of PharmacyShenyang Pharmaceutical University103 Wenhua RoadShenyangLiaoning110016P. R. China
| | - Wen Guo
- Department of PharmaceuticsSchool of PharmacyShenyang Pharmaceutical University103 Wenhua RoadShenyangLiaoning110016P. R. China
| | - Gaoshuo Zhang
- Department of PharmaceuticsSchool of PharmacyShenyang Pharmaceutical University103 Wenhua RoadShenyangLiaoning110016P. R. China
| | - Yujing Guan
- Institute of Cancer MedicineFaculty of MedicineDalian University of TechnologyNo.2 Linggong Road, Ganjingzi DistrictDalianLiaoning116024China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor SurgeryCancer Hospital of Dalian University of TechnologyCancer Hospital of China Medical UniversityLiaoning Cancer Hospital & InstituteShenyangLiaoning110042China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with EngineeringShenyangLiaoning110042China
- Institute of Cancer MedicineFaculty of MedicineDalian University of TechnologyNo.2 Linggong Road, Ganjingzi DistrictDalianLiaoning116024China
| | - Yuling Mao
- Department of PharmaceuticsSchool of PharmacyShenyang Pharmaceutical University103 Wenhua RoadShenyangLiaoning110016P. R. China
| |
Collapse
|
6
|
Shakour N, Hoseinpoor S, Rajabian F, Azimi SG, Iranshahi M, Sadeghi-Aliabadi H, Hadizadeh F. Discovery of non-peptide GLP-1r natural agonists for enhancing coronary safety in type 2 diabetes patients. J Biomol Struct Dyn 2025; 43:3508-3525. [PMID: 38165453 DOI: 10.1080/07391102.2023.2298734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
This study explores the computational discovery of non-peptide agonists targeting the Glucagon-Like Peptide-1 Receptor (GLP-1R) to enhance the safety of major coronary outcomes in individuals affected by Type 2 Diabetes. The objective is to identify novel compounds that can activate the GLP-1R pathway without the limitations associated with peptide agonists. Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular disease (CVD) and mortality, which is attributed to the accumulation of fat in organs, including the heart. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are frequently used to manage T2DM and could potentially offer cardiovascular benefits. Therefore, this study examines non-peptide agonists of GLP-1R to improve coronary safety in type 2 diabetes patients. After rigorous assessments, two standout candidates were identified, with natural compound 12 emerging as the most promising. This study represents a notable advancement in enhancing the management of coronary outcomes among individuals with type 2 diabetes. The computational methodology employed successfully pinpointed potential GLP-1R natural agonists, providing optimism for the development of safer and more effective therapeutic interventions. Although computational methodologies have provided crucial insights, realizing the full potential of these compounds requires extensive experimental investigations, crucial in advancing therapeutic strategies for this critical patient population.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Hoseinpoor
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabikeh G Azimi
- Department of Chemistry, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Pharmaceutical Chemistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Sang X, Jiao H, Meng Q, Fang X, Pan Q, Zhou J, Qian T, Zhang W, Xu Y, An J, Huang Z, Hu H. Structural mechanisms underlying the modulation of CXCR4 by diverse small-molecule antagonists. Proc Natl Acad Sci U S A 2025; 122:e2425795122. [PMID: 40063796 PMCID: PMC11929458 DOI: 10.1073/pnas.2425795122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025] Open
Abstract
CXCR4 (CXC chemokine receptor type 4), a member of the G protein-coupled receptor superfamily, plays a role in cell migration and functions as a coreceptor for HIV entry. Molecular therapeutics targeting CXCR4 have been under intensive investigation. To date, only two small-molecule antagonist drugs targeting CXCR4, plerixafor (AMD3100) and mavorixafor (AMD070), have been approved. Here, we present the high-resolution structures of CXCR4 complexed with AMD3100 and AMD070, as well as a small-molecule antagonist HF51116 that has very different chemical structure and binding mechanism from AMD3100 and AMD070. The interactions between these antagonists and the receptor are analyzed in details, and the mechanisms of antagonism are elucidated. Both the major and minor subpockets on CXCR4 are found to be involved in binding of these small-molecule antagonists. The distinct conformations of Trp942.60 observed in these structures highlight the plasticity of the binding pocket on CXCR4, offering valuable insights into the exploration and refinement of therapeutic strategies targeting this chemokine receptor.
Collapse
Affiliation(s)
- Xiaohong Sang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Qian Meng
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Tingli Qian
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Wanqin Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Yan Xu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Ziwei Huang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
- School of Life Sciences, Tsinghua University, Beijing100084, China
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| |
Collapse
|
8
|
Liang H, Xie A, Hou N, Wei F, Gao T, Li J, Gao X, Shi C, Xiao G, Xu X. Increase Docking Score Screening Power by Simple Fusion With CNNscore. J Comput Chem 2025; 46:e70060. [PMID: 39981784 DOI: 10.1002/jcc.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/31/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025]
Abstract
Scoring functions (SFs) of molecular docking is a vital component of structure-based virtual screening (SBVS). Traditional SFs yield their inherent shortage for idealized approximations and simplifications predicting the binding affinity. Complementarily, SFs based on deep learning (DL) have emerged as powerful tools for capturing intricate features within protein-ligand (PL) interactions. We here present a docking-score fusion strategy that integrates pose scores derived from GNINA's convolutional neural network (CNN) with traditional docking scores. Extensive validation on diverse datasets has shown that by means of multiplying Watvina docking score by CNNscore demonstrates state-of-the-art screening power. Furthermore, in a reverse practice, our docking-score fusion technique was incorporated into the virtual screening (VS) workflow aimed at identifying inhibitors of the challenging target TYK2. Two promising hits with IC50 9.99 μM and 13.76 μM in vitro were identified from nearly 12 billion molecules.
Collapse
Affiliation(s)
- Huicong Liang
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Aowei Xie
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Ning Hou
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Fengjiao Wei
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Ting Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Jiajie Li
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Xinru Gao
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, P. R. China
| | - Chuanqin Shi
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China
| | - Gaokeng Xiao
- Guangzhou Molcalx Information & Technology ltd. Room 3406, F4, Build 3, Xiaozitiantang, Guangzhou, China
| | - Ximing Xu
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
9
|
Lorente JS, Sokolov AV, Ferguson G, Schiöth HB, Hauser AS, Gloriam DE. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2025:10.1038/s41573-025-01139-y. [PMID: 40033110 DOI: 10.1038/s41573-025-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
G protein-coupled receptors (GPCRs) form one of the largest drug target families, reflecting their involvement in numerous pathophysiological processes. In this Review, we analyse drug discovery trends for the GPCR superfamily, covering compounds, targets and indications that have reached regulatory approval or that are being investigated in clinical trials. We find that there are 516 approved drugs targeting GPCRs, making up 36% of all approved drugs. These drugs act on 121 GPCR targets, one-third of all non-sensory GPCRs. Furthermore, 337 agents targeting 133 GPCRs, including 30 novel targets, are being investigated in clinical trials. Notably, 165 of these agents are approved drugs being tested for additional indications and novel agents are increasingly allosteric modulators and biologics. Remarkably, diabetes and obesity drugs targeting GPCRs had sales of nearly US $30 billion in 2023 and the numbers of clinical trials for GPCR modulators in the metabolic diseases, oncology and immunology areas are increasing strongly. Finally, we highlight the potential of untapped target-disease associations and pathway-biased signalling. Overall, this Review provides an up-to-date reference for the drugged and potentially druggable GPCRome to inform future GPCR drug discovery and development.
Collapse
Affiliation(s)
- Javier Sánchez Lorente
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Gavin Ferguson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- ALPX S.A.S., Grenoble, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Shiimura Y, Im D, Tany R, Asada H, Kise R, Kurumiya E, Wakasugi-Masuho H, Yasuda S, Matsui K, Kishikawa JI, Kato T, Murata T, Kojima M, Iwata S, Masuho I. The structure and function of the ghrelin receptor coding for drug actions. Nat Struct Mol Biol 2025; 32:531-542. [PMID: 39833471 DOI: 10.1038/s41594-024-01481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Drugs targeting the ghrelin receptor hold therapeutic potential in anorexia, obesity and diabetes. However, developing effective drugs is challenging. To tackle this common issue across a broad drug target, this study aims to understand how anamorelin, the only approved drug targeting the ghrelin receptor, operates compared to other synthetic drugs. Our research elucidated the receptor's structure with anamorelin and miniGq, unveiling anamorelin's superagonistic activity. We demonstrated that ligands with distinct chemical structures uniquely bind to the receptor, resulting in diverse conformations and biasing signal transduction. Moreover, our study showcased the utility of structural information in effectively identifying natural genetic variations altering drug action and causing severe functional deficiencies, offering a basis for selecting the right medication on the basis of the individual's genomic sequence. Thus, by building on structural analysis, this study enhances the foundational framework for selecting therapeutic agents targeting the ghrelin receptor, by effectively leveraging signaling bias and genetic variations.
Collapse
Affiliation(s)
- Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan.
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Tany
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoji Kise
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Eon Kurumiya
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Kazuma Matsui
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, Osaka, Japan
- Faculty of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research Center, Chiba University, Chiba, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Ikuo Masuho
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
11
|
Xiang Q, Tian Y, Yang K, Du Y, Xie J. Gαq/11 aggravates acute lung injury in mice by promoting endoplasmic reticulum stress-mediated NETosis. Mol Med 2025; 31:67. [PMID: 39972252 PMCID: PMC11841161 DOI: 10.1186/s10020-025-01118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Acute lung injury (ALI) is distinguished by exaggerated neutrophil extracellular traps (NETs), elevated clinical mortality rates, and a paucity of targeted therapeutic interventions. The Gαq/11 protein, a member of the G protein subfamily, is an effective intervention target for a variety of diseases, but little is known about its role in ALI. METHODS In this study, a murine model of ALI induced by lipopolysaccharide (LPS) was utilized, employing myeloid cell-specific Gna11 knockout mice. The pulmonary pathology of mice was assessed and the lung samples were collected for immunofluorescence staining and RNA-sequencing analysis to elucidate the impact and underlying mechanisms of Gαq/11 in ALI. Mouse bone marrow-derived neutrophils were isolated and cultured for live-cell imaging to investigate the in vitro effects of Gαq/11. RESULTS The expression of Gαq/11 was found to be upregulated in the lung tissues of mice with ALI, coinciding with the increased expression of inflammatory genes. Myeloid cell-specific Gna11 deficience attenuated LPS-induced lung injury and the formation of NETs in mice. Mechanistically, Gαq/11 facilitates NETosis by promoting the activation of the endoplasmic reticulum (ER) stress sensor IRE1α in neutrophils and mediating the production of mitochondrial reactive oxygen species (mitoROS). Pharmacological inhibition of Gαq/11 using YM-254,890 was shown to reduce NETs formation and lung injury in mice. CONCLUSIONS The upregulation of Gαq/11 exacerbates ALI through the promotion of ER stress-mediated NETosis. Consequently, Gαq/11 represents a potential therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Anesthesiology, Peking University Third Hospital, Peking University, Beijing, 100091, China
| | - Yang Tian
- Department of Anesthesiology, Peking University Third Hospital, Peking University, Beijing, 100091, China
| | - Kai Yang
- Department of Anesthesiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yaqin Du
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| | - Jian Xie
- Postdoctoral Station of Basic Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410000, China.
- Postdoctoral Station of Basic Medicine, the Third Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
12
|
Cheng N, Ramirez MG, Edwards C, Trejo J. USP34 regulates endothelial PAR1 mRNA transcript expression and cellular signaling. Mol Biol Cell 2025; 36:ar12. [PMID: 39705380 PMCID: PMC11809309 DOI: 10.1091/mbc.e24-07-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/22/2024] Open
Abstract
Signaling by G protein-coupled receptors (GPCRs) is regulated by temporally distinct processes including receptor desensitization, internalization, and lysosomal sorting, and are tightly controlled by posttranslational modifications. While the role of phosphorylation in regulating GPCR signaling is well studied and established, the mechanisms by which other posttranslational modifications, such as ubiquitination, regulate GPCR signaling are not clearly defined. We hypothesize that GPCR ubiquitination and deubiquitination is critical for proper signaling and cellular responses. In the present study, we show that the deubiquitinase ubiquitin-specific protease-34 (USP34) regulates thrombin-stimulated protease-activated receptor-1 (PAR1)-induced p38 autophosphorylation and activation. The PAR1-stimulated p38 signaling pathway is driven by ubiquitination. Interestingly, small interfering RNA-induced knockdown of USP34 expression markedly increased PAR1 cell surface abundance and protein expression without modulating PAR1 ubiquitination or the ubiquitination status of p38 signaling pathway components. In addition, increased PAR1 expression observed in USP34-depleted cells was not caused by altered PAR1 constitutive internalization, agonist-induced internalization, or receptor degradation. Rather, we report that loss of USP34 expression increased mRNA transcript expression of the PAR1-encoding gene, F2R. This study unexpectedly identified a critical role for USP34 in regulation of F2R mRNA transcript expression, which modulates PAR1 cell surface levels and thrombin-stimulated p38 mitogen-activated protein kinase signaling.
Collapse
Affiliation(s)
- Norton Cheng
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Monica Gonzalez Ramirez
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Chloe Edwards
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
13
|
Brahma R, Moon S, Shin JM, Cho KH. AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist. J Cheminform 2025; 17:12. [PMID: 39881398 PMCID: PMC11780767 DOI: 10.1186/s13321-024-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening. To address these issues, we introduce AiGPro, a novel multitask model designed to predict small molecule agonists (EC50) and antagonists (IC50) across the 231 human GPCRs, making it a first-in-class solution for large-scale GPCR profiling. Leveraging multi-scale context aggregation and bidirectional multi-head cross-attention mechanisms, our approach demonstrates that ensemble models may not be necessary for predicting complex GPCR states and small molecule interactions. Through extensive validation using stratified tenfold cross-validation, AiGPro achieves robust performance with Pearson's correlation coefficient of 0.91, indicating broad generalizability. This breakthrough sets a new standard in the GPCR studies, outperforming previous studies. Moreover, our first-in-class multi-tasking model can predict agonist and antagonist activities across a wide range of GPCRs, offering a comprehensive perspective on ligand bioactivity within this diverse superfamily. To facilitate easy accessibility, we have deployed a web-based platform for model access at https://aicadd.ssu.ac.kr/AiGPro . Scientific Contribution We introduce a deep learning-based multi-task model to generalize the agonist and antagonist bioactivity prediction for GPCRs accurately. The model is implemented on a user-friendly web server to facilitate rapid screening of small-molecule libraries, expediting GPCR-targeted drug discovery. Covering a diverse set of 231 GPCR targets, the platform delivers a robust, scalable solution for advancing GPCR-focused therapeutic development. The proposed framework incorporates an innovative dual-label prediction strategy, enabling the simultaneous classification of molecules as agonists, antagonists, or both. Each prediction is further accompanied by a confidence score, offering a quantitative measure of activity likelihood. This advancement moves beyond conventional models focusing solely on binding affinity, providing a more comprehensive understanding of ligand-receptor interactions. At the core of our model lies the Bi-Directional Multi-Head Cross-Attention (BMCA) module, a novel architecture that captures forward and backward contextual embeddings of protein and ligand features. By leveraging BMCA, the model effectively integrates structural and sequence-level information, ensuring a precise representation of molecular interactions. Results show that this approach is highly accurate in binding affinity predictions and consistent across diverse GPCR families. By unifying agonist and antagonist bioactivity prediction into a single model architecture, we bridge a critical gap in GPCR modeling. This enhances prediction accuracy and accelerates virtual screening workflows, offering a valuable and innovative solution for advancing GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Rahul Brahma
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea
| | - Sunghyun Moon
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea
| | - Jae-Min Shin
- AzothBio, Rm. DA724 Hyundai Knowledge Industry Center, Hanam-si, Gyeonggi-do, Republic of Korea.
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Zhang BW, Fajer M, Chen W, Moraca F, Wang L. Leveraging the Thermodynamics of Protein Conformations in Drug Discovery. J Chem Inf Model 2025; 65:252-264. [PMID: 39681511 DOI: 10.1021/acs.jcim.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
As the name implies, structure-based drug design requires confidence in the holo complex structure. The ability to clarify which protein conformation to use when ambiguity arises would be incredibly useful. We present a large scale validation of the computational method Protein Reorganization Free Energy Perturbation (PReorg-FEP) and demonstrate its quantitative accuracy in selecting the correct protein conformation among candidate models in apo or ligand induced states for 14 different systems. These candidate conformations are pulled from various drug discovery related campaigns: cryptic conformations induced by novel hits in lead identification, binding site rearrangement during lead optimization, and conflicting structural biology models. We also show an example of a pH-dependent conformational change, relevant to protein design.
Collapse
Affiliation(s)
- Bin W Zhang
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Mikolai Fajer
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Wei Chen
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Francesca Moraca
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| | - Lingle Wang
- Schrödinger Inc., 1540 Broadway, 24th Floor, New York, New York 10036-4041, United States
| |
Collapse
|
15
|
Orlans J, Rose SL, Ferguson G, Oscarsson M, Homs Puron A, Beteva A, Debionne S, Theveneau P, Coquelle N, Kieffer J, Busca P, Sinoir J, Armijo V, Lopez Marrero M, Felisaz F, Papp G, Gonzalez H, Caserotto H, Dobias F, Gigmes J, Lebon G, Basu S, de Sanctis D. Advancing macromolecular structure determination with microsecond X-ray pulses at a 4th generation synchrotron. Commun Chem 2025; 8:6. [PMID: 39775172 PMCID: PMC11707155 DOI: 10.1038/s42004-024-01404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Serial macromolecular crystallography has become a powerful method to reveal room temperature structures of biological macromolecules and perform time-resolved studies. ID29, a flagship beamline of the ESRF 4th generation synchrotron, is the first synchrotron beamline in the world capable of delivering high brilliance microsecond X-ray pulses at high repetition rate for the structure determination of biological macromolecules at room temperature. The cardinal combination of microsecond exposure times, innovative beam characteristics and adaptable sample environment provides high quality complete data, even from an exceptionally small amount of crystalline material, enabling what we collectively term serial microsecond crystallography (SµX). After validating the use of different sample delivery methods with various model systems, we applied SµX to an integral membrane receptor, where only a few thousands diffraction images were sufficient to obtain a fully interpretable electron density map for the antagonist istradefylline-bound A2A receptor conformation, providing access to the antagonist binding mode. SµX, as demonstrated at ID29, will quickly find its broad applicability at upcoming 4th generation synchrotron sources worldwide and opens a new frontier in time-resolved SµX.
Collapse
Affiliation(s)
- Julien Orlans
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Samuel L Rose
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Gavin Ferguson
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Marcus Oscarsson
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | | | - Antonia Beteva
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Samuel Debionne
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Pascal Theveneau
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Nicolas Coquelle
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Jerome Kieffer
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Paolo Busca
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Jeremy Sinoir
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Victor Armijo
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | | | - Franck Felisaz
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Gergely Papp
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Herve Gonzalez
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Hugo Caserotto
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Fabien Dobias
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Jonathan Gigmes
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Guillaume Lebon
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France.
| | - Daniele de Sanctis
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France.
| |
Collapse
|
16
|
Tsutsumi N, Kildedal DF, Hansen OK, Kong Q, Schols D, Van Loy T, Rosenkilde MM. Insight into structural properties of viral G protein-coupled receptors and their role in the viral infection: IUPHAR Review 41. Br J Pharmacol 2025; 182:26-51. [PMID: 39443818 DOI: 10.1111/bph.17379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/27/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in cellular signalling and drug targeting. Herpesviruses encode GPCRs (vGPCRs) to manipulate cellular signalling, thereby regulating various aspects of the virus life cycle, such as viral spreading and immune evasion. vGPCRs mimic host chemokine receptors, often with broader signalling and high constitutive activity. This review focuses on the recent advancements in structural knowledge about vGPCRs, with an emphasis on molecular mechanisms of action and ligand binding. The structures of US27 and US28 from human cytomegalovirus (HCMV) are compared to their closest human homologue, CX3CR1. Contrasting US27 and US28, the homotrimeric UL78 structure (HCMV) reveals more distance to chemokine receptors. Open reading frame 74 (ORF74; Kaposi's sarcoma-associated herpesvirus) is compared to CXCRs, whereas BILF1 (Epstein-Barr virus) is discussed as a putative lipid receptor. Furthermore, the roles of vGPCRs in latency and lytic replication, reactivation, dissemination and immune evasion are reviewed, together with their potential as drug targets for virus infections and virus-related diseases.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dagmar Fæster Kildedal
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Synklino ApS, Copenhagen, Denmark
| | - Olivia Kramer Hansen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qianqian Kong
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tom Van Loy
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
17
|
Caniceiro AB, Orzeł U, Rosário-Ferreira N, Filipek S, Moreira IS. Leveraging Artificial Intelligence in GPCR Activation Studies: Computational Prediction Methods as Key Drivers of Knowledge. Methods Mol Biol 2025; 2870:183-220. [PMID: 39543036 DOI: 10.1007/978-1-0716-4213-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
G protein-coupled receptors (GPCRs) are key molecules involved in cellular signaling and are attractive targets for pharmacological intervention. This chapter is designed to explore the range of algorithms used to predict GPCRs' activation states, while also examining the pharmaceutical implications of these predictions. Our primary objective is to show how artificial intelligence (AI) is key in GPCR research to reveal the intricate dynamics of activation and inactivation processes, shedding light on the complex regulatory mechanisms of this vital protein family. We describe several computational strategies that leverage diverse structural data from the Protein Data Bank, molecular dynamic simulations, or ligand-based methods to predict the activation states of GPCRs. We demonstrate how the integration of AI into GPCR research not only enhances our understanding of their dynamic properties but also presents immense potential for driving pharmaceutical research and development, offering promising new avenues in the search for newer, better therapeutic agents.
Collapse
Affiliation(s)
- Ana B Caniceiro
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Urszula Orzeł
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Nícia Rosário-Ferreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
18
|
Glover H, Saßmannshausen T, Bertrand Q, Trabuco M, Slavov C, Bacchin A, Andres F, Kondo Y, Stipp R, Wranik M, Khusainov G, Carrillo M, Kekilli D, Nan J, Gonzalez A, Cheng R, Neidhart W, Weinert T, Leonarski F, Dworkowski F, Kepa M, Wachtveitl J, Hennig M, Standfuss J. Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography. Nat Commun 2024; 15:10837. [PMID: 39738009 DOI: 10.1038/s41467-024-55109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors in humans. The binding and dissociation of ligands tunes the inherent conformational flexibility of these important drug targets towards distinct functional states. Here we show how to trigger and resolve protein-ligand interaction dynamics within the human adenosine A2A receptor. For this, we designed seven photochemical affinity switches derived from the anti-Parkinson's drug istradefylline. In a rational approach based on UV/Vis spectroscopy, time-resolved absorption spectroscopy, differential scanning fluorimetry and cryo-crystallography, we identified compounds suitable for time-resolved serial crystallography. Our analysis of millisecond-scale dynamics revealed how trans-to-cis isomerization shifts selected istradefylline derivatives within the binding pocket. Depending on the chemical nature of the ligand, interactions between extracellular loops 2 and 3, acting as a lid on the binding pocket, are disrupted and rearrangement of the orthosteric binding pocket is invoked upon ligand dissociation. This innovative approach provides insights into GPCR dynamics at the atomic level, offering potential for developing novel pharmaceuticals.
Collapse
Affiliation(s)
- Hannah Glover
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
- Department of Chemistry, University of South Florida, Tampa, USA
| | | | - Fabio Andres
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | - Yasushi Kondo
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Robin Stipp
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | | | | | - Demet Kekilli
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Jie Nan
- MaxIV Laboratory, Lund University, Lund, Sweden
| | | | - Robert Cheng
- leadXpro AG, Park Innovaare, Villigen PSI, Switzerland
| | | | | | | | | | - Michal Kepa
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
19
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
20
|
Puhl AC, Lewicki SA, Gao ZG, Pramanik A, Makarov V, Ekins S, Jacobson KA. Machine learning-aided search for ligands of P2Y 6 and other P2Y receptors. Purinergic Signal 2024; 20:617-627. [PMID: 38526670 PMCID: PMC11554998 DOI: 10.1007/s11302-024-10003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
The P2Y6 receptor, activated by uridine diphosphate (UDP), is a target for antagonists in inflammatory, neurodegenerative, and metabolic disorders, yet few potent and selective antagonists are known to date. This prompted us to use machine learning as a novel approach to aid ligand discovery, with pharmacological evaluation at three P2YR subtypes: initially P2Y6 and subsequently P2Y1 and P2Y14. Relying on extensive published data for P2Y6R agonists, we generated and validated an array of classification machine learning model using the algorithms deep learning (DL), adaboost classifier (ada), Bernoulli NB (bnb), k-nearest neighbors (kNN) classifier, logistic regression (lreg), random forest classifier (rf), support vector classification (SVC), and XGBoost (XGB) classifier models, and the common consensus was applied to molecular selection of 21 diverse structures. Compounds were screened using human P2Y6R-induced functional calcium transients in transfected 1321N1 astrocytoma cells and fluorescent binding inhibition at closely related hP2Y14R expressed in CHO cells. The hit compound ABBV-744, an experimental anticancer drug with a 6-methyl-7-oxo-6,7-dihydro-1H-pyrrolo[2,3-c]pyridine scaffold, had multifaceted interactions with the P2YR family: hP2Y6R inhibition in a non-surmountable fashion, suggesting that noncompetitive antagonism, and hP2Y1R enhancement, but not hP2Y14R binding inhibition. Other machine learning-selected compounds were either weak (experimental anti-asthmatic drug AZD5423 with a phenyl-1H-indazole scaffold) or inactive in inhibiting the hP2Y6R. Experimental drugs TAK-593 and GSK1070916 (100 µM) inhibited P2Y14R fluorescent binding by 50% and 38%, respectively, and all other compounds by < 20%. Thus, machine learning has led the way toward revealing previously unknown modulators of several P2YR subtypes that have varied effects.
Collapse
Affiliation(s)
- Ana C Puhl
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Sarah A Lewicki
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Asmita Pramanik
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, Leninsky Prospekt 33-2, 119071, Moscow, Russian Federation
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Li M, Qing R, Tao F, Xu P, Zhang S. Inhibitory effect of truncated isoforms on GPCR dimerization predicted by combinatorial computational strategy. Comput Struct Biotechnol J 2024; 23:278-286. [PMID: 38173876 PMCID: PMC10762321 DOI: 10.1016/j.csbj.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in fundamental biological processes and disease development. GPCR isoforms, derived from alternative splicing, can exhibit distinct signaling patterns. Some highly-truncated isoforms can impact functional performance of full-length receptors, suggesting their intriguing regulatory roles. However, how these truncated isoforms interact with full-length counterparts remains largely unexplored. Here, we computationally investigated the interaction patterns of three human GPCRs from three different classes, ADORA1 (Class A), mGlu2 (Class C) and SMO (Class F) with their respective truncated isoforms because their homodimer structures have been experimentally determined, and they have truncated isoforms deposited and identified at protein level in Uniprot database. Combining the neural network-based AlphaFold2 and two physics-based protein-protein docking tools, we generated multiple complex structures and assessed the binding affinity in the context of atomistic molecular dynamics simulations. Our computational results suggested all the four studied truncated isoforms showed potent binding to their counterparts and overlapping interfaces with homodimers, indicating their strong potential to block homodimerization of their counterparts. Our study offers insights into functional significance of GPCR truncated isoforms and supports the ubiquity of their regulatory roles.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Li F, Liu R, Li W, Xie M, Qin S. Synchrotron Radiation: A Key Tool for Drug Discovery. Bioorg Med Chem Lett 2024; 114:129990. [PMID: 39406298 DOI: 10.1016/j.bmcl.2024.129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Synchrotron radiation is extensively utilized in the domains of materials science, physical chemistry, and life science, resulting from its high intensity, exceptional monochromaticity, superior collimation, and broad wave spectrum. This top-notch light source has also made significant contributions to the progress of biomedicine. The advancement of synchrotron radiation-based X-ray and protein crystallography technologies has created new prospects for drug discovery. These innovative techniques have opened up exciting avenues in the field. The investigation of protein crystal structures and the elucidation of the spatial configuration of biological macromolecules have revealed intricate details regarding the modes of protein binding. Furthermore, the screening of crystal polymorphs and ligands has laid the groundwork for rational drug modification and the improvement of drug physicochemical properties. As science and technology continue to advance, the techniques for analyzing structures using synchrotron radiation sources and the design of corresponding crystallographic beamline stations are undergoing continuous enhancement. These cutting-edge tools and facilities are expected to expedite the drug development process and rectify the current situation of a lack of targeted drugs.
Collapse
Affiliation(s)
- Fengcheng Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingyuan Xie
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, China.
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
23
|
Sul JH, Shin S, Kim HK, Han J, Kim J, Son S, Lee J, Baek SH, Cho Y, Lee J, Park J, Ahn D, Park S, Palomera LF, Lim J, Kim J, Kim C, Han S, Chung KY, Lee S, Kam T, Lee Y, Kim J, Park JH, Jo D. Dopamine-conjugated extracellular vesicles induce autophagy in Parkinson's disease. J Extracell Vesicles 2024; 13:e70018. [PMID: 39641313 PMCID: PMC11621972 DOI: 10.1002/jev2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/14/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
The application of extracellular vesicles (EVs) as vehicles for anti-Parkinson's agents represents a significant advance, yet their clinical translation is hampered by challenges in efficient brain delivery and complex blood-brain barrier (BBB) targeting strategies. In this study, we engineered dopamine onto the surface of adipose-derived stem cell EVs (Dopa-EVs) utilizing a facile, two-step cross-linking approach. This engineering enhanced neuronal uptake of the EVs in primary neurons and neuroblastoma cells, a process shown to be competitively inhibited by dopamine pretreatment and dopamine receptor antibodies. Notably, Dopa-EVs demonstrated increased brain accumulation in mouse Parkinson's disease (PD) models. Therapeutically, Dopa-EVs administration led to the rescue of dopaminergic neuronal loss and amelioration of behavioural deficits in both 6-hydroxydopamine (6-OHDA) and α-Syn PFF-induced PD models. Furthermore, we observed that Dopa-EVs stimulated autophagy evidenced by the upregulation of Beclin-1 and LC3-II. These findings collectively indicate that surface modification of EVs with dopamine presents a potent strategy for targeting dopaminergic neurons in the brain. The remarkable therapeutic potential of Dopa-EVs, demonstrated in PD models, positions them as a highly promising candidate for PD treatment, offering a significant advance over current therapeutic modalities.
Collapse
Affiliation(s)
- Jae Hoon Sul
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Sol Shin
- School of Chemical Engineering, College of EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Hark Kyun Kim
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Jihoon Han
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Junsik Kim
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Soyong Son
- School of Chemical Engineering, College of EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Jungmi Lee
- School of Chemical Engineering, College of EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Seung Hyun Baek
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Yoonsuk Cho
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Jeongmi Lee
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Jinsu Park
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
- Department of Health Sciences and TechnologySAIHST, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Donghoon Ahn
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Sunyoung Park
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | | | - Jeein Lim
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Jongho Kim
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Chanhee Kim
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Seungsu Han
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Ka Young Chung
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Sangho Lee
- Department of Biological SciencesSungkyunkwan UniversitySuwonRepublic of Korea
| | - Tae‐in Kam
- Department of Brain and Cognitive SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Yunjong Lee
- Department of Molecular Cell BiologySungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - Jeongyun Kim
- Department of Health Sciences and TechnologySAIHST, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
- Department of Health Sciences and TechnologySAIHST, Sungkyunkwan UniversitySuwonRepublic of Korea
- Biomedical Institute for ConvergenceSungkyunkwan UniversitySuwonRepublic of Korea
| | - Dong‐Gyu Jo
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
- Department of Health Sciences and TechnologySAIHST, Sungkyunkwan UniversitySuwonRepublic of Korea
- Biomedical Institute for ConvergenceSungkyunkwan UniversitySuwonRepublic of Korea
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
24
|
Saßmannshausen T, Glover H, Trabuco M, Neidhart W, Cheng R, Hennig M, Slavov C, Standfuss J, Wachtveitl J. Kinetic Basis for the Design of Azobenzene-Based Photoswitchable A 2a Adenosine Receptor Ligands. J Am Chem Soc 2024; 146:32670-32677. [PMID: 39533779 DOI: 10.1021/jacs.4c11995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photoisomerization of ligands is a key process in the field of photopharmacology. Thus, the kinetics and efficiency of this initial photoreaction are of great importance but can be influenced by the molecular environment of the binding pocket and the resulting confinement of the reaction pathway. In this study, we investigated the photoisomerization of an azobenzene derivative of the anti-Parkinson's drug istradefylline. To identify the impact of the binding pocket, the ligand was examined in solution and bound to its target protein, the A2a adenosine receptor (A2aR), belonging to the family of G protein-coupled receptors (GPCRs). Although the overall efficiency of isomerization is reduced when the ligand is bound, the initial photoreaction experiences little influence from the binding pocket. However, protein-coupled motion promotes a longer-lived excited-state population and thus leads to a reduction in efficiency. The results provide the kinetic basis for a photoswitchable GPCR ligand and demonstrate the influence of the binding pocket on fundamental photochemistry.
Collapse
Affiliation(s)
- Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| | - Hannah Glover
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI 5234, Switzerland
| | - Matilde Trabuco
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Werner Neidhart
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Robert Cheng
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Michael Hennig
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Chavdar Slavov
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI 5234, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| |
Collapse
|
25
|
Tiwari D, Roy N, Shukla AK. Bound by the love for cholesterol: A transporter meets a GPCR. Cell 2024; 187:6518-6520. [PMID: 39547211 DOI: 10.1016/j.cell.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
In a recently published article in Nature, Bayly-Jones et al. report the cryo-EM structures of a lysosomal cholesterol sensor, LYCHOS, also known as GPR155, which reveals a unique fusion of a plant auxin-transporter-like domain with a seven-transmembrane GPCR-like domain and elucidates mechanistic insights into cellular regulation of mTORC1 activity.
Collapse
Affiliation(s)
- Divyanshu Tiwari
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nabarun Roy
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Arun K Shukla
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
26
|
Peter S, Siragusa L, Thomas M, Palomba T, Cross S, O’Boyle NM, Bajusz D, Ferenczy GG, Keserű GM, Bottegoni G, Bender B, Chen I, De Graaf C. Comparative Study of Allosteric GPCR Binding Sites and Their Ligandability Potential. J Chem Inf Model 2024; 64:8176-8192. [PMID: 39441864 PMCID: PMC11558664 DOI: 10.1021/acs.jcim.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The steadily growing number of experimental G-protein-coupled receptor (GPCR) structures has revealed diverse locations of allosteric modulation, and yet few drugs target them. This gap highlights the need for a deeper understanding of allosteric modulation in GPCR drug discovery. The current work introduces a systematic annotation scheme to structurally classify GPCR binding sites based on receptor class, transmembrane helix contacts, and, for membrane-facing sites, membrane sublocation. This GPCR specific annotation scheme was applied to 107 GPCR structures bound by small molecules contributing to 24 distinct allosteric binding sites for comparative evaluation of three binding site detection methods (BioGPS, SiteMap, and FTMap). BioGPS identified the most in 22 of 24 sites. In addition, our property analysis showed that extrahelical allosteric ligands and binding sites represent a distinct chemical space characterized by shallow pockets with low volume, and the corresponding allosteric ligands showed an enrichment of halogens. Furthermore, we demonstrated that combining receptor and ligand similarity can be a viable method for ligandability assessment. One challenge regarding site prediction is the ligand shaping effect on the observed binding site, especially for extrahelical sites where the ligand-induced effect was most pronounced. To our knowledge, this is the first study presenting a binding site annotation scheme standardized for GPCRs, and it allows a comparison of allosteric binding sites across different receptors in an objective way. The insight from this study provides a framework for future GPCR binding site studies and highlights the potential of targeting allosteric sites for drug development.
Collapse
Affiliation(s)
- Sonja Peter
- Computational
Chemistry, Nxera Pharma U.K., Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza Rinascimento 6, Urbino 61029, Italy
| | - Lydia Siragusa
- Kinetic Business
Centre, Molecular Discovery Ltd., Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United
Kingdom
- Molecular
Horizon srl, via Montelino
30, Bettona, PG 06084, Italy
| | - Morgan Thomas
- Computational
Chemistry, Nxera Pharma U.K., Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
- Yusuf Hamied
Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Tommaso Palomba
- Kinetic Business
Centre, Molecular Discovery Ltd., Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United
Kingdom
| | - Simon Cross
- Kinetic Business
Centre, Molecular Discovery Ltd., Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United
Kingdom
| | - Noel M. O’Boyle
- Computational
Chemistry, Nxera Pharma U.K., Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
| | - Dávid Bajusz
- Medicinal
Chemistry Research Group and Drug Innovation Centre, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - György G. Ferenczy
- Medicinal
Chemistry Research Group and Drug Innovation Centre, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - György M. Keserű
- Medicinal
Chemistry Research Group and Drug Innovation Centre, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, Budapest 1117, Hungary
| | - Giovanni Bottegoni
- Department
of Biomolecular Sciences, University of
Urbino Carlo Bo, Piazza Rinascimento 6, Urbino 61029, Italy
- Institute
of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Brian Bender
- Computational
Chemistry, Nxera Pharma U.K., Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
| | - Ijen Chen
- Computational
Chemistry, Nxera Pharma U.K., Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
| | - Chris De Graaf
- Computational
Chemistry, Nxera Pharma U.K., Steinmetz Building, Granta Park, Cambridge CB21 6DG, United Kingdom
| |
Collapse
|
27
|
Sangwung P, Ho JD, Siddall T, Lin J, Tomas A, Jones B, Sloop KW. Class B1 GPCRs: insights into multireceptor pharmacology for the treatment of metabolic disease. Am J Physiol Endocrinol Metab 2024; 327:E600-E615. [PMID: 38984948 PMCID: PMC11559640 DOI: 10.1152/ajpendo.00371.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
The secretin-like, class B1 subfamily of seven transmembrane-spanning G protein-coupled receptors (GPCRs) consists of 15 members that coordinate important physiological processes. These receptors bind peptide ligands and use a distinct mechanism of activation that is driven by evolutionarily conserved structural features. For the class B1 receptors, the C-terminus of the cognate ligand is initially recognized by the receptor via an N-terminal extracellular domain that forms a hydrophobic ligand-binding groove. This binding enables the N-terminus of the ligand to engage deep into a large volume, open transmembrane pocket of the receptor. Importantly, the phylogenetic basis of this ligand-receptor activation mechanism has provided opportunities to engineer analogs of several class B1 ligands for therapeutic use. Among the most accepted of these are drugs targeting the glucagon-like peptide-1 (GLP-1) receptor for the treatment of type 2 diabetes and obesity. Recently, multifunctional agonists possessing activity at the GLP-1 receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor, such as tirzepatide, and others that also contain glucagon receptor activity, have been developed. In this article, we review members of the class B1 GPCR family with focus on receptors for GLP-1, GIP, and glucagon, including their signal transduction and receptor trafficking characteristics. The metabolic importance of these receptors is also highlighted, along with the benefit of polypharmacologic ligands. Furthermore, key structural features and comparative analyses of high-resolution cryogenic electron microscopy structures for these receptors in active-state complexes with either native ligands or multifunctional agonists are provided, supporting the pharmacological basis of such therapeutic agents.
Collapse
Affiliation(s)
- Panjamaporn Sangwung
- Molecular Pharmacology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Joseph D Ho
- Department of Structural Biology, Lilly Biotechnology Center, San Diego, California, United States
| | - Tessa Siddall
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Jerry Lin
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Kyle W Sloop
- Diabetes, Obesity and Complications, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States
| |
Collapse
|
28
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
29
|
Lymperopoulos A, Stoicovy RA. RGS Proteins in Sympathetic Nervous System Regulation: Focus on Adrenal RGS4. FRONT BIOSCI-LANDMRK 2024; 29:355. [PMID: 39473413 DOI: 10.31083/j.fbl2910355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 01/11/2025]
Abstract
The sympathetic nervous system (SNS) consists largely of two different types of components: neurons that release the neurotransmitter norepinephrine (NE, noradrenaline) to modulate homeostasis of the innevrvated effector organ or tissue and adrenal chromaffin cells, which synthesize and secrete the hormone epinephrine (Epi, adrenaline) and some NE into the blood circulation to act at distant organs and tissues that are not directly innervated by the SNS. Like almost every physiological process in the human body, G protein-coupled receptors (GPCRs) tightly modulate both NE release from sympathetic neuronal terminals and catecholamine (CA) secretion from the adrenal medulla. Regulator of G protein Signaling (RGS) proteins, acting as guanosine triphosphatase (GTPase)-activating proteins (GAPs) for the Gα subunits of heterotrimeric guanine nucleotide-binding proteins (G proteins), play a central role in silencing G protein signaling from a plethora of GPCRs. Certain RGS proteins and, in particular, RGS4, have been implicated in regulation of SNS activity and of adrenal chromaffin cell CA secretion. More specifically, recent studies have implicated RGS4 in regulation of NE release from cardiac sympathetic neurons by means of terminating free fatty acid receptor (FFAR)-3 calcium signaling and in regulation of NE and Epi secretion from the adrenal medulla by means of terminating cholinergic calcium signaling in adrenal chromaffin cells. Thus, in this review, we provide an overview of the current literature on the involvement of RGS proteins, with a particular focus on RGS4, in these two processes, i.e., NE release from sympathetic nerve terminals & CA secretion from adrenal chromaffin cells. We also highlight the therapeutic potential of RGS4 pharmacological manipulation for diseases characterized by sympathetic dysfunction or SNS hyperactivity, such as heart failure and hypertension.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| | - Renee A Stoicovy
- Department of Pharmaceutical Sciences, Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Davie/Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
30
|
Yang H, Wang Y, Liu W, He T, Liao J, Qian Z, Zhao J, Cong Z, Sun D, Liu Z, Wang C, Zhu L, Chen S. Genome-wide pan-GPCR cell libraries accelerate drug discovery. Acta Pharm Sin B 2024; 14:4296-4311. [PMID: 39525595 PMCID: PMC11544303 DOI: 10.1016/j.apsb.2024.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are pivotal in mediating diverse physiological and pathological processes, rendering them promising targets for drug discovery. GPCRs account for about 40% of FDA-approved drugs, representing the most successful drug targets. However, only approximately 15% of the 800 human GPCRs are targeted by market drugs, leaving numerous opportunities for drug discovery among the remaining receptors. Cell expression systems play crucial roles in the GPCR drug discovery field, including novel target identification, structural and functional characterization, potential ligand screening, signal pathway elucidation, and drug safety evaluation. Here, we discuss the principles, applications, and limitations of widely used cell expression systems in GPCR-targeted drug discovery, GPCR function investigation, signal pathway characterization, and pharmacological property studies. We also propose three strategies for constructing genome-wide pan-GPCR cell libraries, which will provide a powerful platform for GPCR ligand screening, and facilitate the study of GPCR mechanisms and drug safety evaluation, ultimately accelerating the process of GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Hanting Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yongfu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Taiping He
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Basic Medical Science, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayu Liao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- The Huaxi-Cal Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongzhi Qian
- Chinese Pharmacopoeia Commission, Beijing 100061, China
| | - Jinghao Zhao
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaotong Cong
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dan Sun
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Can Wang
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lingping Zhu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
31
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
32
|
Zhang Y, Tan Y, Zhang Z, Cheng X, Duan J, Li Y. Targeting Thyroid-Stimulating Hormone Receptor: A Perspective on Small-Molecule Modulators and Their Therapeutic Potential. J Med Chem 2024; 67:16018-16034. [PMID: 39269788 DOI: 10.1021/acs.jmedchem.4c01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
TSHR is a member of the glycoprotein hormone receptors, a subfamily of class A G-protein-coupled receptors and plays pivotal roles in various physiological and pathological processes, particularly in thyroid growth and hormone production. The aberrant TSHR function has been implicated in several human diseases including Graves' disease and orbitopathy, nonautoimmune hyperthyroidism, hypothyroidism, cancer, neurological disorders, and osteoporosis. Consequently, TSHR is recognized as an attractive therapeutic target, and targeting TSHR with small-molecule modulators including agonists, antagonists, and inverse agonists offers great potential for drug discovery. In this perspective, we summarize the structures and biological functions of TSHR as well as the recent advances in the development of small-molecule TSHR modulators, highlighting their chemotypes, mode of actions, structure-activity relationships, characterizations, in vitro/in vivo activities, and therapeutic potential. The challenges, new opportunities, and future directions in this area are also discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Ye Tan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zian Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 330106, China
| | - Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Center for Structure & Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Wang M, Zan T, Fan C, Li Z, Wang D, Li Q, Zhang C. Advances in GPCR-targeted drug development in dermatology. Trends Pharmacol Sci 2024; 45:678-690. [PMID: 39060127 DOI: 10.1016/j.tips.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Achieving the efficacy and specificity of G-protein-coupled receptor (GPCR) targeting-drugs in the skin remains challenging. Understanding the molecular mechanism underlying GPCR dysfunction is crucial for developing targeted therapies. Recent advances in genetic, signal transduction, and structural studies have significantly improved our understanding of cutaneous GPCR functions in both normal and pathological states. In this review, we summarize recent discoveries of pathogenic GPCRs in dermal injuries, chronic inflammatory dermatoses, cutaneous malignancies, as well as the development of potent potential drugs. We also discuss targeting of cutaneous GPCR complexes via the transient receptor potential (TRP) channel and structure elucidation, which provide new opportunities for therapeutic targeting of GPCRs involved in skin disorders. These insights are expected to lead to more effective and specific treatments for various skin conditions.
Collapse
Affiliation(s)
- Meng Wang
- Songjiang Research Institute, Songjiang Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengang Fan
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Chao Zhang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
34
|
Kenakin T. Know your molecule: pharmacological characterization of drug candidates to enhance efficacy and reduce late-stage attrition. Nat Rev Drug Discov 2024; 23:626-644. [PMID: 38890494 DOI: 10.1038/s41573-024-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Despite advances in chemical, computational and biological sciences, the rate of attrition of drug candidates in clinical development is still high. A key point in the small-molecule discovery process that could provide opportunities to help address this challenge is the pharmacological characterization of hit and lead compounds, culminating in the selection of a drug candidate. Deeper characterization is increasingly important, because the 'quality' of drug efficacy, at least for G protein-coupled receptors (GPCRs), is now understood to be much more than activation of commonly evaluated pathways such as cAMP signalling, with many more 'efficacies' of ligands that could be harnessed therapeutically. Such characterization is being enabled by novel assays to characterize the complex behaviour of GPCRs, such as biased signalling and allosteric modulation, as well as advances in structural biology, such as cryo-electron microscopy. This article discusses key factors in the assessments of the pharmacology of hit and lead compounds in the context of GPCRs as a target class, highlighting opportunities to identify drug candidates with the potential to address limitations of current therapies and to improve the probability of them succeeding in clinical development.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Liu H, Yan P, Zhang Z, Han H, Zhou Q, Zheng J, Zhang J, Xu F, Shui W. Structural Mass Spectrometry Captures Residue-Resolved Comprehensive Conformational Rearrangements of a G Protein-Coupled Receptor. J Am Chem Soc 2024; 146:20045-20058. [PMID: 39001877 DOI: 10.1021/jacs.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
G protein-coupled receptor (GPCR) structural studies with in-solution spectroscopic approaches have offered distinctive insights into GPCR activation and signaling that highly complement those yielded from structural snapshots by crystallography or cryo-EM. While most current spectroscopic approaches allow for probing structural changes at selected residues or loop regions, they are not suitable for capturing a holistic view of GPCR conformational rearrangements across multiple domains. Herein, we develop an approach based on limited proteolysis mass spectrometry (LiP-MS) to simultaneously monitor conformational alterations of a large number of residues spanning both flexible loops and structured transmembrane domains for a given GPCR. To benchmark LiP-MS for GPCR conformational profiling, we studied the adenosine 2A receptor (A2AR) in response to different ligand binding (agonist/antagonist/allosteric modulators) and G protein coupling. Systematic and residue-resolved profiling of A2AR conformational rearrangements by LiP-MS precisely captures structural mechanisms in multiple domains underlying ligand engagement, receptor activation, and allostery, and may also reflect local conformational flexibility. Furthermore, these residue-resolution structural fingerprints of the A2AR protein allow us to readily classify ligands of different pharmacology and distinguish the G protein-coupled state. Thus, our study provides a new structural MS approach that would be generalizable to characterizing conformational transition and plasticity for challenging integral membrane proteins.
Collapse
Affiliation(s)
- Hongyue Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Yan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyu Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Han
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
36
|
Yang X, Zhou P, Shen S, Hu Q, Tian C, Xia A, Wang Y, Yang Z, Nan J, Zhou Y, Chen S, Tian X, Wu C, Lin G, Zhang L, Wang K, Zheng T, Zou J, Yan W, Shao Z, Yang S. Entropy drives the ligand recognition in G-protein-coupled receptor subtypes. Proc Natl Acad Sci U S A 2024; 121:e2401091121. [PMID: 39024109 PMCID: PMC11287286 DOI: 10.1073/pnas.2401091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
Achieving ligand subtype selectivity within highly homologous subtypes of G-protein-coupled receptor (GPCR) is critical yet challenging for GPCR drug discovery, primarily due to the unclear mechanism underlying ligand subtype selectivity, which hampers the rational design of subtype-selective ligands. Herein, we disclose an unusual molecular mechanism of entropy-driven ligand recognition in cannabinoid (CB) receptor subtypes, revealed through atomic-level molecular dynamics simulations, cryoelectron microscopy structure, and mutagenesis experiments. This mechanism is attributed to the distinct conformational dynamics of the receptor's orthosteric pocket, leading to variations in ligand binding entropy and consequently, differential binding affinities, which culminate in specific ligand recognition. We experimentally validated this mechanism and leveraged it to design ligands with enhanced or ablated subtype selectivity. One such ligand demonstrated favorable pharmacokinetic properties and significant efficacy in rodent inflammatory analgesic models. More importantly, it is precisely due to the high subtype selectivity obtained based on this mechanism that this ligand does not show addictive properties in animal models. Our findings elucidate the unconventional role of entropy in CB receptor subtype selectivity and suggest a strategy for rational design of ligands to achieve entropy-driven subtype selectivity for many pharmaceutically important GPCRs.
Collapse
Affiliation(s)
- Xin Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Pei Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Siyuan Shen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Qian Hu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Chenyu Tian
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Anjie Xia
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Yifei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Zhiqian Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Jinshan Nan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Yangli Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Shasha Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Xiaowen Tian
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Chao Wu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Guifeng Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Liting Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Kexin Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Tao Zheng
- Engineering Research Center of Medical Information Technology, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Jun Zou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Wei Yan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
| | - Zhenhua Shao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan610212, China
| | - Shengyong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- New Cornerstone Science Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan610041, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan610212, China
| |
Collapse
|
37
|
Otun O, Aljamous C, Del Nero E, Arimont-Segura M, Bosma R, Zarzycka B, Girbau T, Leyrat C, de Graaf C, Leurs R, Durroux T, Granier S, Cong X, Bechara C. Conformational dynamics underlying atypical chemokine receptor 3 activation. Proc Natl Acad Sci U S A 2024; 121:e2404000121. [PMID: 39008676 PMCID: PMC11287255 DOI: 10.1073/pnas.2404000121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Atypical Chemokine Receptor 3 (ACKR3) belongs to the G protein-coupled receptor family but it does not signal through G proteins. The structural properties that govern the functional selectivity and the conformational dynamics of ACKR3 activation are poorly understood. Here, we combined hydrogen/deuterium exchange mass spectrometry, site-directed mutagenesis, and molecular dynamics simulations to examine the binding mode and mechanism of action of ACKR3 ligands of different efficacies. Our results show that activation or inhibition of ACKR3 is governed by intracellular conformational changes of helix 6, intracellular loop 2, and helix 7, while the DRY motif becomes protected during both processes. Moreover, we identified the binding sites and the allosteric modulation of ACKR3 upon β-arrestin 1 binding. In summary, this study highlights the structure-function relationship of small ligands, the binding mode of β-arrestin 1, the activation dynamics, and the atypical dynamic features in ACKR3 that may contribute to its inability to activate G proteins.
Collapse
Affiliation(s)
- Omolade Otun
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Christelle Aljamous
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Elise Del Nero
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Marta Arimont-Segura
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Reggie Bosma
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Barbara Zarzycka
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Tristan Girbau
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 534094, France
- Institut Universitaire de France, Paris75005, France
| |
Collapse
|
38
|
Kaneko H, Korenaga R, Nakamura R, Kawai S, Ando T, Shiroishi M. Binding characteristics of the doxepin E/Z-isomers to the histamine H 1 receptor revealed by receptor-bound ligand analysis and molecular dynamics study. J Mol Recognit 2024:e3098. [PMID: 38924170 DOI: 10.1002/jmr.3098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Doxepin is an antihistamine and tricyclic antidepressant that binds to the histamine H1 receptor (H1R) with high affinity. Doxepin is an 85:15 mixture of the E- and Z-isomers. The Z-isomer is well known to be more effective than the E-isomer, whereas based on the crystal structure of the H1R/doxepin complex, the hydroxyl group of Thr1123.37 is close enough to form a hydrogen bond with the oxygen atom of the E-isomer. The detailed binding characteristics and reasons for the differences remain unclear. In this study, we analyzed doxepin isomers bound to the receptor following extraction from a purified H1R protein complexed with doxepin. The ratio of the E- and Z-isomers bound to wild-type (WT) H1R was 55:45, indicating that the Z-isomer was bound to WT H1R with an approximately 5.2-fold higher affinity than the E-isomer. For the T1123.37V mutant, the E/Z ratio was 89:11, indicating that both isomers have similar affinities. Free energy calculations using molecular dynamics (MD) simulations also reproduced the experimental results of the relative binding free energy differences between the isomers for WT and T1123.37V. Furthermore, MD simulations revealed that the hydroxyl group of T1123.37 did not form hydrogen bonds with the E-isomer, but with the adjacent residues in the binding pocket. Analysis of the receptor-bound doxepin and MD simulations suggested that the hydroxyl group of T1123.37 contributes to the formation of a chemical environment in the binding pocket, which is slightly more favorable for the Z-isomer without hydrogen bonding with doxepin.
Collapse
Affiliation(s)
- Hiroto Kaneko
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryunosuke Korenaga
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryota Nakamura
- Department of Applied Electronics, Tokyo University of Science, Tokyo, Japan
| | - Shinnosuke Kawai
- Department of Applied Electronics, Tokyo University of Science, Tokyo, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, Tokyo, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
39
|
Gutiérrez-Mondragón MA, Vellido A, König C. A Study on the Robustness and Stability of Explainable Deep Learning in an Imbalanced Setting: The Exploration of the Conformational Space of G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:6572. [PMID: 38928278 PMCID: PMC11203844 DOI: 10.3390/ijms25126572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
G-protein coupled receptors (GPCRs) are transmembrane proteins that transmit signals from the extracellular environment to the inside of the cells. Their ability to adopt various conformational states, which influence their function, makes them crucial in pharmacoproteomic studies. While many drugs target specific GPCR states to exert their effects-thereby regulating the protein's activity-unraveling the activation pathway remains challenging due to the multitude of intermediate transformations occurring throughout this process, and intrinsically influencing the dynamics of the receptors. In this context, computational modeling, particularly molecular dynamics (MD) simulations, may offer valuable insights into the dynamics and energetics of GPCR transformations, especially when combined with machine learning (ML) methods and techniques for achieving model interpretability for knowledge generation. The current study builds upon previous work in which the layer relevance propagation (LRP) technique was employed to interpret the predictions in a multi-class classification problem concerning the conformational states of the β2-adrenergic (β2AR) receptor from MD simulations. Here, we address the challenges posed by class imbalance and extend previous analyses by evaluating the robustness and stability of deep learning (DL)-based predictions under different imbalance mitigation techniques. By meticulously evaluating explainability and imbalance strategies, we aim to produce reliable and robust insights.
Collapse
Affiliation(s)
- Mario A. Gutiérrez-Mondragón
- Computer Science Department, Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; (M.A.G.-M.); (A.V.)
| | - Alfredo Vellido
- Computer Science Department, Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; (M.A.G.-M.); (A.V.)
- Centro de Investigacion Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Caroline König
- Computer Science Department, Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; (M.A.G.-M.); (A.V.)
| |
Collapse
|
40
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
41
|
Velloso JPL, de Sá AGC, Pires DEV, Ascher DB. Engineering G protein-coupled receptors for stabilization. Protein Sci 2024; 33:e5000. [PMID: 38747401 PMCID: PMC11094779 DOI: 10.1002/pro.5000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
G protein-coupled receptors (GPCRs) are one of the most important families of targets for drug discovery. One of the limiting steps in the study of GPCRs has been their stability, with significant and time-consuming protein engineering often used to stabilize GPCRs for structural characterization and drug screening. Unfortunately, computational methods developed using globular soluble proteins have translated poorly to the rational engineering of GPCRs. To fill this gap, we propose GPCR-tm, a novel and personalized structurally driven web-based machine learning tool to study the impacts of mutations on GPCR stability. We show that GPCR-tm performs as well as or better than alternative methods, and that it can accurately rank the stability changes of a wide range of mutations occurring in various types of class A GPCRs. GPCR-tm achieved Pearson's correlation coefficients of 0.74 and 0.46 on 10-fold cross-validation and blind test sets, respectively. We observed that the (structural) graph-based signatures were the most important set of features for predicting destabilizing mutations, which points out that these signatures properly describe the changes in the environment where the mutations occur. More specifically, GPCR-tm was able to accurately rank mutations based on their effect on protein stability, guiding their rational stabilization. GPCR-tm is available through a user-friendly web server at https://biosig.lab.uq.edu.au/gpcr_tm/.
Collapse
Affiliation(s)
- João Paulo L. Velloso
- School of Chemistry and Molecular Biosciences, The Australian Centre for EcogenomicsThe University of QueenslandBrisbaneQueenslandAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Alex G. C. de Sá
- School of Chemistry and Molecular Biosciences, The Australian Centre for EcogenomicsThe University of QueenslandBrisbaneQueenslandAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Douglas E. V. Pires
- School of Computing and Information SystemsThe University of MelbourneParkvilleVictoriaAustralia
| | - David B. Ascher
- School of Chemistry and Molecular Biosciences, The Australian Centre for EcogenomicsThe University of QueenslandBrisbaneQueenslandAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
42
|
Cheng N, Pimentel JM, Trejo J. Ubiquitin-driven G protein-coupled receptor inflammatory signaling at the endosome. Am J Physiol Cell Physiol 2024; 326:C1605-C1610. [PMID: 38646783 PMCID: PMC11371321 DOI: 10.1152/ajpcell.00161.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
G protein-coupled receptors (GPCRs) are ubiquitously expressed cell surface receptors that mediate numerous physiological responses and are highly druggable. Upon activation, GPCRs rapidly couple to heterotrimeric G proteins and are then phosphorylated and internalized from the cell surface. Recent studies indicate that GPCRs not only localize at the plasma membrane but also exist in intracellular compartments where they are competent to signal. Intracellular signaling by GPCRs is best described to occur at endosomes. Several studies have elegantly documented endosomal GPCR-G protein and GPCR-β-arrestin signaling. Besides phosphorylation, GPCRs are also posttranslationally modified with ubiquitin. GPCR ubiquitination has been studied mainly in the context of receptor endosomal-lysosomal trafficking. However, new studies indicate that ubiquitination of endogenous GPCRs expressed in endothelial cells initiates the assembly of an intracellular p38 mitogen-activated kinase signaling complex that promotes inflammatory responses from endosomes. In this mini-review, we discuss emerging discoveries that provide critical insights into the function of ubiquitination in regulating GPCR inflammatory signaling at endosomes.
Collapse
Affiliation(s)
- Norton Cheng
- Department of Pharmacology, School of Medicine, University of California, San Diego, California, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, California, United States
| | - Julio M Pimentel
- Department of Pharmacology, School of Medicine, University of California, San Diego, California, United States
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, California, United States
| |
Collapse
|
43
|
Tomašević N, Emser FS, Muratspahić E, Gattringer J, Hasinger S, Hellinger R, Keov P, Felkl M, Gertsch J, Becker CFW, Gruber CW. Discovery and development of macrocyclic peptide modulators of the cannabinoid 2 receptor. J Biol Chem 2024; 300:107330. [PMID: 38679329 PMCID: PMC11154713 DOI: 10.1016/j.jbc.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 μM and a potency (EC50) of 8 μM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.
Collapse
Affiliation(s)
- Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Susanna Emser
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Simon Hasinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Keov
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Manuel Felkl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
44
|
Qiu Y, Hou Y, Gohel D, Zhou Y, Xu J, Bykova M, Yang Y, Leverenz JB, Pieper AA, Nussinov R, Caldwell JZK, Brown JM, Cheng F. Systematic characterization of multi-omics landscape between gut microbial metabolites and GPCRome in Alzheimer's disease. Cell Rep 2024; 43:114128. [PMID: 38652661 PMCID: PMC11968202 DOI: 10.1016/j.celrep.2024.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Shifts in the magnitude and nature of gut microbial metabolites have been implicated in Alzheimer's disease (AD), but the host receptors that sense and respond to these metabolites are largely unknown. Here, we develop a systems biology framework that integrates machine learning and multi-omics to identify molecular relationships of gut microbial metabolites with non-olfactory G-protein-coupled receptors (termed the "GPCRome"). We evaluate 1.09 million metabolite-protein pairs connecting 408 human GPCRs and 335 gut microbial metabolites. Using genetics-derived Mendelian randomization and integrative analyses of human brain transcriptomic and proteomic profiles, we identify orphan GPCRs (i.e., GPR84) as potential drug targets in AD and that triacanthine experimentally activates GPR84. We demonstrate that phenethylamine and agmatine significantly reduce tau hyperphosphorylation (p-tau181 and p-tau205) in AD patient induced pluripotent stem cell-derived neurons. This study demonstrates a systems biology framework to uncover the GPCR targets of human gut microbiota in AD and other complex diseases if broadly applied.
Collapse
Affiliation(s)
- Yunguang Qiu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dhruv Gohel
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yadi Zhou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Marina Bykova
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuxin Yang
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jessica Z K Caldwell
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Las Vegas, NV 89106, USA
| | - J Mark Brown
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Department of Cancer Biology, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
45
|
Zhang H, Fan H, Wang J, Hou T, Saravanan KM, Xia W, Kan HW, Li J, Zhang JZH, Liang X, Chen Y. Revolutionizing GPCR-ligand predictions: DeepGPCR with experimental validation for high-precision drug discovery. Brief Bioinform 2024; 25:bbae281. [PMID: 38864340 PMCID: PMC11167311 DOI: 10.1093/bib/bbae281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
G-protein coupled receptors (GPCRs), crucial in various diseases, are targeted of over 40% of approved drugs. However, the reliable acquisition of experimental GPCRs structures is hindered by their lipid-embedded conformations. Traditional protein-ligand interaction models falter in GPCR-drug interactions, caused by limited and low-quality structures. Generalized models, trained on soluble protein-ligand pairs, are also inadequate. To address these issues, we developed two models, DeepGPCR_BC for binary classification and DeepGPCR_RG for affinity prediction. These models use non-structural GPCR-ligand interaction data, leveraging graph convolutional networks and mol2vec techniques to represent binding pockets and ligands as graphs. This approach significantly speeds up predictions while preserving critical physical-chemical and spatial information. In independent tests, DeepGPCR_BC surpassed Autodock Vina and Schrödinger Dock with an area under the curve of 0.72, accuracy of 0.68 and true positive rate of 0.73, whereas DeepGPCR_RG demonstrated a Pearson correlation of 0.39 and root mean squared error of 1.34. We applied these models to screen drug candidates for GPR35 (Q9HC97), yielding promising results with three (F545-1970, K297-0698, S948-0241) out of eight candidates. Furthermore, we also successfully obtained six active inhibitors for GLP-1R. Our GPCR-specific models pave the way for efficient and accurate large-scale virtual screening, potentially revolutionizing drug discovery in the GPCR field.
Collapse
Affiliation(s)
- Haiping Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, Guangdong Province, China
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Xinqizhou East Road 888, Ganjiang New Area, Nanchang 330000, China
| | - Jixia Wang
- Ganjiang Chinese Medicine Innovation Center, Xinqizhou East Road 888, Ganjiang New Area, Nanchang 330000, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Tao Hou
- Ganjiang Chinese Medicine Innovation Center, Xinqizhou East Road 888, Ganjiang New Area, Nanchang 330000, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Agharam Road 173, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Wei Xia
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, Guangdong Province, China
| | - Hei Wun Kan
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, Guangdong Province, China
| | - Junxin Li
- Shenzhen Laboratory of Human Antibody Engineering, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, Guangdong Province, China
| | - John Z H Zhang
- Faculty of Synthetic Biology and Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Boulevard, Nanshan District, Shenzhen 518055, Guangdong Province, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Xinqizhou East Road 888, Ganjiang New Area, Nanchang 330000, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Xinqizhou East Road 888, Ganjiang New Area, Nanchang 330000, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
46
|
Di Niro L, Linders AC, Glynn T, Pegtel DM, Siderius M, Crudden C, Smit MJ. G protein-coupled receptors: a gateway to targeting oncogenic EVs? EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:233-248. [PMID: 39698539 PMCID: PMC11648488 DOI: 10.20517/evcna.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 12/20/2024]
Abstract
Dysregulated intercellular communication is a key feature driving cancer progression. Recently, extracellular vesicles (EVs) have added a new channel to this dense communication network. Despite solid evidence that EVs are central mediators of dysregulated signaling in onco-pathological settings, this has yet to be translated into clinically actionable strategies. The heterogeneity of EV cargo molecules, plasticity of biogenesis routes, and large overlap with their role in physiological communication, complicate a potential targeting strategy. However, recent work has linked EV biology to perhaps the "most druggable" proteins - G protein-coupled receptors (GPCRs). GPCR targeting accounts for ~60% of drugs in development and more than a third of all currently approved drugs, spanning almost all areas of medicine. Although several GPCRs have been linked to cancer initiation and progression, relatively few agents have made it into oncological regimes, suggesting that their potential is underexploited. Herein, we examine the molecular mechanisms linking GPCRs to EV communication in cancer settings. We propose that GPCRs hold potential in the search for EV-targeting in oncology.
Collapse
Affiliation(s)
- Lotte Di Niro
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Amber C. Linders
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Thomas Glynn
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - D. Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Marco Siderius
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Caitrin Crudden
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Martine J. Smit
- Department of Chemistry and Pharmaceutical Sciences, Division of Medicinal Chemistry, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
47
|
Li S, Zhou Y, Yan Y, Qin Y, Weng Q, Sun L. Structure-Based Virtual Screening, ADMET Properties Prediction and Molecular Dynamics Studies Reveal Potential Inhibitors of Mycoplasma pneumoniae HPrK/P. Life (Basel) 2024; 14:657. [PMID: 38929642 PMCID: PMC11204831 DOI: 10.3390/life14060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Mycoplasma pneumoniae pneumonia (MPP) is a frequent cause of community-acquired pneumonia (CAP) in children. The incidence of childhood pneumonia caused by M. pneumoniae infection has been rapidly increasing worldwide. M. pneumoniae is naturally resistant to beta-lactam antibiotics due to its lack of a cell wall. Macrolides and related antibiotics are considered the optimal drugs for treating M. pneumoniae infection. However, clinical resistance to macrolides has become a global concern in recent years. Therefore, it is imperative to urgently identify new targets and develop new anti-M. pneumoniae drugs to treat MMP. Previous studies have shown that deficiencies in HPrK/P kinase or phosphorylase activity can seriously affect carbon metabolism, growth, morphology, and other cellular functions of M. pneumoniae. To identify potential drug development targets against M. pneumoniae, this study analyzed the sequence homology and 3D structure alignment of M. pneumoniae HPrK/P. Through sequence and structure analysis, we found that HPrK/P lacks homologous proteins in the human, while its functional motifs are highly conserved in bacteria. This renders it a promising candidate for drug development. Structure-based virtual screening was then used to discover potential inhibitors among 2614 FDA-approved drugs and 948 bioactive small molecules for M. pneumoniae HPrK/P. Finally, we identified three candidate drugs (Folic acid, Protokylol and Gluconolactone) as potential HPrK/P inhibitors through molecular docking, molecular dynamics (MDs) simulations, and ADMET predictions. These drugs offer new strategies for the treatment of MPP.
Collapse
Affiliation(s)
- Shen Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Ying Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Yujuan Yan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Yinying Qin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Qilu Weng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China; (S.L.); (Y.Z.); (Y.Y.); (Y.Q.); (Q.W.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
48
|
Kosar M, Sarott RC, Sykes DA, Viray AEG, Vitale RM, Tomašević N, Li X, Ganzoni RLZ, Kicin B, Reichert L, Patej KJ, Gómez-Bouzó U, Guba W, McCormick PJ, Hua T, Gruber CW, Veprintsev DB, Frank JA, Grether U, Carreira EM. Flipping the GPCR Switch: Structure-Based Development of Selective Cannabinoid Receptor 2 Inverse Agonists. ACS CENTRAL SCIENCE 2024; 10:956-968. [PMID: 38799662 PMCID: PMC11117691 DOI: 10.1021/acscentsci.3c01461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024]
Abstract
We report a blueprint for the rational design of G protein coupled receptor (GPCR) ligands with a tailored functional response. The present study discloses the structure-based design of cannabinoid receptor type 2 (CB2R) selective inverse agonists (S)-1 and (R)-1, which were derived from privileged agonist HU-308 by introduction of a phenyl group at the gem-dimethylheptyl side chain. Epimer (R)-1 exhibits high affinity for CB2R with Kd = 39.1 nM and serves as a platform for the synthesis of a wide variety of probes. Notably, for the first time these fluorescent probes retain their inverse agonist functionality, high affinity, and selectivity for CB2R independent of linker and fluorophore substitution. Ligands (S)-1, (R)-1, and their derivatives act as inverse agonists in CB2R-mediated cAMP as well as G protein recruitment assays and do not trigger β-arrestin-receptor association. Furthermore, no receptor activation was detected in live cell ERK1/2 phosphorylation and Ca2+-release assays. Confocal fluorescence imaging experiments with (R)-7 (Alexa488) and (R)-9 (Alexa647) probes employing BV-2 microglial cells visualized CB2R expressed at endogenous levels. Finally, molecular dynamics simulations corroborate the initial docking data in which inverse agonists restrict movement of toggle switch Trp2586.48 and thereby stabilize CB2R in its inactive state.
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Roman C. Sarott
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - David A. Sykes
- Faculty
of Medicine & Health Sciences, University
of Nottingham, Nottingham NG7 2UH, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), University of Birmingham
and University of Nottingham, https://www.birmingham-nottingham.ac.uk/compare
| | - Alexander E. G. Viray
- Department
of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Rosa Maria Vitale
- Institute
of Biomolecular Chemistry, National Research
Council, Via Campi Flegrei
34, 80078 Pozzuoli, Italy
| | - Nataša Tomašević
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstrasse
17, 1090 Vienna, Austria
| | - Xiaoting Li
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Rudolf L. Z. Ganzoni
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bilal Kicin
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Lisa Reichert
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Kacper J. Patej
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Uxía Gómez-Bouzó
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Wolfgang Guba
- Roche
Pharma Research & Early Development, Roche Innovation Center Basel,
F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Peter J. McCormick
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Ashton
Street, Liverpool L69 3GE, U.K.
| | - Tian Hua
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Christian W. Gruber
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstrasse
17, 1090 Vienna, Austria
| | - Dmitry B. Veprintsev
- Faculty
of Medicine & Health Sciences, University
of Nottingham, Nottingham NG7 2UH, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), University of Birmingham
and University of Nottingham, https://www.birmingham-nottingham.ac.uk/compare
| | - James A. Frank
- Department
of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
- Vollum
Institute, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Uwe Grether
- Roche
Pharma Research & Early Development, Roche Innovation Center Basel,
F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erick M. Carreira
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
49
|
Luginina AP, Khnykin AN, Khorn PA, Moiseeva OV, Safronova NA, Pospelov VA, Dashevskii DE, Belousov AS, Borschevskiy VI, Mishin AV. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: Ligand Search and Screening. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:958-972. [PMID: 38880655 DOI: 10.1134/s0006297924050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that participate in many physiological processes and represent major pharmacological targets. Recent advances in structural biology of GPCRs have enabled the development of drugs based on the receptor structure (structure-based drug design, SBDD). SBDD utilizes information about the receptor-ligand complex to search for suitable compounds, thus expanding the chemical space of possible receptor ligands without the need for experimental screening. The review describes the use of structure-based virtual screening (SBVS) for GPCR ligands and approaches for the functional testing of potential drug compounds, as well as discusses recent advances and successful examples in the application of SBDD for the identification of GPCR ligands.
Collapse
Affiliation(s)
- Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentin I Borschevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
50
|
Grotsch K, Sadybekov AV, Hiller S, Zaidi S, Eremin D, Le A, Liu Y, Smith EC, Illiopoulis-Tsoutsouvas C, Thomas J, Aggarwal S, Pickett JE, Reyes C, Picazo E, Roth BL, Makriyannis A, Katritch V, Fokin VV. Virtual Screening of a Chemically Diverse "Superscaffold" Library Enables Ligand Discovery for a Key GPCR Target. ACS Chem Biol 2024; 19:866-874. [PMID: 38598723 DOI: 10.1021/acschembio.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The advent of ultra-large libraries of drug-like compounds has significantly broadened the possibilities in structure-based virtual screening, accelerating the discovery and optimization of high-quality lead chemotypes for diverse clinical targets. Compared to traditional high-throughput screening, which is constrained to libraries of approximately one million compounds, the ultra-large virtual screening approach offers substantial advantages in both cost and time efficiency. By expanding the chemical space with compounds synthesized from easily accessible and reproducible reactions and utilizing a large, diverse set of building blocks, we can enhance both the diversity and quality of the discovered lead chemotypes. In this study, we explore new chemical spaces using reactions of sulfur(VI) fluorides to create a combinatorial library consisting of several hundred million compounds. We screened this virtual library for cannabinoid type II receptor (CB2) antagonists using the high-resolution structure in conjunction with a rationally designed antagonist, AM10257. The top-predicted compounds were then synthesized and tested in vitro for CB2 binding and functional antagonism, achieving an experimentally validated hit rate of 55%. Our findings demonstrate the effectiveness of reliable reactions, such as sulfur fluoride exchange, in diversifying ultra-large chemical spaces and facilitate the discovery of new lead compounds for important biological targets.
Collapse
Affiliation(s)
- Katharina Grotsch
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Anastasiia V Sadybekov
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles 90089, California, United States
| | - Sydney Hiller
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Saheem Zaidi
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles 90089, California, United States
| | - Dmitry Eremin
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Austen Le
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Yongfeng Liu
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
- Psychoactive Drug Screening Program, National Institute of Mental Health, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
| | - Evan Carlton Smith
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Boston 02115, Massachusetts, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston 02115, Massachusetts, United States
| | - Christos Illiopoulis-Tsoutsouvas
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Boston 02115, Massachusetts, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston 02115, Massachusetts, United States
| | - Joice Thomas
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Shubhangi Aggarwal
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Julie E Pickett
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
- Psychoactive Drug Screening Program, National Institute of Mental Health, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
| | - Cesar Reyes
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Elias Picazo
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill 27599, North Carolina, United States
- Psychoactive Drug Screening Program, National Institute of Mental Health, School of Medicine, University of North Carolina, Chapel Hill 27599, North Carolina, United States
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Boston 02115, Massachusetts, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston 02115, Massachusetts, United States
| | - Vsevolod Katritch
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles 90089, California, United States
| | - Valery V Fokin
- Department of Chemistry, the Bridge Institute, University of Southern California, Los Angeles 90089, California, United States
- Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles 90089, California, United States
| |
Collapse
|